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Abstract

The System-On-Chip (SoC) design faces a gap between thecfimd capabilities and
time to market pressures. The design space, to be explorétydhel SoC design, grows with
the improvements in the production capabilities and it &aia increasing amount of time to
design a system that utilizes those capabilities. On therdihnd shorter product life cycles
are forcing an aggressive reduction of the time-to-marReldressing this gap has been the aim
of recent research work. As one approach abstract modele haen introduced and a design
flow was devised that guides the designer in the process frorosa abstract model down to a
synthesizable model.

Throughout the design process computation and commuaitatincerns are handled in-
dividually. The communication is mostly abstracted awaynfrthe designer, which allows
the design focus to rest on the application specific commntafThis separation requires the
provider of an SoC design tool to supply fast and accuratencanication models.

Fast simulation capabilities are required for coping wittetimmense design space that is
to be explored; these are especially needed during earlyestaf the design. This need has
pushed the development of transaction level models, whielalastract models that execute
dramatically faster than synthesizable models. The pressun fast executing models extends
especially to the frequently used and reused communichitiaries. This document describes
the system level modeling of the Advanced High-performBnsgAHB) part of the Advanced
Microprocessor Bus Architecture (AMBA). Throughout thiskthe design of three bus models,
at different levels of abstraction, is described; their glation speed and accuracy is evaluated.
As a result guidelines for the developer are derived thapsufselecting the most appropriate
model for a given stage in the design process.
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List of Acronyms

AHB Advanced High-performance Bus. System bus definition within the AMB/AsRezification.
Defines a high-performance bus including pipelined access, burktgrapretry operations.

AMBA Advanced Microprocessor Bus Architecture. Bus system definedRiyl Aechnologies
for system-on-chip architectures.

APB Advanced Peripheral Bus. Peripheral bus definition within the AMBA Bdgication. The
bus is used for low power peripheral devices, with a simple interface logic.

ASB Advanced System Bus. System bus definition within the AMBA 2.0 specificabefines a
high-performance bus including pipelined access and bursts.

ATLM Arbitrated Transaction Level Model. A model of a system in which communicaso
described as transactions, abstract of pins and wires. In addition toisy@vided by the
'TLM, it models arbitration on a bus transaction level.

Behavior An encapsulating entity, which describes computation and functionality in tine d6
an algorithm.

Bus Functional Model A wire accurate and cycle accurate model of a bus.

Channel An encapsulating entity, which abstractly describes communication betweean tnore
partners.

CLI Cycle Level Interface. Refers to ARMs definition of the AMBA bus, cyleleel accurate for
SystemC.

IP Intellectual Property. A pre-designed system component.
MAC Media Access Control. Layer within the OSI layering scheme.
NoC Network on Chip

OS Operating System. Software entity that manages and controls access todivaresof a com-
puter system. It usually provides scheduling, synchronization and coioatiam primitives.

OSI Open Systems Interconnection. An communication architecture model, dabdmnilseven
layers, developed by the ISO for the interconnection of data communicyttenss.

PE Processing Element. A system component that provides computation capataligiea custom
hardware or generic processor.

RTL Register Transfer Level. Description of hardware at the level of diga#h paths, the data
transfer and its storage.

RTOS Real-Time Operating System. An operating system that responds to are¢etgrnt within
a short, predictable time.



SCE SoC Environment. A set of tools for the automated, computer-aided des@om®and com-
puter systems.

SoC System-On-Chip. A highly integrated device implementing a complete computensgata
single chip.

TLM Transaction Level Model. A model of a system in which communication is testras
transactions, abstract of pins and wires.
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Abstract

The SoC design faces a gap between the production capabilities and timekiet eassures. The
design space, to be explored during the SoC design, grows with the iempenis in the production
capabilities and it takes an increasing amount of time to design a systemtiliwdaithose capa-
bilities. On the other hand shorter product life cycles are forcing an agivesreduction of the
time-to-market. Addressing this gap has been the aim of recent résear. As one approach
abstract models have been introduced and a design flow was deviseithas the designer in the
process from a most abstract model down to a synthesizable model.

Throughout the design process computation and communication ¢enaer handled individ-
ually. The communication is mostly abstracted away from the designer, alicis the design
focus to rest on the application specific computation. This separation exjthie provider of an
SoC design tool to supply fast and accurate communication models.

Fast simulation capabilities are required for coping with the immense desigoesihat is to
be explored; these are especially needed during early stages of tlggnddhis need has pushed
the development of transaction level models, which are abstract mthdelexecute dramatically
faster than synthesizable models. The pressure for fast executing regtiglds especially to the
frequently used and reused communication libraries. This documentiltes the system level
modeling of the AHB part of the AMBA. Throughout this work the desighreé bus models, at
different levels of abstraction, is described; their simulation speed andracy is evaluated. As
a result guidelines for the developer are derived that support selectengitist appropriate model
for a given stage in the design process.
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1 Introduction

1.1 Introduction to SoC Design
1.1.1 Overview

Improvements in manufacturing capabilities allow placing of a complete embegdehson a
single chip. With that it becomes possible to design a system as a mix of softwenieag on one
or more generic processors and specialized hardware, which romguitation that is too costly for
a generic processor (e.g. in terms of power or time). This design frekhats ultimately to highly
specialized chips and cost efficient production. However the newheddieedom in design places
a burden on the SoC designer. The next paragraphs will introducén#tiernges of system level
design, the specification of systems and the design space exploration.

1.1.2 Challenges

The design of embedded systems in general and an SoC in special witheedder functional and
environmental constraints. Since the designed system will run under apeslified operating envi-
ronment, the strict functional requirements can be concretely definedehronment restrictions
on the other hand are more diverse: e.g. minimizing the cost, footprint, arammsumption. Due
to the flexibility of a SoC design, achieving the set goals, involves analyzinglé-dimensional
design space. The degrees of freedom stem from the process etgpardind characteristics, their
allocation, the mapping of functional elements to the process elements, theipmtection with
busses and their scheduling.

Level Number of components

System
Algorithm

RTL

Abstraction
Accuracy

Gate

Transistor

Figure 1: Abstraction levels in SoC design (source [13])

Looking at the levels of abstraction of the SoC design gives anothepguige to the com-
plexity of designing such systems. The process starts with a functioraitémn on system level,
where only the major function blocks are defined and timing information is rnatapgured. Dur-
ing the SoC design process, the system description is refined step bydtagdditional details are
captured. That process leads to a cycle accurate fully functionahsyscription in RTL, which
is the starting point of the production process. As Figure 1 shows, therdrabeaptured informa-
tion increases by an oder of magnitude with each level of the design prodits each step within



the levels of abstraction a multi-dimensional design space has to be exploneteirt@make the
necessary decisions.

The goal of SoC design paradigm is to guide the designer through thegsroand aid the
decision making. A well-defined flow of design steps makes the procesgyewtria. The design
steps and their associated models will be described in the next paragraphs

1.1.3 SoC Specification

Hardware/Software co-design is an integral aspect of the SoC dedsiggquires a language that
is capable of capturing the requirements of a hardware design from Mmations to complex
timing requirements, as well as the complexities of current software desigme 8xamples of
such languages are SpecC [11], an ANSI-C based language extansithe C++ library extension
SystemC [15].

Those languages allow grouping of functionality to behaviors, which laiebe freely mapped
to processing elements. In order to allow this free mapping the computationtteseparated from
the communication. Therefore communication between the behaviors is dpstedined as chan-
nels. The channel specific implementation (e.g. an AMBA protocol) will be fileduring later
refinement stages. The specification model is free of such implementatidin(aetetheir respec-
tive constraints). The SpecC language further introduces many dsrfoem hardware description
languages like VHDL and Verilog. It introduces the concept of captwsatgeduling information in
the language, such as sequential, parallel and pipelined execution p&€b€ &anguage very much
supports the goals of specification capturing. It allows describing a fufigtional model that in-
corporates design constraints and has a simulation environment for aratategalidation against
a set of test vectors. The next section describes the exploration famehment steps to transform
the system specification into a manufacturable description.

1.1.4 SoC Design Space Exploration

In conjunction with the SpecC language a design paradigm was introdwbézh formalizes the
individual refinements steps. With that the designer has guidelines on heffidiently handle
the immense design space. Figure 2 shows an overview of the design flaigo lindicates the
integration of the validation flow. The tool suite provided with the SpecC laggefosely follows
the outlined design flow. The following paragraphs will describe eacigaasep.

The SoC design starts with the specification model, which is a purely functivode| - free of
any implementation details. It focuses on capturing the algorithmic behaviailamdg a functional
validation of the description. The model is untimed and allows only for caudakimg. Once the
specification model is finished, it will serve as a golden model, to compare $iomutasults during
the design cycle.

