
Center for Embedded Computer Systems
University of California, Irvine

System Level Modeling of an AMBA Bus

Gunar Schirner, Rainer D̈omer

Technical Report CECS-05-03
April 1, 2005

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

hschirne@uci.edu, doemer@uci.edu
http://www.cecs.uci.edu/

hschirne@uci.edu
doemer@uci.edu
http://www.cecs.uci.edu/

System Level Modeling of an AMBA Bus

Gunar Schirner, Rainer D̈omer

Technical Report CECS-05-03
April 1, 2005

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

hschirne@uci.edu, doemer@uci.edu
http://www.cecs.uci.edu

Abstract
The System-On-Chip (SoC) design faces a gap between the production capabilities and

time to market pressures. The design space, to be explored during the SoC design, grows with
the improvements in the production capabilities and it takes an increasing amount of time to
design a system that utilizes those capabilities. On the other hand shorter product life cycles
are forcing an aggressive reduction of the time-to-market.Addressing this gap has been the aim
of recent research work. As one approach abstract models have been introduced and a design
flow was devised that guides the designer in the process from amost abstract model down to a
synthesizable model.

Throughout the design process computation and communication concerns are handled in-
dividually. The communication is mostly abstracted away from the designer, which allows
the design focus to rest on the application specific computation. This separation requires the
provider of an SoC design tool to supply fast and accurate communication models.

Fast simulation capabilities are required for coping with the immense design space that is
to be explored; these are especially needed during early stages of the design. This need has
pushed the development of transaction level models, which are abstract models that execute
dramatically faster than synthesizable models. The pressure for fast executing models extends
especially to the frequently used and reused communicationlibraries. This document describes
the system level modeling of the Advanced High-performanceBus (AHB) part of the Advanced
Microprocessor Bus Architecture (AMBA). Throughout this work the design of three bus models,
at different levels of abstraction, is described; their simulation speed and accuracy is evaluated.
As a result guidelines for the developer are derived that support selecting the most appropriate
model for a given stage in the design process.

hschirne@uci.edu
doemer@uci.edu
http://www.cecs.uci.edu

Contents

1 Introduction 3
1.1 Introduction to SoC Design . 3

1.1.1 Overview . 3
1.1.2 Challenges . 3
1.1.3 SoC Specification . 4
1.1.4 SoC Design Space Exploration . 4

1.2 Problem Definition . 6
1.3 Outline . 7
1.4 Related Work . 7

2 Introduction to the AMBA Bus 8

3 Modeling 10
3.1 Layering . 10
3.2 Graphical Notation . 14
3.3 Transaction Level Model - MAC .. 15
3.4 Arbitrated Transaction Level Model - Protocol 16
3.5 Bus Functional Model - Physical .. . 17
3.6 Modes of Access . 18

4 Validation 20
4.1 Functional Validation . 21

4.1.1 Validation of Individual Bus Transfers – Fundamental Tests 21
4.1.2 Validation of the Memory Interface . 22
4.1.3 Validation of the Rendezvous Interface 23

4.2 Timing Validation of the Bus Functional Model 24
4.2.1 Basic Pipelined Bus Access . 24
4.2.2 Error Response . 25
4.2.3 Unlocked Burst Handover . 26
4.2.4 Locked Burst Handover . 29
4.2.5 Locked Burst Handover with Master Busy29
4.2.6 Retry . 32
4.2.7 Preemption of an Unlocked Burst . 32

4.3 Timing Validation of the Transaction Level Models35
4.4 Validation Summary . 37

5 Model Analysis 37
5.1 Performance Analysis .37

5.1.1 Test Setup . 37
5.1.2 Simulation Time . 38
5.1.3 Simulated Bandwidth . 39

i

5.2 Accuracy Analysis . 40
5.2.1 Test Setup . 40
5.2.2 Accuracy of Locked Transfers .. 41
5.2.3 Accuracy of Unlocked Transfers .. 44

5.3 Analysis Summary . 46

6 Summary and Conclusions 47

References 48

A Header Files 51
A.1 i ambaAHBbus.sh: MAC Layer Interface Definitions for Master and Slave 51
A.2 ambaAHBbusMaster.sc: Bus Functional Interfaces and Channel Definition for Master 52
A.3 ambaAHBbusSlave.sc: Bus Functional Interfaces and Channel Definition for Slave 54
A.4 ambaAHBbusTLM.sc: Interfaces and Channel Definitions for Abstract Models . . . 56

B Testing Environment 57
B.1 Source Code Structure .57
B.2 Test Executables . 58

ii

List of Figures

1 Abstraction levels in SoC design . 3
2 Design methodology for SoC design . 5
3 Scope of work: modeling of a communication IP 6
4 AMBA hierarchical bus architecture .. 8
5 AMBA AHB interconnection network . 10
6 Decomposition of a user transaction . 14
7 Graphical notation for model description. .. 14
8 Transaction Level Model (MAC model) connection scheme 15
9 Arbitrated Transaction Level Model (protocol model) connection scheme. 16
10 Bus functional model connection scheme. .. . 17
11 Content of the bus functional channel. 18
12 Channels for master bus functional model. .. . 19
13 Channels for slave bus functional model. 19
14 Modes of access .20
15 Logical connection for individual bus transfer validation. 21
16 User level logical connection for memory and rendezvous type access validation. . 23
17 Reference sequence showing pipelined behavior 25
18 Waveform of implemented bus model, showing pipelined behavior 25
19 Reference sequence showing an error response 27
20 Waveform of implemented bus model, showing error response 27
21 Reference showing unlocked burst handover 28
22 Waveform of implemented bus model, unlocked burst handover 28
23 Reference sequence, locked burst handover 30
24 Waveform of implemented bus model, locked burst handover 30
25 Reference sequence showing a locked burst with busy cycle 31
26 Waveform of implemented bus model, showing locked transfer with busy master. . 31
27 Reference sequence showing an aborted burst due to retry 33
28 Waveform of implemented bus model, showing a retry33
29 Reference sequence showing soss of bus grant during burst 34
30 Waveform of implemented bus model, showing soss of bus grant during burst . . . 35
31 Execution time of implemented models . 38
32 Simulated bandwidth . 39
33 Logical connection scheme for accuracy tests 40
34 Locked transfer accuracy based on duration 42
35 Locked transfer deviation based on duration 43
36 Locked transfer accuracy based on cumulative transfer time 44
37 Unlocked transfer accuracy based on duration 45
38 Unlocked transfer deviation based on duration 46
39 Unlocked transfer accuracy based on cumulative transfer time 46
40 Generic connection scheme .58

iii

List of Acronyms

AHB Advanced High-performance Bus. System bus definition within the AMBA 2.0specification.
Defines a high-performance bus including pipelined access, bursts, split and retry operations.

AMBA Advanced Microprocessor Bus Architecture. Bus system defined by ARM Technologies
for system-on-chip architectures.

APB Advanced Peripheral Bus. Peripheral bus definition within the AMBA 2.0 specification. The
bus is used for low power peripheral devices, with a simple interface logic.

ASB Advanced System Bus. System bus definition within the AMBA 2.0 specification. Defines a
high-performance bus including pipelined access and bursts.

ATLM Arbitrated Transaction Level Model. A model of a system in which communication is
described as transactions, abstract of pins and wires. In addition to what is provided by the
TLM, it models arbitration on a bus transaction level.

Behavior An encapsulating entity, which describes computation and functionality in the form of
an algorithm.

Bus Functional Model A wire accurate and cycle accurate model of a bus.

Channel An encapsulating entity, which abstractly describes communication between twoor more
partners.

CLI Cycle Level Interface. Refers to ARMs definition of the AMBA bus, cyclelevel accurate for
SystemC.

IP Intellectual Property. A pre-designed system component.

MAC Media Access Control. Layer within the OSI layering scheme.

NoC Network on Chip

OS Operating System. Software entity that manages and controls access to the hardware of a com-
puter system. It usually provides scheduling, synchronization and communication primitives.

OSI Open Systems Interconnection. An communication architecture model, described in seven
layers, developed by the ISO for the interconnection of data communication systems.

PE Processing Element. A system component that provides computation capabilities, e.g. a custom
hardware or generic processor.

RTL Register Transfer Level. Description of hardware at the level of digitaldata paths, the data
transfer and its storage.

RTOS Real-Time Operating System. An operating system that responds to an external event within
a short, predictable time.

iv

SCE SoC Environment. A set of tools for the automated, computer-aided design ofSoC and com-
puter systems.

SoC System-On-Chip. A highly integrated device implementing a complete computer system on a
single chip.

TLM Transaction Level Model. A model of a system in which communication is described as
transactions, abstract of pins and wires.

1

System Level Modeling of an AMBA Bus

G. Schirner, R. Dömer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

hschirne@uci.edu, doemer@uci.edu
http://www.cecs.uci.edu

April 1, 2005

Abstract

The SoC design faces a gap between the production capabilities and time to market pressures. The
design space, to be explored during the SoC design, grows with the improvements in the production
capabilities and it takes an increasing amount of time to design a system that utilizes those capa-
bilities. On the other hand shorter product life cycles are forcing an aggressive reduction of the
time-to-market. Addressing this gap has been the aim of recent research work. As one approach
abstract models have been introduced and a design flow was devised that guides the designer in the
process from a most abstract model down to a synthesizable model.

Throughout the design process computation and communication concerns are handled individ-
ually. The communication is mostly abstracted away from the designer, whichallows the design
focus to rest on the application specific computation. This separation requires the provider of an
SoC design tool to supply fast and accurate communication models.

Fast simulation capabilities are required for coping with the immense design space that is to
be explored; these are especially needed during early stages of the design. This need has pushed
the development of transaction level models, which are abstract modelsthat execute dramatically
faster than synthesizable models. The pressure for fast executing modelsextends especially to the
frequently used and reused communication libraries. This document describes the system level
modeling of the AHB part of the AMBA. Throughout this work the design ofthree bus models, at
different levels of abstraction, is described; their simulation speed and accuracy is evaluated. As
a result guidelines for the developer are derived that support selecting the most appropriate model
for a given stage in the design process.

2

hschirne@uci.edu
doemer@uci.edu
http://www.cecs.uci.edu

1 Introduction

1.1 Introduction to SoC Design

1.1.1 Overview

Improvements in manufacturing capabilities allow placing of a complete embedded system on a
single chip. With that it becomes possible to design a system as a mix of softwarerunning on one
or more generic processors and specialized hardware, which runs computation that is too costly for
a generic processor (e.g. in terms of power or time). This design freedomleads ultimately to highly
specialized chips and cost efficient production. However the newly gained freedom in design places
a burden on the SoC designer. The next paragraphs will introduce the challenges of system level
design, the specification of systems and the design space exploration.

1.1.2 Challenges

The design of embedded systems in general and an SoC in special will be done under functional and
environmental constraints. Since the designed system will run under a well-specified operating envi-
ronment, the strict functional requirements can be concretely defined. The environment restrictions
on the other hand are more diverse: e.g. minimizing the cost, footprint, or power consumption. Due
to the flexibility of a SoC design, achieving the set goals, involves analyzing amulti-dimensional
design space. The degrees of freedom stem from the process elementtypes and characteristics, their
allocation, the mapping of functional elements to the process elements, their interconnection with
busses and their scheduling.

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

s
tr

a
c
ti

o
n

A
c

c
u

ra
c

y

Figure 1: Abstraction levels in SoC design (source [13])

Looking at the levels of abstraction of the SoC design gives another perspective to the com-
plexity of designing such systems. The process starts with a functional description on system level,
where only the major function blocks are defined and timing information is not yet captured. Dur-
ing the SoC design process, the system description is refined step by step and additional details are
captured. That process leads to a cycle accurate fully functional system description in RTL, which
is the starting point of the production process. As Figure 1 shows, the amount of captured informa-
tion increases by an oder of magnitude with each level of the design process. With each step within

3

the levels of abstraction a multi-dimensional design space has to be explored in order to make the
necessary decisions.

The goal of SoC design paradigm is to guide the designer through the process, and aid the
decision making. A well-defined flow of design steps makes the process manageable. The design
steps and their associated models will be described in the next paragraphs.

1.1.3 SoC Specification

Hardware/Software co-design is an integral aspect of the SoC design.It requires a language that
is capable of capturing the requirements of a hardware design from wire allocations to complex
timing requirements, as well as the complexities of current software design. Some examples of
such languages are SpecC [11], an ANSI-C based language extension and the C++ library extension
SystemC [15].

Those languages allow grouping of functionality to behaviors, which later can be freely mapped
to processing elements. In order to allow this free mapping the computation has tobe separated from
the communication. Therefore communication between the behaviors is abstractly defined as chan-
nels. The channel specific implementation (e.g. an AMBA protocol) will be filledin during later
refinement stages. The specification model is free of such implementation detail (and their respec-
tive constraints). The SpecC language further introduces many concepts from hardware description
languages like VHDL and Verilog. It introduces the concept of capturingscheduling information in
the language, such as sequential, parallel and pipelined execution. The SpecC language very much
supports the goals of specification capturing. It allows describing a fully functional model that in-
corporates design constraints and has a simulation environment for an integrated validation against
a set of test vectors. The next section describes the exploration and refinement steps to transform
the system specification into a manufacturable description.

1.1.4 SoC Design Space Exploration

In conjunction with the SpecC language a design paradigm was introduced,which formalizes the
individual refinements steps. With that the designer has guidelines on how toefficiently handle
the immense design space. Figure 2 shows an overview of the design flow. It also indicates the
integration of the validation flow. The tool suite provided with the SpecC language closely follows
the outlined design flow. The following paragraphs will describe each design step.

The SoC design starts with the specification model, which is a purely functionalmodel - free of
any implementation details. It focuses on capturing the algorithmic behavior andallows a functional
validation of the description. The model is untimed and allows only for causal ordering. Once the
specification model is finished, it will serve as a golden model, to compare simulation results during
the design cycle.

Architecture information is added during the Computation design. During this step processing
elements are inserted into the system and the previously defined functional behaviors are mapped to
them. A processing element can be a predefined standard component such as generic processor core
or a DSP, but a custom specific hardware component as well. Parameters, such as clock frequency,
of the inserted elements can be adjusted to the application needs. Based on internal statistics, early

4

System design Validation flow

Specification model

Algor.
IP

Comm.
IP

Architecture model

Communication design

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Computation design

Capture

Backend

Figure 2: Design methodology for SoC design (Source [12])

estimations about the runtime performance can be made. This gives the designer the first feedback
about the design decisions. Once the computation design is finished, the architecture model that
captures the decisions is created. This model is the first timed model. It takes only computing time
into account; all communication between the processing elements execute in zero time.

The next step in the refinement is the Scheduling Refinement (not shown in this graph). This
refinement allows the designer to select suitable scheduling mechanisms to its processing elements.
The scheduling capabilities range from an off-line static scheduling, whichallows the most pre-
dictability, to a priority based dynamic scheduling.

The Communication design allows the user to select busses and protocols. Here the earlier
defined abstract communication channels are mapped to physical busses and protocols. Detailed
information about a utilized protocol is added. The resulting Communication model includes spe-
cific instructions for the particular bus implementation, like the access logic for abus master or bus
slave.

The synthesis step concludes the the design flow. Here the Register Transfer Level (RTL) code
for the hardware will be generated with the prerequisite of RTL componentallocation, their func-
tional mapping and scheduling. As a result of the hardware synthesis a cycle accurate description of
each hardware processing element is created. Similar activities take place for the software synthesis.
Here specific code for the selected RTOS is inserted and target specific assembly code is compiled.
The result is a cycle accurate model of each software-processing element, which can be simulated

5

using an instruction set simulator and executed on the target processor. The combination of both
synthesis parts is captured in the Implementation model, which gives a cycle accurate description
of the whole system.

