
General Transducer Architecture

D. Gajski, Hansu Cho, Samar Abdi

Technical Report CECS-05-08
August 8, 2005

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{gajski,hscho,sabdi}@ics.uci.edu

Abstract

IP reuse is gaining importance in modern system design in order to reduce both
cost and time to market. However, incompatibility of IP interface protocols is a serious
hindrance to their reuse. Communication between two IP components, with different
interface protocols, requires an extra component that must translate one protocol to
another. This component is referred to as a transducer. In this paper we propose a
template for a general transducer that can be parameterized to translate between any
two protocols. Using this template, a transducer can automatically be generated to
allow communication between IPs with incompatible interfaces. As a result, different
IPs can easily be used in a system, without the manual and error prone task of designing
custom transducers.

1

Contents

1 Introduction 1

2 Transducer 2
2.1 Parameters . 3
2.2 FIFO . 3
2.3 FSMD1 . 4
2.4 FSMD2 . 4
2.5 Bidirectional communication . 4

3 Transducer Operation 6
3.1 FSMD1 to FIFO . 6
3.2 FIFO to FSMD2 . 9

4 Operation between Transducer and PE 9
4.1 PE1 to Transducer . 9
4.2 Transducer to PE2 . 13

5 System with Transducers 18
5.1 General model . 18
5.2 Bus Transducer . 19
5.3 Dedicated Transducers to each PE 19

6 Overall Operation from PE1 to PE2 21
6.1 Memory1 toProcessor1 . 21
6.2 Processor1 to FSMD1 . 21
6.3 FSMD1 to FIFO . 21
6.4 FIFO to FSMD2 . 22
6.5 FSMD2 to Processor2 . 22
6.6 Processor2 to Memory2 . 22

7 Conclusion and future work 22

i

List of Figures

1 Top level Block Diagram of Transducer, PE1, and PE2 1
2 Block Diagram of Transducer . 2
3 Block Diagram of FIFO . 3
4 Block diagram of FSMD1 . 5
5 FSMD1 to FIFO - FSMD1 FSM and Timing Diagram 7
6 FSMD1 to FIFO - FIFO FSM and Timing Diagram 8
7 FIFO to FSMD2 - FSMD2 FSM and Timing Diagram 10
8 FIFO to FSMD2 - FIFO FSM and Timing Diagram 11
9 Memory1 to Processor1 - Processor1 FSM and Timing Diagram .. . 12
10 Processor1 to FSMD1 - Processor1 FSM and Timing Diagram 14
11 Processor1 to FMSD1 - FSMD1 FSM and Timing diagram 15
12 FSMD2(Master) to Slave Device - FSMD2 FSM and Timing Diagram 16
13 FMSD2(Slave) to Processor2 - FSMD2 FSM and Timing Diagram. . 17
14 Processor2 to Memory2 - Processor2 FSM and Timing Diagram. . . 18
15 Arbitration - General model . 19
16 Arbitration - one transducer between two PEs 20
17 Arbitration - two transducers between PEs 20
18 Block Diagram of Transducer in Detail21

ii

General Transducer Architecture

Hansu Cho, Samar Abdi, Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

IP reuse is gaining importance in modern system design in order to reduce both
cost and time to market. However, incompatibility of IP interface protocols is a serious
hindrance to their reuse. Communication between two IP components, with different
interface protocols, requires an extra component that must translate one protocol to
another. This component is referred to as a transducer. In this paper we propose a
template for a general transducer that can be parameterized to translate between any
two protocols. Using this template, a transducer can automatically be generated to
allow communication between IPs with incompatible interfaces. As a result, different
IPs can easily be used in a system, without the manual and error prone task of designing
custom transducers.

1 Introduction

The design complexity of System-on-chip (SoC) is rising while the time to market
for a new product is shrinking. Consequently, designers areforced to implement more
functionality in a shorter period of time. The most widely used approach for tackling
this problem is IP reuse. However, different IPs, typically, have different interface pro-
tocols. Therefore, communication from one IP to another might not be possible using
a common bus. This communication must be routed through an additional component
known as a transducer[1].

TransducerTransducerPE1PE1 PE2PE2

Bus1 Bus2

Figure 1. Top level Block Diagram of Transducer, PE1, and PE2

The transducer is a component with two interfaces as shown inFigure 1. We have
two different Processing Elements(PEs), namely PE1 and PE2, using different proto-
cols on Bus1 and Bus2, respectively. We also have a transducer component with two
interfaces, one connected to Bus1 and the other to Bus2. Assume that PE1 wants to

1

sent data to PE2. Since PE2 does not support the protocol of Bus1, the communication
must go through the transducer component. The data is first sent from PE1 to trans-
ducer using Bus1. The transducer locally buffers the data and then sends it to PE2
using Bus2. Thus the transaction is completed.

FSMD1
<clk1>
FSMD1
<clk1>

FSMD2
<clk2>
FSMD2
<clk2>

FIFO
<clk3>

transducerBus1 Bus2

Processor1
<clk1>

Processor1
<clk1>

Memory1

PE1

Processor2
<clk2>

Processor2
<clk2>

Memory2

PE2

Handshaking Signals

Figure 2. Block Diagram of Transducer

Figure 2 shows the transducer in greater detail. It is composed of three different
subcomponents, namely FSMD1, FSMD2, and FIFO. FSMD1 implements the proto-
col of Bus1 and enables PE1 to read(write) to(from) the FIFO.If the protocol on Bus1
is synchronous, then FSMD1 must run at the same clock speed asPE1. FSMD2 imple-
ments the protocol of Bus2 and enables PE2 read(write) from(to) the FIFO. As in the
previous case, if the protocol on Bus2 is synchronous, then the clock speed for FSMD2
must be the same as that of PE2. The FIFO consists of a local memory and a controller
that communicates with FSMD1 and FSMD2 using double handshake protocol. The
asynchronous handshake between the FIFO and the two FSMDs allows different clock
speeds for FSMD1, FSMD2 and the FIFO. As a result, the transducer is capable of
interfacing PEs running at different clock speeds.

