
Communication Design for No Instruction Set Computer

Jelena Trajkovic and Daniel Gajski

Technical Report CECS-05-09
July 25, 2005

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{jelenat,gajski}@cecs.uci.edu

Abstract

Increasing application demands flexible and fast components for their implementation. The No Instruction Set Computer
(NISC) is one such component that provides reconfigurable data path and programmable control to drive the data path.
This report addresses implementation of communication between NISC-style components. Our communication architecture
contains of a FIFO queue that buffers data being sent from one NISC to another. We present the design of the FIFO and the
data transfer methods used by the NISCs to communicate using this FIFO. Our design serves as a template for implementation
of communication in NISC based systems.

1

Contents

1. Introduction and Motivation 1

2. System Architecture 1
2.1 Data Format . 2
2.2 FIFO . 2
2.3 NISC . 3

3. Data Transfer Operations 4
3.1 Data Send . 4
3.2 Data Receive 5

4. Conclusions 5

i

List of Figures

1 Top level view of system consisting of arbitrary number of NISCs . 2
2 Connection details for system with two NISCs . 3
3 Data format . 3
4 Detailed system architecture . 6
5 FIFO FSM . 7
6 Data Send Operation Algorithm (NISC) . 8
7 Timing diagram for Data Send Operation . 9
8 Data Receive Operation Algorithm (NISC) 10
9 Timing diagram for Data Receive Operation . .. 11

ii

Communication Design for No Instruction Set Computer

Jelena Trajkovic and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

Increasing application demands flexible and fast components for their implementation. The No Instruction Set Computer
(NISC) is one such component that provides reconfigurable data path and programmable control to drive the data path.
This report addresses implementation of communication between NISC-style components. Our communication architecture
contains of a FIFO queue that buffers data being sent from one NISC to another. We present the design of the FIFO and the
data transfer methods used by the NISCs to communicate using this FIFO. Our design serves as a template for implementation
of communication in NISC based systems.

1. Introduction and Motivation

With the rise in complexity and performance demands of modern applications, designers look forward to new options for
their implementation. The ideal implementation would be one that combines the flexibility of software with the performance
of hardware. One such attractive implementation option is the No Instruction Set Computer (NISC). It provides a fully
customizable and reconfigurable data path and programmable control to drive the data path. Thus, each implementation is
hardware like in performance, yet debuggable like software.

In order to satisfy application needs, designers may compose their system using several NISCs. Generally, different NISCs
may have different clock speeds. Therefore, communication elements are required to allow exchanging data amongst such
NISCs. To address this problem, we propose a simple yet effective solution: using a First-In-First-Out (FIFO) queue for
sending and receiving data from one NISC to another. In this report, we present a solution for a system with any number
of NISC processors. We also define requirements for each NISC processor in order to support the proposed communication
architecture. Similar work has been discribed in [3], where the architecture of a general transducer and methodology for its
automatic genaration was proposed.

Figure 1 shows the top level view of a system consisting of N NISCs communicating through a FIFO queue. Each NISC is
connected to a common bus and its respective arbiter. Assume that NISC1 wants to send data to NISC2. The I/O Bus is used
to transfer data from NISC1 to FIFO, using double handshake protocol. Before the data transfer, NISC1 needs to obtain bus
from the arbiter. In order to identify the receiver, a header is prepended to the data containing the address of the recepient,
i.e. NISC2. Once the data has been propagated to top of the FIFO, the receiver(NISC2) is notified. Upon notification, NISC2
initiates reading data from the top of FIFO. The details of the system components, and the send and receive procedures will
be described in the following sections. In Section 2 we will give the system overview, describe data format and components
used. Section 3 presents details of data send and receive operations, and we conclude this report with a summary in Section
4.

2. System Architecture

Details of the communication architectures are shown on the example of a system consisting of two NISC processors,
shown in Figure 2. In order to access the bus,NISCisends request to bus arbiter usingReqiline. Any centralized bus arbiter
can be used. If bus access is granted to the particularNISCi, Arbiter sets value on theGranti line. The line stays high during
the entire timeNISCiholds the bus. Once the data transfer has been completed,NISCidrops a request by putting 0 onReqi
line, and theArbiter replies by dropping theGranti and it releases the bus.

