General Transducer Architecture

D. Gajski, Hansu Cho, Samar Abdi

Technical Report CECS-05-08
August 8, 2005

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{gajski,hscho,sabdi@ics.uci.edu

Abstract

IP reuse is gaining importance in modern system design in order to reduce both
cost and time to market. However, incompatibility of | P interface protocolsisa serious
hindrance to their reuse. Communication between two |P components, with different
interface protocols, requires an extra component that must trandate one protocol to
another. This component is referred to as a transducer. In this paper we propose a
template for a general transducer that can be parameterized to trandate between any
two protocols. Using this template, a transducer can automatically be generated to
allow communication between |1Ps with incompatible interfaces. As a result, different
IPscan easily be used in a system, without the manual and error pronetask of designing
custom transducers.

Contents

1 Introduction 1
2 Transducer 2
2.1 Parameters. 3
2.2 FIFO e 3
2.3 FSMD1 e 4
2.4 FSMD2 e 4
2.5 Bidirectional communication 4
3 Transducer Operation 6
3.1 FSMD1toFIFO. e 6
3.2 FIFOtoFSMD2. e e 9
4 Operation between Transducer and PE 9
41 PEltoTransducer. v i i it i e 9
4.2 Transducerto PE2 e 13
5 System with Transducers 18
5.1 Generalmodel. 18
5.2 BusTransduCer i i i e e 19
5.3 Dedicated TransducerstoeachPE 9 1
6 Overall Operation from PE1to PE2 21
6.1 MemoryltoProcessorl 21
6.2 Processorlto FSMD1 21
6.3 FSMD1toFIFO. e e 21
6.4 FIFOtoFSMD2. e e 22
6.5 FSMD21toProcessor2 v v i v it e 22
6.6 Processor2toMemory2. e 22
7 Conclusion and futurework 22

List of Figures

1 Top level Block Diagram of Transducer, PE1, and PE2 1
2 Block Diagramof Transducer. 2
3 Block Diagramof FIFO 3
4 Block diagramof FSMD1 5
5 FSMDL1 to FIFO - FSMD1 FSM and Timing Diagram 7
6 FSMDL1 to FIFO - FIFO FSM and Timing Diagram 8
7 FIFO to FSMD2 - FSMD2 FSM and Timing Diagram 10
8 FIFO to FSMD2 - FIFO FSM and Timing Diagram 11
9 Memory1 to Processorl - Processorl FSM and Timing Diagram. . 12
10 Processorl to FSMD1 - Processorl FSM and Timing Diagram. . . 14
11 Processorlto FMSD1 - FSMD1 FSM and Timing diagram 5 1
12 FSMD2(Master) to Slave Device - FSMD2 FSM and Timing Déagr 16
13 FMSD2(Slave) to Processor2 - FSMD2 FSM and Timing Diagram 17
14 Processor2 to Memory?2 - Processor2 FSM and Timing Diagram. 18
15 Arbitration- Generalmodelo oL 19
16 Arbitration - one transducer betweentwoPEs 20
17 Arbitration - two transducers betweenPEs 20
18 Block Diagram of TransducerinDetail 21

General Transducer Architecture

Hansu Cho, Samar Abdi, Daniel Gajski
Center for Embedded Computer Systems
University of California, Irvine

Abstract

IP reuse is gaining importance in modern system design in order to reduce both
cost and time to market. However, incompatibility of | P interface protocolsisa serious
hindrance to their reuse. Communication between two |P components, with different
interface protocols, requires an extra component that must transate one protocol to
another. This component is referred to as a transducer. In this paper we propose a
template for a general transducer that can be parameterized to trandate between any
two protocols. Using this template, a transducer can automatically be generated to
allow communication between 1Ps with incompatible interfaces. As a result, different
IPscan easily be used in a system, without the manual and error pronetask of designing
custom transducers.

1 Introduction

The design complexity of System-on-chip (SoC) is risingles/kiie time to market
for a new product is shrinking. Consequently, designerdéaned to implement more
functionality in a shorter period of time. The most widelyedsapproach for tackling
this problem is IP reuse. However, different IPs, typicdilgve different interface pro-
tocols. Therefore, communication from one IP to anothernigt be possible using
a common bus. This communication must be routed through diti@hl component
known as a transducer[1].

Busl Bus2

PE1 I Transducer I PE2

Figure 1. Top level Block Diagram of Transducer, PE1, and PE2

The transducer is a component with two interfaces as showigure 1. We have
two different Processing Elements(PEs), namely PE1 and &&2g different proto-
cols on Busl and Bus2, respectively. We also have a transdaogonent with two
interfaces, one connected to Busl and the other to Bus2.nessluat PE1 wants to

sent data to PE2. Since PE2 does not support the protocoladf, Bue communication
must go through the transducer component. The data is finstfren PE1 to trans-
ducer using Busl. The transducer locally buffers the daththen sends it to PE2
using Bus2. Thus the transaction is completed.