The rest of the paper is organized as follows. Section 2 describes the functionality
and structure of different parts of the transducer. In Section 3, we explain the opera-
tion of each subcomponent of the transducer. The details of communication between
transducer and the PEs are illustrated in Section 4. Section6 describes the sequence
of operations for transferring data from PE1 to PE2. In section ??, we present the
methodology for automatic transducer generation.

2 Transducer

The transducer has three components - FSMD1, FSMD2, and FIFO. And some
prameters are used to decide the datapath and controller of the transducer. In first
subsection, the parameters are summarized. In following sections, the function and
structure of each component is described. Also, architectures for bidirectional commu-
nication is explained after that.

2

2.1 Parameters

In this section, we summarize the parameters to describe thetransducer
1. Timing diagram and signal direction for Bus1, Bus2 and FIFO memory
2. Clock of Bus1(clk1), Bus2(clk2), and Memory(clk3)
3. Bus1 data width(k) , Bus2 data width(n), and FIFO width(m)
4. Size of each field in message header(PEID, NameID, Size)
5. Master/Slave information of each PE
5. Timing constraints for the momory in FIFO (tWP, tOE , tDH in Figure 6(b), Figure

8(b))

2.2 FIFO

Memory
<clk3>

PEID
(x bits)

Name ID
(y bits)

Size (z bits)
Data

m2

Memory
Controller read_addr

write_addr

read_inc

write_inc

m2

FS1_WEB FS1_req

FS1_ack FS2_ack

FS2_WEB FS2_req FIFO_data

FIFO_dataQ_Full

FIFO

addr

Memory Control Signals

Figure 3. Block Diagram of FIFO

Figure 3 shows the structure of the FIFO. It has memory, memory controller, and
address registers. Memory is used to store the temporary data since PE1 and PE2
read and write the data in different rate. Memory receives and send data to FSMD1
or FMSD2 using FIFOData bus. Each data stored in the memory should have three
fields - PEID, NameID, Size. PEID represents the destinationof the data. Name ID
represents the identity and source of the data. Size represents the size of data.

Memory controller generates memory control signals and communicate with FS-
MDs. It communicates with FSMD1 and FSMD2 using double handshake protocol.
No clock is used between them. This double handshake protocol enables PE1 and PE2
to read and write at different speed regardless of the clock.Since memory controller
generates momory control signals for the memory from given parameters, any type of
memory can be used.

Address registers indicate read and write address of the memory. After each read
or write operation, memory controller increase their valueby one. These registers are
used to generateQ Full signal. If FIFO is full, FSMD1 and FSMD2 should not write
to FIFO till it has space. So FIFO has to sendQ Full signal to FSMD1 and FMSD2.
Q Full signal is aseerted if read and write address are the same after write operation.

3

2.3 FSMD1

FSMD1 receives the data from PE1 and write it to FIFO or vice versa. For these
purpose, FSMD1 generates control signals for PE1 and match the different data width
between Bus1 data and FIFO. Figure 4 is the internal structure of FSMD1. FSMD1 is
composed of three main components - Controller, Data registers, and status flags.

The controller makes appropriate control signals for PE1 and data registers in
FSMD1. Therefore PE1 can write data to registers in FSMD1 andread from it. Then
the controller sends FIFO control signals to read(write) from(to) data registers.

FSMD1 has two status flags -FSMD1 ready andData2 ready. FSMD1 ready rep-
resents data1 registers are ready(=’1’) or not(=’0’). Whenever PE1 tries to write to
data registers, it checksFSMD1 ready flag and writes only if it is ready.Data2 ready
is used when FSMD1 reads data from FIFO. When FSMD1 receivesready2 signal
from FSMD2 then it checksData2 ready flag and starts reading from FIFO if and only
if Data2 ready is ready(’1’).

The data registers and its load(ld in Figure 4) and enable(en in Figure 4) signals
deals with different data width between Bus1 and FIFO. In Figure 4(a), Bus1 data
width(2k) is smaller than FIFO width(2m). So, each data register has the size of bus1
data width(2k). The total size of data registers is equal to the FIFO width(2m). In
this case, PE1 write to each data for 2|k−m| times and the controller generate load sig-
nal(ld1,ld2,...) for corresponding data register. After PE1 write to all data registers then
enable signal(en) is assered to all data registers that it write to the FIFO at once. Figure
4(b) shows opposit case. Bus1 data width(2k) is larger than FIFO width(2m). So, each
data register size is equal to Queu width and total size of thedata register is Bus1 data
width. In this case, data registers read at once and write to the FIFO 2|k−m| times.

interrupt signal is used to send an interrupt to PEs when transducers runs in slave
mode.tx interrupt signals is used to receive the interrupt from the slave devices when
transduer runs in master mode.

bus req and bus grant signals are used for arbitration. When multiple PEs are
attached to the bus, then arbiter is attached to the bus and itcommunicate with PEs
using these signals.sel andselx signals are used when one transducer writes data to
the other transducer. Also,selx signals is used to write data to slave devices. More
explanation is on section 4.

