
Equivalence Checking of Arithmetic Expressions using

Fast Evaluation

Mohammad Ali Ghodrat

Tony Givargis

Technical Report CECS-05-07

July 20, 2005

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8168

{mghodrat, givargis}@cecs.uci.edu

Equivalence Checking of Arithmetic Expressions using

Fast Evaluation

Mohammad Ali Ghodrat

Tony Givargis

Technical Report CECS-05-07

July 20, 2005

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8168

{mghodrat, givargis}@cecs.uci.edu

Abstract

Arithmetic expressions are the fundamental building blocks of hardware and software systems.

An important problem in computational theory is to decide if two arithmetic expressions are

equivalent. However, the general problem of equivalence checking, in digital computers, belongs

to the NP Hard class of problems. Moreover, existing general techniques for solving this decision

problem are applicable to very simple expressions and impractical when applied to more complex

expressions found in programs written in high-level languages. In this paper we propose a method

for solving the arithmetic expression equivalence problem using partial evaluation. In particular,

our technique is specifically designed to solve the problem of equivalence checking of arithmetic

expressions obtained from high-level language descriptions of hardware/software systems, which

consists of regular arithmetic operators (+, −, ×) and logical operators (and, or, not). In

our method, we use interval analysis to substantially prune the domain space of arithmetic

expressions and limit the evaluation effort to a sufficiently limited set of subspaces. Our results

show that the proposed method is fast enough to be of use in practice.

Contents

1 Introduction and motivation 2

2 Previous works 4

3 Problem Definition 6

4 Domain Space Partitioning for Simple Condition 9

4.1 Computing Root-spaces . 9

4.2 Partitioning . 12

4.3 Evaluation . 14

4.4 Merging . 15

5 Domain Space Partitioning for Complex Condition 16

5.1 Parsing . 17

5.2 Evaluating Leaf Nodes . 17

5.3 Domain Space Propagation and Merging . 17

6 Experiments 21

6.1 Mediabench Examples . 22

6.2 Synthetic Examples . 23

7 Conclusion 25

i

List of Figures

1 A simple example that shows pattern matching does not work always 4

2 Partitioned Domain of C : 2x0 + x1 + 4 > 0 . 7

3 Space Partitioning Strategy . 9

4 Root-spaces of 2x0 + x1 + 4 . 13

5 Partitioned Spaces for 2x0 + x1 + 4 . 14

6 Evaluated Subspaces for 2x0 + x1 + 4 > 0 . 15

7 Merged Spaces for 2x0 + x1 + 4 > 0 . 16

8 Solution Strategy for Domain Space Partitioning for Complex Condition 17

9 The DAG Representation . 18

10 Partitioned Domain Spaces for Leaf Nodes . 19

11 Merge Rules for Operators &&, ||, ! . 21

12 Applying Logical Not Operator (!) to Leaf Nodes . 21

13 Applying Logical And Operator (&&) to Leaf Nodes 22

14 Partitioned Domain Space Representation Using R-tree 22

15 Merging and Propagation of Spaces for Figure 10: (a)- Initial State (b)- After Ap-

plying ! Operator (c)- After Merging Using && (d)- After Merging Using || 28

16 Time vs. Number of Spaces – #Var.=4 . 30

17 Time vs. Number of Spaces – #Var.=5 . 30

18 Time vs. Number of Spaces – #Var.=3, #Rel Op=2, #Logic Op=1 30

19 Time vs. Number of Spaces – #Var.=3, #Rel Op=3, #Logic Op=2 30

20 Time vs. Number of Spaces – #Var.=4, #Rel Op=2, #Logic Op=1 30

21 Time vs. Number of Spaces – #Var.=4, #Rel Op=3, #Logic Op=2 30

ii

Equivalence Checking of Arithmetic Expressions using Fast

Evaluation

Mohammad Ali Ghodrat, Tony Givargis

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

{mghodrat,givargis}@cecs.uci.edu

http://www.cecs.uci.edu

Abstract

Arithmetic expressions are the fundamental building blocks of hardware and software sys-

tems. An important problem in computational theory is to decide if two arithmetic expressions

are equivalent. However, the general problem of equivalence checking, in digital computers,

belongs to the NP Hard class of problems. Moreover, existing general techniques for solving this

decision problem are applicable to very simple expressions and impractical when applied to more

complex expressions found in programs written in high-level languages. In this paper we propose

a method for solving the arithmetic expression equivalence problem using partial evaluation. In

particular, our technique is specifically designed to solve the problem of equivalence checking

of arithmetic expressions obtained from high-level language descriptions of hardware/software

systems, which consists of regular arithmetic operators (+, −, ×) and logical operators (and,

or, not). In our method, we use interval analysis to substantially prune the domain space of

arithmetic expressions and limit the evaluation effort to a sufficiently limited set of subspaces.

Our results show that the proposed method is fast enough to be of use in practice.

1

1 Introduction and motivation

Arithmetic expressions are the fundamental building blocks of hardware and software systems.

In hardware, arithmetic expressions form the core of data-path designs. In software, arithmetic

expressions form the core of basic blocks. A fundamental problem in computational theory is to

decide if two expressions are equivalent [11, 8]. In hardware and software systems, expression

equivalence is uniquely characterized by operating on finite precision integers. Furthermore, the

general problem of equivalence checking, as related to hardware and software systems, belongs to

the NP Hard class of problems [7].

Efficiently solving the equivalence problem between two arithmetic expressions will have a pro-

found impact in the areas of formal verification [10], complex code generation and technology

mapping [6], resource scheduling [3], code transformation [4], synthesis technologies [18], compiler

techniques [1], behavioral synthesis tools, reconfigurable computing methodologies, extensible pro-

cessors, VLIW and multiple-processor-on-a-chip compilers.

In this paper we propose a method for solving the expression equivalence problem using partial

evaluation. In our method, we use interval analysis [19] to substantially prune the domain space

of arithmetic expressions and limit the evaluation effort to a limited set of subspaces. Our results

show that the proposed method is fast enough to be of use in practice.

The high compute demand of media rich, networked, and mobile embedded devices, combined

with low power consumption constraints, continue to push the limits of design at all levels of

the hierarchy. For maximum performance and energy efficiency, an application-specific integrated

circuit (ASIC) can often yield the ideal results. However, in the context of short time-to-market

windows, support for multiple complex communication and computation standards, and ability to

perform dynamic firmware updates, a design can not rely on ASIC solutions alone. In an effort

to address these issues, processor vendors have introduced programmable platforms that combine

complex application-specific kernels with one or more general-purpose processors (GPPs) on a

single chip (a.k.a., system-on-a-chip (SOC)). Here, in some cases, the application-specific kernels

are tightly embedded in the GPP’s datapath (e.g., Xtensa/Tensilica) while in others kernels are

integrated in a more traditional fashion (e.g., A7V05/Triscend).