PE1 Bus1 transducer Bus2 PE2

FSMD1 FSMD2

<clk1> Handshaking Signals <clk2> Processor2

<clk2>

Processorl
<clk1>

Memoryl T Memory2 !
FIFO
<clk3>

Figure 2. Block Diagram of Transducer

Figure 2 shows the transducer in greater detail. It is comghas three different
subcomponents, namely FSMD1, FSMD2, and FIFO. FSMD1 imptemthe proto-
col of Bus1 and enables PEL1 to read(write) to(from) the FIlF@e protocol on Busl
is synchronous, then FSMD1 must run at the same clock spdealad-SMD2 imple-
ments the protocol of Bus2 and enables PE2 read(write) tmrti{e FIFO. As in the
previous case, if the protocol on Bus2 is synchronous, therlbck speed for FSMD2
must be the same as that of PE2. The FIFO consists of a locabmyeand a controller
that communicates with FSMD1 and FSMD2 using double hardspeotocol. The
asynchronous handshake between the FIFO and the two FSNs aifferent clock
speeds for FSMD1, FSMD2 and the FIFO. As a result, the traoesds capable of
interfacing PEs running at different clock speeds.

The rest of the paper is organized as follows. Section 2 tbescthe functionality
and structure of different parts of the transducer. In $ac8, we explain the opera-
tion of each subcomponent of the transducer. The detailsmfitunication between
transducer and the PEs are illustrated in Section 4. Se6tescribes the sequence
of operations for transferring data from PE1 to PE2. In sec®?, we present the
methodology for automatic transducer generation.

2 Transducer

The transducer has three components - FSMD1, FSMD2, and.FAR® some
prameters are used to decide the datapath and controll&edfansducer. In first
subsection, the parameters are summarized. In followiotoses, the function and
structure of each componentis described. Also, architestior bidirectional commu-
nication is explained after that.

2.1 Parameters

In this section, we summarize the parameters to describteshsducer

. Timing diagram and signal direction for Bus1, Bus2 and®-Remory

. Clock of Bus1(clk1), Bus2(clk2), and Memod3)

. Bus1 data width(k) , Bus2 data width(n), and FIFO width(m)

. Size of each field in message header(PEID, NamelD, Size)

. Master/Slave information of each PE

. Timing constraints for the momory in FIF@, tog, tpy in Figure 6(b), Figure

ZaabhwWN PP

8(b

22 FIFO

FS1_WEB FS1_req FS2_WEB FS2 req FIFO_data

Memory Control Signals PEID Name ID Size (z hits)
> (x bits) (y bits) pata

Controller read_addr| » addr,

write_ing| 5 ’ Memory

write_addr <clk3>

R T A A —

Q_Full FS1_ack FS2_ack FIFO_data

1
1
1
1
1
1
1
1
1 Memory r in
1
1
1
1
1
1
1
1

Figure 3. Block Diagram of FIFO

Figure 3 shows the structure of the FIFO. It has memory, mgmontroller, and
address registers. Memory is used to store the temporasysitlate PE1 and PE2
read and write the data in different rate. Memory receivaessend data to FSMD1
or FMSD2 using FIFQData bus. Each data stored in the memory should have three
fields - PEID, NamelD, Size. PEID represents the destinaifahe data. Name 1D
represents the identity and source of the data. Size regesthe size of data.

Memory controller generates memory control signals androanicate with FS-
MDs. It communicates with FSMD1 and FSMD2 using double hha#es protocol.
No clock is used between them. This double handshake priactoables PE1 and PE2
to read and write at different speed regardless of the cl&kce memory controller
generates momory control signals for the memory from giveameters, any type of
memory can be used.

Address registers indicate read and write address of theamerAfter each read
or write operation, memory controller increase their vddyeone. These registers are
used to generat®_Full signal. If FIFO is full, FSMD1 and FSMD2 should not write
to FIFO till it has space. So FIFO has to se@d-ull signal to FSMD1 and FMSD?2.
Q_-Full signal is aseerted if read and write address are the sanmevaitie operation.

23 FSMD1

FSMD1 receives the data from PE1 and write it to FIFO or vicesae For these
purpose, FSMD1 generates control signals for PE1 and mia¢ctiifferent data width
between Busl data and FIFO. Figure 4 is the internal strec@iFSMD1. FSMDL1 is
composed of three main components - Controller, Data egisand status flags.

The controller makes appropriate control signals for PEA data registers in
FSMDL1. Therefore PE1 can write data to registers in FSMD1raad from it. Then
the controller sends FIFO control signals to read(writejrf(to) data registers.

FSMD1 has two status flagg=SMD1 _ready andData2_ready. FSMD1 ready rep-
resents datal registers are ready(='1") or not(='0’"). Weam PEL1 tries to write to
data registers, it checksSMID1_ready flag and writes only if it is readyData2_ready
is used when FSMD1 reads data from FIFO. When FSMD1 receaasly?2 signal
from FSMD2 then it checkBata2_ready flag and starts reading from FIFO if and only
if Data2 ready is ready('1").