2.4 FSMD2

The functionality and internal structure of FSMD2 is basically the same with FSMD1.
The only difference is that it deals with PE2.

2.5 Bidirectional communication

The transducer provides bidirectional communication between PE1 and PE2. In
other to do that, the transducer have to solve two problems. First, it should handle the
direction of the data flow. In Figure 4, data1x and data2x registers are used for this
purpose. Data1x registers are used to receive data from PE and data2x registers are

4

ld2

 mk2 −ld  mk2 −ld …Data1[2|k-m|] Data1[2] Data1[1]

ld1

2k

Q[2k-1:0]Q[2k+1-1:2k]Q[2m-1:2m-2k]

2m

FIFO Data

Bus1 data

2k2k 2k2k

2k2k

2k2k 2k2k 2k2k

Q[2m-1:2m-2k] Q[2k+1-1:2k]

FSMD1_ready

Data2_ready

Status Flag

Controller1
<clk1>

 mk2 −en mk2 −en

en2
en1

Q[2k-1:0]

ready1

ack_ready1_
ready2

ack_ready2 FS1_WEB
FS1_req

FS1_ackQ_Full

Interrupt1

Data2[2|k-m|] Data2[2] Data2[1]

2k2k 2k2k 2k2k

2k2k 2k2k 2k2k

en_all

ld_all

PEID,size

selx

sel

bus_req

bus_grant

tx_interrupt

(a) Bus1 data width< FIFO width (k< m)

 km2 −ld  km2 −ld

…Data1[2|m-k|] Data1[2] Data1[1]

2k

Q[2m-1:0]Q[2m+1-1:2m]Q[2k-1:2k-2m]

2m

FIFO Data

Bus1 data

2m2m 2m2m

2m2m

2m2m 2m2m 2m2m

Q[2k-1:2k-2m] Q[2m+1-1:2m]

FSMD1_ready

Data2_ready

Status Flag

 km2 −en  km2 −en

en2
en1

Q[2m-1:0]

Data2[2|k-m|] Data2[2] Data2[1]

2m2m 2m2m
2m2m

2m2m 2m2m 2m2m

en_all

ld_all

PEID,size

ld2
ld1

Controller1
<clk1>

ready1
ack_ready2

FS1_req
FS1_WEBInterrupt1 selx

bus_req

ack_ready1_
ready2 FS1_ackQ_Full

sel

bus_grant

tx_interrupt

(b) Bus1 data width> FIFO width (k>m)

Figure 4. Block diagram of FSMD1

5

used to send data to PE. Second, the transducer should prevent simultaneous writing
to any of the storage device, because data are comming from two directions. It has
three storage devices - Data1 register, Data2 register, andFIFO Memory. Data1x and
Data2x registers are dedicated to one way of data flow. So, simultaneous writing never
happens.FS ack signals prevent the probelm with FIFO Memory. If FIFO receives
two FS req signals from both FSMDa and FSMD2, then it replies to only onerequest.
That, the other FSMD waits till the operation ends.

3 Transducer Operation

In this section, The internal operation of the FIFO is explained. Section 3.1 shows
how FSMD write data to FIFO. Section 3.2 explains how FSMD reads data from the
FIFO. FSMD1 and FSMD2 are the masters and FIFO is the slave during these opera-
tions.

3.1 FSMD1 to FIFO

FSMD1 and FIFO are communicating using double handshaking protocol to deal
with different read/write speed between PE1 and PE2. The double handshaking proto-
col uses three signals. Request(FS1 req), acknowledge(FS1 ack), read/write(FS1 WEB).
The operation has four steps. First, FSMD1 reqeusts to FIFO by settingFS1 req to ’1’.
Read/write operation is also indicated usingFS1 WEB in this step. Second, FIFO
replies when it is ready by settingFS1 ack to ’1’ and starts reading or writing. Third,
FIFO restsFS1 ack to ’0’ to tell the end of read/write to FSMD1. Finally, FSMD1
resetsFS1 req to ’0’ and all operation is over.

Figure 5 is given to describe the operation from FSMD1 to FIFO. Figure 5(a) is the
FSM of the controller in FSMD1 for writing operation. Figure5(b) shows the timing
diagram between FSMD and FIFO. Figure 6(a) is the corresponding FSM in FIFO.

In W11 state in Figure 5(a), FSMD1 sendsFS1 req to the FIFO. If FIFO replies
FS1 ack, then FSMD1 writes data to FIFO by giving enable signals to its data regis-
ter(en in Figure 4) in W12 state. In state W13, after writing to FIFO and receiving
FS1 ack signal, it checkQ Full signal. If FIFO is full, then waits till it has some space.
If FIFO has space, then FSMD1 write the the data in next data register again and again.
After FSMD1 writes all data registers to FIFO then, FSMD1 setsFSMD1 ready flag in
Figure 4 and sendready1 signal to FSMD2.

While FSMD1 is running according to FSM in Figure 5(a), FIFO runs according to
FSM in Figure 6. In Figure 6(b) has two signal groups. One for FSMDs and the other
for Memory. FS1 req and FS1 ack is the double handshaking signals for FSMDs.
FS1 WEB signal decides read/write operation. The other signals below clk3 is memory
control signals. If FIFO receivesFS1 req signal andFS1 WEB = ’0’ from FSMD1 at
S0 state, then its memory controller repliesFS1 ack to FSMD1 and puts ’0’ toCSB
andWEB to write data to the memory in S1 state. In S2 state, it waits till data is written
to the memory. Then in state S3, memory controller setCSB andWEB. After finishing
writing data to memory, memory controller increases write address in S4 and reset
FS1 ack to ’0’ to notify the end of operation to FSMD1. If FSMD1 resetFS1 req to
’0’ in S5, then all write cylce is done and FIFO waits for another request.