Architecture information is added during the Computation design. During thpspstEessing
elements are inserted into the system and the previously defined functidraalibrs are mapped to
them. A processing element can be a predefined standard comporteassieneric processor core
or a DSP, but a custom specific hardware component as well. Paranseiersaas clock frequency,
of the inserted elements can be adjusted to the application needs. Basedrmal sitdistics, early
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Figure 2: Design methodology for SoC design (Source [12])

estimations about the runtime performance can be made. This gives theetl@sgfirst feedback
about the design decisions. Once the computation design is finished, Hiteettoe model that
captures the decisions is created. This model is the first timed model. It talgasoonputing time
into account; all communication between the processing elements execute timeer

The next step in the refinement is the Scheduling Refinement (not showis igrdph). This
refinement allows the designer to select suitable scheduling mechanisms txédsging elements.
The scheduling capabilities range from an off-line static scheduling, wdliokvs the most pre-
dictability, to a priority based dynamic scheduling.

The Communication design allows the user to select busses and protocats.thdesarlier
defined abstract communication channels are mapped to physical bngspsotocols. Detailed
information about a utilized protocol is added. The resulting Communication Inradledes spe-
cific instructions for the particular bus implementation, like the access logiclius anaster or bus
slave.

The synthesis step concludes the the design flow. Here the Registefeflamsel (RTL) code
for the hardware will be generated with the prerequisite of RTL compaaiétation, their func-
tional mapping and scheduling. As a result of the hardware synthesidesamcurate description of
each hardware processing element is created. Similar activities take @idoe $oftware synthesis.
Here specific code for the selected RTOS is inserted and target spsséimbly code is compiled.
The result is a cycle accurate model of each software-processingré|emtéch can be simulated



using an instruction set simulator and executed on the target processoicombination of both
synthesis parts is captured in the Implementation model, which gives a cycleatrdescription
of the whole system.

1.2 Problem Definition

As it was described in the previous section the SoC design processasmped in several steps that
formalize coping with the immense design space. Models of predefined sfasaaponents, such
as basic communication elements, are needed for ease of design. Furtheratiiiple models at
different levels of abstraction are needed for each standard comipamegching the stage within the
design flow. An very abstract model can be used for fast high ley@beation during early stages
of the design, whereas a detailed model that yields most accurate reswedisdrfor production
validation.

The scope of this work is to model a library communication component as syralbptiepicted
in Figure 3. In particular, AMBA was chosen since it reached, espeaéihly introducing revision
2.0 of the standard in 1999, a wide acceptance for interconnections wislyst@m-on-chip. With
ARM’s strong support for design, development and testing it pushight:first-time” development
and the bus AMBA specification became one de facto standard for orbakif2]. The goal this
work is to provide a bus functional model oflan AMBA bus, that is synttase, and to model the
bus as well at higher level of abstractions that allow a high simulation pediace.

W
IP Library

Transction Level Model

D

Arbitrated Transction Level Model

Figure 3: Scope of work: modeling of a communication IP (Symbolic Depiction)

Throughout the work appropriate levels of abstractions should bentiosthe abstract models.
The implemented models should be validated against the standard with respeattionality
and timing accuracy. They should furthermore be compared to each ottemia of execution



performance and simulation speed. Based on the experimental resultsbngusthould be made
on how to choose the right model for a particular goal.

1.3 Outline

In the remaining part of the documentation, first a general introduction té&RKBA [bus gives
the reader an overview of the specification. The overview is followed exliapter on the actual
design. The different models will be introduced. Their design will includayared approach.
Based on the design, accuracy expectations of each model will betsbescr

In the validation chapter (Section 4), the reader will find a functional and girsatidation of
the implemented models. Those validations will be made according to the speaifi&tio

The Section 5 shows measurements of the simulation speed and comparesitheyaof the
individual bus models. It shows what trade offs the designer has to foakesing a particular
model. Finally Section|6 concludes and gives a summary.

1.4 Related Work

System level modeling has become a more important issue over the recesitagea means to

improve the SoC design process. Languages for capturing these madelsden developed, such
as SpecC [11] or SystemC [15]. Furthermore capturing and designinghaaication systems using
transaction level models has received research attention.

Sgroi et al. [22] address the SoC communication with a Network on Chip Mp@roach.
They propose partitioning of the communication into separate layers that ftiilb®@pen Systems
Interconnection (OSI) structure. Software reuse is promoted with asaserof abstraction from
the underlying communication framework.

Siegmund and Mller [24] describe an extension to SystemC, and propose modeling of a SoC
at different levels of abstraction. They describe three differenidevieabstraction: the physical
description at RTL level, then a more abstract model that covers individaasages, and a most
abstract level that deals with transactions.

In application of transaction level models [15], the topic of capturing comnatioigs within a
SoC has received attention. In particular the widely used bus specifidati®A was the goal of
modeling support.

Most relevant to this work is ARMs definition of the Cycle Level InterfaC&l) of the AMBA
bus [1]. This specification defines how to implement the AMBA bus architeétu8ystemC [21]. It
has the goal of defining an interfacing standard between SystemC desiighsrodIP components.
It is intended to be used for system simulation and transaction based Virifica

In [6] Caldari et al. describe the results of capturing the AMBA rev. 218 $tandard in Sys-
temC. The bus system has been modeled at two levels of abstraction, fisstumbtional model on
RTL level and second a model on TLM level. Their Transaction Level 8168LM) model reached
a speedup of 100 over the RTL level model.

Another modeling approach of the AMBA bus architecture is shown in [2}ere a
transaction-based modeling abstraction level was described. While maigttieibus cycle accu-
racy, this approach achieved a 55% speedup over the bus functiodal.mo



CoWare [7] provides with ConvergenSC a commercial AMBA TransactiBoa Simulator.
It allows for a fast cycle accurate architectural optimization and verificadioan SoC design.
With that it provides a solution for designing system-on-chip products thk¢ mse of AMBA bus
specification and are described in SystemC.

2 Introduction to the AMBA Bus

The Advanced Microprocessor Bus Architecture (AMBA) (see [3jined by ARM is a widely
used open standard for an on-chip bus system. This standard aims theasenponent design,
by allowing the combination of interchangeable components in the SoC designoniotes the
reuse of intellectual property components, so that at least a part obtBal&sign can become a
composition, rather than a complete rewrite every time.

Thel AMBA standard defines different groups of busses, which auiedity used in a hierar-
chical fashion. The Figure 4 shows a schematic overview of a typical prccessor design. The
design usually consists of a system bus; either the older version the éetV&ystem Bus (ASB), or
the more performant Advanced High-performance Bus (AHB). All highfgrmance components
are connected to the system bus. Low speed components are connetiegéeoipheral bus, the
Advanced Peripheral Bus (APB).

High-performance High-bandwidth

ARM processor on-chip RAM
B | | ust || Timer |
. , R
High-bandwidth AHB or ASB | | APB
External Memory D
Interface G
E ’ Keypad ‘ ’ PIO ‘
DMA bus
master AHB to APB Bridge
or

ASB to APB Bridge

Figure 4: AMBA hierarchical bus architecture (Source [3]).

The system busses ASB and AHB are designed for high performanoection of processors,
dedicated hardware and on chip memory. They allow:

e Multiple bus masters

¢ Pipelined operation

e Burst transfers

The peripheral bus APB on the other hand is designed for low powgrhseals with a low

complexity bus interface. The APB can be connected via a bridge to botbnsysisses AHB
and ASB. The APB bridge acts as a master on the APB bus and all petiplegiees are slaves.



The bridge appears as a single slave device on the system bus; it hidnedRg2B control signals,
performs retiming and buffering.

Between the two system busses the AHB delivers a higher performamdéstbller counterpart
ASB. The AHB features:

Retry and split transactions

Single clock edge operation

Non-tristate implementation

Allows wider data bus configuration (e.g. 64 bits and 128 bits)

Retry and split transactions are introduced to reduce the bus utilizationcBotie used in case
the slave does not have the requested data immediately available. In castrpfteansaction, the
master retries the transaction after and own arbitrary delay. On the otietirha split transaction
the master waits for a signal from the slave that the split transaction camieated.

One major factor for the high performance of the AMBA system busses sipledined access.
For that, each bus access is executed in three separate stages, whislertap between masters.
The three phases for the pipelined bus access are:

Arbitration Phase. A master requests a bus access to the arbiter. The arbiter grants the acces
within an arbitrary number of bus cycles (at least one). Multiple masters etaest the bus
at the same time, however only a single master is granted at any given pointin time

Address Phase.The granted master applies the address and control signal to the busddress
and control signals determine the activity for the next phase.

Data Phase.Depending on the control signals from the previous phase (e.g. writgidingeither
the granted master or the selected slave write the data to the data bus.