1.2 Problem Definition

As it was described in the previous section the SoC design process is performed in several steps that
formalize coping with the immense design space. Models of predefined standard components, such
as basic communication elements, are needed for ease of design. Furthermore multiple models at
different levels of abstraction are needed for each standard component, matching the stage within the
design flow. An very abstract model can be used for fast high level exploration during early stages
of the design, whereas a detailed model that yields most accurate results is needed for production
validation.

The scope of this work is to model a library communication component as symbolically depicted
in Figure 3. In particular, AMBA was chosen since it reached, especiallyafter introducing revision
2.0 of the standard in 1999, a wide acceptance for interconnections within asystem-on-chip. With
ARM’s strong support for design, development and testing it pushed ”right-first-time” development
and the bus AMBA specification became one de facto standard for on-chipbus [2]. The goal this
work is to provide a bus functional model of an AMBA bus, that is synthesizable, and to model the
bus as well at higher level of abstractions that allow a high simulation performance.

Communication
IP Library

MAC

Transction Level Model

Arbitrated Transction Level Model

MAC
Protocol

Arbitration

MAC

MAC MAC
Arb.

Prot.

Phys

Phys

Arb.

Prot.

Phys

Phys
Data, 32

Address, 32
Control, 4

Arbitration, 4

Bus Functional Model

Figure 3: Scope of work: modeling of a communication IP (Symbolic Depiction)

Throughout the work appropriate levels of abstractions should be chosen for the abstract models.
The implemented models should be validated against the standard with respect tofunctionality
and timing accuracy. They should furthermore be compared to each other interms of execution

6

performance and simulation speed. Based on the experimental results a guideline should be made
on how to choose the right model for a particular goal.

1.3 Outline

In the remaining part of the documentation, first a general introduction to theAMBA bus gives
the reader an overview of the specification. The overview is followed by the chapter on the actual
design. The different models will be introduced. Their design will include alayered approach.
Based on the design, accuracy expectations of each model will be described.

In the validation chapter (Section 4), the reader will find a functional and timing validation of
the implemented models. Those validations will be made according to the specification [3].

The Section 5 shows measurements of the simulation speed and compares the accuracy of the
individual bus models. It shows what trade offs the designer has to makefor using a particular
model. Finally Section 6 concludes and gives a summary.

1.4 Related Work

System level modeling has become a more important issue over the recent years, as a means to
improve the SoC design process. Languages for capturing these models have been developed, such
as SpecC [11] or SystemC [15]. Furthermore capturing and designing communication systems using
transaction level models has received research attention.

Sgroi et al. [22] address the SoC communication with a Network on Chip (NoC) approach.
They propose partitioning of the communication into separate layers that followthe Open Systems
Interconnection (OSI) structure. Software reuse is promoted with an increase of abstraction from
the underlying communication framework.

Siegmund and M̈uller [24] describe an extension to SystemC, and propose modeling of a SoC
at different levels of abstraction. They describe three different levels of abstraction: the physical
description at RTL level, then a more abstract model that covers individualmessages, and a most
abstract level that deals with transactions.

In application of transaction level models [15], the topic of capturing communications within a
SoC has received attention. In particular the widely used bus specificationAMBA was the goal of
modeling support.

Most relevant to this work is ARMs definition of the Cycle Level Interface (CLI) of the AMBA
bus [1]. This specification defines how to implement the AMBA bus architecture in SystemC [21]. It
has the goal of defining an interfacing standard between SystemC design models of IP components.
It is intended to be used for system simulation and transaction based verification.

In [6] Caldari et al. describe the results of capturing the AMBA rev. 2.0 bus standard in Sys-
temC. The bus system has been modeled at two levels of abstraction, first a bus functional model on
RTL level and second a model on TLM level. Their Transaction Level Model (TLM) model reached
a speedup of 100 over the RTL level model.

Another modeling approach of the AMBA bus architecture is shown in [25],where a
transaction-based modeling abstraction level was described. While maintaining the bus cycle accu-
racy, this approach achieved a 55% speedup over the bus functional model.

7

CoWare [7] provides with ConvergenSC a commercial AMBA Transactional Bus Simulator.
It allows for a fast cycle accurate architectural optimization and verification of an SoC design.
With that it provides a solution for designing system-on-chip products that make use of AMBA bus
specification and are described in SystemC.

2 Introduction to the AMBA Bus

The Advanced Microprocessor Bus Architecture (AMBA) (see [3]) defined by ARM is a widely
used open standard for an on-chip bus system. This standard aims to easethe component design,
by allowing the combination of interchangeable components in the SoC design. It promotes the
reuse of intellectual property components, so that at least a part of the SoC design can become a
composition, rather than a complete rewrite every time.

The AMBA standard defines different groups of busses, which are typically used in a hierar-
chical fashion. The Figure 4 shows a schematic overview of a typical microprocessor design. The
design usually consists of a system bus; either the older version the Advanced System Bus (ASB), or
the more performant Advanced High-performance Bus (AHB). All high performance components
are connected to the system bus. Low speed components are connected tothe peripheral bus, the
Advanced Peripheral Bus (APB).

Figure 4: AMBA hierarchical bus architecture (Source [3]).

The system busses ASB and AHB are designed for high performance connection of processors,
dedicated hardware and on chip memory. They allow:

• Multiple bus masters

• Pipelined operation

• Burst transfers

The peripheral bus APB on the other hand is designed for low power peripherals with a low
complexity bus interface. The APB can be connected via a bridge to both system busses AHB
and ASB. The APB bridge acts as a master on the APB bus and all peripheral devices are slaves.

8

The bridge appears as a single slave device on the system bus; it handlesthe APB control signals,
performs retiming and buffering.

Between the two system busses the AHB delivers a higher performance than its older counterpart
ASB. The AHB features:

• Retry and split transactions

• Single clock edge operation

• Non-tristate implementation

• Allows wider data bus configuration (e.g. 64 bits and 128 bits)

Retry and split transactions are introduced to reduce the bus utilization. Bothcan be used in case
the slave does not have the requested data immediately available. In case of aretry transaction, the
master retries the transaction after and own arbitrary delay. On the other hand in a split transaction
the master waits for a signal from the slave that the split transaction can be completed.

One major factor for the high performance of the AMBA system busses is thepipelined access.
For that, each bus access is executed in three separate stages, which can overlap between masters.
The three phases for the pipelined bus access are:

Arbitration Phase. A master requests a bus access to the arbiter. The arbiter grants the access
within an arbitrary number of bus cycles (at least one). Multiple masters may request the bus
at the same time, however only a single master is granted at any given point in time.

Address Phase.The granted master applies the address and control signal to the bus. Theaddress
and control signals determine the activity for the next phase.

Data Phase.Depending on the control signals from the previous phase (e.g. write direction) either
the granted master or the selected slave write the data to the data bus.

The AHB standard defines a non-tristate bus interface, which simplifies the design of the bus
interfaces. It furthermore simplifies simulation of the bus system, since the costly three or four value
logic - necessary for simulating a tristate interface - is not required. On the other hand, a non-tristate
bus interface increases the number of connection for each bus interface; read and write bus have to
be handled separately. This however is not a limiting factor, since the bus system is targeted for
on-chip connections. It does, however, require an interconnection network, in which multiplexers
select the bus access for each device. Figure 5 shows the AHB interconnection network.

Three separate virtual busses, implemented by multiplexers, compose the interconnection net-
work. The address / control bus (represented with HADDR) and the write data bus (represented
with HWRITE) are written by each master. A slave writes to the own portion of theread data bus;
a multiplexer selects the bus portion of the active device and distributes the selected signals. Since
the AHB performs operation in a pipelined fashion, two separate multiplexers are necessary for the
address / control bus and the write data bus; their access happens in separate stages of the pipeline.

9

Figure 5: Interconnection network for the AMBA AHB (Source [3]).

3 Modeling

As the introduction has motivated, high simulation speeds are necessary foran efficient design space
exploration. High simulation speeds allow the designer to explore more solutions, thus increasing
the chance of arriving at solution that is closer to the optimum. One possibility for a fast exploration
is modeling at higher levels of abstraction (i.e. TLM) and gradually filling in details until a de-
tailed synthesizable model is reached. In order to effectively support different levels of abstraction
throughout the design process, a matching set of abstraction levels for library component is needed.
Due to their frequent use this is especially true for bus components.

The following sections describe the design of the bus models for the AMBA AHB. First a
generic layering approach will be introduced, which helps coping with the complexity of a bus
simulation. The OSI layering scheme [16] was used as a reference for deriving those layers. The
sections following that will describe each bus model in detail and show how the layered approach
is applied.

3.1 Layering

A layered architecture was chosen for the communication system modeling in order to cope with
the complexity of communication, in that it is similar to a general network stack implementation.
[12] has introduced the applied layering structure as shown in Table 1. The layering structure was
derived from the ISO OSI reference model [16].

10

Layer Interface semantics Functionality Impl. OSI

Application N/A •Computation Application 7

Presentation
PE-to-PE, typed, named messages
•v1.send(struct myData)

•Data formatting Application 6

Session
PE-to-PE, untyped, named messages
•v1.send(void*, unsigned len)

•Synchronization
•Multiplexing

OS kernel 5

Transport
PE-to-PE streams of untyped messages
•strm1.send(void*,

unsigned len)

•Packeting
•Flow control
•Error correction

OS kernel 4

Network
PE-to-PE streams of packets
•strm1.send(struct Packet)

•Routing OS kernel 3

Link
Station-to-station logical links
• link1.send(void*,

unsigned len)

•Station typing
•Synchronization

Driver 2b

Stream

Station-to-station control and data streams
•ctrl1.receive()

•data1.write(void*,

unsigned len)

•Multiplexing
•Addressing

Driver 2b

Media
Access

Shared medium byte streams
•bus.write(int addr, void*,

unsigned len)

•Data slicing
•Arbitration

HAL 2a

Protocol
Unregulated word/frame media transmission
•bus.writeWord(bit[] addr,

bit[] data)

•Protocol timing Hardware 2a

Physical
Pins, wires
•A.drive(0)

•D.sample()

•Driving, sampling Interconnect 1

Table 1: Communication layers (source [12]).

Table 1 shows an overview of the layer separation, it also indicates wherea particular layer
is implemented and shows a representative code example for an invocation ofeach layer. The
following list describes each layer in more detail. A full description can be found in [12, chapter 5].

Application Layer. The application layer implements the computational functionality of the sys-
tem. The layers basic content is defined by the designer during the specification and gradually
implemented during the development process. During the design process theinitial applica-
tion specification is mapped onto individual Processing Elements (PEs). Thisapplication
layer defines the system behavior and describes how the user data is processed in the system.

Presentation Layer. The presentation layer provides named channels, over which structurescan
be repeatedly transferred. The data structures are converted by the presentation layer into
blocks of ordered bytes. Transmissions using the presentation layer arereliable. They can be
synchronous or asynchronous.

11

Session Layer.The session layer is the interface between the software application and the Operat-
ing System (OS). It provides synchronous and asynchronous transport of untyped blocks of
bytes. In case the lower layers do not provide synchronous access,synchronization will be
implemented in this layer and an end-to-end synchronized access is realized. The channels
provided by the session layer are used for identification of individual software entities. The
session layer multiplexes multiple message blocks into an untyped message streamwithin the
transmitting stack. Within the receiving stack, the session layer demultiplexes theincoming
message stream into message blocks.

Transport Layer. The transport layer provides a reliable transmission of untyped streams between
PEs in the system. The channels between the PEs act as pipes that carry thestreams of the
layers above. The transmission characteristics are generally asynchronous. The transport
layer implements end-to-end flow control as a part of the operating system. The transport
layer implement segmentation and reassembly, to split up the streams into smaller packets.

Network Layer. The network layer provides services for establishment of end-to-end paths, which
carry the packet streams from the layers above. It completes the operating system kernel im-
plementation for high-level end-to-end communication. The layer routes individual packets
over point-to-point links, separating different end-to-end paths going through the same sta-
tion. For a particular SoC design this routing could be static, and may even involve dedicated
logical links.

Link Layer. The link layer provides services for the link establishment between two directly con-
nected stations. It allows the exchange of uninterpreted packets of bytes. The link layer is the
highest layer for a peripheral driver inside the operating system kernel. It defines the type of
station (e.g. master / slave) and supports synchronization primitives (i.e. splits each logical
link into a separate data and control stream).

Stream Layer. The stream layer implements services for transporting control and data messages
between stations. It provides merging of multiple separate data/control streams over a single
shared medium. It therefore provides addressing by which it separatesthe individual streams.
The data messages are uninterpreted blocks of bytes. The format of the control messages
is heavily implementation dependent (e.g. interrupt handling, polling). The transportation
services are generally asynchronous and unreliable. However the reliability may depend on
synchronization on higher levels (e.g. flow control).

Media Access Layer (1).The media access layer provides services for the transmission of a con-
tiguous block of bytes over the selected media. The layer hides the specific implementation
of the transmission medium, it is the lowest layer that provides a medium independent access.
The media access layer provides data slicing, for that the incoming data transfer request,
called the user transaction, is split into individual bus transactions. The size of the bus trans-
actions depends on the medium.

Protocol Layer (2). The protocol layer provides transmission capabilities for individual bus trans-
actions - words, shorts, bytes and defined lengths of blocks. The layeralso performs arbitra-

12

tion for each bus transaction.

Physical Layer (3). The physical layer implements a bus cycle access to the physical wires. It
performs sampling and driving of individual bus wires. Separate facilitiesare provided for
accessing the data, address and control portion of the bus. The physical layer also provides
all implementation necessary for the bus connection scheme, i.e. in case of theAHB the
interconnection network consisting of multiplexers. Furthermore the physical implementation
of arbitration is included.

For the work described in this document, parts of the library structure of theexisting modeling
environment, SoC Environment (SCE), have been reused. It was therefore not necessary to imple-
ment all of the layers above. Instead only the media specific layers - Media Access Layer, Protocol
Layer and Physical Layer - have been implemented. Additionally it has beenshown, that the link
layer and the stream layer, although technically media dependent, are identical to a previous existing
master slave bus model of the Motorola Master Bus, hence these layers have been reused.

The following table lists the layers, that have been specifically implemented for the AMBA
model. The table makes also a connection between the granularity of simulating thedatabus and the
layering scheme, as an alternative explanation of the layering.

Number Layer Data Granularity
1 Media Access Layer User Transaction
2 Protocol Layer Bus Transaction
3 Physical Layer Bus Cycle

Table 2: Implemented layers and their granularity of data handling

The previous layer description was based on functional concerns. Inan alternative view of the
same layering scheme, the implemented layers can be described by using the granularity of data
handling.

User Transaction (1). A user transaction is a request for transferring a contiguous block of data to
or from a particular bus base address. The size of that request is arbitrary - independent of
the bus limitations. The base address of the transfer is arbitrary as well. User transactions are
used as an interface to the media access layer. They are then divided into one or more bus
transactions.

Bus Transaction (2). A bus transaction is bus primitive. It supports transmission of individual
elements such as byte, word or long. A particular bus (like the AHB) may also support
transporting a collection of those individual elements, which are then transferred as a burst.
The possible values for the bus transaction size and the requirements for the base address
depend on the bus implementation (e.g. a bus transaction may not have a size of3 bytes, or
bursts have to start on a long aligned address). Bus transactions are used as an interface to
the protocol layer. They are then transferred using the physical layerwithin one or more bus
cycles.

13

Bus Cycle (3). The timed access to a synchronous bus is performed with a bus cycle granularity.
During a bus cycle the values of wires/signals composing a bus may be changed. Typically
this access is grouped by functionality, e.g. writing of address lines / control lines or reading
of the data lines. The physical layer provides a bus cycle access to the bus.

The above defined levels of data granularity can also be analyzed with respect to time. Figure 6
shows how a user transaction is successively decomposed in time into the smaller elements: bus
transaction and finally bus cycles. The coarse grain description of a user transaction, as accepted by
the media access layer, is divided into one or more bus transactions. An individual bus transaction
is transferred by the protocol layer in one or more bus cycle using the facilities of the physical layer.

time

User Transaction (1)
Bus Transaction (2)
Bus Cycle (3)

Figure 6: Decomposition of a user transaction in time into bus transactions and bus cycles.