6

W12W12

QFull =0

FS1_ack =1

en1->0

W11W11 FS1_req ->1
FS1_WEB -> 0

W22W22

W23W23

en2->0
FS1_req -> 0

QFull =0

en2->1

W21W21
FS1_req -> 1
FS1_WEB -> 0

en|m-k| ->1
FS1_req ->0

FS1_req -> 1
FS1_WEB -> 0

en|m-k|->0
Ready1 ->1
FSMD1_ready->1

ack_ready1 = 1

Ack_ready1 = 0

W|m-k|1W|m-k|1

W|m-k|2W|m-k|2

W|m-k|3W|m-k|3

W|m-k|4

ack_ready1 = 1

Ready1 -> 0

ack_ready1 = 0

…

FS1_ack =0

FS1_ack =1

en1->1
FS1_req ->0

FS1_ack =1

W13W13

FS1_ack =0

QFull =1

FS1_ack =0

QFull =1

FS1_ack =1

FS1_ack =0

FS1_ack =0

FS1_ack =1

FS1_ack =0

To Figure 11. R11

From Figure 11. R|k-m|3

FS1_ack =1

(a) FSM of FSMD1

FS1_req (in) : request from FSMD1
FS1_ack (out) : ack to FSMD1 request
FS1_WEB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WEB (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Data in (In) : Data in
Data out (out) : Data out

Addr

W12W11

CLK3CLK3

CSB

WEB

OEB

W12 W12 W13

tDH

tWP

Invalid

W12

Handshaking signals between FSMD and FIFO
Memory control signals in FIFO

(b) Timing Diagram of FSMD1

Figure 5. FSMD1 to FIFO - FSMD1 FSM and Timing Diagram

7

S1S1

S0S0

FS1_req = 0

FS1_req = 1 and FS1_WEB = 0

FS1_ack FS1_ack --> 1> 1
CSB CSB --> 0> 0
WEB WEB --> 0> 0
ADDR --> write > write AddrAddr

S2S2
CSB -> 1
WEB -> 1

FS1_ack -> 0
Inc_write_addr -> 1

FS1_req = 0

S3S3

Number of cycle = tDH/clk3Number of cycle = tDH/clk3

Number of cycle = tWP/clk3Number of cycle = tWP/clk3

FS1_req = 1
and FS1_WEB = 1 Figure 8(b)

FS1_req -= 0

(a) FSM of FIFO

FS1_req (in) : request from FSMD1
FS1_ack (out) : ack to FSMD1 request
FS1_WEB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WEB (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Data in (In) : Data in
Data out (out) : Data out

FS1_req

FS1_ack

Addr

S1S0

CLK3CLK3

CSB

WEB

OEB

Data In

S1 S2 S3

Data out tDH

tWP

Invalid

S1

Handshaking signals between FSMD and FIFO
Memory control signals in FIFO

FS1_WEB

(b) Timing Diagram of FIFO (= Figure 5(b))

Figure 6. FSMD1 to FIFO - FIFO FSM and Timing Diagram

8

Two parameters are used to describe write memory timing in Figure 6(b).tW P rep-
resents the length of write period.tDH is the data hold time after write enable sigalWEB
is set to ’1’. If FIFO uses some special memory then, protocolof the memory used in
FIFO shoud be given instead of parameters.

3.2 FIFO to FSMD2

This section explains how FSMD1 or FSMD2 reads data from FIFO. Figure 7(a)
shows the FSM in FSMD2 for the operation. Figure 7(b) shows the timing diagram
between FSMD2 and FIFO. Figure 8(a) shows corresponding FSMin FIFO.

If FSMD2 receivesready1 signal in R11 state in Figure 7(a), then FSMD2 replys
ack ready1 signal to FSMD1 and sendFS2 req to FIFO to read the data. The other
sequence are pretty much same with section 3.1. The only differentce is the last state.
In state R|n−m|4,after FSMD2 finishes reading the data from FIFO, it send interrupt
to Processor2 to notify that data is ready.

Figure 8 shows the corresponding FSMD and Timing diagram of FIFO. If FIFO
receives theFS2 req signal at S0, then it replysFS2 ack to FSMD2 and starts reading
from memory. Memory reading sequence is almost same with thesequence in section
3.1.

4 Operation between Transducer and PE

In this section, communication between PE and Transducer will be shown.
Section 4.1 is the example of synchronous protocol from PE1 to FSMD1. Section

4.2 shows the example of asynchronous protocol from FSMD2 toPE2. Finally, section
5 explains arbitration.

4.1 PE1 to Transducer

Data transfer from PE1 to Transducer can be divided into two cases. In first case,
PE1 runs as a master and transducer runs as a slave. In second case, PE1 runs as a salve
and transducer becomes master. In first case, the operation is composed of three step.
First, PE1 reads the data from Memory1. Second, PE1 checks the FSMD1 ready flag
in FSMD1. When it is ready, PE1 writes to data registers in FSMD1 as the final step.
For each step, PE1 have to acquire the bus usingBus req andBus grant. The detailed
operation is explained in this section.

In second case, PE1 send an interrupt to the transducer then transducer read the
data from PE1 using memory read operation. When transducer runs in master mode, it
read the size in the message. For every read operation, transducer reduce the size by the
amount of data1 register size. Transducer keeps reading till the size reaches zero. Its
detailed operation is similar to the operation of the transducer in slave mode in section
4.2 except that transducer is the master and PE is the slave inthis case.