2

One problem of interest is to realize the compute capability and efficiency of such SOCs by novel

program synthesis techniques. In particular, given an SOC platform S defined as a set of resources

r1, r2...rn, resource conflict sets C1, C2...Cm, computation cost function F (ri), communication cost

function G(ri, rj), and an application program P , we seek to map (i.e., synthesize/compile) program

P onto SOC S to achieve maximum performance and energy efficiency. Both resource ri and

program P are defined behaviorally in terms of a high-level program. A resource ri may be a

simple processor instruction (e.g., add) or a complex function (e.g., crc-decode) – furthermore,

two resources ri and rj , may implement the same function. A conflict set Ci = {ra, rb...} indicates

that ra, rb... can not be used in parallel. Functions F and G define the cost, in cycles, of using

resource ri or passing data from ri to rj (in case of data dependency).

At first glance, the above stated problem may appear familiar to the many problems in logic

synthesis, RTL-synthesis, and behavioral synthesis. However, it differs from the these design meth-

ods in a fundamental way. While in logic/RTL/behavioral-synthesis the objective is to trans-

form the design from a high-level of abstraction to lower and lower levels of abstractions (i.e.,

behavioral→RTL→logic) followed by binding to a small set of simple logic-gates, we seek to per-

form a mapping from a high-level program to another high-level program. Such program mapping

involves non-trivial algorithmic transformations, scheduling, and extensive design-space exploration.

Existing efforts so far have approached the problem in terms of pattern-matching and simple al-

gorithm manipulations. Unfortunately, pattern matching techniques fail in most, including trivial,

cases. Figure 1 shows a simple example where pattern matching does not work, although both

codes implement the same behavior. The reason for this is that the two expression x < 0 and

x > 255 can never be true at the same time, in other word x < 0 and x > 255 are mutual exclusive.

This gives the need to find the mutual exclusion property between any two arithmetic and boolean

expressions.

Mutual exclusion is a special instance of the equivalence checking problem. Here, if E1 and

E2 are two arithmetic expression, we say that E1 and E2 are mutually exclusive if the condition

E1 = E2 is false for all values of E1 and E2. We say that E1 and E2 are not mutually exclusive

if for at least some point in the domain of E1 or E2, the expression E1 = E2 evaluates to true.

3

 x = 255;

if (x<0)
 x = 0;
else if (x>255)
 x = 255;

(b)(a)

if (x<0)
 x = 0;
if (x>255)

Figure 1: A simple example that shows pattern matching does not work always

This is indeed the problem of equivalence checking. If C1 and C2 are two conditional expressions

(e.g., x < 0 and x > 255), we say the C1 and C2 are mutually exclusive if the condition C1&&C2

evaluates to false for all points in the domain of C1 and C2.

The remainder of this paper is organized as follows. In Section 2 we show the previous works.

In Section 3, we formulate the problem of expression equivalence. In Section 4, we give our solution

for this problem when we have only one simple arithmetic expression. In Section 5 we extend our

solution for more complex arithmetic expressions which have boolean operators also. In Section 6

we present our experimental results. Finally, in Section 7, we give our conclusion.

2 Previous works

Most of the work on equivalence checking is done in the domain of formal verification. The most

commonly used methods to do formal verification of circuits use binary decision diagrams (BDD) [2]

and its derivatives, namely ordered BDD (OBDD), ordered functional decision diagrams (OFDD),

multi terminal BDD (MTBDD), binary moment diagram (BMD), edge-valued BDD (EVBDD),

and multiplicative BMD (*BMD). These approaches differ mainly in bit vs. word level scope and

composition rules.

BDD, OBDD, and OFDD are bit-level decision diagrams, while the rest are word-level decision

diagrams (bit-level decision diagrams represent boolean functions f : {0, 1}n → {0, 1}m, while

word-level decision diagrams represents integer-valued functions f : {0, 1}n → Z). These decision

diagram based approaches also differ in the type of decomposition rule used, specifically, Shannon

(BDD, OBDD, and K*BMD), positive-Davio (OFDD and K*BMD), or negative-Davio (K*BMD).

Among those decision diagrams that are word-level, a further difference is in the place where the

4

integer weights are inserted, either in leaves (MTBDD and BMD) or edges (EVBDD, *BMD and

K*BMD). A detailed survey of BDD and its derivatives can be found in [9].

Due to exponential complexity, bit-level decision diagrams are only applicable to simple boolean

expressions and are not feasible when applied to arithmetic expressions. Word-level decision dia-

grams can be applied to simple arithmetic expressions (e.g. datapath segments [13]), however, they

can only be used to determine the equivalence of arithmetic expressions. Conversely, our method,

in addition to checking equivalence, can also partition the domain space into regions and define the

arithmetic relations (less-than, greater-than, and equal) present in those regions.

In related work, Wakabayashi et al. [21] have used the notion of a condition vector to find mutual

exclusion between two boolean conditions. Two conditional expressions are mutually exclusive if

it can be shown that they can never be evaluated to true at the same time. Likewise, Juan et

al. [14] have proposed condition graphs, a form of syntax pattern matching, to find mutual exclusion

between two restricted boolean conditions. Further, Jian et al. [16, 17] have used timed decision table

(TDT) to find three possible types of mutual exclusion between a pair of conditional expressions,

namely structural, behavioral and dataflow. Also, Xie et al. [22] used a branch labeling method

to find the mutual exclusion properties between two boolean expressions. Finally, Camposano [3],

in his path-based scheduling technique, has proposed a method for determining mutual exclusion

based on an exhaustive traversal of all paths in a control flow graph.

The problem of mutual exclusion between two boolean conditions, as solved previously, is a

special case of the problem solved in our work. The main limitation of existing works in this

area is the restriction imposed on the grammar and the lack of support for mixed arithmetic and

boolean expressions. The problem solved in our work applies to general arithmetic expressions with

arbitrary complexity.

Zhou et al. [23] have proposed a formal verification system, called conditional term rewriting on

attribute syntax trees (ConTRAST) for verifying the equivalence between two differently synthesized

data-paths. In their approach, they maintain attributes (e.g., real bounds) associated with each

node of the syntax trees of the two data-paths and combine this with term rewriting to establish

equivalence. Their approach differs from ours in that they focus on computation precision of real

5

values as an element of comparison.

Cheung et al. [5] have used bit-slicing of binary decision diagrams (BDDs) to establish equiva-

lence between two expressions. The main limitation of their approach is scalability, as representing

general and arbitrary arithmetic expressions as a BDD is not feasible in terms of space and time

requirements.

3 Problem Definition

An arithmetic expression is formed over the language (+, −, ×, integer-constant, integer-variable).