Following the concepts of system level modeling, each of the described layers was implemented
in form of an individual channel. Using the channel concept allows a convenient handling of the
abstraction levels. As an example the bus functional model requires all channels (all layers) for its
operation, a more abstract model may reuse a subset of the defined channels and implement only
one channel for the abstract simulation.

3.2 Graphical Notation

The graphical notation for the model description follows the definitions usedin [11]. Figure 7 shows
the main items that come to use.� � � � � � � �

(a) Behavior

� 	
 � � �

(b) Channel

� � � � � � �
(c) Adapter

Figure 7: Graphical notation for model description.

A behavior (Figure 7(a)) contains the computation part of the application. It has an own flow of
execution. The system’s functional behavior is captured in an hierarchyof behaviors.

14

A channel (Figure 7(b)) captures communication facilities. It does not have an own flow of exe-
cution. The services provided by a channel are described by an interface definition. Two behaviors
may communicate through a channel, by mapping a port to an interface of the channel.

An adapter (Figure 7(c)), also called half channel, implements an interfaceto be mapped to
another channel. The adapter does not have an own flow of execution.

3.3 Transaction Level Model - MAC

The Transaction Level Model (TLM) is the most abstract model; it is expected to yield the fastest
simulation speed. This model implements only the media access layer, therefore itis sometimes
referred as the MAC model. User data, regardless of its size, is transferred in one chunk as one
user transaction. The bus access is checked only once for the whole user transaction. The fact that
the user transaction would be split into many bus transactions is ignored in order to reach higher
simulation speeds. The TLM is not wire accurate. The communication is performed on a more
abstract level than pins and wires. The model is not cycle accurate in all cases.

Figure 8 shows the connection schema for two masters and two slaves for theTLM model. The
bus is simulated by a single channel implementing the media access layer; all masters and slaves
directly connect to it. There is no distinction made between the masters connected to the bus, hence
no priority based access between the masters is observed. Instead concurrent access to the bus is
avoided by use of a semaphore, hence the order of concurrency resolution relies on the simulation
environment.

...MACLink
TLM

testMaster0 testSlave0

testSlave1testMaster1

Figure 8: Transaction Level Model (MAC model) connection scheme

In the model implementation done for this work, the user data is transferred using a singlemem-
cpybetween master and slave. The timing is simulated by a singlewaitfor statement covering the
whole user transaction. The calculation of the wait time takes into account the way the transaction
would be split into bus transaction. A high simulation speed is expected due to thefixed low number
of operations per user transaction.

Two variances of this model were defined for evaluation purposes. TheTLM variance A (TLM
(a)) performs as described, concurrent access is sequentialized bythe use of a semaphore. The
TLM variance B on the other hand does not prohibit concurrent access. As a result two masters
may access the bus at the same simulated time. One of the two variances will be selected during the
evaluation process.

15

3.4 Arbitrated Transaction Level Model - Protocol

The Arbitrated Transaction Level Model (ATLM) simulates the bus accessin the granularity of bus
transactions, at the level of the protocol layer1. It is the first to perform arbitration, which is done
as well at the level of bus transactions. To compose the ATLM, the medium access layer implemen-
tation is reused from the later described bus functional model. The medium access layer slices a
user transaction into individual bus transactions, which are then transferred using the protocol layer
implementation for this model.

Figure 9 shows the symbolic bus scheme. A hardware abstraction layer is created around each
application behavior. The channel for the media access layer in inlined into the hardware abstraction
layer and the application behavior is connected to this channel. The bus is simulated by the channel
implementing the protocol layer. The slaves are directly connected to this channel. The masters on
the other hand are connected through individual half channels (MasterProtocolTLM), which are re-
quired for defining the master’s identity. The identity is necessary for accurately simulating arbitra-
tion. The scheme ’identity through connectivity’ was chosen for modeling ofthe master’s identity,
since it closely resembles the physical implementation, where the master’s identityis defined by its
connection to the arbiter.

...Protocol
TLM

...Master
ProtocolTLM

...Master
ProtocolTLM

testMaster1_HAL

...Master
MACLinktestMaster1

testMaster0_HAL

...Master
MACLinktestMaster0

testSlave0_HAL

...Slave
MACLink testSlave0

testSlave1_HAL

...Slave
MACLink testSlave1

Figure 9: Arbitrated Transaction Level Model (protocol model) connection scheme.

Since the ATLM implements the protocol layer as the lowest layer, it has to provide arbitra-
tion capabilities. With the previously described identity of each master, an accurate arbitration can
be provided. The AHB definition does not require a specific arbitration scheme, so a priority based
arbitration was implemented. In this model arbitration is performed on the granularity of a bus trans-
action. The arbitration scheme was implemented without an additional context switch (in addition
to the executing masters), in order to ensure fast execution speed.

The ATLM with its arbitration per bus transaction is expected to be accurate already in case of
locked transfers. In such transfers, a granted master may not be preempted during bus transaction,
not even by a higher priority master. Hence all arbitration decision are done on a bus transaction
boundary. However for unlocked transfers an inaccuracy is expected, here the bus owner ship may
change even within a bus transaction (i.e. when a burst of a low priority master gets preempted by
a high priority master).

1Outside of this work the Arbitrated Transaction Level Model may also be referred to as the protocol model. It may
be even understood as a Transaction Level Model since the TLM carries only a broad definition.

16

As with the TLM, two variances have been created for the ATLM. The variances differ in the
accuracy of the arbitration. The first variant of the ATLM, the ATLM (a), follows the concept of a
delta cycle as it is used in hardware simulators. During a simulation two masters mayattempt an bus
access at the same simulated time. However due to the serialized execution of thesimulation code,
one master’s code will be executed earlier. In order to handle this situation the ATLM (a) does first
collect all bus requests during one delta cycle and then makes the decision based on the collected
requests. The ATLM (b), on the other hand, does not collect the bus requests for a delta cycle;
it makes the decision immediately at the arrival of the first request. As a result, in case that two
masters request the bus within the same delta cycle, the master with the earlier executed simulation
code will gain bus access regardless of the priority.

A lower execution speed over the TLM is expected for both variances of the ATLM. Each
individual bus transaction is modeled in terms of timing and arbitration individually. In terms of
execution speed, the ATLM is expected to outperform the bus functional model, which covers the
bus in all detail.

3.5 Bus Functional Model - Physical

The bus functional model is a synthesizable model bus model that covers all timing and functional
properties of the bus definition. Communication is performed at the level of pins and wires. It is a
wire accurate and cycle accurate model of the bus.

testMaster0_PE

testMaster0_HAL
...

Master

...Master
Arbiter

...Master
MACLink

...Master
Protocol

testSlave0_PE

testSlave0_HAL

...Slave
MACLink

testSlave0
..Slave ...Slave

Protocol

HWDATA
HRDATA/HRESP
HCLK

HADDR/HCNTL

HREQ, HLOCK
HGRANT
HCLK

testMaster0
I...MasterMacLink HWDATA

HRDATA/HRESP
HCLK

HADDR/HCNTL

testMaster1_PE

testMaster1_HAL
...

Master

...Master
Arbiter

...Master
MACLink

...Master
Protocol

HWDATA
HRDATA/HRESP
HCLK

HADDR/HCNTL

HREQ, HLOCK
HGRANT
HCLK

testMaster1
I...MasterMacLink

testSlave1_PE

testSlave1_HAL

...Slave
MACLink

testSlave1
..Slave ...Slave

Protocol
HWDATA
HRDATA/HRESP
HCLK

HADDR/HCNTL

AMBA AHB Bus

I...SlaveMacLink

I...SlaveMacLink

Figure 10: Bus functional model connection scheme.

Figure 10 shows how the application behaviors are wrapped for the bus functional access. As
described for the ATLM, each application behavior is first wrapped in thehardware abstraction
layer that inlines a half channel implementing the Media Access Control (MAC)layer. For the bus
functional model each bus element is further wrapped into a processing element. The processing
element inlines a channel instance that implements the protocol layer, where the MAC channel is
connected to. Additionally a channel implementing the physical access is inlined. As a result each
processing element is connected via wires to the actual bus.

17

AMBA AHB Bus

WDATA MUX
HWDATAx0
HWDATAx1
HWDATAx2
HWDATAx3

HWDATA

HWDATA_SEL

HADDR/HCTL MUX
HADDR/HCTLx0
HADDR/HCTLx1
HADDR/HCTLx2
HADDR/HCTLx3

HADDR/HCTL

HADDR/HCTL_SEL

ClockGen
HCLK

Decoder
HADDR/HCNTL
HREADY
HCLK

HSELx0
HSELx1
HSELx2
HSELx3

HRDATA_SEL

Arbiter
HREQ/HLOCKx0

HREQ/HLOCKx1

HREQ/HLOCKx3

HREQ/HLOCKx2 HMASTER

HDATA_SEL
HREADY
HCLK

HMASTLOCK

HGRANTx0

HGRANTx1

HGRANTx2

HGRANTx2

HRESP/HREADY MUX
HRESP/HREADYx0
HRESP/HREADYx1
HRESP/HREADYx2
HRESP/HREADYx3

HRESP/HREADY

HRESP/HREADY_SEL

Figure 11: Content of the bus functional channel.

For ease of understanding, the bus in Figure 10 is graphed as a channel. However the bus
consists of many individual elements as the Figure 11 shows. Since the AHB definition defines
the bus access without tristate outputs, a set of multiplexers is required to select address, data and
control signals from the active bus components. Additionally the bus functional implementation
contains a clock generator, an arbiter and an address decoder. Please refer back to Figure 5 for an
overview of the AHB interconnection scheme.

As it can be seen by the inlined channels, the bus functional model uses alldescribed layers.
Actual wires are used for the connection of the bus elements. The bus wires are driven and sampled
according to the AMBA specification with the rising edge of the bus clock. Thephysical layer
provides the access to the bus on a bus cycle basis. The services of the physical layer are used by
the protocol layer, which implements arbitration and data transfer. The arbitration is done for each
bus transaction, and for unlocked burst the bus grant state is verified additionally on each bus cycle.
As in the ATLM the protocol model is invoked by the MAC layer, which slices theuser transaction
into bus transactions. Figure 12 and Figure 13 show an overview of the implemented channels for
the master and slave side respectively.

3.6 Modes of Access

The utilized design environment SCE defines two distinct ways of accessing bus slaves, namely the
memory style access and the rendezvous style access (also referred to as link style access). Both
styles are depicted in Figure 14.

In a memory style access (Figure 14(a)), the slaves accessible memory is exposed to the bus
over an address range. A master may access the provided address range at any point in time. This
access style is applicable for memory and for memory mapped IO. This style of access allows burst
accesses for improved performance. The abstract notation in Figure 14(a) indicates the memory as

18

HWDATA
HRDATA
HCNTL
HRESP

IAmbaAHBbusMaster
Protocol

{Read|Write}Byte
{Read|Write}Word
{Read|Write}Long
{Read|Write}Burst

I...MasterI...busMasterPr
otocol

IAmbaAHBMaster
AddresCycle
AddressWrite
DataWriteCycle
DataReadCycle

HADDR

...busMaster...busMaster
Protocol

...busMaster
HREQ
HLOCK
HGRANT
HCLK

I _ s e m a p h
o r e

I_semaphore
aquire
attempt
release

...busMaster
MACLink

I...MasterMAC
Link

IAmbaAHBbusMaster
MACLink

masterWrite(ADDR,
pData, len)

masterRead(...)

...busMaster
MACMem

I...MasterMAC
Link

IAmbaAHBbusMaster
MACMem

masterMemWrite(ADDR
,

pData, len)
masterMemRead(...)

Figure 12: Channels for master bus functional model.

HWDATA
HRDATA

HCNTL
HRESP

IAmbaAHBbusSlaveProtocol
ListenCntlCycle
{Read|Write}Byte
{Read|Write}Word
{Read|Write}Long
{Read|Write}Burst
TwoCycleResp

I...busSlave I...busSlaveProtocol

IAmbaAHBbusSlave
ListenCntl
ListenCntlCycle
DataWriteCycle
DataReadCycle
TwoCycleResp(<errors>)

HADDR

...busSlave ...busSlave
Protocol

...busSlave
MACLink

IAmbaAHBbusSlave
MACLink

slaveWrite(ADDR,
pData, len)

slaveRead(...)

...busSlave
MACMem

I...SlaveMACLink

I...SlaveMACMem

IAmbaAHBbusSlave
MACMem

serve(ADDR, pData,
len)

Figure 13: Channels for slave bus functional model.

19

�������� ������
(a) Memory Style

 !" #$%&'%()
(b) Randevouz Style

Figure 14: Modes of access

a half channel, which was made to show that the memory has no own flow of execution.
The rendezvous type access (Figure 14(b)), simulates a message passing interface. The slave

only exposes a single address to the bus for each rendezvous type access. The content of a user
transaction is written one-by-one to the same base address. With that a mailboxis simulated on the
slave side. This is especially useful if the address space is limited, since the message length does
does not influence the required address space. In a rendezvous style access a slave waits for an
access on a particular address and further reacts to the request. Application level synchronization is
needed for this model, since the access patterns have to be known on the slave side. The depiction
of the rendezvous style access (Figure 14(b)), presents the slave (HW PE) as an own PE, thus it is
shown to have an own flow of execution.

Since the rendezvous type access simulates a message passing interface,all words within a
message are written to the same address. Due to this addressing pattern bursts can not be used,
since the AHB specification requires to increase the address for each beat within a burst. Hence
a user transaction in the rendezvous style access is transferred only withindividual non sequential
transfers.

In order to support both styles of access, two channel implementations of the MAC layer are
provided. One channel per access type, the simulation environment generates code, that instantiates
both channels and uses the appropriate channel for a particular transfer.

4 Validation

The previous chapters have presented the design and implementation of the AMBA AHB bus. In
this chapter covers the validation results. Three aspects will be describedin more detail. First, the
functional validation is described in Section 4.1. Those tests aim to assert thecorrect functionality
ignoring timing constraints. Following that, Section 4.2 describes the validation ofthe timing accu-
racy of the bus functional model. Finally, Section 4.3 will deal with the timing correctness of the
abstract models, the ATLM and TLM. Throughout this chapter no differentiation is made between
the two variations of each of the abstract models. Thus, using the generic model name refers to both
variations.

20

4.1 Functional Validation

In an early part of the validation, the functional correctness of each AMBA AHB bus model is vali-
dated. Following a bottom up approach, a first set of tests will focus on individual bus transactions.
Later more complex access patterns and corner cases are verified with therandomized tests utilizing
the memory style MAC layer and the rendezvous style MAC layer.

4.1.1 Validation of Individual Bus Transfers – Fundamental Tests

The goal of the fundamental tests validating individual bus transfers is to ensure correct function-
ality of the bus primitives. The test provides the foundation for the construction of more complex
tests. The following sequence of test was performed using the memory style MAC layer of each
implemented model:

• Single Master Single Slave validates that each basic bus transaction yields thecorrect results.
It validated read and write functionality for Byte, Word (16Bit), Long, fixed length burst (for
4, 8, and 16 beats).

• Single Master Dual Slave validates the connectivity and selection of multiple slaves addressed
by a single master.

• Dual Master Single Slave introduces testing of the arbitration and validates that the bus is
accessed exclusively by a single master as a result of arbitration.

• Dual Master Dual Slave validates the functional independent access to the bus for two mas-
ter/slave pairs.

Figure 15 shows the logical connection scheme for each of the test groups. A range of predefined
data was transferred to/from a set of predefined addresses for each individual test within a test group.
A test was concluded successful if all data arrived correctly, in the predefined order, at the predefined
addresses. Additionallyassertstatements have been manually introduced at critical places into the
channel implementations, to detect invalid states within a channel. The results ofthe validation are
shown in Table 3. All tests for all test groups have successfully passedfor each implemented model.
Hence a correct functional behavior is expected from each model.