Figure 9 is the first step when PE1 runs as a master. PE1 reads data from mem-
ory1 using memory read operation. Memory read/write operation uses write enable
bar(WEB), address, and data signals in general. In read operation,WEB goes down to

9

ld|n-m| -> 1

FS2_req -> 0
ld|n-m| -> 0
Qren -> 0
Ack_ready1 -> 0
Data2_ready=0
Read PEID

R0R0

R11R11

R12R12

R13R13

Ready1 = 0
or

Data2_ready = 0

Ready1 = 1 and
Data2_ready = 1

Ack_ready1 ->1
FS2_req -> 1
FS2_WEB -> 1

ld1->1

FS2_ack = 1

FS2_ack = 0

ld1 -> 0
FS2_req -> 0

…

R|n-m|1R|n-m|1

R|n-m|2R|n-m|2

R|n-m|3R|n-m|3

R21R21

R22R22

R23R23

FS2_req -> 1
FS2_WEB -> 1

ld2 ->1

FS2_ack = 0

FS2_ack = 1

ld2 -> 0
FS2_req -> 0

FS2_ack = 1

FS2_ack = 0

FS2_ack = 1

FS2_ack = 0 FS2_ack = 0

FS2_ack = 1 FS2_ack = 1

To Figure 12. W0
Transducer runs

in slave mode

From Figure 12. W|m-n| PEID = master PEID = slave

To Figure 13. W0
Transducer runs
In Master mode

FS2_req -> 1
FS2_WEB -> 1

(a) FSM of FSMD2

FS2_req (in) : request from FSMD2
FS2_ack (out) : ack to FSMD2 request
FS2_WEB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WE (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Data_in (In) : Data in
Data_out (out) : Data out

FS2_req

FS2_ack

Addr

R11 R11R11

CLK3

CSB

WEB

OEB

Data_In

R11 R13 R13

Data_out
tDH

tOE

Invalid

Handshaking signals between FSMD and FIFO
Memory control signals in FIFO

R12

FS2_WEB

(b) Timing Diagram of FSMD2

Figure 7. FIFO to FSMD2 - FSMD2 FSM and Timing Diagram

10

S1S1

S0S0

FS2_req = 0

FS2_req = 1 and FS_WEB = 1

CSB CSB --> 0> 0
OEB OEB --> 0> 0
WEB WEB --> 1> 1
ADDR --> read > read AddrAddr

S3S3

S4S4

CSB -> 1
OEB -> 1

Inc_read_addr -> 1
FS2_ack -> 0

FS2_ack FS2_ack --> 1> 1
FSMD2 reads from Memory

S2S2

FS2_req = 1

FS2_req = 0

Number of cycle = tOE/clk3Number of cycle = tOE/clk3

Number of cycle = tDH/clk3Number of cycle = tDH/clk3

Figure 6(b)
FS1_req = 1

and FS1_WEB = 0

(a) FSM of FIFO

FS2_req (in) : request from FSMD2
FS2_ack (out) : ack to FSMD2 request
FS2_WEB (out) : write enable bar from FSMD to FIFO

CSB (in) : Chip Select
WE (in) : Write Enable
OEB (in) : Output enable
Addr (in) : Address bus
Data_in (In) : Data in
Data_out (out) : Data out

FS2_req

FS2_ack

Addr

S1 S1S0

CLK3

CSB

WEB

OEB

Data_In

S2 S3 S4

Data_out
tDH

tOE

Invalid

Handshaking signals between FSMD and FIFO
Memory control signals in FIFO

FS2_WEB

S2

(b) Timing Diagram of FIFO (= Figure 7(b))

Figure 8. FIFO to FSMD2 - FIFO FSM and Timing Diagram

11

S2S2

S3S3

WEB -> 1
RDB -> 0
STRB -> 0
Addr -> Mem1 address

Read Data

S4S4

S1S1

Bus_grant = 0

Bus_grant = 1

WEB -> 0
RDB -> 1
STRB -> 1
Bus_req -> 0

To Figure 10. S5

S0S0

Master has nothing to send

Master has something to send

Bus_req -> 1

(a) FSM

Bus_req (out) : Bus request signal to arbiter
Bus_grant (in) : Bus grant signal from arbiter
WEB (out) : Write Enable
RDB (out) : Read
STRB (in/out) : Strobe
Addr (in/out) : Address :
Data (in/out) : Data

Addr

CLK1

WEB

S2 S3 S4

RDB

STRB

Data

S0

Bus_req

Bus_grant

S1 S1

(b) Timing Diagram

Figure 9. Memory1 to Processor1 - Processor1 FSM and Timing Diagram

12

’0’ and address are coming at the same cycle. Memory takes at least one clock cycle
to interpret the address and give the data at next clock cycle. Every control signals are
issued at S1, and data is read in following clock cycle (S2).

Figure 10 shows second step. After reading the data from Memory1, PE1 tries
to write the data to FSMD1. PE1 checks the status of FSMD1 before writing, if
FSMD1 ready flag is ’0’ then it keeps reading the status flag till it is ’1’. Else it writes to
data1 register in FSMD1 using memory write operation. We assumed memory mapped
I/O that Memory1 and FSMD1 can be read or write using memory read/write operation
without overwriting each other.

From S6 to S8, PE1 reads the status register in FSMD1 using memory read oper-
ation. Address for status register is loaded in the address bus. Its timing diagram is
shown in Figure 10(b). If FSMD1 is ready then PE1 write the data to data1 register in
FSMD1 using memory write operation. States from S9 to S11 andits corresponding
Timing diagram Figure 10(c) shows its memory write operation. In this case, Data1
address is loaded in address bus.