The data registers and its loddi{n Figure 4) and enablef in Figure 4) signals
deals with different data width between Busl and FIFO. InuFég4(a), Busl data
width(2) is smaller than FIFO width(®). So, each data register has the size of busl
data width(¥). The total size of data registers is equal to the FIFO wiifh(In
this case, PE1 write to each data fdr 2! times and the controller generate load sig-
nal(d1,d2,...) for corresponding data register. After PE1 write to albed&ygisters then
enable signa#) is assered to all data registers that it write to the FIFOhatoFigure
4(b) shows opposit case. Bus1 data width{& larger than FIFO width(?). So, each
data register size is equal to Queu width and total size ofi#tte register is Bus1 data
width. In this case, data registers read at once and writest&tFO 2™ times.

interrupt signal is used to send an interrupt to PEs when transducessmslave
mode.tx_interrupt signals is used to receive the interrupt from the slave @swihen
transduer runs in master mode.

bus_req and bus_grant signals are used for arbitration. When multiple PEs are
attached to the bus, then arbiter is attached to the bus amhitnunicate with PEs
using these signalssel andselx signals are used when one transducer writes data to
the other transducer. Alsselx signals is used to write data to slave devices. More
explanation is on section 4.

24 FSMD2

The functionality and internal structure of FSMD?2 is baBjcthe same with FSMD1.
The only difference is that it deals with PE2.

2.5 Bidirectional communication

The transducer provides bidirectional communication eetwPEL1 and PE2. In
other to do that, the transducer have to solve two problemnst, E should handle the
direction of the data flow. In Figure 4, datalx and data2xstegs are used for this
purpose. Datalx registers are used to receive data from @HEata2x registers are

tx_interrupt el

ack_readyl_
bus_granf ready2 | Q_Full FS1_ack

Bus1 data
l Status Flag
FSMD1_ready 2k
Data2_ready
k 2k
1d1 2
Id2 ok
|21 [patasfzkm] |LL Dataifz] | Datal(1] 2 % o
€7 Q[2m-1:2m-24 Q[2¢+1-1:2] Q[2%-1:0]
Controllerl en al — e
<clk1>
2] A
en2 .
enl ﬁ&
PEID.size | ’1&
rL[)araz[z\k-'nl] | FL Data2lz] | rL Datalt] |
Id_all

bus_req] readyl
Interruptl

tx_interrupt sel ack re
us_gran| ready2

FS1_re

selx ack_ready2 FS1_WEB

eadyl_
Q_Full FS1_ack

2 2k 2k 2k ok 2k
Q[2m-1:2m-2 Q[2¢+1-1:24 Q[2+-1:0]
2
FIFO Data

(a) Busl data widthc FIFO width (k< m)

Busl data
__ StawsFlag
FSMD1_ready 2k
?| Data2_ready
om
Id all 2
om
Datalf 2+] | Datal[2] | Datai[1] | om om om
en[z] J7 Q[2-1:2k-2m Q2m-1:2m) Q[2m-1:0]
Controllerl £n2
enl
<clk1>
’—’LS
en all LI&
PEIDSize | 7
2] { pataz[2%m] | [awzzy | Datazl1] |
1d2
d1
om om om om om 2"
Q[2+-1:2-2m Q2m+1-1:2m) Q[2m-1:0]
on]
bus_req| readyl §51_req,
FIFO Data

Interruptl ~ selx ack_re:

ady2 FS1_WEB

(b) Bus1 data width> FIFO width (k>m)

Figure 4. Block diagram of FSMD1

5

used to send data to PE. Second, the transducer should psaveritaneous writing
to any of the storage device, because data are comming fronditections. It has
three storage devices - Datal register, Data?2 register-&@ Memory. Datalx and
Data2x registers are dedicated to one way of data flow. Sayltsimeous writing never
happens.FS.ack signals prevent the probelm with FIFO Memory. If FIFO reesiv
two FS.req signals from both FSMDa and FSMD2, then it replies to only mwruest.

That, the other FSMD waits till the operation ends.

3 Transducer Operation

In this section, The internal operation of the FIFO is expdai. Section 3.1 shows
how FSMD write data to FIFO. Section 3.2 explains how FSMDOdsedata from the
FIFO. FSMD1 and FSMD?2 are the masters and FIFO is the slavegltirese opera-
tions.

31 FSMD1ltoFIFO

FSMD1 and FIFO are communicating using double handshakioipgol to deal
with different read/write speed between PE1 and PE2. Thelddwandshaking proto-
col uses three signals. Requé&s(_req), acknowledge{Sl ack), read/writeFS1_WEB).
The operation has four steps. First, FSMD1 regeusts to FiF€2tiingFSL reqto '1'.
Read/write operation is also indicated usiR§L_WEB in this step. Second, FIFO
replies when it is ready by settirfgS1_ack to "1’ and starts reading or writing. Third,
FIFO restsFS1 ack to '0’ to tell the end of read/write to FSMD1. Finally, FSMD1
resetd=Sl req to '0’ and all operation is over.

Figure 5 is given to describe the operation from FSMD1 to EIFi@ure 5(a) is the
FSM of the controller in FSMDL1 for writing operation. Figuséb) shows the timing
diagram between FSMD and FIFO. Figure 6(a) is the correspgri€SM in FIFO.