Test Master 0
 Test Slave 0

(a) Single master single slave

Test Slave 0

Test Master 0

Test Slave 1

(b) Single master dual slave

Test Master 0 Test Slave 0

Test Master 1 Test Slave 1

(c) Dual master dual slave
parallel

Test Master 0 Test Slave 0

Test Master 1 Test Slave 1

(d) Dual master dual slave
interleaved

Figure 15: Logical connection for individual bus transfer validation.

21

Bus Arbitrated Transaction
Functional Transaction Level

Logical Connection under Test Model Level Model Model
Single master single slave, Fig 15(a) passed passed passed
Single master multi slave, Fig 15(b) passed passed passed

Multi master multi slave (parallel), Fig 15(c) passed passed passed
Multi master multi slave (interleaved), Fig 15(d) passed passed passed

Table 3: Results of individual bus transfer validation

4.1.2 Validation of the Memory Interface

After having successfully validated individual bus transactions, now complex access patterns con-
sisting of multiple bus transactions will be validated. This validation uses randomaccess patterns,
which statistically cover all access scenarios in accessing the components ifexecuted long enough.
The focus for this validation is the random interaction between two masters thataccess the same
bus.

Two masters and two slaves are implemented for this test. The access is performed using the
random access type. The memory exposed by the slaves present separate address regions for writing
and reading. The following parameters are randomized for each transaction: read/write, the size of
the transaction, the offset within the memory and the delay between transactions. The random
selection algorithm ensures that each byte of the slave’s memory is accessed exactly once during
the test. Throughout the test the base address and the length of the user transaction, to be transfered,
will vary. The way the MAC layer breaks down a user transaction into one or more bus transactions
depends on exactly these two parameters. As a result the sequence of bus transactions per user
transaction will vary throughout the test. This diversity is a good test for the slicing functionality
of the MAC layer. The delay between the operations results in a random access pattern between
the masters. This will test the arbitration implementation and validate the exclusive access to the
bus in scenarios like concurrent bus request, back to back transmission, and handover between a
high priority master and a low priority master. The correctness of each usertransaction is validated
directly after executing the user transaction; the master and slave memory areais compared for
equality. Furthermore, after completing all user transactions, the complete memory area of master
and slave are compared for equality as well.

In comparison to the earlier fundamental tests, not all of its configurations had to be retested.
The utilized connection schemes are displayed in Figure 16. For a successful validation of a single
connection scheme and bus model, two masters have to transfer 128KBytes each, using a random
set of user transactions of up to 100 bytes each. The test has to fulfill thecriteria in the previous
paragraph and sustain the results for 1000 test repetitions. With an average user transaction size
of 50 bytes, each bus model and connection scheme was validated with more than 2.5 million user
transactions. Table 4 indicates the results of this test scenario, and showsthat the test execution was
successful for all configurations and all bus models.

22

Test Master 0

Test Slave 0

Test Master 1

(a) Dual master single slave

Test Master 0 Test Slave 0

Test Master 1 Test Slave 1

(b) Dual master dual slave parallel

Test Master 0 Test Slave 0

Test Master 1 Test Slave 1

(c) Dual master dual slave interleaved

Figure 16: User level logical connection for memory and rendezvous type access validation.

Bus Arbitrated Transaction
Functional Transaction Level

Logical Connection under Test Model Level Model Model
Multi master single slave, Fig. 16(a) passed passed passed

Multi master multi slave (parallel), Fig. 16(b) passed passed passed
Multi master multi slave (interleaved), Fig. 16(c) passed passed passed

Table 4: Results of validation for memory access

4.1.3 Validation of the Rendezvous Interface

In addition to the randomized test using the memory access style MAC layer, the rendezvous style
MAC layer has to be verified as well. The two implementations differ in the way theyslice the
data. Here again random accesses have been utilized, varying the following parameters: read/write,
size, offset, delay between accesses. In difference to the previous validation, only the independent
access of two master slave pairs was tested (Fig. 16(b)). The other two connection schemes (Multi
Master Single Slave and Multi Master Multi Slave (interleaved)) were not tested, since they are not
applicable in the used simulation environment.

For the rendezvous style access, the simulation environment makes the assumption, that each
access is predictable. As a result of the assumption, the slave code has to be implemented so that
a particular user transaction is expected. Now, if two masters simultaneously request access to
different portions of the slave’s memory, the slave has to predict which user transaction is executed
first. Since this depends on the arbitration, it is declared undecidable for aslave. In such situations,
the memory style access should be used, hence the configurations are notapplicable for this test.

Limiting the validated configurations does not limit the generality. The two accessstyles for
the MAC layer differ in how a user transaction is sliced into bus transactions.This feature can be
validated in any connection scheme. On the other hand the connection schemes differ in the way
they create contention. The contention however is handled by the lower layers, which already have
been successfully tested during earlier tests.

Table 5 summarizes the performed functional validations with the same set of connection
schemes as before (Figure 16). The same execution criteria as for the memory interface valida-
tion were used here. Thus more than 2.5 million user transactions had to be transferred correctly
for a successful validation of one bus model and connection scheme. The table shows successful

23

test execution for the tested configuration for the three abstraction levels:bus functional, arbitrated
transaction level modeling and transaction level modeling.

Bus Arbitrated Transaction
Functional Transaction Level

Logical Connection under Test Model Level Model Model
Multi master single slave, Fig. 16(a) N/A N/A N/A

Multi master multi slave (parallel), Fig. 16(b) passed passed passed
Multi master multi slave (interleaved), Fig. 16(c) N/A N/A N/A

Table 5: Results of functional verification of rendezvous access

4.2 Timing Validation of the Bus Functional Model

Considering the results of the previous section, a correct functional behavior of all implemented
models can be expected. Additionally important is a timing validation, which deals withthe correct
behavior of each signal in the temporal sense. This is particularly importantfor the synthesizable bus
functional model, as a prerequisite for interoperability with other intellectual property components.

A validation of the timing behavior requires an independent reference. Since a physical imple-
mentation of the modeled bus structure was not available in the lab at the point ofwriting, the timing
behavior of the model was compared against the specifications. The following sections will show
the comparison of the implemented bus functional model against transfer scenarios selected from
two sources: the AMBA specification [3] and the AMBA AHB Cycle Level Interface [1], which is
an interpretation of the AMBA specification.

The selected scenarios have been be recreated with the implemented bus functional model,
which in this setup simulates a bus with 50MHz bus clock. Additional probes have been inserted
into the test bench for tracing of all important bus wires. The traces are displayed as waveforms,
which have been generated usinggtkwave(see [5]).

4.2.1 Basic Pipelined Bus Access

As described in Section 2, the AHB allows a pipelined access to the bus. The basic stages of the
pipelined bus access are validated in the first pair of waveforms.

Figure 17 shows the reference waveform and Figure 18 displays the results of the actual im-
plementation. As a general note, the specification [3] requires signals to bevalid at the rising edge
of HCLK, at this point the signals are sampled from participating bus elements (which are all im-
plemented as sequential logic, see [4, question #4120]). The implemented model does not cover
subcycle events, therefore each signal is applied immediately after the risingclock edge. Hence
there will be an acceptable subcycle difference between the referenceand the implemented model.

The following three points within the displayed transfer are of interest for deciding the timing
correctness of the implementation:

1. In bus cycle T1, the master requests bus access. Within an arbitrary number of bus cycles (at
least one) the arbiter grants access to the bus. In the particular reference waveform, the arbiter

24

Figure 17: Reference sequence from [3] showing pipelined behavior

86593300 ps 86627900 ps 86662400 ps

$1 $0 $1 $0

$+ $0CB040E0 $4CB040E0 $0CB040E0

$471108E0 $47110817 $471108E0

Time
base/HCLK

arbiter/HBUSREQx1

arbiter/HGRANTx1

arbiter/HMASTER[0:3]

base/HADDR[0:31]

base/HWDATA[0:31]

Figure 18: Waveform of implemented bus model, showing pipelined behavior

grants the access in T3. In the waveform of the implemented model, the bus is requested in
the first clock cycle and granted in the second. Again, granting the bus within a single cycle is
valid, an example of a one-cycle-grant can be found in the reference waveform in Figure 21.

2. In the bus cycle after granting the bus2, the granted master applies the address and control
signals to the bus. This happens in the reference in T4 and in the actual implementation in the
third bus cycle, which is in both cases the cycle after the bus grant.

3. The data is written in the bus cycle after applying address and control information. The
reference waveform shows this in T5, the actual implementation shows it in thefourth cycle.
In both cases it happens in the cycle directly following the address and control signals. As it
will be seen in later waveforms, the pipelined access allows concurrently applying the data
for one cycle and the address and control lines for the next cycle.

4.2.2 Error Response

The previous subsection has shown that the basic pipeline stages are observed by the implemented
model. This behavior was shown under the assumption that the selected slavealways signals to
proceed with the current transfer. In this subsection this restriction will beremoved.

2A simplifying assumption is made for this subsection: the currently selected slave signals to proceed with the transfer,
which is done by asserting HRESP == OKAY, and HREADY == HIGH.

25

The AHB standard defines that a slave has to reply back to the master for each bus operation.
This reply indicates the success of the bus operation and is done on everybus cycle. Multiple slaves
may be selected in different phases of the transfer due to the pipelined access nature of the AHB.
However, only the selected slave that is in the data phase asserts the reply information. The reply
information is provided by the following two signals:

HREADY is used by the slave to extend the the data portion of an AHB transfer. The slave inserts
a wait state in the bus access by asserting LOW to HREADY. A transfer is finished regardless
of the success once HREADY is HIGH.

HRESP is asserted by the slave and indicates the status of the current transfer. Possible values
are OKAY, ERROR, SPLIT and RETRY. OKAY indicates a successful completion of the bus
operation. The latter three result codes indicate additional handling for this operation and
they require a two-cycle response. With a two-cycle response the pipelineof the bus access
is flushed.

Figure 19 shows how a slave indicates a failed transfer. By setting HREADYto low, the slave
inserts one additional wait state to make the decision about the transfer. Thefollowing timing points
are of interest in order to validate implemented model as shown in Figure 20:

1. In the bus cycle following the address phase, the slave asserts HREADY to LOW and inserts
a wait state. This happens in the second cycle in the reference and in the third cycle of the
implementation waveform.

2. The slave has made the decision of failing the bus transfer in the third cycleof the reference
waveform. At that point it starts the first cycle of the two-cycle error response. The slave
applies the value of ERROR to HRESP. This happens in both waveforms in the cycle after the
first wait state.

3. In the second cycle of the two-cycle error response the slave still applies ERROR to HRESP.
In order to finish the bus transaction HREADY is set to HIGH. This behaviorcan be observed
in both waveforms in the second cycle after the first wait state.

4.2.3 Unlocked Burst Handover

The previous timing validations were concerned with a single master. The scenarios in the following
subsections will deal with the handover between two masters on the same bus.This subsections
scenario describes the handover between unlocked burst transfersof two masters. In an unlocked
transfer the granted master may lose bus grant during the transfer, if a higher priory master requested
the bus.

In the scenario presented here, a high priority master performs a unlocked burst during which a
low priority master requests the bus. Therefore the high priority master finishes the ongoing burst
and the low priority master reaches the bus grant after that. This type of bushandover is most
efficient, because it allows a single-cycle master change and the bus can be 100 % utilized. In the

26

Figure 19: Reference sequence from [3] showing an error response

0 45732 ps 91464 ps

$00000000 $0CAFFEE0 $00000000

%00 %10 %00

$00000000 $47110815

%00 %01

Time
base/HCLK

base/HADDR[0:31]

master/HTRANS[0:1]

base/HWDATA[0:31]

slave/HREADY

slave/HRESP[0:1]

Figure 20: Waveform of implemented bus model, showing error response

presented scenario, however, the slave addressed in the ongoing burst of the high priority master
inserts two wait cycles in the last burst cycle, which slows down the transfer.

The timing correctness of the waveform from the implemented model as shown inFigure 22
with respect to the reference waveform in Figure 21 can be checked bythe following aspects:

1. After getting the bus granted (cycle T2 in the reference) the high prioritymaster lowers the
request line HREQ. The specification leaves it open, when exactly HREQ islowered. The ref-
erence waveform shows that the granted master lowers HREQ directly after getting granted.
In the implemented model however this happens one cycle later. This was doneto ensure that
the arbiter has sampled the control signals before lowering HREQ. After sampling the control
signals the arbiter can predict the length of the current transfer.

2. The specification (see [3, section 3.6]) requires that in the first control cycle of a burst transfer
HTRANS is set the NONSEQ, which can be seen in both waveforms (T3 of thereference
waveform, third cycle of the implemented model).

3. The arbiter lowers the HGRANT signal of the granted master in the last control cycle of a
burst, at the same time it may grant the bus to another master. The previously granted master
still owns both the data and the address/control bus for the current cycle, and the data bus
only for the next cycle. The change in HGRANT lines appears in both waveforms in the sixth
cycle.

27

Figure 21: Reference sequence from [1] showing unlocked burst handover

105450 ps 158175 ps 210900 ps 263625 ps

$0 $F $0 $1

$0CAFFEE0 $00000000 $40000000 $40000004 $40000008 $4000000C $00000000 $00000004

$47110815 $00000000 $000000D1 $000000D2 $000000D3 $000000D4 $000000D1

%00 %10 %11 %10 %11

%000 %011

Time
base/HCLK

arbiter/HBUSREQx0

arbiter/HBUSREQx1

arbiter/HGRANTx0

arbiter/HGRANTx1

arbiter/HMASTER[0:3]

base/HADDR[0:31]

base/HWDATA[0:31]

slave/HREADY

master/HTRANS[0:1]

master/HBURST[0:2]

Figure 22: Waveform of implemented bus model, unlocked burst handover

4. In the cycle following the change in the HGRANT signals the selected master isupdated.
This can be seen by the HMASTER3, which indicates the master owning the address/control
bus. This change happens in both waveforms in cycle 7. At the same time the new granted
master asserts the address/control lines for the new access. It has to benoted that there is no
idle cycle between the end of the old burst and the beginning of the new burst, the bus is 100%
utilized in this case. Also this fact can be seen both in the reference and in theimplementation
waveform.

5. As described earlier, the selected slave can insert wait states by lowering the HREADY signal.
In this particular scenario the slave inserts two wait states in the last data cycleof the burst
transfer. As a result, the address and control signals that have just been applied have to remain
on the bus. Also the data on the write data bus has to remain constant in case ofa bus write.
In this case the master, which just got the bus grant, has to keep the applied address/control
signals on the bus. The previous granted master has to keep the applied dataword on the data
write bus (HWDATA). In both waveforms the wait states take place in the cycles 7 and 8.

3The signal HASTER is driven by the arbiter and used by the selected slavefor a split transfer, see [3, section 3.12].

28

6. In the cycle after HREADY is set to high, the pipelined bus access is resumed. As one
indication the just granted lower priority master applies the second address of the just started
burst. This appears in cycle 10 in both waveforms.

4.2.4 Locked Burst Handover

This scenario shows a locked burst handover. In a locked burst, a master may not be preempted
during the transfer, even if a higher priority master requests the bus. Locked bursts are not as
efficient as unlocked bursts, because one additional cycle is spend for the handover between masters.
This additional cycle stems from the fact that the standard requires to applyHLOCK, the indication
for a locked transfer, until the address phase of the last transfer. Figure 23 shows the reference
waveform; the waveform of the implemented model is shown in Figure 24. For determining the
correctness of the timing the following points should be evaluated:

1. For a locked transfer the standard [3, section 3.11.5] requires that the HREQ and HLOCK
are asserted until the last address/control cycle of the burst. In both waveforms this change
appears in the sixth cycle.