A simple condition is in the form of (expr1 ROP expr2). Here, expr1 and expr2 are arithmetic

expressions and ROP is a relational operator (=, 6=, <, ≤, >, ≥). Without loss of generality

we can assume all simple conditions to be of the form of (expr ROP 0). This normalization is

achieved by converting (expr1 ROP expr2) to (expr1 − expr2 ROP 0). Hence, (expr ROP 0) is

called a normalized simple condition. For the remainder of this work, we refer to a normalized

simple condition as a simple condition.

We define an n-dimensional space to be a box-shaped region defined by the cartesian product

[l0, u0]× [l1, u1]× ...× [ln−1, un−1]. In a simple condition, all integer-constants and integer-variables

are assumed to be bounded between min and max values1. Hence, the domain of a simple condition

C with n integer-variables x0, x1, ..., xn−1 is an n-dimensional space defined by the cartesian product

[min,max]× [min,max]× ...× [min,max].

Given a simple condition C with integer-variables x0, x1, ..., xn−1, the domain space partitioning

problem for a simple condition is to partition the domain space of C into a minimal set of n-

dimensional spaces s1, s2, ..., sk with each space si having one of true, false, or unknown truth

value. If space si has a truth value of true, then C evaluates to true for every point in space si. If

space si has a truth value of false, then C evaluates to false for every point in space si. If space si

has a truth value of unknown, then C may evaluate to true for some points in space si and false

for others.

For example, consider C : 2×x0+x1+4 > 0. Let us assume min = −5 and max = 5. Therefore,
1Typically, in a computer system, min and max values are determined by the width of the processor data-path.

6

Figure 2: Partitioned Domain of C : 2x0 + x1 + 4 > 0

the domain of C is a 2-dimensional space defined by the cartesian product [−5, 5]× [−5, 5]. Figure 2

shows the partitioned domain space and the corresponding truth values for this example using our

solution to the domain space partitioning problem.

The problem of equivalence checking can be reduced to that of arithmetic expression evaluation.

Specifically, given two expressions E1 and E2, by evaluating the condition E1 − E2 = 0, we can

establish the equivalence of E1 and E2 (i.e., E1 and E2 are not equivalent if the condition evaluates

to false for a point in the domain of E1 and E2). We give our solution to the domain space

partitioning problem for a simple condition in section 4.

A complex condition is either a simple condition or two complex conditions merged using logical

operators (&&, ||, !). Specifically !C computes the negation of the complex condition C; (C1&&C2)

computes logical-and of complex conditions C1 and C2; and (C1||C2) computes logical-or of complex

conditions C1 and C2.

The domain of a complex condition C with n integer-variables x0, x1, ..., xn−1 is an n-

dimensional space defined by the cartesian product [min,max]× [min,max]× ...× [min,max].

7

Similar to the domain space partitioning problem for simple conditions, given a complex con-

dition C with integer-variables x0, x1, ..., xn−1, the domain space partitioning problem for com-

plex conditions is to partition the domain space of C into a minimal set of n-dimensional spaces

s1, s2, ..., sk with each space si having one of true, false, or unknown truth value. If space si has

a truth value of true, then C evaluates to true for every point in space si. If space si has a truth

value of false, then C evaluates to false for every point in space si. If space si has a truth value of

unknown, then C may evaluate to true for some points in space si and false for others.

The general problem of equivalence checking between two expressions expr1 and expr2 with

bounded variables2 can be expressed in terms of the domain space partitioning problem for complex

conditions. As an example, consider checking equivalence between expr1 = 2 × x0 and expr2 =

−x1 − 4. Further, let us assume x0 and x1 are 3-bit two’s complement integers. We can construct

the following complex condition:

((2× x0)− (−x1 − 4) = 0)

&& (x0 + 4 ≥ 0)

&& (x0 − 3 ≤ 0)

&& (x1 + 4 ≥ 0)

&& (x1 − 3 ≤ 0).

Here, (2 × x0) − (−x1 − 4) = 0 evaluates to true, for values of x0 and x1 where expr1 and

expr2 are equivalent. The remaining expressions (i.e., x0 + 4 ≥ 0, x0 − 3 ≤ 0, x1 + 4 ≥ 0, and

x1 − 3 ≤ 0) evaluate to true when x0 and x1 are within the 3-bit two’s complement bounds. To

establish equivalence, we solve the domain space partitioning problem and check that the entire

region is marked as true. We give our solution to the domain space partitioning problem for a

complex condition in section 5.
2The ability to bound integer variables is necessary when considering hardware/software implementations.

8

4 Domain Space Partitioning for Simple Condition

Our overall domain space partitioning strategy is depicted in Figure 3. On input, the arithmetic

expression of the simple condition is parsed to obtain an equivalent polynomial representation.

Any arbitrary arithmetic expression can be rewritten as an n-variable polynomial with degree D

using the general form shown in Equation 1.

D∑
i0,i1,...,in−1=0

ci0,i1,...,in−1 × xi0
0 × xi1

1 × ...× x
in−1

n−1 (1)

Computing Root−spaces

Simple Condition

Parser

Representation
Polynomial

Partitioned
Domain Space

Merging

Evaluation

Partitioning

Figure 3: Space Partitioning Strategy

For example, the expression 2×x0 +x1 +4 of Figure 2 can be rewritten as 2×x0
1x1

0 +x0
0x1

1 +

4 × x0
0x1

0 (zero coefficient terms not shown) with n = 2 and D = 1. We describe the remaining

domain space partitioning steps in the following subsections.

4.1 Computing Root-spaces

During this phase, we operate on an n-variable polynomial P and obtain a set of minimally sized

spaces (root-spaces) that contain the roots of P , as outlined in Algorithm 1. We achieve this by

finding the roots of P using interval analysis [19]. Let us first give an overview of the interval

analysis technique.

A real interval of the form [a, b] represents all possible values in the range a to b. The operations

(+, −, ×, /) can be defined on two real intervals [a, b] and [c, d] as shown below:

9

[a, b] + [c, d] =[a + c, b + d] (2)

[a, b]− [c, d] =[a− d, b− c] (3)

[a, b]× [c, d] =[min (a× c, a× d, b× c, b× d),

max (a× c, a× d, b× c, b× d)]
(4)

[a, b]/[c, d] =


[a, b]× [1/d, 1/c] 0 /∈ [c, d]

[−∞,∞] 0 ∈ [c, d].
(5)

Next, we describe our strategy (Algorithm 1) for computing the root-spaces. Algorithm 1

operates as follows:

1. Initialization Phase (lines 3-5): We start by creating a single root-space S that covers the

entire domain of P . Specifically, S is an n-dimensional space with each dimension initialized

to the interval [min,max]. Clearly, the roots of P (if any) are within S, however, S may

not be minimally sized. To minimize S, we push S onto a queue Q to be processed by the

iterative phase of the algorithm. In our running example 2 × x0
1x1

0 + x0
0x1

1 + 4 × x0
0x1

0

(min = −5 and max = 5), S is initialized to 〈[−5, 5], [−5, 5]〉.