1

NISC1 NISC2

NISC3 NISCn

Arbiter
I/O Bus

FIFO

...

control signals for
double handshake

Figure 1. Top level view of system consisting of arbitrary number of NISCs

Once the bus is obtained,NISCisignals to the FIFO that it is ready to start the data transfer by puttingReadyihigh and
0 or 1 onR/Win order to read to or write from theFIFO. FIFO consists of a controller (FIFO FSM) and a data path (FIFO
Data Path). Ready and R/W signals are input in the (FIFO FSM), as well asEmpty, Full, SizeandQ avail that come from
FIFO Data Path. EmptyandFull show the state of memory in the data path, whileQ avail gives size (in data words) of the
available memory space.Sizeis the number of data words that are to be sent or received. FIFO FSM generates read or write
request to the queue by asserting (0,1) or (1,1) on (Rd/Wr, Enable) lines.FIFO also connects to theI/O Busand theID Bus.
The former one is used for data transfer, and the latter one is used to broadcast the receiver’s address. Detailed explanations
of send and receive operation modes are given in Sections 3.1 and 3.2.

2.1 Data Format

Before sending, data has been formatted into the packet as shown in Figure 3. A one word long header is prepended to
theData value. The header consists of three fields: number of words in the packet (Size), receiver’s address (Addr) and the
data identifier (ID). The sender is responsible for assembling the packet before starting the send procedure, and the receiver
is responsible for disassembling the packet upon receiving. The details of assembling/disassembling are out of the scope of
this report. The packet header is also used by the FIFO.Sizeis checked to determine if there is sufficient space available in
the queue’s memory while receiving and to count the number of words transferred.

2.2 FIFO

Details of FIFO and NISC architectures are shown in Figure 4. As mentioned above, FIFO consists of a controller (FIFO
FSM) and a data path (FIFO Data Path). FIFO Data Pathconsists of a RAM memory module (Mem), that stores the data,
and up/down (n+1) bit counters,Front andBack, that point to the head and tail of the queue respectively. When data is to
be written to the RAM, theRdsignal enables incrementingFront counter and selects (usingSelector) the output of theFront
counter (n lower bits) as the RAM’s address. In case of read access,Wr signal andBackcounter are used instead ofRdand
Front. ExternalEnableandRd/Wrsignals are supplied to the RAM’sCS(chip select) andRWS(read write signal). Data is
supplied to/fromI/O Bus. The comparator output, together with the most significant bit ofFront andBackcounters, are used
to determine if the FIFO queue is full or empty, thus generating signalsFull andEmpty. SizeandQ avail are also up/down
counters.Sizeis the size of the data packet being written or read, and is decremented each time a new data word is transferred.
Q avail is the number of free words in memory, and is incremented/decremented depending on the nature of data transfer.
Size, AddrandID all compose a storage for the data header. More on FIFO design and its operation can be found in [1].

The operation ofFIFO FSM is shown in Figure 5. The in and out signals are described in Section 2. FIFO and NISC
communicate using double handshake protocol. If there is no request from any NISC, or if the queue can not satisfy the
request, FSM is in theidle state. Once a write request comes in, and if the queue is not full, the receive operation is started.
The first data word is stored into“Size, Addr, ID” register, and the data size is checked against the available queue space.