2. Since the arbiter samples the incoming signals on the rising edge of HCLK it takes until the
next cycle to update the grant lines, which happens in cycle 7. As a result,the old granted
master remains granted for one more bus cycle, although it has finished the burst transfer and
has not requested the bus. Therefore the still granted master has to indicate that no actual
transfer is performed in this bus cycle by setting HTRANS to IDLE. Both waveforms show
this behavior in cycle 7.

3. As a particularity to this scenario the old selected slave inserts two additionalwait states in
the last cycle of the burst (cycle 7 and 8). The has the effect that the oldgranted master has
to keep applying the data up to cycle 9.

4. Because of the wait states, the ownership of the bus does not change(even though the grant
lines have changed in cycle 7) until the slave indicates it is done with the current bus operation
in the data phase. Hence HMASTER and the address/control lines are notupdated until the
cycle after HREADY is raised. In both waveforms the slave sets HREADY to high in cycle
9 and the newly granted master gets the bus in cycle 10. Both waveforms showthat in cycle
10 the arbiter updates HMASTER, and the newly granted master applies the address/control
lines.

4.2.5 Locked Burst Handover with Master Busy

Following the specification [3, section 3.5] a master can, similar to a slave, insert wait states into a
transfer. For doing so it inserts an HTRAN == BUSY cycle in the middle of a burst. This indicates
that the master currently cannot perform the part of the bus operation. The slave has to respond with
single cycle OKAY and otherwise ignore the transfer. The master has to keep the address/control
lines constant during the BUSY cycle.

29

Figure 23: Reference sequence, source [1], locked burst handover.

211600 ps 254 ns 296300 ps 338600 ps

$F $0 $1

%00 %10 %11 %00 %10

$00000000 $40000000 $40000004 $40000008 $4000000C $00000000

$00000000 $000000D1 $000000D2 $000000D3 $000000D4

%000 %011

Time
arbiter/HBUSREQx0

arbiter/HBUSREQx1

arbiter/HLOCKx0

arbiter/HGRANTx0

arbiter/HGRANTx1

arbiter/HMASTER[0:3]

master/HTRANS[0:1]

base/HADDR[0:31]

slave/HREADY

base/HWDATA[0:31]

master/HBURST[0:2]

Figure 24: Waveform of implemented bus model, locked burst handover

The master in the scenario shown in the reference waveform Figure 25 inserts a BUSY cycle
in the second address/control cycle of a locked 4 beat burst, and doesso again in the last address/-
control cycle of the same burst. The correctness of the implemented model (see the waveform
Figure 26) can be assessed using the following points:

1. In both waveforms the granted master inserts a BUSY cycle in the bus cycle4. As a result
the master keeps the address/control lines constant over cycle 4 and 5. Note that the content
of the data bus in cycle 5 is not defined.

2. In cycle 7 the master decides not to use the last cycle of the burst. It applies HTRANS
== BUSY and lowers HREQUEST. As a result, the arbiter changes bus grant in cycle 8,
which becomes effective in cycle 9. As in previous locked bursts the old granted master sets
HTRANS == IDLE during the, now ignored, data phase of the last burst cycle (cycle 8). The
new granted master owns the address/control bus in the 9th bus cycle. This behavior can be
seen in both waveforms.

30

Figure 25: Reference sequence from [1] shows a locked burst with the master inserting a busy cycle.

71400 ps 142900 ps

$F $0 $1

%00 %10 %01 %11 %01 %00 %10

$00000000 $400000+ $40000004 $400000+ $4000000C $00000000

$00000000 $000000D1 $000000+ $000000+ $000000D4

%000 %011 %000

Time
base/HCLK

arbiter/HBUSREQx0

arbiter/HBUSREQx1

arbiter/HGRANTx0

arbiter/HGRANTx1

arbiter/HLOCKx0

arbiter/HMASTER[0:3]

master/HTRANS[0:1]

base/HADDR[0:31]

slave/HREADY

base/HWDATA[0:31]

master/HBURST[0:2]

Figure 26: Waveform of implemented bus model, showing locked transfer withbusy master.

31

4.2.6 Retry

In the following presented scenario, the slave indicates that it is not able to complete the current
requested transaction. For that the slave replies with a response code ofRETRY. This indicates to
the master to abort the transaction and retry at a later time. The time after which themaster may retry
the operation is not specified. In the presented scenario the master attempts theretry immediately
after the aborted bus transaction. In general the RETRY as well as the SPLIT operation allow the
slave to finish the operation even though the slave is not able to supply the requested data. With
that, excessive wait cycles can be avoided and the bus is available for other transactions.

Figure 27 shows the reference waveform and Figure 28 displays the results for the implemented
model. The following points are of interest for comparing both waveforms4:

1. In bus cycle 6, while the master applies the data for the second burst beat, the slave inserts a
wait state. In the following two cycles (7 and 8) the slave sets HRESP to RETRYsignaling
that the transfer cannot be completed right now and that the master has to retry.

2. As a result of the RETRY response in bus cycle 7, the arbiter removes the bus grant from the
first master and grants the bus to the second master in bus cycle 8.

3. The first master reacts to the retry response and re-requests the busin cycle 9. Meanwhile the
second master performs a non-sequential single beat transfer.

4. During the data phase of the second master’s individual transfer (it now applies HTRANS ==
IDLE), the arbiter changes the bus grant back to the first master in bus cycle 10.

5. The first master starts a retry of the previously aborted operation in buscycle 11. Note that
in the reference waveform, the retried transfer is performed in a burst, while it is done with
individual transfers in the implemented model.

4.2.7 Preemption of an Unlocked Burst

The scenario presented in this subsection shows a preempted unlocked burst. A low priority master
performs an unlocked burst. While this burst is in progress a higher priority master requests the bus,
and consequently the lower priority master loses the bus grant. After the highpriority master has
finished its own transfer, the bus grant changes back and the low prioritymaster may resume the
interrupted transfer.

Figure 29 shows the reference waveform, the measured waveform of the implemented model
is shown in Figure 30. In the implemented model master 0 is the higher priory master, and master
1 is the lower priority master. The reference waveform M2 is the high priorymaster and M1 has
lower priority. As a difference from the previously shown waveforms ofthe implemented model,

4Note that both waveforms differ in the first three bus cycles. The reference waveform shows that the previously
selected slave inserts a wait state in the last transfer. As a result the bus ownership for the first master is delayed by one
cycle. Since the delayed bus handover was already tested in Section 4.2.3, the additional wait state was not inserted for a
simpler test bench implementation.

32

Figure 27: Reference sequence from [1] showing an aborted burstdue to the slave sending a retry

784100 ps 849400 ps 914700 ps 980100 ps

$F $0 $1 $0 $F

%00 %10 %11 %10 %00 %10 %00

$00000000 $40000000 $40000004 $40000008 $00000000 $40000004 $00000000

%00 %10 %00

$00000000 $000000D1 $000000D2 $000000D1 $000000D2

%000 %011 %000

Time
base/HCLK

arbiter/HBUSREQx0

arbiter/HBUSREQx1

arbiter/HGRANTx0

arbiter/HGRANTx1

arbiter/HMASTER[0:3]

master/HTRANS[0:1]

base/HADDR[0:31]

slave/HREADY

slave/HRESP[0:1]

base/HWDATA[0:31]

master/HBURST[0:2]

Figure 28: Waveform of implemented bus model, showing handling of a retry operation. Note that
in this model the recovery from a retry happens with individual transfers, instead of an undefined
length burst.

the request and grant lines are swapped between the two masters to match thereference waveform.
The following points are of interest for comparing the waveforms:

1. In bus cycle 2 the low priority master gets the bus granted and subsequently starts an unlocked
burst transfer. While the burst is in progress the high priority master requests the bus as well.

2. The arbiter observes the request of the higher priority master and changes the bus grant from
the low priority master to the high priority master in bus cycle 5 (the third beat of theunlocked
burst).

3. The now granted high priority master starts its transfer in bus cycle 6. At the same time the
low priority master requests again the bus in order to complete the interrupted transfer. These
two facts can be seen in both waveforms.

33

However the two waveforms disagree in cycle 6 for the HGRANT lines: while the reference
waveform shows a change of bus grant from the high priority master to thelow priority
master in this cycle, the same change is delayed by one cycle in the implemented model.
It is the author’s understanding that the bus grant change is a result oflowering the request
line of the high priority master, which happens at the very same time in the cycle 6.Such
immediate change (without a rising HCLK) would require combinatorial logic in thearbiter.
This however is not allowed according to ARM’s FAQ [4, question #4120].

Following the argumentation presented in the FAQ the implemented model shows the grant
change one cycle later, after the arbiter has sampled the input lines at the rising edge of HCLK.
Although this difference exists between the two waveforms it has no bearingon the further
timing, since the slave of the preempted burst inserts a wait state in the last beat(also cycle
6). This extends the transfer of the high priority master by one cycle and masks the difference
in bus grant state between the two waveforms.

4. In bus cycle 8 the low priority master owns again the address bus and resumes the interrupted
burst. The remaining last beat is performed as an individual transfer; itsdata is visible during
the bus cycle 9.

Figure 29: Reference sequence [1] showing loss of bus grant during burst

34

508400 ps 559200 ps 610 ns 660900 ps

$F $1 $0 $1 $F

%00 %10 %11 %10 %00

$00000000 $40000AA0 $40000AA4 $40000AA8 $00000AB0 $40000AAC $00000000

%00

$00000000 $00000DA1 $00000DA2 $00000DA3 $00000DB1 $00000DA4

%000 %011 %000

Time
base/HCLK

arbiter/HBUSREQx1

arbiter/HBUSREQx0

arbiter/HGRANTx1

arbiter/HGRANTx0

arbiter/HMASTER[0:3]

master/HTRANS[0:1]

base/HADDR[0:31]

slave/HRESP[0:1]

slave/HREADY

base/HWDATA[0:31]

master/HBURST[0:2]

Figure 30: Waveform of implemented bus model, showing loss of the buss grant while in a burst.
NOTE master 0 and master 1 are exchanged to match the reference waveform.

4.3 Timing Validation of the Transaction Level Models

The previous section has evaluated the timing accuracy of the bus functional model. Hence this
model can now be used as a reference model for comparing the abstractmodels (the Transaction
Level Model and the Arbitrated Transaction). This section will evaluate thetiming accuracy of the
abstract models in comparison to the bus functional model.

The more abstract models do not capture all properties of the modeled bus architecture. There-
fore they do not have the same accuracy in all situations. It is however possible to define a set of
restrictions, so that the properties, which are not implemented in the abstractmodels, are not exer-
cised. When these restrictions apply, all models have to agree on the exactsame timing. For this
modeling of the AHB the restrictions are:

• Usage of only a single master and a single slave. As described in the design chapter each
model handles the handover between masters at different level of accuracy. By eliminating
such handovers the differences will not be perceivable.

• Utilization of locked burst transfer only; the more abstract models have been implemented
making this assumption.

• A transfer initiating master should not be the default master, hence it has to request the bus
for each access. Again the abstract models use this assumption for the timing,because they
cannot distinguish between accessing from the default master and from anon-default master.
The arbitration is not modeled this detail.

For comparing the models, some example transfers have to be defined. However given the
flexibility of the AHB bus, it is not practical to exhaustively test all possible transfers. Therefore
some representative examples with an increasing complexity have been chosen. The transfers are
defined at a level of a user transaction. Such a transaction is broken down by the MAC layer into
smaller bus transactions depending on the user transaction size and the start address. The later is
important since the AHB standard makes the restriction, that all bursts have tobe word aligned. As
an example the MAC layer has to transfer first an alignment byte, if the user transfer starts at an odd
address.

35

Table 6 lists the selected transfers, with the transfer size, the base address offset to the word
boundary and an enumeration of the resulting bus transactions. All user transactions were per-
formed with each implemented model and the number of cycles to complete each individual user
transaction (which may be composed of multiple bus transactions) was measured. In addition to the
measurements, the number of cycles for each transfer has also been manually calculated based on
the standard [3]. The results can be found in Table 7.

Offset to
Testcase Size Word Alignment Resulting Bus Transactions

1 4 0 long
2 16 0 4 beat burst
3 17 3 alignment byte, 4 beat burst
4 50 0 8 beat burst, 4 beat burst, short
5 107 2 alignment short, 16 beat burst, 8

beat burst, 4 beat burst, byte

Table 6: Testcase definition for individual bus transfer timing validation.

Arbitrated
AMBA Bus Functional Transaction Transaction

Testcase Spec. Model Level Model Level Model
[specified cycles] [measured cycles] [measured cycles] [measured cycles]

1 4 4 4 4
2 7 7 7 7
3 11 11 11 11
4 22 22 22 22
5 46 46 46 46

Table 7: Results of individual bus transfer timing validation in number of bus cycles.

As the Table 7 indicates all models take the exact same number of bus cycles for each of the
test transfers. They also agree with the interpretation of the standard. Since the accuracy of the
bus functional model has been shown already (see Section 4.2), it can be concluded that TLM and
ATLM are 100% accurate for the given conditions.

An automated test has been implemented to extend the validation above to more usertrans-
actions. During this test, a random set of user transactions, varying in size and base address, is
transferred and the transfer time for each individual user transaction iscompared among the mod-
els. After transferring 100000 user transactions per bus model, this testhas confirmed as well the
timing equivalence of all models. Although the models are timing equivalent for the given set of re-
strictions, their accuracy differs if these restrictions are taken away. Section 5 contains a discussion
of the accuracy results of the different models in such a case.

36

4.4 Validation Summary

In summary, all the functional and timing validations were successful. All implemented models
have passed the functional validation. The timing accuracy of the bus functional model has been
successfully shown with the use of example transfers from the AMBA standard. Furthermore, the
timing accuracy of the abstracted models was successfully validated for a restricted setup.

5 Model Analysis

The previous chapter has asserted that the implemented models are functionally correct and that
the bus functional model is implemented according to the AMBA specification. Itwas further
shown that the more abstract models, the TLM and the ATLM yield correct timingunder certain
restrictions. With those results in mind, this chapter will explore how the implementedmodels affect
the designer when modeling a system. For that two main aspects will be examined.First simulation
performance will be evaluated, since the main premise of developing abstract models was to speed
up simulation. This will show the benefit of each model. Secondly the accuracy of the more abstract
models will be examined in a generic environment (outside of the restrictions posed in Section 4.3),
which will explore the drawbacks for using the faster models. Combining both, the designer will be
able to decide for the applicable trade-off between simulation speed and accuracy for a particular
design stage.

5.1 Performance Analysis

The main goal of simulating with higher levels of abstraction is to increase the simulation speed.
This section will give quantitative results about the performance and assert whether this goal was
achieved in this implementation.

5.1.1 Test Setup

A test was devised, in order to measure the performance of each model, in which a single master
is connected through the simulated bus to a single slave. No other masters or slaves are connected
to the bus. A user transaction of a certain size is performed repeatedly a constant number of times
without any delay in between, with that the simulation speed is limited only by the simulation
environment. The simulation time for executing all repetitions of the user transaction was measured
(simulation time can also be named as real time or wall clock time). The measured time for all
repetitions was then divided by the number of repetitions, to yield the averageexecution time for a
single user transaction. This process was repeated with a varying size ofuser transactions, to gain
insight to the scalability of the implementation.

All tests have been performed on a Pentium 4, 2.8 GHz with HyperThreadingunder RedHat En-
terprise 2 with the kernel version 2.4.21-20.ELsmp. The simulation environment was SCC version
2.2.0 (using QuickThreads).

37

5.1.2 Simulation Time

The performance measurements in terms of simulation time are shown in Figure 31.The y-axis de-
notes the execution time for an individual user transaction, the simulation time. The x-axis denotes
the size of a user transaction in bytes. The start address for all user transactions remains constant on
a word boundary, which avoids performance penalties due to alignment transfers.