2. Iterative Phase (lines 6-23): We pop a space S from the queue Q and split S into smaller

spaces S0, S2, ..., Sk−1. If S0 ∪ S1... ∪ Sk−1 = S, then S can not be minimized, thus, we add

S to the output list of root-spaces R. If S0 ∪ S1... ∪ Sk−1 ⊂ S, then we push S0, S1, ..., Sk−1

onto the queue Q and discard S. This process iterates until the queue Q is empty. This phase

proceeds as follows:

(a) As long as the queue Q is not empty, we pop a space S from the queue Q and clear a

flag called changed (lines 7-8).

(b) For each variable xi in P , we compute a single variable polynomial P ′ by setting all

variables xj (j 6= i) to the corresponding intervals vj ∈ S. Next, we solve P ′ using any

root finding algorithm (e.g., Newton-Raphson Method [20]), implemented using interval

10

Algorithm 1 Compute Root-spaces
1: Input: a n-variable polynomial P
2: Output: a set R of minimally sized root-spaces
3: R← ∅
4: S ← 〈[min,max], [min,max], ..., [min,max]〉 {|space| = n}
5: Q.push(S)
6: while Q.not empty() do
7: S ← Q.pop()
8: changed← 0
9: for all xi ∈ P do

10: P ′ ← convert P to a polynomial with xi as the only variable and xj = vj (vj ∈ S)
11: roots← P ′.solve()
12: for all r ∈ roots do
13: if r 6= vi (vi ∈ S) then
14: changed← 1
15: r ← r ∩ vi {Intersect new root with previous one}
16: Q.push(〈v0, v1, ..., r, ..., vn−1〉) {replace vi with r}
17: end if
18: end for
19: end for
20: if changed = 0 then
21: R← R ∪ {S}
22: end if
23: end while
24: for all Ri ∈ R do
25: Ri ← convert Ri to smallest bounding integer space
26: end for

11

analysis to obtain a set of one or more disjoint root-spaces (i.e. roots, line 9-11). In our

running example, P ′ is computed twice during the run of the for loop starting on line 9.

In the first round, with x0 as the variable, P ′ is 2 × x0
1 + [−5, 5] + [4, 4]. Since P ′ is a

polynomial of degree 1, we compute the root as [−4.5, 0.5].

(c) We compare each of r0, r1, ... to the present value of xi in space S, namely vi. If any

root r0, r1, ... is not equal to vi, we create a new space and push it onto the queue Q for

further processing. Moreover, we set the flag changed to signal that S should not be

recorded in the output set R (lines 12-18). In our running example, root r0 = [−4.5, .5]

is not equal to v0 = [−5, 5], thus we create a new space S0 = 〈[−4.5,−.5], [−5, 5]〉.

(d) Once steps (b) and (c) are completed, if the flag changed is not set, S can not be further

minimized, thus we push it on the output set R (lines 20-22).

As an optimization, we use a method to help reach to shorter intervals for each root space

computed in step 2 of our algorithm. Shorter interval helps in faster convergence for the

algorithm. Specifically if a root space [lb, ub] contains 0 (i.e., lb < 0 < ub) we divide it

into three intervals [lb,−1], [0, 0] and [1, ub]. For example in the running example, after

computing the root for x1, we reach to the interval [−5, 5]. Then, we divide this interval into

three disjoint intervals [−5,−1], [0, 0], and [1, 5] to be pushed on the queue Q for processing

during the following iteration of the algorithm.

3. Quantization Phase (lines 24-26): Finally, we convert each root-space in the output

set R to the smallest bounding integer space. Table 1 gives the final output set R for our

running example. This result is shown graphically in Figure 4. All the shaded areas are the

root-spaces, and as shown in Figure 4, the equation 2x0 + x1 + 4 = 0 passes through all of

them.

4.2 Partitioning

Given the root-spaces for an expression Ex (corresponding to a normalized simple condition ExROP0),

the entire domain of Ex can be partitioned into a number of disjoint spaces. This is accomplished

12

Table 1: Root-spaces of 2x0 + x1 + 4
Final Real Results Final Integer Results
[0, 0][−4,−4] [0, 0][−4,−4]
[−1.5,−1][−2,−1] [−1,−1][−2,−1]
[−4.5,−2.5][1, 5] [−4,−3][1, 5]
[−2,−2][0, 0] [−2,−2][0, 0]

!"

!#

!$

%

$

#

"

&

'

()*
%
+*
$
,-#.*

%
/*

$
/&

()"+",0-0#."/"/&0-0$"1%
2
$

!'

!&

!"

!#

!$

%

$

#

"

&

'

!' !& !" !# !$ % $ # " & '

2
%

2
$

#
*
% /
*
$ /
&
-
%

Figure 4: Root-spaces of 2x0 + x1 + 4

by extending the boundaries of each root-space to the limits (min and max) of the entire domain

to establish the borders between the disjoint spaces. For our running example, the boundary points

{0,−1,−4,−3,−2} for x0 and {−4,−2,−1, 1, 5, 0} for x1 (see Table 1) partition the entire domain

space as shown in Figure 5. In Figure 5, the root-spaces are shown in shaded color.

For each disjoint space si, and si not overlapping with any of the root-spaces, it must be the

case that evaluating the corresponding expression for any point in si will yield only positive results

or only negative results, but not both (otherwise, si would contain a root and thus will have an

overlap with one of the root-spaces). In Figure 5, all spaces that are not shaded have this property.

For example, the point (3, 3) in space 〈[1, 5][1, 5]〉 will make the expression 2x0 + x1 + 4 positive.

13

!"

!#

!$

!%

!&

'

&

%

$

#

!" !# !$!% !& ' & % $ # "

(
'

%
)
' *
)
& *
#
+
'

!"

!#

!$

!%

!&

'

&

%

$

#

"

!" !# !$!% !& ' & % $ # "

,-)
'
.)
&
/+%)

'
*)

&
*#

,-$.$/0+0%-$/*$*#0+0&$1'
(
&

(
'

Figure 5: Partitioned Spaces for 2x0 + x1 + 4

Furthermore, this is true for all the points in space 〈[1, 5][1, 5]〉.

4.3 Evaluation

After partitioning the domain space, each disjoint space si, and si not overlapping with any of

the root-spaces, can be evaluated separately. This is done by picking an arbitrary point in si and

evaluating the simple condition C. This will yield either a true or a false result. Accordingly,

space si can be marked as true or false. For a disjoint space sj , and sj overlapping with one of

the root-spaces, such evaluation can not be performed, therefore, sj must be marked as unknown.