2

NISC2

NISC1Ack1Ready1

I/O
bus

Ready2 Ack2

Full
Empty

Enable
Rd/Wr

Arbiter

Req2Grant2

Req1Grant1 R/W1

R/W2

Ready

FIFO
FSM

R/W

Ack

ID
bus

Address

Address

Q_avail

Size

Data_out1

Data_in1

Data_in2

Data_out2

FullEmpty

Enable

FIFO Data Path

Rd/Wr

Mem_in_out

Size
Address

FIFO

Q_avail

Figure 2. Connection details for system with two NISCs

AddrSize ID Data value

1st word Remaining N words

Figure 3. Data format

In case there is not enough space to accommodate the entire data packet, FSM transitions back to theidle state. Otherwise,
the received data word is stored into the memory and an acknowledgment (Ack) is sent. TheAcksignal stays high until the
sender dropsReadysignal. Sizeis decremented to show the number of data words left for transfer. If there are more data
words to be transferred, FSM will wait tillReadybecomes high again and then repeat the transfer (starting fromR2). Once
the entire packet has been received, FSM transitions to eitheridle or S00astate. It transitions to theidle state if sending has
been previously initialized. If not, statesS00aandS00bread out the first data word from the top of the stack. The first data
word (see Figure 3) will be placed into“Size, Addr, ID” register and the address of the receiver will be broadcasted overID
Bus.

Upon recognizing its own address, the receiver will initiate receive operation (see Section 3.2). Once FSM receives the
read request (Ready = 1andR/W = 0), it enables the first word to theI/O Bus, assertsAcksignal and waits forReadysignal
to drop (state “S0”).Sizeis checked against 1, in order to continue the transfer of another word. BothSizeandQ avail are
updated and a new word is read out in case where there are more data words to be transferred. Again, when transfer of the
entire packet is completed, the first word of the following data packet is read out into“Size, Addr, ID” register, if the queue
is not empty.

The order of data transfer requests can be arbitrary. A scenario where several NISCs one after another send data before
any NISC receives data is possible. An extreme case of this scenario may block the entire system: no one can send, because
the queue is full, until the data packet from the top of the queue is delivered. Note that the opposite scenario, where queue is
empty, blocks only NISCs that are waiting for data.

2.3 NISC

Figure 4 also shows details of two NISC processors, namely NISC1 and NISC2. For the purpose of this work, these two
processors are identical, where in general case they may be different. Still each NISC needs to have certain elements that will

3

allow it to communicate with the FIFO queue. The required elements will be defined in this and the following sections after,
a brief introduction about NISC.

In contrast to a traditional, RISC-style processor, NISC does not have a decoding unit. The application program is
compiled directly into a set of control signals, called Control Words (CW), that are stored into the program memory (CMem
in Figure 4). Therefore an instruction set does not exist, allowing us to have fully customized data path. The control unit (on
the left hand side of the NISC block diagram), consists of an address generator (AG), a program counter (PC) and a control
word memory (CMem). All these elements perform the same duties as in a standard processor, except that a word that is read
out of CMem, is supplied directly to a data path (on the right hand side of the NISC block diagram). The data path shown
here is very simple; it consists of the register file (RF), the arithmetic-logic unit (ALU), the memory (Mem) and the pipeline
registers (R1, R2, R3, Addr, Datai andData o). In general the NICS data path may be non-pipelined or pipelined, have
data forwarding and any number of pipeline stages. It also may have any number or type of functional units, such as alu,
multiplier, multiplier/divider, multiply-and-accumulate or a custom functional unit. For more information on NISC, refer to
[2, 4].

RegistersData in1 andData out1and the corresponding selectors are used to store data word for receive and send, respec-
tively. The address decoder is a simple combinational circuit, that generatesData readysignal after the FIFO broadcasts the
address of the data packet on the top of the queue. This signal, together withGrant1, Ack1, Timeout, More andALU status,
form the content of aStatusregister. Bits from theStatusregister are used by the address generator to compute “next PC”
value. Cnt andSizeare down counters with parallel load. Both values are loaded at the same time the first data word is
loaded, just thatCnt is loaded only on data send. We determine initial value ofCnt such that we allow enough time for
FIFO to transition from “idle” to “R3” state and generateAck. CounterCnt generates signalTimeoutonce it reaches 0. The
hardware for loadingSizeis not shown due to the lack of space. The initial value of it is the same as upper M bits of Dataout
on send or Datain on receive; where M is bit-width of size field in the data header. TheSizeis decremented every time a
transfer of the new word is initiated. If the size of remaining data is greater than 0,Moresignal is generated.