Figure 11 is corresponding FSMD form S9 to S11 in Figure 10(a). Figure 11(a) is
FSM for this operation. Memory write operation is running 2|k−m| times. For example,
assume that PE1 uses 16 bits data and FIFO has 64 bit width, then FSMD1 should
have four 16 bits data registers and Processor 1 writes to each register in FSMD1
over four times. In every second state in each reading cycle (R12,R22,...) load sig-
nal(ld1,ld2,...) for each register is issued. If all of the data registers arewritten then
FSMD1 resetFSMD1 ready flag to ’0’ to prevent overwriting and send FIFO write
request signals(FS1 req, FS1 WEB) to FIFO.

4.2 Transducer to PE2

After FSMD2 reads the data from the FIFO, it reads PEID. If PEID represent mas-
ter, then transducer runs in slave mode and sends an interrupt to PE. PE reads the data
from data2 register in FSMD2 using memory read operation. Else, transducer runs as
a master device. If Transducer runs in master mode, then its FSM and Timing Diagram
is similar with Figure 10(Processor1 to FSMD1). Transducerchecks the status of the
slave device first, then write the data to the slave device. The transducer send select
signal or request signal to the slave device to initiate writing.

Figure 12 is the FSM and timing diagram of the FSMD2 master mode when it uses
double handshake protocol. As mentioned above, the transducer tries to acquire the
bus usingbus request andbus grnat signals in W0 state. Then it checks the status of
the slave device from W1 to W2 state. W1 and W2 state does not represent one clock
cycle. They are inserted to show the operation sequence. In W11 state, if the bus uses
double handshake, then the transducer sends request signalto the slave device. Else,
selx signal should be asserted in W1 state and should remain till the end of writing
operation. As transducer runs as a master in this mode, it reads the size field in the
message at first stage, and keeps writing till the size becomes zero.

Figure 13 is the FSM and timing diagram of the FSMD2 when it runs in slave mode.
In W0 state, FSMD2 sends interrupt to PE. Then, the master device, PE send request
to FSMD2 in Wx1 state. In Wx2 state, FSMD2 replies acknowledge to PE and write to
bus usingen siganl of data2 registers in Wx3 state. In Wx4 state, if PE finishes reading

13

 From Figure 9. S4

S6S6

S7S7

Addr -> status address
WEB -> 1
RDB –> 0
STRB -> 0

Read status
(FSMD1_ready)

S8S8
WEB -> 0
RDB -> 1
STRB ->1

status = 0

status = 1

S11S11

S9S9

WEB -> 0
RDB -> 1
STRB -> 0
Addr -> Data1 addr
Data -> Data

S10S10 Write data

To Figure 9. 1 S0

Bus_req -> 0
WEB -> 1
RDB -> 0
STRB -> 1

S5S5

Bus_grant = 0

Bus_grant = 1

Bus_req -> 1

(a) FSM

 S6 S7 S8

Addr

CLK1

WEB

RDB

STRB

Data

Bus_req

Bus_grant

S5S5

(b) Timing Diagram - Processor1 checks status

Addr

WEB

S9 S10 S11

RDB

STRB

Data

CLK1

Bus_req

Bus_grant

(c) Timing Diagram - Processor1 writes to FSMD1

Figure 10. Processor1 to FSMD1 - Processor1 FSM and Timing Diagram

14

R21

R22

R23

ADDR != Data1 addr

ADDR == Data1 addr

ld2 -> 1

ld2 -> 0

R11R11

R12R12

R13R13

ADDR != Data1 addr

ADDR == Data1 addr

ld1 -> 1

ld1 -> 0

ADDR != Data1 addr

ADDR == Data1 addr

R|k-m|1R|k-m|1

QFull = 0

QFull = 1

ld |k-m| -> 0
FSMD1_ready -> 0

ld|k-m| -> 1
R|k-m|2R|k-m|2

R|k-m|3

From Figure 5. W|m-k|4

…

To Figure 5. W11

QFull = 0QFull = 0

QFull = 1 QFull = 1

(a) FSM

Bus_req (out) : Bus request signal to arbiter
Bus_grant (in) : Bus grant signal from arbiter
WEB (out) : Write Enable
RDB (out) : Read
STRB (in/out) : Strobe
Addr (in/out) : Address :
Data (in/out) : Data

Addr

WEB

R11 R12 R13

RDB

STRB

Data

CLK1

Bus_req

Bus_grant

(b) Timing Diagram (= Figure. 10(c))

Figure 11. Processor1 to FMSD1 - FSMD1 FSM and Timing diagram

15

W21

W22

W23

ack = 0

ack = 1

req -> 0
en2 -> 1
addr -> I/O

addr

en2 -> 0

W11W11

W12W12

ack = 0

ack = 1

req -> 0
en1 -> 1
addr -> I/O

addr

en1 -> 0

ack = 0

ack = 1

W 1 mk2 −W 1W 1 mk2 −

Bus_grant = 1

req -> 0
en -> 1
addr -> I/O

addr

 mk −2W 2 mk2 −W 2 mk2 −

W 3 mk2 −

…

…

S0S0 Bus_req -> 1

Bus_grant = 0

Bus_grant = 1

req -> 1
web -> 0

ack = 0 ack = 0

W13W13

req -> 1 req -> 1

 mk −2en -> 0
Bus_req -> 0
FSMD_ready = 0

 mk −2en -> 0
Bus_req -> 0
FSMD_ready = 0

From Figure 7. R|n-m|3

To Figure 7. R0

(a) FSM

Transducer write to Slave Device

Int (in) : interrupt
Bus_req (out) : Bus request
Bus_grant(in) : Bus grant
req (out) : request
ack (in): acknowledge
web (out): Write Enable
addr (out): Address
Data (in) : Data