For example, evaluating 2x0 + x1 + 4 > 0 with the arbitrary point (3, 3) in space 〈[1, 5], [1, 5]〉

yields a true value, thus, the entire space 〈[1, 5], [1, 5]〉 is marked as true (see Figure 6). Conversely,

evaluating 2x0 + x1 + 4 > 0 with the arbitrary point (−3,−2) in space 〈[−4,−3], [−2,−1]〉 yields a

false value, thus, the entire space 〈[−4,−3], [−2,−1]〉 is marked as false (see Figure 6).

14

Figure 6: Evaluated Subspaces for 2x0 + x1 + 4 > 0

4.4 Merging

When two n-dimensional spaces have the same truth value and share n − 1 common borders,

then these two spaces can be merged. For example, in Figure 6, space 〈[−1,−1], [0, 0]〉 and

〈[−1,−1], [1, 5]〉 share the common border [−1,−1] and thus can be merged into a single space

〈[−1,−1], [0, 5]〉.

In our proposed technique (i.e., Figure 3), the overall running time is bounded by the running

time of the merging step. Given k disjoint n-dimensional spaces, a brute-force approach can be

used to solve the merging problem. To do so, we take each pair of spaces (i.e., O(k2)) and look

for n − 1 common borders (i.e., O(n)), for a total cost of O(k2 × n). Here, in the worst case, one

pair of spaces may be merged, reducing the total number of spaces to k − 1. Then, the process

repeats, k times, until a single space remains. Thus, the total running time takes O(k3 × n). The

dimensionality n is the number of variables in the simple condition and is usually small (e.g., less

than 8) for manually written programs. Hence, the effective running time of the brute-force merging

algorithm is O(k3).

15

Alternatively, we can use a divide-and-conquer heuristic to do this in O(k2). The idea is to sub

divide the k disjoint sets into two equal clusters and recursively merge each cluster. In turn, each

of these two clusters will be broken further, until the size of the cluster is less than or equal to

two. There are exactly O(k/2) = O(k) such leaf clusters, and, merging a leaf cluster takes O(1),

for a total of O(k). The above procedure would, in the worst case, merge a single pair during each

iteration, reducing the total number of clusters to k − 1. Repeating, as long as some clusters have

merged, would take O(k) iterations. Thus, the final run time is bounded by O(k2).

Figure 7 shows the result of merge operation on Figure 6.

Figure 7: Merged Spaces for 2x0 + x1 + 4 > 0

5 Domain Space Partitioning for Complex Condition

Our overall strategy for solving the domain space partitioning problem for complex conditions is

depicted in Figure 8. The steps involved include parsing, evaluating leaf nodes, and domain space

propagation/merging. These steps will be described in detail in the following sections.

16

Leaf Nodes

Final Result

Parser

Complex Condition

Representation
Internal DAG

Evaluating

Domain Space
Propagation and Merge

Figure 8: Solution Strategy for Domain Space Partitioning for Complex Condition

5.1 Parsing

To capture a complex condition, we use a DAG representation with internal nodes of types (&&, ||, !)

and leaf nodes of type simple conditions. As mentioned in Section 3, the simple condition is

captured as a multi-variable polynomial ROP 0. As a running example, consider the complex

condition (2 × x0 + x1 + 4 > 0) || ((x0 − 2 < 0) && !(x1 − 3 > 0)) and its DAG representation

shown in Figure 9.

5.2 Evaluating Leaf Nodes

Each leaf node in the DAG representation is a simple condition and is evaluated as outlined in

section 4. Specifically, each leaf node in the DAG representation corresponds to one instance of the

domain space partitioning problem for simple conditions. Figure 10 shows the partitioned domain

spaces for the leaf nodes of our running example.

5.3 Domain Space Propagation and Merging

After computing the partitioned domain spaces for leaf nodes, merging of these domain spaces is

performed according to the rules listed in Figure 11. These rules define how two sets of domain

spaces are combined under the logical operators (&&, ||, !).

17

Figure 9: The DAG Representation

For the logical not operator (!), the truth value of a space marked as true or false is inverted.

A space marked as unknown is unchanged. Figure 12 shows the DAG representation after applying

logical not operator (!) to the (x1 − 3 > 0) leaf node.

For the logical and operator (&&), the merging is performed on those spaces that have an

overlap region. Let us assume L and R are two partitioned domain spaces. Let us further assume

that sl ∈ L and sr ∈ R are two overlapping spaces in those domains. If space sp is the overlapping

space between sl and sr, then sp will be added to the result of the logical and. The truth value of

sp is computed using the merge rules given in Figure 11. This procedure is shown in Algorithm 2.

Figure 13 shows an example of the logical and merging of two partitioned domain spaces. In

Figure 13, two spaces sl1 and sr1 are overlapping and their overlap is space sp1, with its truth value

set to false. In the same way, the overlap of two spaces sl1 and sr2 is space sp2, with its truth value

set to true.

Algorithm 2, with two nested for loops, has O(N2) running time. To improve on this algorithm,

instead of comparing all the pairs of spaces in each domain space to see if they are overlapped or

not, we use the R-tree data structure [12] to make the search job faster. An R-tree as defined in [12]

is a height-balanced tree suitable for handling spatial data in multidimensional spaces. Figure 14

18

Figure 10: Partitioned Domain Spaces for Leaf Nodes

shows a partitioned domain space and the way it is represented using the R-tree structure.

Algorithm 3 uses the R-tree data structure to make Algorithm 2 faster. Specifically, Algorithm 3

uses an R-tree representation of the domain spaces to efficiently find all overlapping regions. The

running time of Algorithm 3 is O(N × log(N)).

Finally, the logical or operator can be performed in a way similar to the logical and operator

outlined above.

Using the not logical operator and the merge algorithms for logical operations and and or, the

DAG representation is recursively merged in a bottom-up traversal. Figure 15 shows the result of

merging the spaces of Figure 10 in three steps. Figure 15(a) shows the initial state after evaluating

the leaf nodes, Figure 15(b) shows the result after applying the ! operator and Figure 15(c) and

Figure 15(d) show the result after merging using && and || operators.