Details of how NISC executes data send and receive are discussed in the following section.

3. Data Transfer Operations

To be able to send or receive data, the original data needs to be prepended a header as explained in Section 2.1. For the
purpose of this work, we will assume that the data is already been formated and stored in the memory (Mem in Figure 4).
We will also assume that memory access takes one cycle; we will point out what needs to be changed in the other case. In
this section, we will describe an example whereNISC1sends data toNISC2. Algorithms for send and receive are shown in
Figures 6 and 8. Send FSM and Receive FSM correspond to a sequence of control words that NISC processor executes. FSM
representation is chosen for two reasons. First, it is intuitive and easy to follow. Second, the I/O operations, may be separated
from the “basic” NISC core; i.e. a separate FSM or “NISC controller” may be responsible for the I/O. Independent I/O core
will be discussed in our future work.

NISC may start the send or receive operation once any other data manipulation is finished. This means that the other
parts of NISC are idle while I/O is being executed. This is the simplest way of dealing with nondeterministic duration of I/O
operation in static scheduling. The other solution would be to assume some initial delay, then make a schedule for the best
case scenario, and stall the processor if assumed latency is violated. This optimization will be a topic of our future work.

3.1 Data Send

The timing diagram for the Data Send operation is shown in Figure 7. Before we start executing control words specified
by Figure 6, a memory read access needs to be initiated. That means, the memory address needs to be in theAddr register
and memory read needs to be specified on the memory control inputs (“NS00a” and “NS00b”). After that is done,NISC1
loads the first data word in theData out1register, setsReq1and waits for theGrant1 from theArbiter. Upon receiving bus
grant,NISC1setsReady1andR/Wsignals and enables data from registerData out1 to the bus. That way it signals to the
FIFO that it wants to send the data. FIFO FSM (Figure 5) transitions form “idle” state to “R0” where it loads the first data
word. If there is not enough space in the queue,NISC1never receives an acknowledgment, and upon generating the timeout,
it restarts the operation (“NS2” and “NS9” in Figure 6).

The timing diagram shows the case where enough space is available. In that case, FIFO FSM stores data into RAM (FIFO
state “R2”) and in the following state setsAck1high. NISC1is waiting for the acknowledgment (“NS2” in Figure 6). Once
it is received, it resetsReady1and disables data output to the bus. AfterAck1has been set back to zero (FIFO state “R4”),

4

NISC1initializes new memory read (corresponds to “NS4”). In the case where there are more data words to be sent, the
data is loaded toData out1, and the transfer is repeated (“NS5” to “NS7” in Figure 6). If memoryMemtakes N cycles to
respond, “NR4” needs to be executed N times. Control words that correspond to “NS0” and “NS6” may be used to load the
next memory address.

Once all data words are transferred,NISC1drops the request and waits for the grant to drop, and that finishes the receive
operation.

3.2 Data Receive

As described in Section 2.2, once FIFO has received data, it broadcasts the receiver’s address throughoutID Bus. Ad-
dress decoder ofNISC2recognizes its own address and generatesData readysignal. In our example, shown in Figure 9,
Data readyis generated before the start of the receive sequence. In general, it may happen thatNISC2has to wait (“NR0” in
Figure 8) forData ready. NISC2than sends the bus request (Req2) and waits forGrant2.

After NISC2 receives the grant, it signals to the FIFO (“NR2” in Figure 8) that it is ready to receive the data. FIFO
replies by settingAck1high and providing the data to the bus. Upon receiving acknowledgment,NISC2enables data load
into Data in2 register, and in the following cycle it drops the request and waits for the acknowledgment to drop (“NR4” in
Figure 8). “NR3” and “NR5” are responsible for loading memory address and initiating the access, respectively. If memory
Memtakes N cycles to respond, “NR5” needs to be executed N times.

If more words need to be transferred,NISC2restarts receive (“NR6,” “NR7,” “NR4” and “NR5”). Otherwise, as shown in
the timing diagram, it dropsReq2and waits forAck2to drop in order to proceed with the program execution.