As described in the design section, the two abstract models have been split into two variations
each. The two ATLM variations differ in the way they handle the arbitration. ATLM (b) makes
the arbitration decision immediately when a bus request arrives, whereas the ATLM (a) delays the
decision for one delta cycle. As a result the second variation handles the case where two masters
request the bus at the very same simulated time and grants the bus to the higher priority master. In
contrary the variation (b) makes the grant decision immediately, hence the busis granted the master
with the earlier executed simulation code.

The both variations of the most abstract model, the Transaction Level Model, differ as well in
the way arbitration is handled. The TLM (b) does not restrict the bus access. As a result two masters
can access the bus concurrently at the same time. Hence each master performs as if it were the only
master on the bus. The TLM (a) does limit concurrent access and simulates arbitration on the level
of a user transaction. Once a master got the bus granted, it remains granted until the user transaction
finishes regardless of other masters’ requests to the same bus.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

S
i
m
u
l
a
t
i
o
n

T
i
m
e

[
m
s
e
c
]

Transaction Size [bytes]

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

Figure 31: Execution time for completing a user transaction of varying size.

As Figure 31 indicates there is no significant difference between the variations of the two ab-
stract models (ATLM and TLM). There is a significant difference between the major models; they
are two orders of magnitude apart.

As expected, the most accurate model, the bus functional model, is the slowest in simulation
speed. It requires 34ms for transferring 1000bytes. The Arbitrated Transaction Level Model model
is faster. Here the 1000 byte transfer takes 0.48ms. The Transaction Level Model model executes

38

fastest, with mere 0.0025ms. It is noticeable that the simulation time for the TLM doesnot increase
much with an increase in size. The simulation code is almost independent of the transaction size,
only a singlememcpyis used for the data transfer and the performance of thememcpydoes not
change much in the measured range. The performance graphs for the ATLM and the bus functional
model are sawtooth shaped. A user transaction in this models is sliced into smallerbus transactions.
However, the number of bus transactions does not increase linearly with the user transaction size,
since fixed length bursts are used. To give an example: a user transaction of 3 words requires 3
individual bus transactions, a 4-word user transaction on the other hand can be transferred in a
single burst of 4 beats, resulting in a single bus transaction.

5.1.3 Simulated Bandwidth

For a better understanding, the same measurements have been graphed again in Figure 32. Here
the performance is expressed in simulated transfer bandwidth (MBytes

seconds simulation time). In terms of
simulation performance the TLM reaches the highest bandwidth: 382MByte/sec, followed by the
ATLM with 2MBytes/sec. The bus functional model only reaches a bandwidth of 0.028 MBytes/sec.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

S
i
m
u
l
a
t
e
d

B
a
n
d
w
i
d
t
h

[
M
B
y
t
e
/
s
e
c
]

Transaction Size [bytes]

TLM (b)
TLM (a)
Arbitrated TLM (b)
Arbitrated TLM (a)
Bus Functional Model

Figure 32: Simulation performance expressed as simulated transfer bandwidth.

The significant difference between the simulation models can be explained withtheir respective
simulation detail. The TLM model handles data transfers on the level of a usertransaction. Only
C primitives are used for this communication. The ATLM model on the other handdoes break a
user transaction into many bus transactions, thus the effort is multiplied. Furthermore the ATLM
model uses the standard implementation of the MAC layer, hence it has to adhere to the interface
between the MAC and the protocol layer. Since this interface uses alreadybit vectors, the simulation
requires more effort. The bus functional model is by far the slowest, since it simulates the transfer
on a bus cycle level. Since this model is a synthesizable model all wires of the AHB are modeled
and additional bus elements such as the multiplexers are covered as well (see Section 2).

39

In summary, the expected performance gains where actually achieved. Witheach more abstract
model the simulation speed increases by two orders of magnitude. Judging from the performance
results, no selection can be neither made for a variation of the ATLM nor a for variation of the
TLM. The accuracy analysis that will be done in the next section is neededfor a decision between
the variations.

5.2 Accuracy Analysis

In the previous section, the gain of speedup by using models at higher level of abstraction was
quantified. The drawbacks of abstract modeling in terms of accuracy limitations will be evaluated
in this section. Unlike the performance measurements before, it is hard to define a single expressive
number that allows comparing the accuracy of the different models. The actual accuracy depends
too much on the environment and the actual application properties. Therefore, a generic test setup
and procedure was defined that covers a range of application specifics, so that the designer can
derive the expected accuracy for a particular setup. The next sectiondescribes the test setup and test
methodology, followed by the presentation of the results.

5.2.1 Test Setup

For the test setup a generic scheme, with two masters and two slaves connected to the same bus, was
used. Each master accesses one slave exclusively5. Figure 33 shows the logical connection scheme
for the test setup.

Test Master 0 Test Slave 0

Test Master 1 Test Slave 1

Figure 33: Logical connection scheme for accuracy tests

During the test, each master transfers a predefined set of user transactions. The user transactions
vary in the base address, length of the transaction and in the delay betweentwo transactions. The
delay between transactions simulates local computation time. During the test execution, the start
time and the duration (each in simulated time) of each individual user transactionis recorded for
further analysis. The test is repeated once for each implemented bus model. Since the same set of
user transactions is transferred by each of the models, their results are comparable.

It is expected that the accuracy changes significantly with the amount of concurrent bus access
between two masters. As an example, all transfers may be executed without any concurrent bus
access between the masters. That means, there is no overlap between anytwo user transactions. In
such a case the timing for each master is as if it were the only master connected tothe bus. Therefore
the logical connection is as if each master had its own bus and the equivalence of the models, as
asserted in Section 4.3 applies; then all models perform with 100% accuracy. However, with an

5Other configurations have been measured as well, but their results do not add additional insight. Hence, their presen-
tation is omitted.

40

increasing amount of overlap between the user transactions, the masters will influence each other
more in the bus access and the timing accuracy will differ with each model.

The amount of bus utilization, and subsequently the expected amount of transfer overlap, depend
on the type of application. A communication-bound application will have a high bus utilization, a
computation-bound application, on the other hand, results in a low bus utilization. In order to cover
the range between those two extremes, the previously described tests havebeen repeated with a
step-by-step increasing amount of overlap between transactions of two masters. By adjusting the
average delay time between two user transactions of the same master, the bus utilization of each
master was varied. As a result the overlap between the transfers of the twomasters differs too.
This overlap was measured during the experiment using the bus functionalmodel. The overlap (in
percent) has been defined as:

overlap= 100∗
number o f bus cycles with two active user transactions

number o f bus cycles with at least one active user transaction
(1)

A user transaction is seen as active during the time the application is blocked executing a user
transaction. Note that this definition is independent of the stage within the pipelined bus access.

In the following subsections, the achieved accuracy of the implemented modelsfor locked trans-
fers and unlocked transfers will be shown. The first subsection will also introduce the analysis
methods when they are first used. The results for each master will be displayed separately; due to
their difference in priority, the accuracy results may vary. As one effect of the prioritized bus grant,
especially with higher amounts of overlap, the higher priority master may finish transferring the test
sequence earlier than the lower priority master. After that point, the low priority master operates
undisturbed on the bus, which will affect the accuracy measurements. Inorder to exclude this effect,
only those measurements are taken into account, when both masters have notyet finished their test
sequence, hence a chance of a concurrent access exists.

5.2.2 Accuracy of Locked Transfers

As previously described in the test setup, a test run yields an execution record of each individual
user transaction. This subsection will describe how this data is analyzed for the locked transfers. As
a reminder, a burst in a locked transfer cannot be interrupted, not even by a higher priority master.

The transfer duration of an individual user transaction is an important measure for predicting
the application latency due to bus access. Therefore, in a first step, the accuracy of the models has
been evaluated with respect to the transfer duration. For this purpose, the percentage inaccuracy of
an individual user transaction is defined as:

durationb f : transfer duration in bus functional model

durationtest : transfer duration in model under test

inaccuracyi = 100∗

∣

∣durationtest−durationb f
∣

∣

durationb f
(2)

Given this inaccuracy definition, a timing accurate model exhibits 0% inaccuracy. It was avoided
to directly express the accuracy in percent, since a particular model may have an inaccuracy of more

41

than 100% (i.e. the model under test predicts more than twice the simulated time), which would
incorrecly lead to a negative accuracy. The average inaccuracy over all user transactions of a test
sequence is displayed in the first set of graphs. Figure 34 shows the average inaccuracy of each
model over an increasing amount of transfer overlap.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(a) High priority master

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(b) Low priority master

Figure 34: Locked transfer accuracy based on duration

As Figure 34 indicates, the ATLM (a), which collects bus requests for onedelta cycle before
making a decision, exhibits no inaccuracy over the whole range of evaluated overlap. Since all trans-
fers are executed locked, the arbitration decisions are done even in the bus functional model only at
the bus transactions boundary. With this limitation the bus functional model and theATLM (a) do
the arbitration decision at the same time points and yield the same simulated timing.

The ATLM (b) yields more imprecise results. It may mispredict the arbitration in the situation
when two masters access the bus at the exact same simulation time. Then the master, with the earlier
executed simulation code, will gain bus access, even though it may be the lower priority master. For
both the high priority and low priority master the inaccuracy rises with an increase of overlap; it
plateaus at 40%. Due to the higher bus utilization, fewer simultanious arbitrationrequests happen.
With the shorter delays between the transactions, it becomes likely that the busis occupied by the
other master when requesting the bus.

It is interesting to note, that the ATLM (b) performs also worse than the TLM (b). The latter
yields a timing as if the bus were used exclusively by each master, thus it always predicts the
optimal transfer time. As expected, its results get linearly worse with an increase in overlap, since
the individual transfers will increasingly take longer than the optimum.

The TLM (a) shows the highest inaccuracies. Its arbitration decision aremade on the level
of user transactions, whereas the real decisions are way more fine grained. Furthermore, the bus
access decision in this model is independent of the master’s priority. The inaccuracy produced by
this model increases linearly with the amount of overlap and tops with 35% at 50% overlap.

Summarizing the first measurements, all models show only little difference in accuracy between
the high and low priority master. Between the two variations of the ATLM, the version with delta
cycle delay is preferable, since it reaches optimal results. Between the twovariation of the TLM

42

model, surprisingly the version without any arbitration yields better results. The expectation was
that the lack of arbitration would yield worse results.

Additionally to the average inaccuracy (computed from the absolute inacurracies), the deviations
of the inaccuracies are displayed. The standard deviation indicates an inaccuracy range, so that
68% of the individual transfers exhibit an inaccuracy within this range. As one example from the
measurements, 68% of the user transactions have an inaccuracy of 25% or less, when transferred
using the ATLM (b) with an overlap of 40%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(a) High priority master

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(b) Low priority master

Figure 35: Locked transfer deviation based on duration

Figure 35 shows the graphs of the standard deviation based analysis. Since the graphs stem from
the same set of measurements, the same conclusions as shown above hold true. The bus functional
model and the ATLM (a) deliver 100% accurate results. The TLM (b) is more accurate than the
ATLM (b), since the latter may mispredict the bus grant, whereas the former assumes an always
avaiable bus. As with the previous results, the TLM (a) shows the most inaccurate results, due to
the coarse granularity of arbtiration decision.

The accuracy analysis based on the transfer duration is the measure to predict the application
latency due to bus traffic. Additionally, the overall timing (e.g. when does the application finish?)
may be of interest for design decisions. For this, the cumulative transfer time, that is the sum of the
user transactions durations, was evaluated. The cumulative transfer time ispreferred over the actual
finish time, since the latter includes the constant computation time between transactions (simulated
by a delay), which is independent of the utilized bus model.

Figure 36 shows the results of the accuracy based on the cumulative transfer time. Here the
differences between the two variations of the ATLM are significantly smaller than in the duration
based analysis. The mispredictions made in the ATLM (b) model seem to cancel out over time.
The remaining inaccuracies between the two variations are within 2% and are independent of the
amount of overlap.

It is noticeable that the inaccuracies of the two TLM variations have reversed in comparison to
the duration based evaluation. Now the TLM (b) exhibits the highest inaccuracies, since this model
assumes an always available bus. With that, the predictions are almost always too optimistic, hence

43

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(a) High priority master

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(b) Low priority master

Figure 36: Locked transfer accuracy based on cumulative transfer time

the error accumulates over many transactions and creates an increasing difference in application
timing. The TLM (a) does perform better in that respect, even though it produces larger error on
an individual user transaction level, the mispredictions fall on both sides (too short and too long) so
that they average out. The TLM (a) predicts more correctly the timing than the TLM (b).

In summary, the models with more detail perform better than the more abstract models, if the
main focus rests on the cumulative transfer time. Between the variations of the TLM models,
the version with arbitration is selected, because it predicts more accurately the overall application
timing. Among the ATLM variations, the version with the delta cycle delay - ATLM (a) is chosen,
since it reaches 100% accuracy. It has to be noted that for locked transfers the bus functional model
does not have an accuracy advantage. Due to the locked transfers thearbitration decision is done at
the same level of granularity for the ATLM and the busfunctional model.

5.2.3 Accuracy of Unlocked Transfers

The analysis of the locked transfers may suggest questioning the added value of the bus functional
model. This will be revisited in this section, where the unlocked transfers areevaluated. In case
of an unlocked transfer an arbitration decision is done on each individual bus cycle. A transaction
initiated by a low priority master may be preempted by a higher priority master. Sinceonly the
bus functional model deals with arbitration on each bus cycle, it is expectedto be the only accurate
model.

Figure 37 shows the graphs for the accuracy evaluation based on the transfer duration. Here
unlike for the locked transfers the graphs between the high and the low priority master differ now.
With the preemption possibility of the unlocked transfers, there are higher chances that the low
priority master has to yield access for the high priority master.

The differences previously observed between the two variations of the ATLM model are no
longer significant for the unlocked transfers. Both ATLM models exhibit significant inaccuracies
over the bus functional model, caused by the lower granularity of the arbitration decision. The

44

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(a) High Priority Master

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(b) Low Priority Master

Figure 37: Unlocked transfer accuracy based on duration

ATLM model decides per bus transaction, whereas the bus functional model revisits the arbitration
on each bus cycle.

The results for the two TLM variations differ even more dramatically between the masters. For
the high priority master the TLM (b) reaches almost 100% accruacy. Again,this model assumes
an alway available bus. This is actually close to reality for the high priority master, since it may
preempt a tranfer of the low priority master. On the other hand, the opposite istrue for the low
priority master. The predicion of the TLM (b) are always too optimistic. With an increase of the
transfer overlap, the prediction becomes linearly less.

The TLM (a) performs most inaccurately for both the high and the low prioritymaster. The
inaccuracy increases linearly for the high priority master, with the increaseof transfer overlap.
Since the TLM (a) performs the arbitration decision only once for each user transaction, the error
increases with the transfer overlap. For the low priority master it is interestingto note that the
inaccuracy does not increase linearly, but it rather tails off.

As done before the duration based accuracy data is displayed again using the standard deviation,
see Figure 38. The graphs do confirm what has been already described for the previous set.

The graphs for the cumulative transfer time are shown in Figure 39. The results for the high
priority master are similar to what has been observed during the duration based analysis. For the
low priority master, only the variations of the ATLM model perform comparable. However the TLM
models behave opposite to what has been seen in the duration based accuracy evaluation. Now the
TLM (b) shows the highest inaccuracies. Its constantly overoptimistic predictions accumulate and
result in almost 50% inaccuracy at 50% overlap. The TLM (a) performs better than the TLM (b).
Although it exhibits a high error amout for the duration based analysis, the errors on the individ-
ual transfers average out, yielding a lower inaccuracy for the cumulative transfer time. In general
comparing back to the locked transfers, all abstract models exibit higher inaccuracies simulating
unlocked transfers.