19

Algorithm 2 Logical-AND Space Merging-Exhaustive Method
1: Input: Partitioned domain spaces Sl and Sr

2: Output: Merged domain space Sp

3: for all spaces l ∈ Sl do
4: for all spaces r ∈ Sr do
5: p← l ∩ r {Compute the intersection of the two subspaces}
6: if (p 6= φ) then
7: p.truth← fmergerules(l.truth, r.truth) {See Figure 11}
8: Sp.push(p)
9: end if

10: end for
11: end for
12: Sp.merge()
13: return Sp

Algorithm 3 Logical-AND Space Merging-Using R-tree
1: Input: Partitioned domain spaces Sl and Sr

2: Output: Merged domain space Sp

3: rT = make an R-tree using Sr

4: for all spaces l ∈ Sl do
5: overlappedRegion = rT.overlap(l)
6: for all spaces o ∈ overlappedRegion do
7: p← l ∩ o {Compute the intersection of the two subspaces}
8: p.truth← fmergerules(l.truth, o.truth) {See Figure 11}
9: Sp.push(p)

10: end for
11: end for
12: Sp.merge()
13: return Sp

20

Figure 11: Merge Rules for Operators &&, ||, !

Figure 12: Applying Logical Not Operator (!) to Leaf Nodes

6 Experiments

We tested our tool, using two different approaches. In the first approach we picked some random

simple and complex conditions from Mediabench [15] applications. In the second approach we

evaluated our tool using some synthetic examples with more aggressive combination of supported

arithmetic and logical operators. The results of these two sets of experiments are in the following

subsections:

21

Figure 13: Applying Logical And Operator (&&) to Leaf Nodes

Figure 14: Partitioned Domain Space Representation Using R-tree

6.1 Mediabench Examples

In our first set of experiments, we randomly selected a number of simple and complex conditions

from Mediabench applications [15]. Table 2 gives some basic statistics for the selected conditions,

namely, the total number of simple and complex conditions (#Exp), average number of variables

per condition (Avg. #Var), average number of arithmetic operations per condition (Avg. #Arith),

average number of logical operations per condition (Avg. #Logic), and the average CPU time for

evaluating a condition (Time) .

Table 3 shows the ratio of truth values for Mediabench examples, as computed by our technique.

On the average, about 92.7% of the whole domain of each condition is evaluated to true or false

and about 7.30% is evaluated to unknown. Note that, the portion of the domain space that is

22

evaluated to true or false (i.e., 92.7%), represent the amount of pruning (with respect to evaluating

the condition for all possible domain values) achieved by our algorithm. Conversely, the portion of

the domain space that is evaluated to unknown (i.e., 7.30%) would require exhaustive evaluation

to resolve the truth value of the condition.

Table 2: Operation Complexity for Mediabench Applications.
Benchmark #Exp Avg. Avg. Avg. Time (ms)

#Var #Arith #Logic

ADPCM 22 1.23 0.68 0.45 0.454545

EPIC 86 1.25 0.55 0.38 1.046510

G721 47 1.34 1.97 1.59 4.255320

GHSTSCR 14 3 1.71 2.07 3.571430

GSM 29 1.24 1.65 1.41 1.034480

JPEG 32 1.5 2.31 1.59 1.875000

MPG-DEC 11 1.54 2 1.36 0.909091

MPG-ENC 12 2.75 2.58 2.08 4.166670

PEGWIT 15 1.33 2.86 2.6 1.333330

PGP 14 1.92 2.42 3.35 5.000000

RASTA 15 2.11 2.33 2.33 3.333330

Table 3: Results for Mediabench Applications
Benchmark True (%) False (%) Unknown (%)

ADPCM 23.8636 73.8636 2.27273

EPIC 54.3605 38.6628 6.97674

G721 25.0002 71.8082 3.19156

GHSTSCR 28.5714 53.1250 18.3036

GSM 13.7933 81.0343 5.17241

JPEG 15.6250 76.5625 7.81250

MPG-DEC 27.2727 63.6364 9.09090

MPG-ENC 23.6197 54.5747 21.8055

PEGWIT 9.72228 86.6666 3.61111

PGP 21.4286 78.5714 0.00000

RASTA 15.2778 81.9444 2.77778

6.2 Synthetic Examples

In our second set of experiments, we evaluated our tool using some synthetic examples with more

aggressive combination of supported arithmetic operators. We generated a total of 500 synthetic

single and complex conditions, of those, a partial list is presented in Table 4 and Table 5. Table 4

23

Table 4: Partial List of Synthetic Simple Condition Examples
Simple Condition #Spaces Time (sec)
(x0 + x1 + x2 == 100) 441 0.05

(x0 ∗ x1 + x2 < 100) 326 0.02

(x0 ∗ x0 + x1 ∗ x1 ∗ x2 < 100) 298 0.02

(x0 ∗ x0 ∗ x1 ∗ x2 + x0 < 100) 248 0.01

(x0 ∗ x0 ∗ x1 ∗ x2 == 100) 114 0

(x0 ∗ x0 ∗ x1 ∗ x1 + x2 == 100) 76 0.01

(x0 + x1 + x2 + x3 == 100) 7158 1.58

((x0 ∗ x0) + (x1 ∗ x2) + x3 == 100) 5341 1.34

(x0 ∗ x0 + x1 ∗ x1 + x2 + x3 < 100) 4597 2.35

(x0 ∗ x1 ∗ x2 + x3 < 100) 3209 0.74

(x0 ∗ x1 ∗ x2 ∗ x3 < 100) 2036 0.21

(x0 ∗ x1 + x2 ∗ x3 == 100) 1296 0.16

(x0 ∗ x0 ∗ x1 ∗ x1 + x2 ∗ x3 == 100) 678 0.08

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 ∗ x3 == 100) 345 0.05

(x0 + x1 + x2 + x3 + x4 == 100) 171975 95.58

(x0 ∗ x1 ∗ x2 + x3 + x4 < 100) 97802 47.99

((x0 ∗ x0 ∗ x1 ∗ x2) + x3 + x4 == 100) 84499 42.14

((x0 ∗ x0) + (x1 ∗ x1) + x2 + x3 + x4 == 100) 63296 144.97

((x0 ∗ x0) + (x1 ∗ x2 ∗ x3 ∗ x4) < 100) 38456 10.72

((x0 ∗ x0) + (x1 ∗ x2) + (x3 ∗ x4) < 100) 24057 10.02

(x0 ∗ x0 ∗ x1) + (x2 ∗ x3 ∗ x4) < 100) 10616 2.63

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 ∗ x3 ∗ x4 < 100) 6336 1.1

((x0 ∗ x0 ∗ x1 ∗ x1) + x2 + x3 + x4 < 100) 3272 1.29

and Table 5 give some basic statistics for the synthetic simple and complex conditions, namely, the

actual example (Single/Complex Condition), the generated number of unmerged spaces (#Spaces),

and the CPU time for evaluating the synthetic single or complex condition (Time). In our strategy

for generating these examples, we considered the number of variables ranging from 1 to 5, the

number of arithmetic operations (+, −, ×) from 1 to 5, the number of relational operators from 2

to 3 and the number of logical operators from 1 to 2.

Figure 16 and Figure 17 show the CPU time for running our algorithm on those simple condition

examples with four or five variables.