4. Conclusions

In this paper we present a simple and effective solution for communication between several NISCs implemented in a given
system. We used a single FIFO queue to buffer the data being communicated. We defined and explained the communication
architecture and methods needed to exchange data between NISCs via the FIFO queue.Our definition of the FIFO queue and
the double handshake protocol serves as a general template for communication design of any NISC based system. As a result,
we can quickly produce a communication architecture and methods for a given application running on multiple NISCs.

References

[1] D. Gajski. Principles of digital design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.
[2] D. Gajski. Nisc: The ultimate reconfigurable component. Technical report, Technical Report TR 03-28, University of California-

Irvine, October 2003.
[3] D. Gajski, H. Cho, and S. Abdi. General transducer architecture. Technical report, Technical Report TR-05-08, University of

California-Irvine, July 2005.
[4] D. Gajski and M. Reshadi. Nisc application and advantages. Technical report, Technical Report TR 04-12, University of California-

Irvine, May 2004.

5

En_Data_in2

Ld_Data_in2

Data_out 1Ld_Data_out1

En_Data_out1Ack1

Ready1

I/O
bus

Mem

RF

CMem

P
C

B1

B2

B3

AG
ALU

C
W

b
its

C
W

bits

S
tatus

R2R1

R3

Data_i
Addr

Data_o

Mem

RF

CMem

P
C

B1

B2

B3

AG
ALU

C
W

bits
C

W
bits

S
tatus

R2R1

R3

Data_iAddr

Data_o

Data_in2

Ready2 Ack2

FullEmpty

Rd

Wr

NISC1

NISC2

Full

Empty

Enable

Rd/Wr

Front Back

SelectorComparator

Mem

A

CS

RWS

n+1 n+1

n n n n

s
1 0

1 1

FIFO
Data
Path

=

2n RAM

Arbiter

Req2

Grant2

Req1

Grant1

R/W1

R/W2

Data_out2Ld_Data_out2

En_Data_out2

En_Data_in1

Ld_Data_in1
Data_in1

Ready

FIFO
FSM

R/W

Ack

ID
busA0A1

Address
decoder

Address
decoder

A0A1

Q_avail

AddrSize

Q_avail

Size

Data_
ready

Data_
ready

ID

FIFO
En_first

En_mem

Sel_out

Sel_in

Sel_out

Sel_in

ALU_
status

ALU_
status

S
ize

C
n

t

C
m

p

Timeout

More 0

S
ize

C
nt

C
m

p

Timeout

More 0

Figure 4. Detailed system architecture
6

idle

Enable -> 1
Rd/Wr -> 1 (write)
Enable_size -> 1
D_size -> 1 (down)
Enablre_Q_available -> 1
D_Q_available -> 1
(down)

R2

R4

(Ready = 1 and R/W = 1 and Full = 1) or
(Ready = 1 and R/W = 0 and Empty = 1)
or Ready = 0

Ready = 1 and
R/W = 1 and
Full = 0

Ready = 0

S00a

Ready = 1 and
 R/W = 0 and
 Empty = 0

Ack -> 0

Enable -> 1
 Rd/Wr -> 0 (read)
Ld_size -> 1
Ld_addr -> 1

R0 Ld_first -> 1

R1 Enough_space = 0

Enough_space = 1

R3

Ready = 1

Ready = 0
and
size > 0

Ready = 1

Ack -> 1
Enable -> 0
Rd/Wr -> Z

Ready = 0 and
size = 0 and (send_init = 1
 or Empty = 1)

S00b

Enable -> 0
Rd/Wr -> Z
Enable_size -> 1
D_size -> 1 (down)
Enablre_Q_available -> 1
D_Q_available -> 0 (up)