Thel AHB standard defines a non-tristate bus interface, which simplifiesetigrdof the bus
interfaces. It furthermore simplifies simulation of the bus system, since thlg ttage or four value
logic - necessary for simulating a tristate interface - is not required. Ortltlee lsand, a non-tristate
bus interface increases the number of connection for each bus isterdac and write bus have to
be handled separately. This however is not a limiting factor, since the Btensys targeted for
on-chip connections. It does, however, require an interconnecéitwonk, in which multiplexers
select the bus access for each device. Figure 5 shows the AHB imtexat@n network.

Three separate virtual busses, implemented by multiplexers, compose tleeringction net-
work. The address / control bus (represented with HADDR) and tlie wata bus (represented
with HWRITE) are written by each master. A slave writes to the own portion ofghd data bus;
a multiplexer selects the bus portion of the active device and distributes tlogeskedignals. Since
the AHB performs operation in a pipelined fashion, two separate multiplerersegessary for the
address / control bus and the write data bus; their access happepaiatsestages of the pipeline.



Arbiter
HADDR
HADDR HWDATA Slave
#1
Master | HWDATA HRDATA
1
# HRDATA
HADDR
HADDR HWDATA Slave
#2
Master | HWDATA Address and HRDATA
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HRDATA
HADDR
HADDR HWDATA Slave
#3
Master HWDATA Write data mux HRDATA
#3
HRDATA Read data mux
HADDR
HWDATA Slave
#4
HRDATA

Decoder

Figure 5: Interconnection network for the AMBA AHB (Source [3]).

3 Modeling

As the introduction has motivated, high simulation speeds are necessanydfficient design space
exploration. High simulation speeds allow the designer to explore more solutimrssincreasing
the chance of arriving at solution that is closer to the optimum. One possibilityfést exploration
is modeling at higher levels of abstraction (i.e. TLM) and gradually filling in iteetantil a de-
tailed synthesizable model is reached. In order to effectively supiffatant levels of abstraction
throughout the design process, a matching set of abstraction levelsréoyldmmponent is needed.
Due to their frequent use this is especially true for bus components.

The following sections describe the design of the bus models for the AMBA.ARirst a
generic layering approach will be introduced, which helps coping with dmeptexity of a bus
simulation. The OSI layering scheme [16] was used as a referencerfeindehose layers. The
sections following that will describe each bus model in detail and show hewattered approach
is applied.

3.1 Layering

A layered architecture was chosen for the communication system modelingentorcope with
the complexity of communication, in that it is similar to a general network stack impliztiem
[12] has introduced the applied layering structure as shown in Tabled lajkring structure was
derived from the ISO OSI reference model [16].
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| Layer | Interface semantics | Functionality | Impl. | OSI |
] Application H N/A \ e Computation \ Application \ 7 ‘
Presentatior E)Sitzl:;i’dt(yzf?’urgmiiI;naisjf ges e Data formatting | Application | 6
Session PE-to-PE, untyped, nameq messages oSyn(.:hror?ization 0S kernel 5
evl.send(voi d+, unsigned |en) e Multiplexing
PE-to-PE streams of untyped messages | e Packeting
Transport | estrml. send(voi d+, e Flow control OS kernel 4
unsi gned | en) e Error correction
PE-to-PE streams of packets .
Network estrni. send(struct Packet) e Routing OS kernel 3
Station-to-station logical links « Station typing
Link e | i nkl. send(voi d*, o Driver 2b
. e Synchronization
unsi gned | en)
Station-to-station control and data streams
ectrl1.receive() e Multiplexing .
Stream edatal. wite(voi dx, e Addressing Driver 2b
unsi gned | en)
Media Shared mgdium byte streams - « Data slicing
ACCESS obus._vvr| te(int addr, voidx*, o Arbitration HAL 2a
unsi gned | en)
Unregulated word/frame media transmission
Protocol ebus.witeWrd(bit[] addr, e Protocol timing Hardware 2a
bit[] data)
Pins, wires
Physical eA. drive(0) e Driving, sampling| Interconnect| 1
eD. sanpl e()

Table/ 1 shows an overview of the layer separation, it also indicates vehpagticular layer
is implemented and shows a representative code example for an invocatiactofayer. The
following list describes each layer in more detail. A full description can beadadn [12, chapter 5].

Application Layer. The application layer implements the computational functionality of the sys-
tem. The layers basic content is defined by the designer during the sgieifiand gradually

Table 1: Communication layers (source [12]).

implemented during the development process. During the design procesgithepplica-

tion specification is mapped onto individual Processing Elements (PESs). appli&ation
layer defines the system behavior and describes how the user datedsg@d in the system.

Presentation Layer. The presentation layer provides named channels, over which strucaumes
be repeatedly transferred. The data structures are converted byesentation layer into
blocks of ordered bytes. Transmissions using the presentation layeliatde. They can be

synchronous or asynchronous.
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Session Layer. The session layer is the interface between the software application angéhatO
ing System (OS). It provides synchronous and asynchronougptaraf untyped blocks of
bytes. In case the lower layers do not provide synchronous acogsshronization will be
implemented in this layer and an end-to-end synchronized access is redilzed¢hannels
provided by the session layer are used for identification of individudiveoé entities. The
session layer multiplexes multiple message blocks into an untyped messagevsittgartine
transmitting stack. Within the receiving stack, the session layer demultiplex@sctimaing
message stream into message blocks.

Transport Layer. The transport layer provides a reliable transmission of untyped stredmesdre
PEs in the system. The channels between the PEs act as pipes that catrgahes of the
layers above. The transmission characteristics are generally asgnakroThe transport
layer implements end-to-end flow control as a part of the operating systém trdnsport
layer implement segmentation and reassembly, to split up the streams into smadktspac

Network Layer. The network layer provides services for establishment of end-to-&tig pwhich
carry the packet streams from the layers above. It completes the ogesgsiiem kernel im-
plementation for high-level end-to-end communication. The layer routegidl@il packets
over point-to-point links, separating different end-to-end paths goir@ut/h the same sta-
tion. For a particular SOC design this routing could be static, and may evelmértedicated
logical links.

Link Layer. The link layer provides services for the link establishment between twotlyiemn-
nected stations. It allows the exchange of uninterpreted packets of byiesink layer is the
highest layer for a peripheral driver inside the operating systenekeltrdefines the type of
station (e.g. master / slave) and supports synchronization primitives (lits esch logical
link into a separate data and control stream).

Stream Layer. The stream layer implements services for transporting control and datagesss
between stations. It provides merging of multiple separate data/contrahstimeer a single
shared medium. It therefore provides addressing by which it sepénateslividual streams.
The data messages are uninterpreted blocks of bytes. The format dfrttrel anessages
is heavily implementation dependent (e.g. interrupt handling, polling). Tisgatation
services are generally asynchronous and unreliable. Howeverlitigiliey may depend on
synchronization on higher levels (e.g. flow control).

Media Access Layer (1). The media access layer provides services for the transmission of a con-

tiguous block of bytes over the selected media. The layer hides the specif@memtation

of the transmission medium, it is the lowest layer that provides a medium indeqpianctess.
The media access layer provides data slicing, for that the incoming datéetraeguest,

called the user transaction, is split into individual bus transactions. Thetthe bus trans-
actions depends on the medium.

Protocol Layer (2). The protocol layer provides transmission capabilities for individual tarsstr
actions - words, shorts, bytes and defined lengths of blocks. Thedéseeperforms arbitra-

12



tion for each bus transaction.

Physical Layer (3). The physical layer implements a bus cycle access to the physical wires.

performs sampling and driving of individual bus wires. Separate facil#resprovided for
accessing the data, address and control portion of the bus. The gdHggier also provides
all implementation necessary for the bus connection scheme, i.e. in caseAfiBi¢he
interconnection network consisting of multiplexers. Furthermore the physiplementation
of arbitration is included.

For the work described in this document, parts of the library structure aixiséing modeling
environment, SoC Environment (SCE), have been reused. It wagdieermt necessary to imple-
ment all of the layers above. Instead only the media specific layers - Mediesa Layer, Protocol
Layer and Physical Layer - have been implemented. Additionally it has $fe@mn, that the link
layer and the stream layer, although technically media dependent, areafieméigprevious existing
master slave bus model of the Motorola Master Bus, hence these layerbdmvreused.

The following table lists the layers, that have been specifically implemented doANBA
model. The table makes also a connection between the granularity of simulatotefahes and the
layering scheme, as an alternative explanation of the layering.

Number | Layer Data Granularity
1 Media Access Layer User Transaction
2 Protocol Layer Bus Transaction
3 Physical Layer Bus Cycle

Table 2: Implemented layers and their granularity of data handling

The previous layer description was based on functional concerras &iternative view of the
same layering scheme, the implemented layers can be described by usingrhlkarfy of data
handling.