Figure 18 to Figure 21 show the CPU time for running our algorithm on those complex condition

examples with 3 or 4 variables, 2 or 3 relational operators and 1 or 2 logical operators. Our results

show that the CPU time for running our algorithm is proportional to the number of spaces into

24

which the domain of the condition that is being evaluated is partitioned.

7 Conclusion

In this paper we have proposed a method for solving the expression equivalence problem using

partial evaluation. In our method, we used interval analysis to substantially prune the domain

space of arithmetic expressions (and conditional expressions) and limited the evaluation effort to

a sufficiently small number of minimally sized spaces within the domain of the expression. Then,

we extend the technique to incorporate arbitrary use of logic operators and, or, and not within

arithmetic expressions. Our results show that the proposed method is fast enough to be of use in

practice.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers principles, techniques and tools. Addison Wesley,

Reading, Massachusetts, 1988.

[2] S.B. Akers. Binary decision diagrams. IEEE Transactions on Computers, 27(6):509–516, 1978.

[3] R. Camposano. Path-based scheduling for synthesis. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 10(1):85–93, 1991.

[4] V. Chaiyakul, D. Gajski, and L. Ramachandran. High-level transformations for minimizing

syntactic variances. In Design Automation Conference, June 1993.

[5] N. Cheung, S. Parameswaran, J. Henkel, and J. Chan. Mince: matching instructions using

combinational equivalence for extensible processor. In Conference on Design, Automation and

Test in Europe, pages 1020–1025, 2004.

[6] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral transforms for large

boolean functions with applications to technology mapping. In Design Automation Conference,

June 1993.

25

[7] N. Dershowitz. Rewrite systems. Handbook of Theoretical Computer Science, Elsevier Science

Publishers, 1990.

[8] P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on the common subexpression problem.

Journal of the ACM, 27(4):758–771, 1980.

[9] R. Drechsler. Formal verification of circuits. Kluwer Academic Publishers, The Nederlands,

2000.

[10] R. Drechsler. Advanced formal verification. Kluwer Academic Publisher, The Nederlands,

2004.

[11] J. Ferrante and C.W. Rackoff. The computational complexity of logical theories. Lecture Notes

in Mathematics, 718, 1979.

[12] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the

1984 ACM SIGMOD international conference on Management of data, pages 47 – 57, 1984.

[13] S. Horeth and R. Drechsler. Formal verification of word-level specifications. In Conference on

Design, Automation and Test in Europe, pages 52 – 58, 1999.

[14] H.P. Juan, V. Chaiyakul, and D. D. Gajski. Condition graphs for high-quality behavioral

synthesis. In International Conference on Computer-Aided Design, pages 170–174, 1994.

[15] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: A tool for evaluating and

synthesizing multimedia and communicatons systems. In International Symposium on Mi-

croarchitecture, pages 330–335, 1997.

[16] J. Li and R.K. Gupta. An algorithm to determine mutually exclusive operations in behavioral

descriptions. In Conference on Design, Automation and Test in Europe, pages 457 – 465, 1998.

[17] J. Li and R.K. Gupta. Hdl pre-synthesis optimizations using a tabular model. IEEE Transac-

tions on Very Large Scale Integration Systems, 8(4):369–387, 2000.

[18] G. De Micheli. Synthesis and optimization of digital circuits. McGraw Hill, Hightstown NJ,

1994.

26

[19] R.E. Moore. Interval analysis. Prentice-Hall, Englewood Cliffs, N. J., 1966.

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C.

Cambridge University Press, University of Cambridge, 1992.

[21] K. Wakabayashi and T. Yoshimura. A resource sharing and control synthesis method for

conditional branches. In International Conference on Computer-Aided Design, pages 62–65,

1989.

[22] Y. Xie and W. Wolf. Allocation and scheduling of conditional task graph in hardware/software

co-synthesis. In Conference on Design, Automation and Test in Europe, pages 620–625, 2001.

[23] Z. Zhou and W. Burleson. Equivalence checking of datapaths based on canonical arithmetic

expressions. In Design Automation Conference, pages 546 – 551, 1995.

27

Figure 15: Merging and Propagation of Spaces for Figure 10: (a)- Initial State (b)- After Applying
! Operator (c)- After Merging Using && (d)- After Merging Using ||

28

Table 5: Partial List of Synthetic Complex Condition Examples
Complex Condition #Spaces Time (sec)

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 == 100)&&(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 == 200) 1200 0.02

(x0 ∗ x1 ∗ x2 + x0 < 100)&&(x0 ∗ x1 ∗ x2 + x0 < 200) 2000 0.05

(x0 ∗ x1 + x0 ∗ x2 < 100)||(x0 ∗ x1 + x0 ∗ x2 < 200) 4032 0.08

(x0 ∗ x0 ∗ x1 ∗ x2 + x0 == 100)&&(x0 ∗ x0 ∗ x1 ∗ x2 + x0 == 200) 4704 0.06

(x0 ∗ x1 + x2 < 100)||(x0 ∗ x1 + x2 < 200) 5120 0.11

(x0 ∗ x0 + x1 ∗ x1 + x2 == 100)&&(x0 ∗ x0 + x1 ∗ x1 + x2 == 200) 5800 0.12

(x0 + x1 + x2 < 100)||(x0 + x1 + x2 < 200) 6750 0.13

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 == 100)&&(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 == 200)&&(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 == 300) 1800 0.03

(x0 ∗ x0 ∗ x1 ∗ x1 + x2 < 100)||(x0 ∗ x0 ∗ x1 ∗ x1 + x2 < 200)||(x0 ∗ x0 ∗ x1 ∗ x1 + x2 < 300) 2700 0.06

(x0 ∗ x1 ∗ x2 + x0 < 100)&&(x0 ∗ x1 ∗ x2 + x0 < 200)&&(x0 ∗ x1 ∗ x2 + x0 < 300) 3000 0.09

(x0 ∗ x1 + x0 ∗ x2 + x0 == 100)&&(x0 ∗ x1 + x0 ∗ x2 + x0 == 200)&&(x0 ∗ x1 + x0 ∗ x2 + x0 == 300) 5082 0.11

(x0 ∗ x0 ∗ x1 ∗ x2 + x0 == 100)&&(x0 ∗ x0 ∗ x1 ∗ x2 + x0 == 200)&&(x0 ∗ x0 ∗ x1 ∗ x2 + x0 == 300) 7056 0.12

(x0 ∗ x0 + x1 ∗ x1 ∗ x2 == 100)&&(x0 ∗ x0 + x1 ∗ x1 ∗ x2 == 200)&&(x0 ∗ x0 + x1 ∗ x1 ∗ x2 == 300) 7200 0.14