Addr

Data

Bus_req

Bus_grant

int

web

S0 W11 W11 W12 W12

req

ack

S0 W13 W33…

(b) Timing Diagram

Figure 12. FSMD2(Master) to Slave Device - FSMD2 FSM and Timing Diagram

16

W11W11

W12W12

W13W13

W14W14

W15W15

Req2 = 0

Req2 = 1

ack2 -> 1

en1 -> 1

Req2 = 0

Req2 = 1

en1 -> 0
ack2 -> 0

W21W21

W22W22

W23W23

W24W24

W25W25

Req2 = 0

Req2 = 1

ack2 -> 1

en2 -> 1

Req2 = 0

Req2 = 1

en2 -> 0
ack2 -> 0

W|m-n1W|m-n1

W|m-n|2W|m-n|2

W|m-n|3W|m-n|3

W|m-n|4W|m-n|4

W|m-n|5W|m-n|5

Req2 = 0

Req2 = 1

ack2 -> 1

en|m-n| -> 1

Req2 = 0

Req2 = 1

en|m-n| ->0
ack2 -> 0
Data2_ready = 1

…

From Figure 7. R|n-m|3

To Figure 7. R0

W0W0 Send Interrupt to PE

(a) FSM

int (in) : interrupt
req (out) : request
ack (in): acknowledge
web (out): Write Enable
Addr (out) : Address bus
Data in (In) : Data in

Addr

Data

req

ack

int

web

W11 W12 W13 W14 W15

(b) Timing Diagram

Figure 13. FMSD2(Slave) to Processor2 - FSMD2 FSM and TimingDiagram

17

then it setreq2 signal to ’0’ to tell FSMD2 that it read the data. In State Wx5,ack2
siganl is set to ’0’ and it means the end of transfer. After onecycle(dotted box) then,
PE keep reading next data register till read all data registers in FSMD2. Finally, PE2
write the data to Memory2 using memory write operation. Figure 14 shows its FSMD
and timing diagram.

S1S1
Req ->1
Web ->0
Addr -> Mem2 address
Data -> Data

ack = 0

ack = 1

S2S2
Req ->0
Web ->1
Addr -> z
Data -> z

To interrupt wait state

ack = 1

ack = 0

S0S0

Bus_grant = 0

Bus_grant = 1

bus_req ->1

S3S3
bus_req ->0

Bus_grant = 0

Bus_grant = 1

(a) FSMD

web

Addr

Data

req

ack

S1 S2 S3S2

Bus_req (out) : Bus request
Bus_grant (in) : Gus grant
Req (out) : request
Ack (in) : acknowledge
wEB (out) : Write Enable
addr (out) : Address :
data (in/out) : Data

Bus_grant

Bus_req

S0S0

(b) Timing Diagram

Figure 14. Processor2 to Memory2 - Processor2 FSM and TimingDiagram

5 System with Transducers

This section deals with multiple transducer and with multiple PEs. But, only two
basic configuration is used to compose all possible comfiguration with multiple PEs
and multiple transducers.

5.1 General model

Figure 15 shows general case example. Between PE1 and PE2 it has one trans-
ducer. PE1 and PE3 have two transducers between them. Any other configuration
can be extended using these two basic configurations. Therefore, the transducer model
suggested can be a general transducer.

18

PE1_1

PE2

PE3_1

Arbiter 2
Bus2_req2

Bus2_req1

Bus2_grant2
Bus2_grant1

Bus2

Transducer1Transducer1

TransducermTransducerm

Interrupt1_1

Bus1

Interrupt2

Interrupt3_1

Bus3

Interrupt1_3

Arbiter 3 Bus3_req1

Bus3_grant1

Interrupt3_3

Bus2_req2

Bus2_grant2

Arbiter 1

Bus2_req3
Bus2_grant3

Bus2_req1 Bus2_grant1

Bus2_req3 Bus2_grant3

Bus1_req1

Bus1_grant1

PE1_2

PE3_2

Interrupt1_2

Interrupt3_2
Bus3_req2

Bus3_grant2

Bus1_req2

Bus1_grant2

Bus1_req2
Bus1_grant2

Bus3_req2
Bus3_grant2

Figure 15. Arbitration - General model

5.2 Bus Transducer

Figure 16 is the first basic configuration. It has two buses andmultiple PEs are con-
nected to each bus. An arbiter is attached to each bus and there is only one transducer
between buses. This case can be devided into two operation. From PE to transducer
and transducer to PE. From PE to transducer, PE is always is master and transducer is
always slave. But, from transducer to PE, the role of the transducer depends on PE. If
PE is slave then the transducer becomes master. Otherwise, transducer becomes slave.

5.3 Dedicated Transducers to each PE

Second basic configration is shown is Figure 17 Each PE uses different protocol that
each PE has own transducer and the transducer is connected toone main bus. In this
case, there are two transducers between PEs. For example, when PE1 send data to PE2,
the data starts from PE1.Then, it goes through transducer1 and transducer2. Finally, the
data arrives at PE2. In this example basic operation betweenPEs and transducer is the
same with previous configration. But,there are two transducer between PEs. The first
transducer becomes master and the second transducer becomes slave. So, transducer1
acquires the bus and sendsel 2 signal to transducer2 with status check signals. If
trnasducer2 is ready, then transducer1 writes the data according to the main bus write
protocol.