In W11 state in Figure 5(a), FSMD1 senESl_req to the FIFO. If FIFO replies
FS1_ack, then FSMD1 writes data to FIFO by giving enable signalssaddta regis-
ter(en in Figure 4) in W12 state. In state W13, after writing to FIF@daeceiving
FSl_ack signal, it checlQ_Full signal. If FIFO is full, then waits till it has some space.
If FIFO has space, then FSMD1 write the the data in next dagfiatex again and again.
After FSMD1 writes all data registers to FIFO then, FSMDE$8MD1 _ready flag in
Figure 4 and senckadyl signal to FSMD2.

While FSMD1 is running according to FSM in Figure 5(a), FIRM$ according to
FSM in Figure 6. In Figure 6(b) has two signal groups. One BKMPBs and the other
for Memory. FSl_req and FSl_ack is the double handshaking signals for FSMDs.
FS1_WEB signal decides read/write operation. The other signatsibelk3 is memory
control signals. If FIFO receivesSl _req signal and=S1_WEB = '0' from FSMD1 at
SO state, then its memory controller replieSl_ack to FSMD1 and puts '0’ taCSB
andWEB to write data to the memory in S1 state. In S2 state, it waltddta is written
to the memory. Then in state S3, memory controlleiGa® andWEB. After finishing
writing data to memory, memory controller increases writelrass in S4 and reset
FSl_ack to "0’ to notify the end of operation to FSMD1. If FSMD1 rede$l_req to
‘0’ in S5, then all write cylce is done and FIFO waits for araithequest.

From Figure 11. R|k-m|3

S1_req->1 S1_req->1 S1_req->1

FS1_WEB ->0 FS1_WEB -> 0 FSl__I\gEB >0
FS1_ack =1
en|m-k| ->1
FS1_req->0
FS1_req->0 —ed
FS1 ack =0 FS1 ack =0

Ack_readyl =0

en|m-k|->0
Readyl ->1
FSMD1_ready->1

To Figure 11. R11

Readyl ->0

(a) FSM of FSMD1
W12 W12 W12 W12 w13

Hanpshaking kignals b¢tween F$MD and FIFO
Memaqry control signals in FIFO

s /N N\ N\ N\

csB
WEB | V) —
OEB
Addr
tDH}

Invialid

FS1_req (in) : request from FSMD1
FS1_ack (out) : ack to FSMD1 request
FS1_WEB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WEB (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Datain (In) : Data in
Data out (out) : Data out

(b) Timing Diagram of FSMD1

Figure 5. FSMD1 to FIFO - FSMD1 FSM and Timing Diagram

Nui

Nui

3

3

FS1 ack ->1

CSB ->0
WEB ->0

FS1_req-=0 ADDR -> write Addr

ber of cyé:le =|t_WP/cIk§|

CSB->1
WEB -> 1

ber of cytle = [tDH/clK3)]

FS1 ack->0
Inc_write_addr -> 1

(@) FSM of FIFO

FS1_req|

FS1_ack

SN

FS1_WEH

SO S1 S1 S1 S2 S3
Hanfishaking signals b¢tween F$MD and FIFO

Memqary control signals if FIFO

M\ Y\

CLK3

¢

CsB \

WEB ‘g« P

OEB
Addr

Data In

tDH!

Data ou.

Invalid

FS1_req (in) : request from FSMD1
FS1_ack (out) : ack to FSMD1 request
FS1_WEB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WEB (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Data in (In) : Data in
Data out (out) : Data out

(b) Timing Diagram of FIFO (= Figure 5(b))

Figure 6. FSMD1 to FIFO - FIFO FSM and Timing Diagram

Two parameters are used to describe write memory timinggarei6(b) twp rep-
resents the length of write perioghy is the data hold time after write enable s\y&B
is setto '1’. If FIFO uses some special memory then, proto€the memory used in
FIFO shoud be given instead of parameters.

32 FIFOtoFSMD2

This section explains how FSMD1 or FSMD2 reads data from FIIFQure 7(a)
shows the FSM in FSMD?2 for the operation. Figure 7(b) showestitming diagram
between FSMD2 and FIFO. Figure 8(a) shows corresponding iRINFO.

If FSMD2 receivegeadyl signal in R11 state in Figure 7(a), then FSMD2 replys
ack readyl signal to FSMD1 and sendS2_req to FIFO to read the data. The other
sequence are pretty much same with section 3.1. The onbréifce is the last state.
In state Rn — m|4,after FSMD2 finishes reading the data from FIFO, it seneriopt
to Processor2 to notify that data is ready.

Figure 8 shows the corresponding FSMD and Timing diagramlBOF If FIFO
receives th&S2_req signal at SO, then it reply8S2_ack to FSMD2 and starts reading
from memory. Memory reading sequence is almost same withdfjgence in section
3.1.

4 Operation between Transducer and PE

In this section, communication between PE and Transdudkbeshown.

Section 4.1 is the example of synchronous protocol from BEASMD1. Section
4.2 shows the example of asynchronous protocol from FSMPZED. Finally, section
5 explains arbitration.

41 PE1to Transducer

Data transfer from PE1 to Transducer can be divided into @ses. In first case,
PE1 runs as a master and transducer runs as a slave. In sesen®E1 runs as a salve
and transducer becomes master. In first case, the opersitbomiposed of three step.
First, PE1 reads the data from Memoryl. Second, PE1 cheeks¥D1 ready flag
in FSMD1. When it is ready, PE1 writes to data registers in BBMs the final step.
For each step, PE1 have to acquire the bus uBirsyeq andBus_grant. The detailed
operation is explained in this section.