User Transaction (1). A user transaction is a request for transferring a contiguous bloc#taftd
or from a particular bus base address. The size of that requesitimigrb independent of
the bus limitations. The base address of the transfer is arbitrary as welltriisgactions are
used as an interface to the media access layer. They are then dividechéntm more bus
transactions.

Bus Transaction (2). A bus transaction is bus primitive. It supports transmission of individual

elements such as byte, word or long. A particular bus (like the AHB) may alppost
transporting a collection of those individual elements, which are then &aedfas a burst.
The possible values for the bus transaction size and the requiremente foagh address
depend on the bus implementation (e.g. a bus transaction may not have a3iagte$, or
bursts have to start on a long aligned address). Bus transactionsearasian interface to
the protocol layer. They are then transferred using the physical Vajf@n one or more bus
cycles.

13
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Bus Cycle (3). The timed access to a synchronous bus is performed with a bus cycldagitgnu
During a bus cycle the values of wires/signals composing a bus may beechafgpically
this access is grouped by functionality, e.g. writing of address lines /aldimies or reading
of the data lines. The physical layer provides a bus cycle access toghe bu

The above defined levels of data granularity can also be analyzed witbctes time. Figure 6
shows how a user transaction is successively decomposed in time into ther sieatients: bus
transaction and finally bus cycles. The coarse grain description of &rassaction, as accepted by
the media access layer, is divided into one or more bus transactions. Amdiralibus transaction
is transferred by the protocol layer in one or more bus cycle using tiiiiésoof the physical layer.

User Transaction (1)

Bus Transaction (2)

Bus Cycle (3)

I IIIIII|III time

Figure 6: Decomposition of a user transaction in time into bus transactionsiaraydes.

Following the concepts of system level modeling, each of the describet bags implemented
in form of an individual channel. Using the channel concept allowsreemient handling of the
abstraction levels. As an example the bus functional model requires alhels(all layers) for its
operation, a more abstract model may reuse a subset of the definetlishand implement only
one channel for the abstract simulation.

3.2 Graphical Notation

The graphical notation for the model description follows the definitions unsdd]. Figure 7 shows
the main items that come to use.

Behavior
Channel > < Adapter

(a) Behavior (b) Channel (c) Adapter

Figure 7: Graphical notation for model description.

A behavior (Figure 7(a)) contains the computation part of the applicatitvasian own flow of
execution. The system’s functional behavior is captured in an hierafdmghaviors.
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A channel (Figure 7(b)) captures communication facilities. It does nat ha own flow of exe-
cution. The services provided by a channel are described by arsicgedfinition. Two behaviors
may communicate through a channel, by mapping a port to an interface ofaheaih

An adapter (Figure 7(c)), also called half channel, implements an intetdalobe mapped to
another channel. The adapter does not have an own flow of execution.

3.3 Transaction Level Model - MAC

The Transaction Level Model (TLM) is the most abstract model; it is ebqueto yield the fastest
simulation speed. This model implements only the media access layer, therafosemetimes
referred as the MAC model. User data, regardless of its size, is tregmfier one chunk as one
user transaction. The bus access is checked only once for the wieolzarsaction. The fact that
the user transaction would be split into many bus transactions is ignoredéntordeach higher
simulation speeds. The TLM is not wire accurate. The communication is pstbon a more
abstract level than pins and wires. The model is not cycle accurate iasalsc

Figure 8 shows the connection schema for two masters and two slavesTarvheodel. The
bus is simulated by a single channel implementing the media access layer; allsnzastesiaves
directly connect to it. There is no distinction made between the masters camhithe bus, hence
no priority based access between the masters is observed. Insteadrenhaccess to the bus is
avoided by use of a semaphore, hence the order of concurrermyties relies on the simulation
environment.

testMaster0 testSlave0

..MACLink
TLM

testMaster1 testSlave1

Figure 8: Transaction Level Model (MAC model) connection scheme

In the model implementation done for this work, the user data is transferirglaisinglemem-
cpy between master and slave. The timing is simulated by a simgitfor statement covering the
whole user transaction. The calculation of the wait time takes into accountatyhéhe transaction
would be split into bus transaction. A high simulation speed is expected duefiwatiédow number
of operations per user transaction.

Two variances of this model were defined for evaluation purposesTIhkvariance A (TLM
(a)) performs as described, concurrent access is sequentializién mse of a semaphore. The
TLM variance B on the other hand does not prohibit concurrent accas a result two masters
may access the bus at the same simulated time. One of the two variances willdbedsélging the
evaluation process.
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3.4 Arbitrated Transaction Level Model - Protocol

The Arbitrated Transaction Level Model (ATLM) simulates the bus actesg granularity of bus
transactions, at the level of the protocol Idyelt is the first to perform arbitration, which is done
as well at the level of bus transactions. To compose the ATLM, the medicesatayer implemen-
tation is reused from the later described bus functional model. The medicessatayer slices a
user transaction into individual bus transactions, which are then treedfiesing the protocol layer
implementation for this model.

Figure 9 shows the symbolic bus scheme. A hardware abstraction layeatedraround each
application behavior. The channel for the media access layer in inlined etwtidware abstraction
layer and the application behavior is connected to this channel. The bus latgdoy the channel
implementing the protocol layer. The slaves are directly connected to thisehdrhe masters on
the other hand are connected through individual half channels (NastecolTLM), which are re-
quired for defining the master’s identity. The identity is necessary forrately simulating arbitra-
tion. The scheme ’identity through connectivity’ was chosen for modelirthemmaster’s identity,
since it closely resembles the physical implementation, where the master’s idedefyned by its
connection to the arbiter.

testMaster0_HAL L|_'| testSlave0_HAL ————
...Master ...Master ...Slave
testMasterd [1— | viacrimk [ | protocorTih MAGLnk | ) testSiave0

...Protocol
TLM

testMaster1_HAL Ll_—l testSlave1_HAL

...Master ...Master ...Slave
testMastert [4< MACLink 4( ProtocolTLM MACLink >7:| testSlaver

Figure 9: Arbitrated Transaction Level Model (protocol model) cotinacscheme.

Since the ATLM implements the protocol layer as the lowest layer, it has tade@arbitra-
tion capabilities. With the previously described identity of each master, amatearbitration can
be provided. The AHB definition does not require a specific arbitratiberse, so a priority based
arbitration was implemented. In this model arbitration is performed on the gragpwiba bus trans-
action. The arbitration scheme was implemented without an additional contiésh gim addition
to the executing masters), in order to ensure fast execution speed.

Thel ATLM with its arbitration per bus transaction is expected to be accuraadlin case of
locked transfers. In such transfers, a granted master may not regieskduring bus transaction,
not even by a higher priority master. Hence all arbitration decision are dora bus transaction
boundary. However for unlocked transfers an inaccuracy is eéxgebere the bus owner ship may
change even within a bus transaction (i.e. when a burst of a low priority ngettepreempted by
a high priority master).

loutside of this work the Arbitrated Transaction Level Model may also fexned to as the protocol model. It may
be even understood as a Transaction Level Model since the TLM samlg a broad definition.
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As with thel TLM, two variances have been created for the ATLM. The waga differ in the
accuracy of the arbitration. The first variant of the ATLM, the ATLM, (Bllows the concept of a
delta cycle asitis used in hardware simulators. During a simulation two masteisti@iapt an bus
access at the same simulated time. However due to the serialized executiosiofuleion code,
one master’s code will be executed earlier. In order to handle this situagorbM (a) does first
collect all bus requests during one delta cycle and then makes the deasied on the collected
requests. The ATLM (b), on the other hand, does not collect the lsests for a delta cycle;
it makes the decision immediately at the arrival of the first request. As &, réscase that two
masters request the bus within the same delta cycle, the master with the eadiged>@mulation
code will gain bus access regardless of the priority.

A lower execution speed over the TLM is expected for both varianceseoAThLM! Each
individual bus transaction is modeled in terms of timing and arbitration individuatiyferms of
execution speed, the ATLM is expected to outperform the bus functiondéehich covers the
bus in all detail.

3.5 Bus Functional Model - Physical

The bus functional model is a synthesizable model bus model that cavensitag and functional
properties of the bus definition. Communication is performed at the level sfguid wires. Itis a
wire accurate and cycle accurate model of the bus.

testMaster0_PE festSlave0_PE I

HADDR/HCNTL

Master | HRDATAHRESP

0_HAL

testMaster0_HAL
testMaster0

I...MasterMacLink

HADDR/HCNTL

.Slave ...Slave
MACLink

...Master ...Master
MACLink Protocol

HRDATAHRESP | * Slave Protocol

HREQ, HLOCK

Master
Arbiter

o _/
@SIaveLPE \

AMBA AHB Bus

testMaster1_PE

HADDR/HCNTL

Master [HRDATAHRESP

1_HAL

testMaster1_HAL
testMaster1

HADDRIHCNTL

-Slave ..Slave

...Master ...Master
Protocol MACLink

MACLink Protocol

I...MasterMacLink ..Slave

HREQ, HLOCK
...Master | HGRANT
Arbiter

N _/

Figure 10: Bus functional model connection scheme.