(x0 ∗ x1 + x2 < 100)||(x0 ∗ x1 + x2 < 200)||(x0 ∗ x1 + x2 < 300) 7680 0.19

(x0 ∗ x0 + x1 ∗ x1 + x2 == 100)&&(x0 ∗ x0 + x1 ∗ x1 + x2 == 200)&&(x0 ∗ x0 + x1 ∗ x1 + x2 == 300) 8360 0.18

(x0 + x1 + x2 < 100)||(x0 + x1 + x2 < 200)||(x0 + x1 + x2 < 300) 10125 0.22

(x0 ∗ x1 ∗ x2 ∗ x3 == 100)&&(x0 ∗ x1 ∗ x2 ∗ x3 == 200) 20000 0.38

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 + x3 == 100)||(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 + x3 == 200) 22000 0.56

(x0 ∗ x0 ∗ x1 ∗ x1 + x2 ∗ x3 == 100)&&(x0 ∗ x0 ∗ x1 ∗ x1 + x2 ∗ x3 == 200) 28800 0.73

(x0 ∗ x1 + x2 ∗ x3 == 100)||(x0 ∗ x1 + x2 ∗ x3 == 200) 41472 1.4

(x0 ∗ x0 ∗ x1 + x1 ∗ x2 ∗ x3 == 100)||(x0 ∗ x0 ∗ x1 + x1 ∗ x2 ∗ x3 == 200) 62208 1.74

((x0 ∗ x0 ∗ x1 ∗ x2) + x3 == 100)&&((x0 ∗ x0 ∗ x1 ∗ x2) + x3 == 200) 92160 3.21

((x0 ∗ x0 ∗ x1) + x2 + x3 == 100)||((x0 ∗ x0 ∗ x1) + x2 + x3 == 200) 105300 3.54

(x0 ∗ x0 + x1 ∗ x1 + x2 ∗ x3 == 100)&&(x0 ∗ x0 + x1 ∗ x1 + x2 ∗ x3 == 200) 113680 3.57

((x0 ∗ x0) + (x1 ∗ x2) + x3 == 100)||((x0 ∗ x0) + (x1 ∗ x2) + x3 == 200) 149688 5.12

(x0 ∗ x0 + x1 ∗ x1 + x2 + x3 == 100)||(x0 ∗ x0 + x1 ∗ x1 + x2 + x3 == 200) 173264 5.14

(x0 ∗ x1 + x2 + x3 == 100)&&(x0 ∗ x1 + x2 + x3 == 200) 180000 6.23

(x0 ∗ x1 ∗ x2 ∗ x3 == 100)&&(x0 ∗ x1 ∗ x2 ∗ x3 == 200)&&(x0 ∗ x1 ∗ x2 ∗ x3 == 300) 30000 0.75

(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 + x3 == 100)||(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 + x3 == 200)||(x0 ∗ x0 ∗ x1 ∗ x1 ∗ x2 + x3 == 300) 33000 0.96

(x0 ∗ x0 ∗ x1 ∗ x1 + x2 ∗ x3 == 100)&&(x0 ∗ x0 ∗ x1 ∗ x1 + x2 ∗ x3 == 200)&&(x0 ∗ x0 ∗ x1 ∗ x1 + x2 ∗ x3 == 300) 43200 1.17

(x0 ∗ x1 + x2 ∗ x3 == 100)||(x0 ∗ x1 + x2 ∗ x3 == 200)||(x0 ∗ x1 + x2 ∗ x3 == 300) 62208 2.67

(x0 ∗ x0 ∗ x1 + x1 ∗ x2 ∗ x3 == 100)||(x0 ∗ x0 ∗ x1 + x1 ∗ x2 ∗ x3 == 200)||(x0 ∗ x0 ∗ x1 + x1 ∗ x2 ∗ x3 == 300) 93312 3.16

(x0 ∗ x1 ∗ x2 + x3 == 100)&&(x0 ∗ x1 ∗ x2 + x3 == 200)&&(x0 ∗ x1 ∗ x2 + x3 == 300) 122880 6.23

((x0 ∗ x0 ∗ x1 ∗ x2) + x3 == 100)||((x0 ∗ x0 ∗ x1 ∗ x2) + x3 == 200)||((x0 ∗ x0 ∗ x1 ∗ x2) + x3 == 300) 138240 6.42

((x0 ∗ x0 ∗ x1) + x2 + x3 == 100)&&((x0 ∗ x0 ∗ x1) + x2 + x3 == 200)&&((x0 ∗ x0 ∗ x1) + x2 + x3 == 300) 157950 6.53

(x0 ∗ x0 + x1 ∗ x1 + x2 ∗ x3 == 100)||(x0 ∗ x0 + x1 ∗ x1 + x2 ∗ x3 == 200)||(x0 ∗ x0 + x1 ∗ x1 + x2 ∗ x3 == 300) 163856 6.58

((x0 ∗ x0) + (x1 ∗ x2) + x3 == 100)&&((x0 ∗ x0) + (x1 ∗ x2) + x3 == 200)&&((x0 ∗ x0) + (x1 ∗ x2) + x3 == 300) 220968 8.61

(x0 ∗ x0 + x1 ∗ x1 + x2 + x3 == 100)||(x0 ∗ x0 + x1 ∗ x1 + x2 + x3 == 200)||(x0 ∗ x0 + x1 ∗ x1 + x2 + x3 == 300) 251664 8.68

(x0 ∗ x1 + x2 + x3 == 100)||(x0 ∗ x1 + x2 + x3 == 200)||(x0 ∗ x1 + x2 + x3 == 300) 270000 13.36

29

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

Number of Spaces

C
P

U
 T

im
e

(s
ec

)

Figure 16: Time vs. Number of Spaces –
#Var.=4

0 2 4 6 8 10 12 14 16 18

x 10
4

0

50

100

150

Number of Spaces

C
P

U
 T

im
e

(s
ec

)

Figure 17: Time vs. Number of Spaces –
#Var.=5

1000 2000 3000 4000 5000 6000 7000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of spaces

C
P

U
 T

IM
E

 (
S

ec
on

d)

Figure 18: Time vs. Number of Spaces –
#Var.=3, #Rel Op=2, #Logic Op=1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of spaces

C
P

U
 T

IM
E

 (
S

ec
on

d)

Figure 19: Time vs. Number of Spaces –
#Var.=3, #Rel Op=3, #Logic Op=2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
5

0

1

2

3

4

5

6

7

8

9

10

Number of spaces

C
P

U
 T

IM
E

 (
S

ec
on

d)

Figure 20: Time vs. Number of Spaces –
#Var.=4, #Rel Op=2, #Logic Op=1

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

5

10

15

20

25

Number of spaces

C
P

U
 T

IM
E

 (
S

ec
on

d)

Figure 21: Time vs. Number of Spaces –
#Var.=4, #Rel Op=3, #Logic Op=2

30