In second case, PE1 send an interrupt to the transducerrdngsdticer read the
data from PE1 using memory read operation. When transdunsrim master mode, it
read the size in the message. For every read operationdtregrsreduce the size by the
amount of datal register size. Transducer keeps readinliyeikize reaches zero. Its
detailed operation is similar to the operation of the trarced in slave mode in section
4.2 except that transducer is the master and PE is the slahis icase.

Figure 9 is the first step when PE1 runs as a master. PE1 retalfalm mem-
oryl using memory read operation. Memory read/write op@maises write enable
bar(\WEB), address, and data signals in general. In read oper&iBB,goes down to

Readyl =0

Jee-oJReadyd mando o oo [im - e e pmmm e e -
i

H Data2_ready = : ! !
H S2_ack =0 ' ! -0 H
i
i s2.ack=0 1 i
1 - H 1 :
! ck_readyl ->1 | H I
1 1
! FS2_req->1 S2req>1 1 FS2_req->1 '
i FS2_WEB->1 FS2 WEB->1 | | FS2WEB->1 |
1 1 \ 1
! H ! FS2_ack =1 !
i o i
! ! 1 1
1 [!
i I Idjn-m| -> 1 1
1 1 i 1
1 1 1 1
1 ! \ :
i S2_ack=1 I H S2_ack =1 i
: P ’ :
1 1 \ 1
1 1 1 1
H H 1 FS2_req->0 !
i [Idjn-m| -> 0 i
! FS2_req->0 ! ! Qren->0 !
! H ! Ack_readyl ->0 !
: ___________________ - P | 1 Data2_ready=0 :
LN Read PEID ___ .

PEID = master PEID = slave

From Figure 12. W|m-n|

Figure 7. FIFO to FSMD2 - FSMD2 FSM and Timing Diagram

To Figure 12. WO
Transducer runs

To Figure 13. WO
Transducer runs
In Master mode

in slave mode
(a) FSM of FSMD2
R11 R11 R11 R11 R12 R13 R13
FSZ_req__/

FS2_ack

Fs2_ weg| /

Handshaking signgls betwegn FSMD pnd FIFO

lemory cdntrol signals in FIFD

cwes f A\ [\
CcsB /
WEB
OEB “v tOE,
Addr
Data_In-
Data_ou N H

FS2_req (in) : request from FSMD2
FS2_ack (out) : ack to FSMD2 request
FS2_WERB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WE (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Data_in (In) : Data in
Data_out (out) : Data out

(b) Timing Diagram of FSMD2

10

FS1 req=1
FS2_req=1and FS_WEB=1

CSB->0

OEB ->0

WEB ->1

ADDR ->read Addr
j?\lumber of cycle = [toE/cik3]
FS2_req=1

FS2_ack ->1
FSMD2 reads from Memory

FS2_req=0

CSB->1
OEB ->1

i\lumber of cycle =|TDH/cIk3—|

Inc_read_addr -> 1
FS2_ack ->0

(@) FSM of FIFO

and FS1L WEB =0 rigure 6(b)

S0 S1 S1 S2 S2 S3 S4
FS2_req |
FS2_ack _|
rs2wed/

Handshaking signgls betwegn FSMD pnd FIFO
lemory cdntrol signfals in FIFPD

s [N N A A\

CsB /
WEB
¢ tOE

OEB e

Addr
Data_In

i(s [}

Data_ou Invahd\

FS2_req (in) : request from FSMD2
FS2_ack (out) : ack to FSMD2 request
FS2_WEB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WE (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Data_in (In) : Data in
Data_out (out) : Data out

(b) Timing Diagram of FIFO (= Figure 7(b))

Figure 8. FIFO to FSMD2 - FIFO FSM and Timing Diagram

11

Master has nothing to send

Master has something to send

Bus_grant=0

Bus_req -> 1
Bus_grant=1

WEB -> 1

RDB ->0

STRB ->0

Addr -> Mem1 address

Read Data

WEB ->0
RDB -> 1
STRB ->1
Bus_req->0

To Figure 10. S5
(a) FSM

S0 S1 S1 S2

mavatlava

S3

Bus_req,

Bus_grant

WEB

RDB

STRB \

Addr

MEEE

Data

Bus_req (out) : Bus request signal to arbiter
Bus_grant (in) : Bus grant signal from arbiter
WEB (out) : Write Enable

RDB (out) : Read

STRB (in/out) : Strobe

Addr (in/out) : Address :

Data (in/out) : Data

(b) Timing Diagram

Figure 9. Memoryl to Processorl - Processorl FSM and TimiagrBm

12

'0’ and address are coming at the same cycle. Memory takesst bne clock cycle
to interpret the address and give the data at next clock cigslery control signals are
issued at S1, and data is read in following clock cycle (S2).