Figure 10 shows how the application behaviors are wrapped for theubatidnal access. As
described for the ATLM, each application behavior is first wrapped inhdmelware abstraction
layer that inlines a half channel implementing the Media Access Control (M&@Yy. For the bus
functional model each bus element is further wrapped into a procedsimget. The processing
element inlines a channel instance that implements the protocol layer, wiee®MB channel is
connected to. Additionally a channel implementing the physical access is inisea result each
processing element is connected via wires to the actual bus.
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AMBA AHB Bus

HADDR/HCTL MUX Arbiter
HADDRIHCTLXO  HADDRIHCTL| HREQIHLOCKXO
HADDRIHCTL1 HGRANTXO
HADDR/HCTLx2 HADDRHCTL_SEL| HREQ/HLOCKx1
HADDRIHCTLX3 HGRANTX1
HREQIHLOCKx2 HMASTERH
HGRANTx2 HMASTLOCKN
WDATA MUX HREQIHLOCKx3
HWDATAXO HWDATA! HGRANTx2 HDATA_SELN
HWDATAx1
HWDATAX2 HWDATA_SEL| :EE:DY
HWDATAX3
Decoder
HRESP/HREADY MUX
RESPHREADY ~ HRESPHREADYxO HADDR/HCNTL HSELx0N
HREADY HSELx1H
HRESPHREADYx1
RESPHREADY_SEL HRESPHREADYx2 HOLK HSELCR
HRESPHREADY:3 HSELx3n
HRDATA_SELN

ClockGen
HCLK

Figure 11: Content of the bus functional channel.

For ease of understanding, the bus in Figure 10 is graphed as a thatowever the bus
consists of many individual elements as the Figure 11 shows. Since the Afifitidn defines
the bus access without tristate outputs, a set of multiplexers is required ¢b agdleess, data and
control signals from the active bus components. Additionally the bus furatimplementation
contains a clock generator, an arbiter and an address decodee Rifsasback to Figure 5 for an
overview of the AHB interconnection scheme.

As it can be seen by the inlined channels, the bus functional model us#ssalibed layers.
Actual wires are used for the connection of the bus elements. The busav@geriven and sampled
according to the AMBA specification with the rising edge of the bus clock. ftnesical layer
provides the access to the bus on a bus cycle basis. The services bi/#ieablayer are used by
the protocol layer, which implements arbitration and data transfer. Theatititiis done for each
bus transaction, and for unlocked burst the bus grant state is vedfittibaally on each bus cycle.
As in the ATLM the protocol model is invoked by the MAC layer, which slicesubker transaction
into bus transactions. Figure 12 and Figure 13 show an overview of thermapted channels for
the master and slave side respectively.

3.6 Modes of Access

The utilized design environment SCE defines two distinct ways of accessirgjdves, namely the
memory style access and the rendezvous style access (also refereelihtostyle access). Both
styles are depicted in Figure 14.

In a memory style access (Figure 14(a)), the slaves accessible memoryseedxp the bus
over an address range. A master may access the provided addiggssiramy point in time. This
access style is applicable for memory and for memory mapped 10. This styteedsallows burst
accesses for improved performance. The abstract notation in Fig(agiddicates the memory as
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HADDR
HWDATA
busMast | Pr . busMast |...Master __busMaster HRDATA

Tk MACLink Stosol \ Protocol  —— HoNTL

HRESP

IAmbaAHBbusMaster
MACLink
masterWrite(ADDR,
pData, len)
masterRead(...)

|IAmbaAHBbusMaster
Protocol
{Read|Write}Byte

IAmbaAHBMaster
AddresCycle
AddressWrite
{Read|Write}Word
{Read|Write}Long

DataWriteCycle
DataReadCycle

HREQ
HLOCK
...busMast: |_semaph
i — ...busMasts HGRANT
Link MACMem ore \ o

IAmbaAHBbusMaster
MACMem
masterMemWrite(ADDR

|_semaphore
aquire
attempt
release

pData, len)
masterMemRead(...)

Figure 12: Channels for master bus functional model.

TA I..busSlave ...busSlave 1...busSlaveProtocol ...busSlave I...SlaveMACLink
] ...busSlave Protocol MACLink
IAmbaAHBbusSlave 1AmbaAHBbusSlaveProtocol IAmbaAHBbusSlave
ListenCnt| ListenCntICycle MACLink
ListenCntICycle {Read|Write}Byte slaveWrite(ADDR,
DataWriteCycle {Read|Write}Word pData, len)
DataReadCycle {Read|Write}Long slaveRead(...)
TwoCycleResp(<errors>) {Read|Write}Burst
TwoCycleResp
...busSlave I...SlaveMACMem
MACMem

|IAmbaAHBbusSlave
MACMem

serve(ADDR, pData,

len)

Figure 13: Channels for slave bus functional model.

19



=D

CPU 1 CPU 2 CPU1 HW PE

(@) Memory Style (b) Randevouz Style

Figure 14: Modes of access

a half channel, which was made to show that the memory has no own flowaftexe

The rendezvous type access (Figure 14(b)), simulates a message patesface. The slave
only exposes a single address to the bus for each rendezvous tyss.addie content of a user
transaction is written one-by-one to the same base address. With that a nisiifoxlated on the
slave side. This is especially useful if the address space is limited, since fisagedength does
does not influence the required address space. In a rendezviusatgss a slave waits for an
access on a particular address and further reacts to the request.afipplievel synchronization is
needed for this model, since the access patterns have to be known orvéhsidéa The depiction
of the rendezvous style access (Figure 14(b)), presents the sldvéf) as an own PE, thus it is
shown to have an own flow of execution.

Since the rendezvous type access simulates a message passing inddirfaoeds within a
message are written to the same address. Due to this addressing pattesrcdnnsot be used,
since the AHB specification requires to increase the address for eathvibein a burst. Hence
a user transaction in the rendezvous style access is transferred oninaiwidual non sequential
transfers.

In order to support both styles of access, two channel implementations MAC layer are
provided. One channel per access type, the simulation environmematgEsieode, that instantiates
both channels and uses the appropriate channel for a particulaettansf

4 \Validation

The previous chapters have presented the design and implementation d¥Bre AHB bus. In
this chapter covers the validation results. Three aspects will be desanibeate detail. First, the
functional validation is described in Section 4.1. Those tests aim to assedrtleet functionality
ignoring timing constraints. Following that, Section 4.2 describes the validatithe d¢iming accu-
racy of the bus functional model. Finally, Section|4.3 will deal with the timingesziness of the
abstract models, the ATLM and TLUM. Throughout this chapter no difféation is made between
the two variations of each of the abstract models. Thus, using the geneté nmame refers to both
variations.
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4.1 Functional Validation

In an early part of the validation, the functional correctness of eacBAMHB bus model is vali-
dated. Following a bottom up approach, a first set of tests will focus avidugl bus transactions.
Later more complex access patterns and corner cases are verified wiahdoenized tests utilizing
the memory style MAC layer and the rendezvous style MAC layer.

4.1.1 Validation of Individual Bus Transfers — Fundamental Tests

The goal of the fundamental tests validating individual bus transfers issare correct function-
ality of the bus primitives. The test provides the foundation for the cortgtruof more complex
tests. The following sequence of test was performed using the memory siel&yer of each
implemented model:

e Single Master Single Slave validates that each basic bus transaction yietasrina results.
It validated read and write functionality for Byte, Word (16Bit), Long, fidength burst (for
4, 8, and 16 beats).

¢ Single Master Dual Slave validates the connectivity and selection of multiplesskaldressed
by a single master.

e Dual Master Single Slave introduces testing of the arbitration and validateththlus is
accessed exclusively by a single master as a result of arbitration.

e Dual Master Dual Slave validates the functional independent access bushfor two mas-
ter/slave pairs.

Figure 15 shows the logical connection scheme for each of the testggrAupnge of predefined
data was transferred to/from a set of predefined addresses foingiaddual test within a test group.
Atest was concluded successful if all data arrived correctly, in thégfined order, at the predefined
addresses. Additionallgssertstatements have been manually introduced at critical places into the
channel implementations, to detect invalid states within a channel. The restiits\aflidation are
shown in Table 3. All tests for all test groups have successfully pdssedch implemented model.