19

Transducer

PE1_1
(Master)

PE1_2
(Slave)

PE1_m
(Master)

PE2_1
(master)

PE2_2
(Slave)

PE2_n
(Master)

Arbiter 1 Arbiter 2

Interrupt 1_1

sel1_2

Interrupt 1_m

Interrupt 2_1

sel 2_2

Interrupt 2_n

.

.

.

.

.

.

Bus1_reqm

Bus1_req2

Bus1_req1

Bus2_reqn

Bus2_req2

Bus2_reqn

Bus1_grantm

Bus1_grant2

Bus1_grant1 Bus2_grant1

Bus2_grant2

Bus2_grantn

Bus1 Bus2

.

.

.

.

.

.

Bus2_req1

Bus1_reqm
Bus1_grantm

Bus2_grantn

Figure 16. Arbitration - one transducer between two PEs

PE1

PE2

PEm

Arbiter 1

.

.

.

Bus_reqm

Bus_grantm

Main Bus

Transducer1

Transducer2

Transducerm

Interrupt1_1

Bus1

Interrupt2

Bus2

Interrupt3

Bus3

.

.

.

Bus_req1

Bus_grant1

Bus_req2

Bus_grant2

Bus_reqn

Bus_grantn

Bus_req1

Bus_grant1

sel1

sel2

selm

sel [2:m]

sel [1,3:m]

sel [1:m-1]

Figure 17. Arbitration - two transducers between PEs

20

Processor1
<clk1>

Processor1
<clk1>

Processor2
(Double

handshake)
<clk2>

Processor2
(Double

handshake)
<clk2>

FSMD1
<clk1>
FSMD1
<clk1>

FSMD2
<clk2>
FSMD2
<clk2>

transducer

ready1
ack_ready1

ready2
ack_ready2

Memory1Memory1 Memory2Memory2

PE1 PE2

Addr Bus1 Addr Bus2
Data Bus1 Data Bus2

status1 status2status2 interrupt2
interrupt1

Memory
<clk3>

PEID
(8bits)

Name ID
(8 bits)

Size (16bits)
Data

Memory
<clk3>

PEID
(8bits)

Name ID
(8 bits)

Size (16bits)
Data

Data1(2 bits)

en

Data2(2 bits)Data2(2 bits)

en

ld

Parameter : Bus1 width = k, Queue width = m, Bus2 width =n
Timing Diagram for Bus1, Bus2
Singal In/Out Direction
Size of each field in message (PEID, NameID, Size)
Master/slave information for each PE
clk(can be given or can be derived from TD + FSMD)
twp,tDH,tOE for Memory controller (Timing Diagram 6,7)

(twp: write pulse width, tDH : data hold from write time, tOE :Output enable to vaild output)
Status bits : FSMD Ready, PE_req,Q_Full

k2

k2

k2 n2
n2

n2

m2

m2

k
n

Memory
Controller

FS1_req FS1_ack

FS2-req

FS2-ack

read_addr

write_addr

r_inc
w_inc

req2
ack2

ld

Figure 18. Block Diagram of Transducer in Detail

6 Overall Operation from PE1 to PE2

This section summarizes the operation of each block according to data flow se-
quence. Figure 18 shows the detailed block diagram without arbitration. Its has 7 sub
blocks - Memory1, Processor1, FSMD1, FIFO, FSMD2, Processor2, and Memory2.
Therefore there are 6 steps present to send a data from Memory1 to Memory2.

6.1 Memory1 toProcessor1

Processor 1 reads data from Memory1 using memory read operation

6.2 Processor1 to FSMD1

After reading the data from Mermoy1, Processor 1 tries to write the data to FSMD1.
Before Processor1 starts writing the data to FSMD1, Precessor1 checks theFSMD1 ready
flag in FSMD1. If it is ready, then Processor1 writes the data using memory write op-
eration, else it keeps reading theFSMD1 ready flag. We assumed memory mapped I/O
that Memory1 and FSMD1 can be read or write using memory read/write operation
without overwriting each other.

6.3 FSMD1 to FIFO

When all data registers are written by Processor1, then FSMD1 resetFSMD1 ready
flag to ’0’ to prevent overwriting by PE1 and send write request signal to FIFO. After

21

FSMD1 writes all of the data to FIFO, then FSMD1 setFSMD1 ready flag to ’1’ and
sendready1 siganl to FSMD2 to notify that FIFO has data for FSMD2.

6.4 FIFO to FSMD2

If FSMD2 receives theready1 signal from FSMD1, then it repliesack ready1 signal
to FSMD1 and sendFS2 req signal to FIFO.

6.5 FSMD2 to Processor2

After FSMD2 reads the data from the FIFO, it reads PEID. In this example, PE2 is
the master device that transducer sends an interrupt to Processor2. Then, Processor2
reads the data from data2 register in FSMD2 using memory readoperation.

6.6 Processor2 to Memory2

Finally, Processor2 writes the data to Memory2 using memorywrited operation.

7 Conclusion and future work

This report shows our FIFO-based general transducer for anytarget interface. The
transducer can communicate between two different protocols runs in different clock
and different data width. We also extracted the parameters need to generate the trans-
ducer automatically. Future work will be automatic generation of the transducers from
given parameters and routing, interrupt handling and slavedevice address generation
in txducer master mode.

22

References

[1] D. Shin and D. Gajski. Interface Synthesis from ProtocolSpecification. Technical
Report ICS-TR-02-13, University of California, Irvine, April 2002.

23