Considering the accuracy of unlocked transfers, there is no clear choice between the variations
of the TLM model. The differences between the accuracy for the high priority and the low priority

45

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(a) High Priority Master

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(b) Low Priority Master

Figure 38: Unlocked transfer deviation based on duration

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(a) High Priority Master

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50

A
v
e
r
a
g
e

I
n
a
c
c
u
r
a
c
y

i
n

P
e
r
c
e
n
t

Overlap Between Transmissions of Two Masters in Percent

Bus Functional Model
Arbitrated TLM (a)
Arbitrated TLM (b)
TLM (a)
TLM (b)

(b) Low Priority Master

Figure 39: Unlocked transfer accuracy based on cumulative transfertime

master are too significant. However, since the accuracy of TLM (a) is morepredictable, preference
is given to this model. Both variations of the ATLM model perform very similarly.In general, for
unlocked transfers a designer should use at least a variation of the ATLM in order to gain predictable
results. However it becomes clear that only the bus functional model yieldsaccurate results.

5.3 Analysis Summary

The performance analysis of the different models did show a speed up oftwo orders of magnitude
with each additional abstraction level (i.e. among the major models). Therefore, the goal of dras-
tically speeding up simulation, by means of abstract models, has been fulfilled.The performance
analysis alone does not yield a decision for choosing among the variations of the ATLM and TLM;
no significant performance difference was measured between each variation pair.

46

Combining the accuracy analysis of both the locked and the unlocked transfers provides a better
ground for making a decision in this aspect. Between the TLM variations, the TLM (a) is selected. It
performed more accurately in the cumulative tests for the locked transfers,and was more consistent
in its predictions for the unlocked transfers. The ATLM (a) is chosen among the ATLM variations,
since it was accurate in the locked transfer tests and both variations performed similarly for the
unlocked transfers.

In general the accuracy analysis has shown that the advantage of faster simulation speeds has to
be weighted against the loss in simulation accuracy. The more abstract modelsdid deliver overall
more inaccurate results. However, the results are strongly correlated withthe application charac-
teristics. The guidelines of model use, extracted from this correlation, aredescribed in the next
chapter.

6 Summary and Conclusions

This work has reported on the modeling of the AMBA AHB bus architecture. Three major models
have been implemented: the bus functional mode, arbitrated transaction levelmodel (ATLM) and
the transaction level model (TLM). Additionally, two variations have been created for each of the
ATLM and the TLM. The correctness of each model in terms of functionality and in terms of timing
has been validated. The AMBA models have been integrated with the SCE design environment.

The usability of the models has been evaluated. With respect to the simulation performance, a
speedup of two orders of magnitudes was measured with each abstraction step. A detailed analysis
of the simulation accuracy of each model has been done. As a result of theanalysis the TLM (a) –
which models concurrency – and the ATLM (a) – which implements the delta cycledelay for arbi-
tration requests – have been chosen for continued use. Based on the analysis results, the summary
as shown in Table 8 can be made for the user of the implemented models.

Environment Condition Applicable Model
• single master bus
• no overlap between masters bus access

TLM

• only locked transfers
• unlocked transfers and low overlap

ATLM

• unlocked transfers and high overlap bus functional

Table 8: Conclusion summary

For computation bound applications, or when almost no overlap between transactions of two
masters on the same bus is expected, all models have almost accurate results.In this case the most
abstract model – the TLM – delivers acceptable results the fastest.

In a system, where only locked transfers are used, already the ATLM model gives accurate
results, hence in such a case a simulation with the bus functional model is not needed for accuracy
reasons. Also the TLM model delivers usable results. It peaks with only 15% inaccuracy at 50%
tansfer overlap.

47

Should the system use unlocked transfers, the importance of the bus functional model comes
into play. It is the only one that delivers accurate results. The ATLM modelmay be used for
estimation, in case the transmissions between masters do not overlap too much (25% inaccuracy at
25% overlap). The TLM model should be avoided since it gives inconsistent results between a high
and a low priority master.

In future work, the AHB model will be extended to support more complex bustransactions like
split transfers, which will expand the usability of the model. For a further performance increase,
multi-threaded master / slave bus interfaces will be included in the model. This will allow the
modeling environment to take full advantage of the pipelined access even within bus accesses of the
same master. Furthermore, it is planned to model the peripheral bus APB foran efficient connection
to peripheral devices.

References

[1] Advanced RISC Machines Ltd (ARM). AMBA AHB Cycle Level Interface (AHB CLI) Spec-
ification. http://www.arm.com/products/solutions/ahbcli.html. ARM IHI 0011A.

[2] Advanced RISC Machines Ltd (ARM). AMBA Home Page.
http://www.arm.com/products/solutions/AMBAHomePage.html.

[3] Advanced RISC Machines Ltd (ARM). AMBA Specification (Rev. 2.0), ARM IHI 0011A.
http://www.arm.com/products/solutions/AMBA Spec.html.

[4] Advanced RISC Machines Ltd (ARM). Technical Support FAQs - AMBA.
http://www.arm.com/support/AMBA.html.

[5] Advanced Processor Technologies Group at University of Manchester. GTKWave Electronic
Waveform Viewer.http://www.cs.man.ac.uk/apt/tools/gtkwave.

[6] Marco Caldari, Massimo Conti, Marcello Coppola, Stephane Curaba, Lorenzo Pieralisi, and
Claudio Turchetti. Transaction-level models for AMBA bus architecture using SystemC 2.0.
In Proceedings of the Design, Automation and Test in Europe (DATE) Conference, Munich,
Germany, March 2003.

[7] CoWare. CoWare Launches Fast AMBA Transactional Bus Simulatorfor Sys-
temC. http://www.coware.com/portal/page? pageid=166,105427& dad=cust portal&
schema=STAGE.

[8] Rainer D̈omer. System-Level Modeling and Design with the SpecC Language. PhD thesis,
University of Dortmund, Germany, April 2000.

[9] John W. Eaton. Octave Home Page.http://www.octave.org/, 1998.

[10] A. Gerstlauer; D. Shin; R. Doemer; D. Gajski. System-Level Communication Modeling for
Network-on-Chip Synthesis. InAsia and South Pacific Design Automation Conference, Shang-
hai, China, January 2005.

48

http://www.arm.com/products/solutions/ahbcli.html
http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.arm.com/products/solutions/AMBA_Spec.html
http://www.arm.com/support/AMBA.html
http://www.cs.man.ac.uk/apt/tools/gtkwave
http://www.coware.com/portal/page?_pageid=166,105427&_dad=cust_portal&_schema=STAGE
http://www.octave.org/

[11] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao.SpecC:
Specification Language and Design Methodology. Kluwer Academic Publishers, 2000.

[12] Andreas Gerstlauer.Modeling Flow for Automated System Design and Exploration. PhD
thesis, University of California Irvine, U.S.A., April 2004.

[13] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski.System Design: A
Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[14] Andreas Gerstlauer and Daniel D. Gajski. System-level abstractionsemantics. InProceedings
of the International Symposium on System Synthesis, Kyoto, Japan, October 2002.

[15] Thorsten Gr̈otker, Stan Liao, Grant Martin, and Stuart Swan.System Design with SystemC.
Kluwer Academic Publishers, 2002.

[16] Internation Organization for Standardization (ISO).Reference Model of Open System Inter-
connection (OSI), second edition, 1994. ISO/IEC 7498 Standard.

[17] W. Rosenstiel J. Gerlach. A methodology and tool for automated transformational high-level
design space exploration. InComputer Design, 2000. Proceedings. 2000 International Con-
ference on, Vol., Iss., 2000.

[18] A.A. Jerraya K. Svarstad, G. Nicolescu. A model for describing communication between
aggregate objects in the specification and design of embedded systems. InDesign, Automation
and Test in Europe, 2001.

[19] Peter Marwedel.Embedded Systems Design. Kluwer Academic Publishers, 2003.

[20] Wolfgang Mueller, Rainer D̈omer, and Andreas Gerstlauer. The formal execution semantics
of SpecC. InProceedings of the International Symposium on System Synthesis, Kyoto, Japan,
October 2002.

[21] Open SystemC Initiative,http://www.systemc.org. Functional Specification for SystemC 2.0,
2000.

[22] M. Sgroi; M. Sheets; M. Mihal; K. Keutzer; S. Malik; J. Rabaey; and A. Sangiovanni-
Vincentelli. Addressing the system-on-a-chip interconnect woes throughcommunication
based design. InProceedings of the Design Automation Conference, June 2001.

[23] Gunar Schirner. System Level Modeling of an AMBA Bus. Master’s thesis, University of
California, Irvine, March 2005.

[24] Robert Siegmund and Dietmar M̈uller. SystemCSV: An extension of SystemC for mixed multi-
level communication modeling and interface-based system design. InProceedings of the De-
sign, Automation and Test in Europe (DATE) Conference, Munich, Germany, March 2001.

[25] Mohamed Ben-Romdhane Sudeep Pasricha, Nikil Dutt. Fast exploration of bus-based on-chip
communication architectures. InCODES and ISSS, Stockholm, Sweden, September 2004.

49

http://www.systemc.org

[26] Karl van Rompaey, Diederick Verkest Ivo Bolsens, and Hugo DeMan. CoWare: A design
environment for heterogeneous hardware/software systems. InProceedings of the European
Design Automation Conference (Euro-DAC), Geneva, Switzerland, September 1996.

[27] Wayne Wolf. Hardware/software co-synthesis algorithms. In AhmedA. Jerraya and Jean
Mermet, editors,System-Level Synthesis. Kluwer Academic Publishers, 1998.

[28] Jianwen Zhu, Rainer D̈omer, and Daniel D. Gajski. Syntax and semantics of the SpecC lan-
guage. InProceedings of the International Symposium on System Synthesis, Osaka, Japan,
December 1997.

50

A Header Files

This chapter will give an overview of the implemented software structure. Ingeneral the following
file separation was used for the AMBA model:

i ambaAHBbus.sh contains interface definitions which are used by all models. These interfaces
cover the MAC layer only.

ambaAHBbusMaster.sc defines the interfaces for the protocol layer and the physical layer forthe
master side. It also contains the bus functional implementation of all layers forthe master
side.

ambaAHBbusSlave.scis symmetric to the previous file. It contains all the interface definitions
for the slave side of the protocol and physical layer. The file also contains the slaves bus
functional implementation.

ambaAHBbusTLM.sc contains the implementations of the abstract models for master and slave
side. In particular it contains both variances of the ATLM and both variances of the TLM.
The file contains as well the arbitration implementation for the abstract models.

ambaAHBarbiter.sc implements the arbitration for the bus functional model. The main cvs branch
contains the arbiter for locked transfers, the branchunlockedTrans f ersimplements arbitra-
tion for unlocked transfers.

ambaAHBMuxes.sc implements additional logic necessary for the bus functional model of the
AHB; these are in particular the multiplexers (read bus, write bus, addressand control bus)
and the address decoder.

The following sections will show the interface definitions of the implemented models. The chan-
nel declarations are listed as well, which allows insight into how the differentlayers (implemented
in channels) are composed to a bus model.

A.1 i ambaAHBbus.sh: MAC Layer Interface Definitions for Master and Slave

/∗ −−−− i n te r faces v i s i b l e to the upper layers−−−− ∗ /

/∗ a l l MAC layer in te r face d e f i n i t i o n s .
two access types memory and l i nk

5 twice once for the master s ide and once for the slave s ide
∗ /

in ter face IAmbaAHBbusMasterMACLink
{

10 void masterWrite (unsigned long addr , const void∗ data , unsigned long len) ;
void masterRead (unsigned long addr , void∗ data , unsigned long len) ;

} ;

51

in ter face IAmbaAHBbusMasterMACMem
15 {

void masterMemWrite (unsigned long addr , const void∗ data , unsigned long len) ;
void masterMemRead(unsigned long addr , void∗ data , unsigned long len) ;

} ;

20 in ter face IAmbaAHBbusSlaveMACLink
{

void slaveWrite (unsigned long addr , const void∗ data , unsigned long len) ;
void slaveRead (unsigned long addr , void∗ data , unsigned long len) ;

} ;
25

in ter face IAmbaAHBbusSlaveMACMem
{

void serve (unsigned long addr , void∗ data , unsigned long len) ;
} ;

A.2 ambaAHBbusMaster.sc: Bus Functional Interfaces and Channel Definition for
Master

1 /∗ −−−−− Physical layer , bus protocol handling−−−−− ∗ /

/ / regular bus pr im i t i ves
in ter face IAmbaAHBbusMaster
{

6 /∗ GS Access methods for the Address Cycle∗ /
/∗ Writes out address and contro l s ignals , waits for

completion of previous Slave .
NOTE: Has to be cal led at beginning of clock cycle .∗ /

void AddressCycle (
11 tAHBAddr addr ,

tAHBWrite write ,
tAHBSize size ,
tAHBProt prot ,
tAHBBurst burst ,

16 tAHBTrans t rans
) ;

/∗ wr i tes out the address and contro l s ignals , without wait ingfor t iming
NOTE: Has to be cal led a f t e r r i s ing edge .∗ /

21 void AddressWrite (
tAHBAddr addr ,
tAHBWrite write ,
tAHBSize size ,
tAHBProt prot ,

26 tAHBBurst burst ,
tAHBTrans t rans
) ;

/∗ wri te the given data on the bus and wait u n t i l s lave
31 has accepted the data ,

RETURNS: Status code from slave∗ /

52

tAHBResp DataWriteCycle (tAHBData data) ;

36 /∗ wri te the given data on the bus and wait u n t i l s lave
has accepted the data ,
RETURNS: Status code from slave∗ /

tAHBResp DataReadCycle (tAHBData∗data) ;

41 } ;

/∗ physica l layer for master s ide∗ /
channel AmbaAHBbusMaster(

in s ignal b i t [1] HCLK, / / from externa l clk , a l l on r i s ing edge
46 in s ignal b i t [1] HRESETn, / / low act ive rese t s igna l for bus component

out s ignal b i t [31:0] HADDR, / / 32 b i t system address bus
out s ignal b i t [1 :0] HTRANS, / / t rans fe r type (IDLE, . . .)
out s ignal b i t [1] HWRITE, / / wr i te on high
out s ignal b i t [2 :0] HSIZE, / / s i ze of t rans fe r

51 out s ignal b i t [2 :0] HBURST, / / burst mode se lec t i on
out s ignal b i t [3 :0] HPROT, / / p ro tec t ion b i t s
out s ignal b i t [HDATA BUS HIGH BIT:0]

HWDATA, / / wr i te data bus (master−> slave)
in s ignal b i t [HDATA BUS HIGH BIT:0]

56 HRDATA, / / read data bus (s lave−> master)
in s ignal b i t [1] HREADY, / / s lave ind ica tes operat ion complete
in s ignal b i t [1 :0] HRESP / / s lave ind ica tes return code for op .