Hence a correct functional behavior is expected from each model.

(a) Single master single slavé) Single master dual slavéc) Dual master dual slavéd) Dual master dual slave
parallel interleaved

Test Slave 0 Test Master 0 Test Slave 0

Test Slave 1 Test Master 1 Test Slave 1

Figure 15: Logical connection for individual bus transfer validation.
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Bus Arbitrated | Transaction
Functional | Transaction Level
Logical Connection under Test Model Level Model Model
Single master single slave, Fig 15(a) passed passed passed
Single master multi slave, Fig 15()) passed passed passed
Multi master multi slave (parallel), Fig 15(c) passed passed passed
Multi master multi slave (interleaved), Fig 15(d) passed passed passed

Table 3: Results of individual bus transfer validation

4.1.2 Validation of the Memory Interface

After having successfully validated individual bus transactions, nawpbex access patterns con-
sisting of multiple bus transactions will be validated. This validation uses raraoess patterns,
which statistically cover all access scenarios in accessing the componexdsufted long enough.
The focus for this validation is the random interaction between two masteradbass the same
bus.

Two masters and two slaves are implemented for this test. The access isneetfasing the
random access type. The memory exposed by the slaves preseatsaparess regions for writing
and reading. The following parameters are randomized for each ttemmsaead/write, the size of
the transaction, the offset within the memory and the delay between transaciitie random
selection algorithm ensures that each byte of the slave’s memory is at@essely once during
the test. Throughout the test the base address and the length of thensaction, to be transfered,
will vary. The way the MAC layer breaks down a user transaction into omease bus transactions
depends on exactly these two parameters. As a result the sequence tadrizactions per user
transaction will vary throughout the test. This diversity is a good test stiting functionality
of the' MAC layer. The delay between the operations results in a randoessapattern between
the masters. This will test the arbitration implementation and validate the exclusigesato the
bus in scenarios like concurrent bus request, back to back transmiagidmandover between a
high priority master and a low priority master. The correctness of eachirassaction is validated
directly after executing the user transaction; the master and slave memorig a@apared for
equality. Furthermore, after completing all user transactions, the completersnarea of master
and slave are compared for equality as well.

In comparison to the earlier fundamental tests, not all of its configuratiadsdbe retested.
The utilized connection schemes are displayed in Figure 16. For a sfutegdislation of a single
connection scheme and bus model, two masters have to transfer 128KBgtesising a random
set of user transactions of up to 100 bytes each. The test has to fulfdtitbga in the previous
paragraph and sustain the results for 1000 test repetitions. With argavesar transaction size
of 50 bytes, each bus model and connection scheme was validated with o2 Shmillion user
transactions. Table 4 indicates the results of this test scenario, and tsladee test execution was
successful for all configurations and all bus models.
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Test Master 0 Test Master 0 Test Slave 0 Test Master 0 Test Slave 0
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Test Slave 0
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(a) Dual master single slave (b) Dual master dual slave parallel (c) Dual master dual slave interleaved

Figure 16: User level logical connection for memory and rendezvowsdgpess validation.

Bus Arbitrated | Transaction
Functional | Transaction Level
Logical Connection under Test Model Level Model Model
Multi master single slave, Fig. 16(a) passed passed passed
Multi master multi slave (parallel), Fig. 16(h) passed passed passed
Multi master multi slave (interleaved), Fig. 16(¢) passed passed passed

Table 4: Results of validation for memory access

4.1.3 Validation of the Rendezvous Interface

In addition to the randomized test using the memory access style MAC layeerttieavous style
MAC! layer has to be verified as well. The two implementations differ in the way shieg the
data. Here again random accesses have been utilized, varying thdrigliosrameters: read/write,
size, offset, delay between accesses. In difference to the prewatidation, only the independent
access of two master slave pairs was tested (Fig. 16(b)). The other hmeatmn schemes (Multi
Master Single Slave and Multi Master Multi Slave (interleaved)) were ntdédesince they are not
applicable in the used simulation environment.

For the rendezvous style access, the simulation environment makes thgtesy that each
access is predictable. As a result of the assumption, the slave code teasrtplémented so that
a particular user transaction is expected. Now, if two masters simultane@aglgst access to
different portions of the slave’s memory, the slave has to predict whiehttemsaction is executed
first. Since this depends on the arbitration, it is declared undecidablesfave In such situations,
the memory style access should be used, hence the configurations applible for this test.

Limiting the validated configurations does not limit the generality. The two actgkes for
thel MAC layer differ in how a user transaction is sliced into bus transactibhis. feature can be
validated in any connection scheme. On the other hand the connection sctidfierein the way
they create contention. The contention however is handled by the lowes laylsch already have
been successfully tested during earlier tests.

Table| 5 summarizes the performed functional validations with the same setoéation
schemes as before (Figure 16). The same execution criteria as for therynietedface valida-
tion were used here. Thus more than 2.5 million user transactions had to skettrad correctly
for a successful validation of one bus model and connection scheneetalble shows successful

23



test execution for the tested configuration for the three abstraction |&u$unctional, arbitrated

transaction level modeling and transaction level modeling.

Bus Arbitrated | Transaction
Functional | Transaction Level
Logical Connection under Test Model Level Model Model
Multi master single slave, Fig. 16(a)  N/A N/A N/A
Multi master multi slave (parallel), Fig. 16(h) passed passed passed
Multi master multi slave (interleaved), Fig. 16(¢) N/A N/A N/A

Table 5: Results of functional verification of rendezvous access

4.2 Timing Validation of the Bus Functional Model

Considering the results of the previous section, a correct functiomevimr of all implemented
models can be expected. Additionally important is a timing validation, which dealdhettorrect
behavior of each signal in the temporal sense. This is particularly impdotahe synthesizable bus
functional model, as a prerequisite for interoperability with other intellectuaignty components.

A validation of the timing behavior requires an independent referencee @iphysical imple-
mentation of the modeled bus structure was not available in the lab at the puwiritiog, the timing
behavior of the model was compared against the specifications. The ifull@e&ctions will show
the comparison of the implemented bus functional model against transfarsreselected from
two sources: the AMBA specification [3] and the AMBA AHB Cycle Levetdrface [1], which is
an interpretation of the AMBA specification.

The selected scenarios have been be recreated with the implemented ¢tisn&immodel,
which in this setup simulates a bus with 50MHz bus clock. Additional probes been inserted
into the test bench for tracing of all important bus wires. The traces apéaglesd as waveforms,
which have been generated usigtgwave(see [5]).

4.2.1 Basic Pipelined Bus Access

As described in Sectian 2, the AHB allows a pipelined access to the bus. aBiedtages of the
pipelined bus access are validated in the first pair of waveforms.

Figurel 17 shows the reference waveform and Figure 18 displays shésref the actual im-
plementation. As a general note, the specification [3] requires signalsvaiteat the rising edge
of HCLK, at this point the signals are sampled from participating bus elemehisH are all im-
plemented as sequential logic, see [4, question #4120]). The implemented doas not cover
subcycle events, therefore each signal is applied immediately after the clsitigedge. Hence
there will be an acceptable subcycle difference between the refesaddbe implemented model.

The following three points within the displayed transfer are of interestdoiding the timing
correctness of the implementation:

1. In bus cycle T1, the master requests bus access. Within an arbitrabenof bus cycles (at
least one) the arbiter grants access to the bus. In the particular dfevameform, the arbiter
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T T2 T3 T4 T5 T6

HCLK |
(C
HBUSREQx [/ 7
HGRANTx S§ /]
(C
. )
HMASTER[3:0] ¢ )O( #1
(C
. )
HADDR[31:0] ¢ )O( A )O( A+d )O(:
{C
HWDATA([31:0] ;; X:XData @ )OC
Figure 17: Reference sequence from [3] showing pipelined behavior
86593300 ps 86627900 ps 86662400 ps
base/ HCLK . 1 1. [
ar bi t er / HBUSREQx 1 ] \ [
ar bi t er / HGRANTx 1 | 1
ar bi ter/ HVASTER] 0: 3] $1[$0 [$1 [$0
base/ HADDR[ 0: 31] $+ [$S0CB040EQ [$4CB040EQ [$OCE
base/ HWDATA[ 0: 31] $471108E0 [$47110817 [$471108E0

Figure 18: Waveform of implemented bus model, showing pipelined behavior

grants the access in T3. In the waveform of the implemented model, the bugiested in
the first clock cycle and granted in the second. Again, granting the busnaitingle cycle is
valid, an example of a one-cycle-grant can be found in the refereagefarm in Figure 211.

2. In the bus cycle after granting the \Bushe granted master applies the address and control
signals to the bus. This happens in the reference in T4 and in the actual inmpéeimein the
third bus cycle, which is in both cases the cycle after the bus grant.