Figure 10 shows second step. After reading the data from Mg&E1 tries
to write the data to FSMD1. PE1 checks the status of FSMD1rbefwiting, if
FSVID1 ready flag is '0’ then it keeps reading the status flag till itis '1'ISE it writes to
datal register in FSMD1 using memory write operation. Weiassl memory mapped
I/0 that Memoryl and FSMD1 can be read or write using memagi/sgrite operation
without overwriting each other.

From S6 to S8, PE1 reads the status register in FSMD1 usingonyar@ad oper-
ation. Address for status register is loaded in the address lts timing diagram is
shown in Figure 10(b). If FSMD1 is ready then PE1 write theadatdatal register in
FSMD1 using memory write operation. States from S9 to S1liwsncbrresponding
Timing diagram Figure 10(c) shows its memory write operatitn this case, Datal
address is loaded in address bus.

Figure 11 is corresponding FSMD form S9 to S11 in Figure 1(faure 11(a) is
FSM for this operation. Memory write operation is running? times. For example,
assume that PE1 uses 16 bits data and FIFO has 64 bit width F8&ID1 should
have four 16 bits data registers and Processor 1 writes to esyister in FSMD1
over four times. In every second state in each reading cyR12 R22,...) load sig-
nal(dl,d2,...) for each register is issued. If all of the data registersvaitten then
FSMD1 reset-SMD1_ready flag to 'O’ to prevent overwriting and send FIFO write
request signal§(Sl_req, FS1_WEB) to FIFO.

4.2 Transducer to PE2

After FSMD2 reads the data from the FIFO, it reads PEID. If[PEpresent mas-
ter, then transducer runs in slave mode and sends an intéorB. PE reads the data
from data2 register in FSMD2 using memory read operatiose Btansducer runs as
a master device. If Transducer runs in master mode, theiSNs&nd Timing Diagram
is similar with Figure 10(Processorl to FSMD1). Transdwtescks the status of the
slave device first, then write the data to the slave devicee ffdmsducer send select
signal or request signal to the slave device to initiateimgit

Figure 12 is the FSM and timing diagram of the FSMD2 masterenaldlen it uses
double handshake protocol. As mentioned above, the traesdres to acquire the
bus usingous_request andbus grnat signals in WO state. Then it checks the status of
the slave device from W1 to W2 state. W1 and W2 state does pr¢sent one clock
cycle. They are inserted to show the operation sequence lth&tate, if the bus uses
double handshake, then the transducer sends request tsighalslave device. Else,
selx signal should be asserted in W1 state and should remaitéilend of writing
operation. As transducer runs as a master in this mode,dsréee size field in the
message at first stage, and keeps writing till the size besaer®.

Figure 13 is the FSM and timing diagram of the FSMD2 when isrrslave mode.
In WO state, FSMD2 sends interrupt to PE. Then, the mastec&lelE send request
to FSMD2 in Wx1 state. In Wx2 state, FSMD2 replies acknowtetbgPE and write to
bus usingen siganl of data2 registers in Wx3 state. In Wx4 state, if PEFias reading

13

From Figure 9. S4

Bus_grant=0
Bus_req -> 1
Bus_grant=1
Addr -> status address WEB ->0
RDB ->1
WEB -> 1
RDB —>0 S9 TRB ->0
STRB ->0 Addr -> Datal addr
Data -> Data
A 4
Read status
(FSMD1_ready) s10)Wiite data
WEB ->0
RDB -> 1
STRB ->1
status = 1) 4
Bus_req->0
S11) weB->1

RDB ->0
! STRB->1
1
1
1
v
To Figure 9.1 SO
(@) FSM
S5 S5 S6 S7 S8 S9 S10 S11
ST\ WA WA WA WA WA WA ST UV WA WAL WA WA WA
Bus_req Bus_req
Bus_grant Bus_grant
WEB WEB
RDB RDB
STRB \ ami STRB \
Addr v | Addr
Data Data

(b) Timing Diagram - Processorl checks status(c) Timing Diagram - Processorl writes to FSMD1

Figure 10. Processorl to FSMD1 - Processorl FSM and Timiagram

14

R != Datal addr

O

ADDR|== Datal addr

|k-m| ->0
FSMD1_ready -> 0
QFull=0

QFull=0

QFull =0

k=
x
32
v
-

From Figure 5. W|m-k|4 To Figure 5. W11
(a) FSM
R11 R12 R13

CLK1 _/__/__/__/__/__/_\

Bus_req

Bus_grant

WEB

RDB

STRB \
Addr

Data

Bus_req (out) : Bus request signal to arbiter
Bus_grant (in) : Bus grant signal from arbiter
WEB (out) : Write Enable

RDB (out) : Read

STRB (infout) : Strobe

Addr (infout) : Address :

Data (in/out) : Data

(b) Timing Diagram (= Figure. 10(c))

Figure 11. Processorl to FMSD1 - FSMD1 FSM and Timing diagram

15

From Figure 7. R|n-m|3

Bus_grant=0

Bus_req->1

Bus_grant=1

addr -> 1/0 addr -> 1/0

addgr ack=0 addr addr
’ Bus_grant=1
enl->0 2->0 .
en en|_2k r“-|-> 0
Bus_req ->0
FSMD_ready =0
To Figure 7. RO
(@) FSM
S0 so | wii [wir [wiz [wi2 | wi3.|. w33
int
Bus_req
Bus_gran \
req
ack
web
Addr
Data