61) implements IAmbaAHBbusMaster
{
} ;

/∗ −−−−− Protocol Layer , inc ludes arb i t ra t i on−−−−− ∗ /
66 in ter face IAmbaAHBbusMasterProtocol

{
/∗ convention , a l l func t ions have to be cal led on a r i s ing clockedge ,

t h i s has to be guaranteed by the ca l l i ng mac layer∗ /

71 bi t [7 :0] ReadByte (bi t [31:0] addr) ;
bi t [15:0] ReadWord(bi t [31:1] addr) ;
bi t [31:0] ReadLong(bi t [31:2] addr) ;
/ / mul t i burst s i ze 4 , 8 , 16 longs
tAHBResp ReadBurst (bi t [31:2] addr , tAHBData data [] ,unsigned char s ize) ;

76

void WriteByte (bi t [31:0] addr , bi t [7 :0] val) ;
void WriteWord (bi t [31:1] addr , bi t [15:0] val) ;
void WriteLong (bi t [31:2] addr , bi t [31:0] val) ;
/ / mul t i burst s i ze 4 , 8 , 16 longs

81 tAHBResp WriteBurst (bi t [31:2] addr , tAHBData data [] ,unsigned char s ize) ;
/ / NOTE not implemented undefined bursts , burst for words orbytes

} ;

53

/∗ protocol layer master s ide∗ /
86 channel AmbaAHBbusMasterProtocol (IAmbaAHBbusMaster bus ,

i semaphore access)
implements IAmbaAHBbusMasterProtocol

{
} ;

91

/∗ −−−−− Media access layer , l i nks−−−−− ∗ /
/∗ This i s a s imp l i f i ed vers ion of the memory access ,

− no address increase
96 − no burs ts

− no alignment for addresses , o f f al igned access
gives bus error simulated by core dump

Compatible with AmbaAHBbusSlaveMacLinkNoAdddrInc
101 ∗ /

channel AmbaAHBbusMasterMACLinkNoAddrInc(IAmbaAHBbusMasterProtocol mac)
implements IAmbaAHBbusMasterMACLink

{
106 } ;

A.3 ambaAHBbusSlave.sc: Bus Functional Interfaces and Channel Definition for
Slave

/∗ −−−−− Physical layer , bus protocol handling−−−−− ∗ /

3 in ter face IAmbaAHBbusSlave
{

/∗ l i s t e n to spec i f i ed se t of cont ro l s igna ls without wait ing for clock ∗ /
tAHBSize Lis tenCnt l (tAHBAddr∗addr ,

8 tAHBAddr addrMask ,
tAHBBurst ∗burst , / / burst mode
tAHBBurst burstMask ,
tAHBProt ∗prot , / / p ro tec t ion type
tAHBProt protMask , / / ˜ mask

13 tAHBWrite ∗write , / / wr i te mode ?
tAHBWrite writeMask) ;

/∗ l i s t e n to spec i f i ed se t of cont ro l s igna ls with wait ing for clock ∗ /
18 tAHBSize ListenCntlCycle (tAHBAddr∗addr ,

tAHBAddr addrMask ,
tAHBBurst ∗burst , / / burst mode
tAHBBurst burstMask ,
tAHBProt ∗prot , / / p ro tec t ion type

23 tAHBProt protMask , / / ˜ mask
tAHBWrite ∗write , / / wr i te mode ?
tAHBWrite writeMask) ;

54

28 /∗ wri te data to bus (master read) , and consume a cycle∗ /
void WriteCycle (tAHBData val) ;

/∗ read data from bus (masters wr i te) and concume a cycle∗ /
33 tAHBData ReadCycle (void) ;

/∗ s igna l an error or other condi t ion to master , ca l led
instead of WriteCycle or ReadCycle∗ /

void TwoCycleResp(bi t [1 :0] resp) ;
38 } ;

channel AmbaAHBbusSlave (

in s ignal b i t [1] HCLK, / / from externa l clk , a l l on r i s ing edge
43 in s ignal b i t [1] HRESETn, / / low act ive rese t s igna l for bus component

in s ignal b i t [31:0] HADDR, / / 32 b i t system address bus
in s ignal b i t [1 :0] HTRANS, / / t rans fe r type (IDLE, . . .)
in s ignal b i t [1] HWRITE, / / wr i te on high
in s ignal b i t [2 :0] HSIZE, / / s i ze of t rans fe r

48 in s ignal b i t [2 :0] HBURST, / / burst mode se lec t i on
in s ignal b i t [3 :0] HPROT, / / p ro tec t ion b i t s
in s ignal b i t [HDATA BUS HIGH BIT:0]

HWDATA, / / wr i te data bus (master−> slave)
out s ignal b i t [HDATA BUS HIGH BIT:0]

53 HRDATA, / / read data bus (s lave−> master)
in s ignal b i t [1] HSELx, / / se l ec t s igna l for s lave

signal b i t [1] HREADY, / / s lave ind ica tes operat ion complete
out s ignal b i t [1 :0] HRESP / / s lave ind ica tes return code for op .
)

58 implements IAmbaAHBbusSlave
{
} ;

63

/∗ −−−−− Protocol layer , a rb i t ra t i on−−−− ∗ /

in ter face IAmbaAHBbusSlaveProtocol{

68 /∗ l i s t e n to spec i f i ed se t of cont ro l s igna ls with wait ing for clock ∗ /
tAHBSize ListenCntlCycle (tAHBAddr∗addr ,

tAHBAddr addrMask ,
tAHBBurst ∗burst , / / burst mode
tAHBBurst burstMask ,

73 tAHBProt ∗prot , / / p ro tec t ion type
tAHBProt protMask , / / ˜ mask
tAHBWrite ∗write ,
tAHBWrite writeMask) ; / / wr i te mode ?

78 /∗ bus data cycle operat ions , each one consumes a cycle∗ /

55

bi t [7 :0] ReadByte (bi t [1 :0] addr) ;
bi t [15:0] ReadWord(bi t [1 :1] addr) ;
bi t [31:0] ReadLong(void) ;
void ReadBurst (tAHBData data [] ,unsigned char numBeats) ;

83

void WriteByte (bi t [7 :0] val) ;
void WriteWord (bi t [15:0] val) ;
void WriteLong (bi t [31:0] val) ;
void WriteBurst (tAHBData data [] , unsigned char numBeats) ;

88

/∗ s igna l an error or other condi t ion to master∗ /
void TwoCycleResp(bi t [1 :0] resp) ;

} ;
93

/∗ −−−−− MAC layer , segmentation , reassmbly−−−−−−−−−−−−− ∗ /

/∗ MAC layer slave , randezvouz access (l i nk access)∗ /
98 /∗ Reduced vers ion of MACLink with the fo l lowing s imp l i f y ing assumptions

− no address increase during transmission
− no burs ts
− no alignment t rans fers , o f f al ignment access r e s u l t s in
bus access v io la t i on∗ /

103 channel AmbaAHBbusSlaveMACLink(IAmbaAHBbusSlaveProtocol protocol)
implements IAmbaAHBbusSlaveMACLink

{
} ;

108 /∗ MAC layer , slave , memory access∗ /
channel AmbaAHBbusSlaveMACMem(IAmbaAHBbusSlaveProtocol protocol)

implements IAmbaAHBbusSlaveMACMem
{
} ;

A.4 ambaAHBbusTLM.sc: Interfaces and Channel Definitions for Abstract Models

/∗ Transaction Level Modelling
on leve l of MAC. l ink ,

3 Can be used instead of AmbaAHBbusMasterMACLink

Allows access of mul t ip le mul t ip le masters and mul t ip le s laves at the
same time .

∗ /
8 channel AmbaAHBbusMasterMACLinkTLM(void)

implements IAmbaAHBbusMasterMACLink ,
IAmbaAHBbusMasterMACMem,
IAmbaAHBbusSlaveMACLink ,
IAmbaAHBbusSlaveMACMem

13 {
}

56

/∗ Transaction Level Modelling
on leve l of MAC. l ink ,

18 Can be used instead of AmbaAHBbusMasterMACLink

Allows access of mul t ip le mul t ip le masters and mul t ip le s laves at the
same time .

23 ATTENTION without a rb i t ra t i on ! ∗ /
channel AmbaAHBbusMasterMACLinkTLMNoArbit(void)

implements IAmbaAHBbusMasterMACLink ,
IAmbaAHBbusMasterMACMem,
IAmbaAHBbusSlaveMACLink ,

28 IAmbaAHBbusSlaveMACMem
{
}

/∗ give each master an i d e n t i t y for a rb i t ra t i on∗ /
33 channel AmbaAHBbusMasterProtocolTLM(

unsigned in t masterNr , / / i d e n t i t y of the master
/ / t lm model contain ing the bus and the arb i t ra t i on modell ing
IAmbaAHBbusProtocolTLMArbitration busAndArb

)
38 implements IAmbaAHBbusMasterProtocol

{
}

/∗ protocol layer implementation master and slave for ATLM∗ /
43 channel AmbaAHBbusProtocolTLM ()

implements IAmbaAHBbusSlaveProtocol ,
IAmbaAHBbusProtocolTLMArbitration

{
}

48

/∗ same as above but no de l ta cycle co l l ec t i on of requests∗ /
channel AmbaAHBbusProtocolTLMNoDelta ()

implements IAmbaAHBbusSlaveProtocol ,
IAmbaAHBbusProtocolTLMArbitration

53 {
}

B Testing Environment

B.1 Source Code Structure

In addition to the previously described files, which contain the AMBA models, aset of files is
required for the testing environment. For ease of debugging and controlling, it was decided that
each test group is captured in an own executable. Since for each test group up to 5 different models
had to be validated, a large number of test executables is created during compilation process.

In order to minimize code duplication, as a means of reducing the maintenance effort in the on-
going project, a single test bench filetestbench.scwas developed. This test bench file conditionally

57

testMaster 0

testMaster 1

testSlave 0

testSlave 1

???

Figure 40: Generic connection scheme

includes a particular test group and a particular bus model. All necessarycomponents are instan-
tiated and connected in the test bench. This includes the test master behaviors and the test slave
behaviors, which are connected to selected bus model (see Figure 40).Additionally supporting ele-
ments are handled, e.g. in the bus functional model: multiplexers, arbiter, clock driver, and address
decoder. Since the test bench file contains all wiring information, having a single version for all test
cases significantly simplified changes during the development time.

For each group of tests a separate master and slave behavior were implemented. Precompiler
directives were used to conditionally include the selected master and slave code. For ease of identi-
fication the naming convention below was followed:

testMaster testName.sh contains common definitions used for both the behavior running in the
master and the behavior running in the slave.

testMaster testName.sc implements the behavior for the master side of the bus access.

testSlavetestName.sc implements the behavior for the slave side of the bus access.

The test behaviors use an interface to the according MAC layer (either memory or rendezvous
style) as an input. They are connected by the test bench through the bus model under test. The
the parttestNamein the file name above is replaced by the short name as defined in Table 9 of the
according test. The set of files that have to be included for a particular test setup are selected using
preprocessor directives within the test bench. Table 9 lists the testcases with their short names and
the macro definitions for test selection.

B.2 Test Executables

As indicated earlier, the test bench will not only select a test group to be executed, but also a model
for the actual transmission. As for the testcases the according model (or the stack of channels) is
selected with the precompiler directives as shown in Table 10.

With the short names defined for the test group and the bus model, the name ofthe ex-
ecutables can be constructed. All test executables obey the following naming convention:
test channelName testName. Where thechannelNameis replaced with the short name of the bus
model (3rd column of Table 10) and thetestNameis replaced with the short name of the test group

58

Test Name Section Short Name Macro Definition

Individual Transfers 4.1.1 indiv TEST INDIV
Random Access using Memory Style 4.1.2 randMem TEST RAND
Access
Random Access using Rendezvous 4.1.3 randMsg TEST RAND MSG
Style Access
Timing Validation for Bus Functional
Model

4.2 print TEST PRINT

TLM Timing Validation versus Bus 4.3 tlmTiming TEST TLM TIMING
Functional Model
Explicit Timing Measurements for 4.3 memTiming TEST MEM TIMING
Example Transfers
Transfer Performance for Memory Style
Access

5.1 perfMem TEST PERFMEM

Transfer Performance for Rendezvous
Style Access

5.1 perfRand TEST PERFRAND

Timing Accuracy of TLM Models 5.2 perfTiming TEST PERFTIMING

Table 9: List of implemented tests, with the section where the results are discussed, a short name
that is used for test file naming, and the define statement used in the test bench for the test selection.

(3rd column of Table 9). As an example the executable for testing individual transfers with the bus
functional model is named: testbf indiv.

With the large amount of test executables an automatic test execution becomes necessary. As
described in the results section, the test execution is categorized into three parts. The functional tests
have a build in failure detection and terminate with an error. The timing validation ofthe abstract
models with respect to the bus functional model includes an error detection.A makefile rule can be
used to iterate through all bus models and the tests in these two categories and the test will stop on
the first detected error:

make test

A large number of test executions is required for the performance tests, hence this has been

Model Name Section Short Name Macro Definition

Transaction Level Model (A) 3.3 tlm USE CHANNEL TLM
Transaction Level Model (B) 3.3 tlmb USE CHANNEL TLM B
Arbitrated Transaction Level Model (A) 3.4 prot USE CHANNEL PROT
Arbitrated Transaction Level Model (B) 3.4 protb USE CHANNEL PROTB
Bus Functional Model 3.5 bf USE CHANNEL BF

Table 10: List of implemented bus models, with a reference to the chapter explaining the design,
a short name for file naming convention, and the macro name for the channelselection in the test
bench.

59

automated with wrapping shell scripts. Measuring of the execution performance of the memory and
rendezvous style access over all implemented channels can initiated with the following commands:

run_perfMem
run_perfRand

Octave [9], a Matlab-like numerical evaluation environment, is used for automatically graphing the
results of the performance tests. Two scripts (gentrans f erTime.m andgentrans f erTimeRand.m)
generate graphs for the performance in terms of execution speed (trans f erTime.eps and
trans f erTimeRand.eps, see Figure 31) and transfer bandwidth (trans f erBandwidth.eps and
trans f erBandwidthRand.eps, see Figure 32).

The measurements for the timing accuracy of the implemented models have been wrapped into:

run_perfTiming

Again the results are automatically graphed by Octave scripts.gen per f Timing generates the
graphic files as listed in table Table 11. In addition to the files in the table, which are specific to the
first master, a same set of files is created for the second master. Their names can be distinguished
by an M1 instead of M0 in the end of the file name.

File Name Description

accuray.duration.2M2SPM0.eps accuracy based on transfer duration (Fig. 34)
accuracy. f inish.2M2SPM0.eps accuracy based on finish time of each transfer
accuracy.comulative.2M2SPM0.eps accuracy based on cumulative transfer time (Fig. 36)
deviation.duration.2M2SPM0.eps deviation based on transfer duration (Fig. 35)
deviation. f inish.2M2SPM0.eps deviation based on finish time of each transfer
deviation.comulative.2M2SPM0.eps deviation based on cumulative transfer time

Table 11: Generated graphics for timing accuracy

60

	1 Introduction
	1.1 Introduction to SoC Design
	1.1.1 Overview
	1.1.2 Challenges
	1.1.3 SoC Specification
	1.1.4 SoC Design Space Exploration

	1.2 Problem Definition
	1.3 Outline
	1.4 Related Work

	2 Introduction to the AMBA Bus
	3 Modeling
	3.1 Layering
	3.2 Graphical Notation
	3.3 Transaction Level Model - MAC
	3.4 Arbitrated Transaction Level Model - Protocol
	3.5 Bus Functional Model - Physical
	3.6 Modes of Access

	4 Validation
	4.1 Functional Validation
	4.1.1 Validation of Individual Bus Transfers -- Fundamental Tests
	4.1.2 Validation of the Memory Interface
	4.1.3 Validation of the Rendezvous Interface

	4.2 Timing Validation of the Bus Functional Model
	4.2.1 Basic Pipelined Bus Access
	4.2.2 Error Response
	4.2.3 Unlocked Burst Handover
	4.2.4 Locked Burst Handover
	4.2.5 Locked Burst Handover with Master Busy
	4.2.6 Retry
	4.2.7 Preemption of an Unlocked Burst

	4.3 Timing Validation of the Transaction Level Models
	4.4 Validation Summary

	5 Model Analysis
	5.1 Performance Analysis
	5.1.1 Test Setup
	5.1.2 Simulation Time
	5.1.3 Simulated Bandwidth

	5.2 Accuracy Analysis
	5.2.1 Test Setup
	5.2.2 Accuracy of Locked Transfers
	5.2.3 Accuracy of Unlocked Transfers

	5.3 Analysis Summary

	6 Summary and Conclusions
	References
	A Header Files
	A.1 i_ambaAHBbus.sh: MAC Layer Interface Definitions for Master and Slave
	A.2 ambaAHBbusMaster.sc: Bus Functional Interfaces and Channel Definition for Master
	A.3 ambaAHBbusSlave.sc: Bus Functional Interfaces and Channel Definition for Slave
	A.4 ambaAHBbusTLM.sc: Interfaces and Channel Definitions for Abstract Models

	B Testing Environment
	B.1 Source Code Structure
	B.2 Test Executables