3. The data is written in the bus cycle after applying address and contastriafion. The
reference waveform shows this in T5, the actual implementation shows it fouhth cycle.
In both cases it happens in the cycle directly following the address aritbtsignals. As it
will be seen in later waveforms, the pipelined access allows concurrerglyiag the data
for one cycle and the address and control lines for the next cycle.

4.2.2 Error Response

The previous subsection has shown that the basic pipeline stages areeshisy the implemented
model. This behavior was shown under the assumption that the selectedlslays signals to
proceed with the current transfer. In this subsection this restriction witkimved.

2A simplifying assumption is made for this subsection: the currently seletzteel signals to proceed with the transfer,
which is done by asserting HRESP == OKAY, and HREADY == HIGH.
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Thel AHB standard defines that a slave has to reply back to the mastercfobes operation.
This reply indicates the success of the bus operation and is done orbergarycle. Multiple slaves
may be selected in different phases of the transfer due to the pipelinesisatature of the AHB.
However, only the selected slave that is in the data phase asserts the fephaiion. The reply
information is provided by the following two signals:

HREADY is used by the slave to extend the the data portion of an/AHB transfer. Necisterts
a wait state in the bus access by asserting LOW to HREADY. A transfer ibdidiegardless
of the success once HREADY is HIGH.

HRESP is asserted by the slave and indicates the status of the current transésibl® values
are OKAY, ERROR, SPLIT and RETRY. OKAY indicates a successfohpletion of the bus
operation. The latter three result codes indicate additional handling for peisition and
they require a two-cycle response. With a two-cycle response the pipélthe bus access
is flushed.

Figure 19 shows how a slave indicates a failed transfer. By setting HREADXv, the slave
inserts one additional wait state to make the decision about the transfdpliblagéng timing points
are of interest in order to validate implemented model as shown in Figure 20:

1. In the bus cycle following the address phase, the slave asserts HREBADDW and inserts
a wait state. This happens in the second cycle in the reference and in theyttlie of the
implementation waveform.

2. The slave has made the decision of failing the bus transfer in the thirdaftie reference
waveform. At that point it starts the first cycle of the two-cycle erroposse. The slave
applies the value of ERROR to HRESP. This happens in both waveforms ipdleeadter the
first wait state.

3. In the second cycle of the two-cycle error response the slave stilbaffRROR to HRESP.
In order to finish the bus transaction HREADY is set to HIGH. This behaaarbe observed
in both waveforms in the second cycle after the first wait state.

4.2.3 Unlocked Burst Handover

The previous timing validations were concerned with a single master. Thargzeim the following
subsections will deal with the handover between two masters on the sam@Hiassubsections
scenario describes the handover between unlocked burst traotfers masters. In an unlocked
transfer the granted master may lose bus grant during the transfer, ifex pigory master requested
the bus.

In the scenario presented here, a high priority master performs a udlbaokst during which a
low priority master requests the bus. Therefore the high priority masterémisie ongoing burst
and the low priority master reaches the bus grant after that. This type didndover is most
efficient, because it allows a single-cycle master change and the bug d&@® 86 utilized. In the
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HCLK

HADDR[31:0]

Control Control

2 D

Data
(A)

A [/
OKAY ><:>< ERROR| X X ERROR
OC__ XX

Figure 19: Reference sequence from [3] showing an error regpon

SReNe

HWDATA[31:0]

HREADY

/
/

HRESP[31:0]

S
=0
SEARRR

HRDATA[31:0]

I I rre | 45732 ps 91464 ps

base/ HCLK 1 | 1 | 1 | 1 | 1 |
base/ HADDR[ 0: 31] $00000000 [SOCAFFEEO [$000(
mast er/ HTRANS[ 0: 1] 980 [Yd0 [%©0

base/ HWDATA[ O: 31] $00000000 [$47110815

sl ave/ HREADY 1 [

sl ave/ HRESP[ 0: 1] 900 [T

Figure 20: Waveform of implemented bus model, showing error response

presented scenario, however, the slave addressed in the ongostgbtire high priority master
inserts two wait cycles in the last burst cycle, which slows down the transfe

The timing correctness of the waveform from the implemented model as shokiglre 22
with respect to the reference waveform in Figure 21 can be checkétlgllowing aspects:

1. After getting the bus granted (cycle T2 in the reference) the high priovitgter lowers the
request line HREQ. The specification leaves it open, when exactly HRIE@ésed. The ref-
erence waveform shows that the granted master lowers HREQ direct\gefting granted.
In the implemented model however this happens one cycle later. This wascdemsure that
the arbiter has sampled the control signals before lowering HREQ. Afigrlsay the control
signals the arbiter can predict the length of the current transfer.

2. The specification (see [3, section 3.6]) requires that in the firstaamtcle of a burst transfer
HTRANS is set the NONSEQ, which can be seen in both waveforms (T3 afefeeence
waveform, third cycle of the implemented model).

3. The arbiter lowers the HGRANT signal of the granted master in the lastotaycle of a
burst, at the same time it may grant the bus to another master. The previcasigdymaster
still owns both the data and the address/control bus for the current, @yalethe data bus
only for the next cycle. The change in HGRANT lines appears in both feaws in the sixth
cycle.
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T T2 T3 T4 T5 T6 T7 T8 T9 T10 ™

CLK S N T O T SO O B I
HBUSREQ_M1 [ T

HBUSREQ_M2 _L/
HGRANT M1 a T
HGRANT_Mz2 [
HMASTER[3:0] )O( ] =
HTRANS[1:0] Y\ XX O(vonsea Y sea (T s T s X NONSEQ sz
HADDR[31:0] Y XX 0 0= 0= PO > XX Bl =
HREADY \A—ﬂ_
wwoata 1) 0 X O O | (T ) ) | T ) e
] JO__comolforburst INCRa XX INCR

HSIZE[2:0]
HPROTI3:0]

Figure 21: Reference sequence from [1] showing unlocked baratdver

|| n'e 105450 ps 158175 ps 210900 ps 263625 ps

base/ HCLK | J | J | J | J | J | J L
arbi t er/ HBUSREQx0 1

arbi t er/ HBUSREQx1

arbi t er/ HGRANTX0 |

arbi t er/ HGRANTx1 [

arbi ter/ HWASTER 0: 3] S0 I3F I50 [$1

base/ HADDR{ 0: 31] '$OCAFFEE0 300000000 ]$40000000 __ [$40000004 _ [$40000008 __ [$4000000C __ ]$00000000 [$00000004
base/ HWDATA[ 0: 31] $47110815 [$00000000 300000001 [$000000D2 __ [$000000D3 __ [$000000D4 [$000000DL
sl ave/ HREADY 1 —
master/ HTRANS[0: 1] 980 [0 [T T7@0 [7a1

mast er/ HBURST] 0: 2] %900 [R1T

Figure 22: Waveform of implemented bus model, unlocked burst handover

4. In the cycle following the change in the HGRANT signals the selected mastgdested.
This can be seen by the HMASTERNhich indicates the master owning the address/control
bus. This change happens in both waveforms in cycle 7. At the same timevihgraeted
master asserts the address/control lines for the new access. It hasdtedehat there is no
idle cycle between the end of the old burst and the beginning of the netythebus is 100%
utilized in this case. Also this fact can be seen both in the reference andinglenentation
waveform.

5. Asdescribed earlier, the selected slave can insert wait states byrigwer HREADY signal.
In this particular scenario the slave inserts two wait states in the last datacdytble burst
transfer. As aresult, the address and control signals that have @grsapplied have to remain
on the bus. Also the data on the write data bus has to remain constant in ealsasoivrite.
In this case the master, which just got the bus grant, has to keep the apgjdiedslcontrol
signals on the bus. The previous granted master has to keep the appliadahtan the data
write bus (HWDATA). In both waveforms the wait states take place in the sytlkend 8.

3The signal HASTER is driven by the arbiter and used by the selectedfstaaesplit transfer, see [3, section 3.12].
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6. In the cycle after HREADY is set to high, the pipelined bus access isnex$u As one
indication the just granted lower priority master applies the second addrémsjost started
burst. This appears in cycle 10 in both waveforms.

4.2.4 Locked Burst Handover

This scenario shows a locked burst handover. In a locked burst, @mmagy not be preempted
during the transfer, even if a higher priority master requests the buskeHdeursts are not as
efficient as unlocked bursts, because one additional cycle is spethé feandover between masters.
This additional cycle stems from the fact that the standard requires to Ap@K, the indication
for a locked transfer, until the address phase of the last transfeard &8 shows the reference
waveform; the waveform of the implemented model is shown in Figure 24. &ermining the
correctness of the timing the following points should be evaluated:

1. For a locked transfer the standard [3, section 3.11.5] requires thdtRIEQ and HLOCK
are asserted until the last address/control cycle of the burst. In betfevens this change
appears in the sixth cycle.