Transducer write to Slave Device

Int (in) : interrupt

Bus_req (out) : Bus request
Bus_grant(in) : Bus grant
req (out) : request

ack (in): acknowledge

web (out): Write Enable
addr (out): Address

Data (in) : Data

(b) Timing Diagram

Figure 12. FSMD2(Master) to Slave Device - FSMD2 FSM and figrDiagram

16

From Figure 7. R|n-m|3

Send Interrupt to PE

y=1

0
Data2_read

—
o
— N
X
[*]
o]

To Figure 7. RO

(a) FSM

w15

wi4

w13

wi2

Wil

int
req
ack
web
Addr
Data

s interrupt

int (in)

Addr (out) : Address bus

ack (in): acknowledge
web (out): Write Enable
Data in (In) : Data in

req (out) : request

(b) Timing Diagram

Figure 13. FMSD2(Slave) to Processor2 - FSMD2 FSM and Tirliragram

17

then it setreg2 signal to 0’ to tell FSMD2 that it read the data. In State Wabk2
siganl is set to '0’ and it means the end of transfer. After opee(dotted box) then,
PE keep reading next data register till read all data registeFSMD2. Finally, PE2
write the data to Memory2 using memory write operation. Fégl4 shows its FSMD
and timing diagram.

us_grant=0

bus_req ->1

Bus_grant=1
ack =0
e%'ilo so | so | s s2 | s2 | s3
Addr -> Mem2 address Bus_req
ack=1 Data -> Data
ack = 1 Bus_grant]
req
4q ->0 ack / \
Web ->1 b
Addr -> z
ack Data -> z Addr
Data
Bus_grant=1
bus_req ->0 Bus_req (out) : Bus request
- Bus_grant (in) : Gus grant
_ Req (out) : request
BUS_gram =0 Ack (in) : acknowledge
WEB (out) : Write Enable
i . addr (out) : Address :
To interrupt wait state data (in/out) : Data
(a) FSMD (b) Timing Diagram

Figure 14. Processor2 to Memory?2 - Processor2 FSM and TiBiagram

5 System with Transducers

This section deals with multiple transducer and with midtipEs. But, only two
basic configuration is used to compose all possible comfiguravith multiple PEs
and multiple transducers.

5.1 General model
Figure 15 shows general case example. Between PE1 and PBE® dtnle trans-
ducer. PE1 and PE3 have two transducers between them. Ary athfiguration

can be extended using these two basic configurations. Tdrere¢fie transducer model
suggested can be a general transducer.

18

Bus2_grant2
Bus2_grantl +—— Bus2_req2

Arbiter 2
—»Bus2_grant3
Bus2_reql—>| [&——Bus2_req3

Interrupt2

Bus2_reql Bus2_grantl —
Busl req2 PE2
Busl_grant?| [e——Bus2_grant2
usl_req Arbiter 1
Bus1_grant]]
Interrdptl 1 Interruptl 3 Bus2_req3 Bus2_grant3
| e s .
Transducerl
PELL Bus3_req2
Eus3_gran52
Arbiter 3 Bus3_reql
EusBﬁgrantl
Interrgptl_2 v
Bus1_grant2 ¢—
Interrupt3_3 Interiupt3
PE1_2 D B =
Transducerm PE3 1
Bus1_req. -
Busl
nterrupt3j 2
PE3_2
> ——Bus3_grant2

Bus2 Bus3

Figure 15. Arbitration - General model

5.2 BusTransducer

Figure 16 is the first basic configuration. It has two busesnanitiple PEs are con-
nected to each bus. An arbiter is attached to each bus areithenly one transducer
between buses. This case can be devided into two operatiom PE to transducer
and transducer to PE. From PE to transducer, PE is alwayssteneand transducer is
always slave. But, from transducer to PE, the role of thesttaner depends on PE. If
PE is slave then the transducer becomes master. Othermiss¢ticer becomes slave.

5.3 Dedicated Transducersto each PE

Second basic configration is shown is Figure 17 Each PE uffesediit protocol that
each PE has own transducer and the transducer is conneaiad toain bus. In this
case, there are two transducers between PEs. For example R#1 send data to PE2,
the data starts from PE1.Then, it goes through transducertansducer2. Finally, the
data arrives at PE2. In this example basic operation bet®é&srand transducer is the
same with previous configration. But,there are two tranedbetween PEs. The first
transducer becomes master and the second transducer lzeslanee So, transducerl
acquires the bus and sesd_2 signal to transducer2 with status check signals. If
trnasducer? is ready, then transducerl writes the datadingdo the main bus write
protocol.