S0

Ack -> 1
En_first -> 1

Ready = 1

Ready = 0

Ready = 0 and
 size = 1 and
 Empty = 1

S1

S2

Ready = 0
and
size > 1

Ack -> 0
En_first -> 0
En_mem ->0

Ready = 1

Enable -> 1
Rd/Wr -> 0 (read)
Enable_size -> 1
D_size -> 1 (down)
Enablre_Q_availabl e -> 1
D_Q_available -> 0 (up)

Ready = 0 and
size = 0 and
send_init = 0 and
Empty = 0

to “idle”

Ready = 0 and
size = 1 and
Empty = 0

S3

Ack -> 1
En_mem -> 1Ready = 1

Ready = 0

Figure 5. FIFO FSM

7

NS0

Ld_Data_out1 -> 1
Ld_Size -> 1
Req1 -> 1
Ld_Cnt -> 1

Ld_Data_out1 -> 0
Ld_Size -> 0
(load Mem Addr)
En_Cnt -> 1

NS1

Ready1 -> 1
Enable_Data_out1 -> 1
R/W -> 1
En_Cnt -> 1

Grant1 = 1

NS2

Grant1 = 0

Ready1 -> 0
Enable_Data_out1 -> 0
R/W -> 0
En_Cnt -> 1

Ack1 = 1

Ack1 = 0
and
Timeout = 0

NS4

Ack1 = 1

Ack1 = 0

NS5

Req1 -> 0

Grant1 = 1

Grant1 = 0

NS3

NS6

Ld_Data1 -> 1

Ld_Data1 -> 0
(load Mem Addr)

NS8

More = 1

More = 0

Ready1 -> 1
Enable_Data_out1 -> 1
R/W -> 1

NS7

Ack1 = 1

Ack1 = 0

Timeout = 1

Req1 -> 0

Grant1 = 0

NS9

NS00aNS00b

(load Mem Addr)(init Mem read)

(init Mem read)
En_Size -> 1 (down)

Figure 6. Data Send Operation Algorithm (NISC)

8

CLK
FIFO

Ready1

Ack1

I/O Bus Data1 [1/N]

CLK
NISC

“Ready?”

“Acknowledge”

“Got it?”

“Thank you”

Req1

Grant1
...

...

...

...

...

...

...

“Request”

“Grant”

R/W1
...

Cnt_load
...

Enough_
space ...

“Ready?”
 [second
word]

“Acknowledge”
[second word]

...

...

...

...

...

...

...

...

...

...

FIFO
stateXXX IDLE R0 R1 R2 R3 R4 R4 R2 R3 R4R4 IDLE

Data1 [2/N]

Figure 7. Timing diagram for Data Send Operation

9

Req2 -> 1NR1

Ready2 -> 1
R/W -> 0 (read)

Grant2 = 1

NR2

Grant2 = 0

Ld_Data_in2 -> 1
Ld_Size -> 1
(load Mem Addr)

Ack2 = 1

Ack2 = 0

NR3

NR4

Ready2 -> 0
Ld_Data_in2 -> 0
Ld_Size -> 0

Ack2 = 0

Ack2 = 1

NR0

Data_ready = 0

Data_ready = 1

NR5
More = 1

More = 0

NR8 Req2 -> 0

Grant2 = 0

Grant2 = 1

(init Mem write)
En_Size -> 1 (down)

Ready2 -> 1
R/W -> 0 (read)NR6

Ack2 = 0

Ld_Data_in2 -> 1
(load Mem Addr)NR7

Ack2 = 1

Figure 8. Data Receive Operation Algorithm (NISC)

10

CLK
FIFO

Ready2

Ack2

I/O Bus Data2 [1/N]

CLK
NISC

“Ready?”

“Acknowledge”

“Got it?”

“Thank you”

Req2

Grant2

“Request”

“Grant”

R/W2

Cnt_load

Ld_addr

“Ready?”
 [second

word]

...

...

...

...

...

...

...

...

...

...

FIFO
state

XXX XXX idle S0 S0 S1 S1 S1S0 idle

Data_
ready ...

R3 or
S0 S00a S00b idle S2

...

...

...

...

...

...

...

...

...

...

...

...

Figure 9. Timing diagram for Data Receive Operation

11