19

——»Bus2_req2

—»Bus3_req2

Busl regm Bus2_grantn

Busl_grantm Bus2 regn
Arbiter 1 Arbiter 2
Bus1_grant]| Bus1_reql Bus2_grantl
- Bus2_refj1
PEL 1 PE2 1
(Master) |q—Interrup1 1 | Interrup§2_1 »| (master)
Bus_req2| Bus2_req2
PEL 2 12 PE22 [
— (Slave) € sel2 7 Slave
Bus1_grant?) Transducer ¢) Eusz_gramz
Busl_reqmn Bus2_reqn
PEL_m Interrupf2_n PE2_n
(Master) |q—Interruptjt m ol E (Master)
Busl_grantm Bus2_grantn
Busl Bus2

Figure 16. Arbitration - one transducer between two PEs

Bus_reql
Bus_grantl *
' Arbiter 1
Bus regm -
«—
Bus_grantm
Bus_reql Interruptl_1 4i|1
-«
sel [2:m]
PE1 Transducerl >
—>
Bus_grantl Busl
Bus_req2 Interrupt2 sel2
sel [1,3:m
PE2 Transducer2
Fop—. Bus2
Bus_grant2
Bus_regn Interrupt3 ‘le
sel [1:m-1]
PEm Transducerm —L
—p
Bus_grantn Bus3
Main Bus

Figure 17. Arbitration - two transducers between PEs

20

2 Addr Busl Addr By 2
PEL 2 Daia Busl Data Bus2 2
transducer PE2

''''''''''' e | |mE ==

H 1 1
’ ; : : |

! 1 readvl i H
! Interruptl : ok readyl]| SIAlIsZ] 1 _interrupt2 ! H
| | H 1 1 1
| ! ! read 7 Leq, ! '
1 ' 1 ack_ready: H ack2 Il i

H T
' Prc:cleksls:ﬂ i FSMD1 FSMD2 H | Processor2 | |
! © H <clk1> <clk2> ¢ t (Double | 1
1 P . 2" H !
i i d en ! i <clk2> :
| : ; : '
1 Datal(Zbits) '
! i H bataz{Z'bits] H i !
' ' '
| H H en \/ H H H
! ' H 1d ! : '
! ! H T 3 H ! '
I i
i i Fbi_reay [Fs1 agy : E :
' i |
i ['— Memory ! e 1
: Memoryl [*—T* 1 £ Controller - 1 4= Memony2 '
' 1N] i 1

i 1 + '
H ! 14y read_addn Merory 1 ! H
; : MUING e _addn <cks> H ' H
! ! 1 . H i H
L L e mmmme e eem e e e o mmn e : (I '

Parameter : Bus1 width = k, Queue width = m, Bus2 width =n

Timing Diagram for Bus1, Bus2

Singal In/Out Direction

Size of each field in message (PEID, NamelD, Size)

Master/slave information for each PE

clk(can be given or can be derived from TD + FSMD)

twp, toH,toE for Memory controller (Timing Diagram 6,7)

(twp: write pulse width, toH : data hold from write time, toE :Output enable to vaild output)

Status bits : FSMD Ready, PE_req,Q_Full

Figure 18. Block Diagram of Transducer in Detail

6 Overall Operation from PE1to PE2

This section summarizes the operation of each block actgriti data flow se-
guence. Figure 18 shows the detailed block diagram withdaitration. Its has 7 sub
blocks - Memory1, Processorl, FSMD1, FIFO, FSMD2, Proa@ssand Memory?2.
Therefore there are 6 steps present to send a data from Mérnwokjemory?2.

6.1 MemoryltoProcessor1l
Processor 1 reads data from Memoryl using memory read aperat
6.2 Processorlto FSMD1

After reading the data from Mermoy1, Processor 1 tries ttethie data to FSMD1.
Before Processorl starts writing the datato FSMD1, Precésbecks thESMD1_ready
flag in FSMDL1. If it is ready, then Processorl writes the datagimemory write op-
eration, else it keeps reading th&MD1_ready flag. We assumed memory mapped I/O
that Memoryl and FSMD1 can be read or write using memory vaétd/operation
without overwriting each other.

6.3 FSMD1ltoFIFO

When all data registers are written by Processorl, then FEMBEeFSMD1 _ready
flag to 'O’ to prevent overwriting by PE1 and send write redqusignal to FIFO. After

21

FSMD1 writes all of the data to FIFO, then FSMD1 §&VD1 ready flag to '1’ and
sendreadyl siganl to FSMD2 to notify that FIFO has data for FSMD2.

6.4 FIFOtoFSMD2

If FSMD2 receives theeadyl signal from FSMD1, then it replieck_readyl signal
to FSMD1 and sen&32_req signal to FIFO.

6.5 FSMD2 to Processor2

After FSMD2 reads the data from the FIFO, it reads PEID. |a éxample, PE2 is
the master device that transducer sends an interrupt tegsor2. Then, Processor2
reads the data from data2 register in FSMD2 using memoryaparhtion.

6.6 Processor2to Memory?2

Finally, Processor2 writes the data to Memory2 using memaitgd operation.

7 Conclusion and futurework

This report shows our FIFO-based general transducer fotaggt interface. The
transducer can communicate between two different prosoaois in different clock
and different data width. We also extracted the parametsd o generate the trans-
ducer automatically. Future work will be automatic genierabf the transducers from
given parameters and routing, interrupt handling and siewéce address generation
in txducer master mode.

22

References

[1] D. Shin and D. Gajski. Interface Synthesis from Protdgpécification. Technical
Report ICS-TR-02-13, University of California, Irvine, Ap2002.

23