2. Since the arbiter samples the incoming signals on the rising edge of HCLKe# takil the
next cycle to update the grant lines, which happens in cycle 7. As a rédsulb|d granted
master remains granted for one more bus cycle, although it has finisheargtéransfer and
has not requested the bus. Therefore the still granted master has tddrttigano actual
transfer is performed in this bus cycle by setting HTRANS to IDLE. Both vi@aves show
this behavior in cycle 7.

3. As a particularity to this scenario the old selected slave inserts two addii@itagtates in
the last cycle of the burst (cycle 7 and 8). The has the effect that thgrafded master has
to keep applying the data up to cycle 9.

4. Because of the wait states, the ownership of the bus does not cfesegethough the grant
lines have changed in cycle 7) until the slave indicates it is done with thentinue operation
in the data phase. Hence HMASTER and the address/control lines anpdeied until the
cycle after HREADY is raised. In both waveforms the slave sets HREADYgb im cycle
9 and the newly granted master gets the bus in cycle 10. Both waveformsglisiow cycle
10 the arbiter updates HMASTER, and the newly granted master appliesdtessaftontrol
lines.

4.2.5 Locked Burst Handover with Master Busy

Following the specification [3, section 3.5] a master can, similar to a slavet imaiIstates into a
transfer. For doing so it inserts an HTRAN == BUSY cycle in the middle of st his indicates
that the master currently cannot perform the part of the bus operatm@asid@ve has to respond with
single cycle OKAY and otherwise ignore the transfer. The master has ptkeeaddress/control
lines constant during the BUSY cycle.
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T T2 T3 T4

T6 T7 T8 T9 T10 T

CLK I_‘ I_‘ I_‘ I_‘ I_‘ I—‘ I—

HBUSREQ_M1 [/ T\
HBUSREQ M2 []
HLOCK_M1 [ T
HGRANT_M1 [7 I
HGRANT_M2 [7
HMASTER[3:0] | )O( =
HTRANS[1:0] Y} X JO(vonsea Y sea s X bLE Y onsea
HADDR(31:0] ) X 0w > XX XX )0 o=
HREADY .
HwDATA X X X ) I ) o Data(Ad) X
N T 0

HSIZE[2:0]
HPROT[3:0]

Figure 23: Reference sequence, source [1], locked burst klando

211600 ps 296300 ps 338600 ps
arbiter/HBUSREQ«0 | |
arbi t er/ HBUSREQkL
arbi ter/ HLOCKx0 i |
arbi t er/ HGRANTXO i |
arbi t er/ HGRANTx1 |
arbiter/ HVASTER 0: 3] $F 50 [$1
nester/ HTRANS[0: 1] %00 [0 [d1 [0 [9d0
base/ HADDR] 0: 31] $00000000 [$40000000 [$40000004 [$4000000C [$00000000
sl avel HREADY 1 —
base/ HADATA 0: 31] $00000000 [$000000D1 [$00000003 [$000000D4
master/ HBURST[ 0:2] %000 [W1T

Figure 24: Waveform of implemented bus model, locked burst handover

The master in the scenario shown in the reference waveform Figure @%simsBUSY cycle
in the second address/control cycle of a locked 4 beat burst, andd@ggin in the last address/-
control cycle of the same burst. The correctness of the implemented meeethis waveform
Figure 26) can be assessed using the following points:

1. In both waveforms the granted master inserts a BUSY cycle in the bus4yéls a result
the master keeps the address/control lines constant over cycle 4 amdesthit the content

of the data bus in cycle 5 is not defined.

2. In cycle 7 the master decides not to use the last cycle of the burst. liegpprRANS
== BUSY and lowers HREQUEST. As a result, the arbiter changes bug graycle 8,
which becomes effective in cycle 9. As in previous locked bursts the aldtgd master sets
HTRANS == IDLE during the, now ignored, data phase of the last bydedcycle 8). The
new granted master owns the address/control bus in'tieu8 cycle. This behavior can be

seen in both waveforms.



T T2 T3 T4 5 T6 T7 T8 T9 T10

CLK _ﬂ I_ﬂ I_ﬂ I_ﬂ I_ﬂ I_ﬂ I—

HBUSREQ_M1 _U T\
HBUSREQ_M2 /]
HGRANT_M1 _U \)
HGRANT_M2 g
HLOCK_M1 [] 1] T\
HMASTER[3:0] I =
HTRANS[1:0] Y\ X JO(monsea Y usv Y)Y sea NN sea Y\ musv ()Y e () (wowsea
HADDR[31:0] Y} X 0~ XX = 0= N~ L
HREADY
woara 000 00 0w 0
T R { S—

HSIZE[2:0]
HPROT(3:0]

Figure 25: Reference sequence from [1] shows a locked burst veitméster inserting a busy cycle.

11 me 71400 ps 142900 ps
base/ HCLK [ 1 I 1 J 1 J | J 1 J 1 J 1 J | J L
ar bi t er / HBUSREQxO g |

ar bi t er/ HBUSREQx 1 ] L

ar bi t er / HGRANTX0 1
ar bi t er / HGRANTx 1 [

ar bi t er/ HLOCKx0 i ]

arbi ter/ HVASTER[ 0: 3] [$F [$0 [$1

mast er / HTRANS[ 0: 1] %00 [94.0 %01 [oa1 %01 [960 [94.0

base/ HADDR] 0: 31] '$00000000 [$400000+ [$40000004 [$400000+ [$4000000C [$00000000
sl ave/ HREADY

base/ HWDATA[ 0: 31] '$00000000 [$000000D1 [$000000+ [$000000+ [$000000D4

mast er / HBURST[ 0: 2] %900 [9011 [9900

Figure 26: Waveform of implemented bus model, showing locked transfebwii master.
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4.2.6 Retry

In the following presented scenario, the slave indicates that it is not ablemplete the current
requested transaction. For that the slave replies with a response cB&I BlY. This indicates to
the master to abort the transaction and retry at a later time. The time after whiohsher may retry
the operation is not specified. In the presented scenario the master attemptsyti@mediately
after the aborted bus transaction. In general the RETRY as well as tHi& Speration allow the
slave to finish the operation even though the slave is not able to supply thested data. With
that, excessive wait cycles can be avoided and the bus is available éotiathsactions.

Figure 27 shows the reference waveform and Figure 28 displaysshisréor the implemented
model. The following points are of interest for comparing both wavef&ms

1. In bus cycle 6, while the master applies the data for the second butsthzeslave inserts a
wait state. In the following two cycles (7 and 8) the slave sets HRESP to RESIdgMling
that the transfer cannot be completed right now and that the master h&tyto re

2. As aresult of the RETRY response in bus cycle 7, the arbiter remogdmithgrant from the
first master and grants the bus to the second master in bus cycle 8.

3. The first master reacts to the retry response and re-requests thecpale 9. Meanwhile the
second master performs a non-sequential single beat transfer.

4. During the data phase of the second master’s individual transfawiapplies HTRANS ==
IDLE), the arbiter changes the bus grant back to the first master in loles 1.

5. The first master starts a retry of the previously aborted operation ioyiales 11. Note that
in the reference waveform, the retried transfer is performed in a bulniie wis done with
individual transfers in the implemented model.

4.2.7 Preemption of an Unlocked Burst

The scenario presented in this subsection shows a preempted unlocgeddow priority master
performs an unlocked burst. While this burst is in progress a higheitgninaster requests the bus,
and consequently the lower priority master loses the bus grant. After thehiagfty master has
finished its own transfer, the bus grant changes back and the low prieaisyer may resume the
interrupted transfer.

Figure 29 shows the reference waveform, the measured waveforne ahfiiemented model
is shown in Figure 30. In the implemented model master 0 is the higher priory mastemaster
1 is the lower priority master. The reference waveform M2 is the high primagter and M1 has
lower priority. As a difference from the previously shown waveformshef implemented model,

4Note that both waveforms differ in the first three bus cycles. The eafar waveform shows that the previously
selected slave inserts a wait state in the last transfer. As a result the basship for the first master is delayed by one
cycle. Since the delayed bus handover was already tested in Sect®rte2additional wait state was not inserted for a
simpler test bench implementation.
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T T2 T3

T4

5 T6 T7 T8 T9 T10 Ti1 T12 T13 T4

HBUSREQ_M1 [ T\ [] N
HBUSREQ_M2 [J T\
HGRANT_M1 [J \\ [J
HGRANT_M2 g 1\
HMASTER[3:0] X = )O( » 0=
HTRANS[1:0] Y X J)(onsea Y)Y “sea Y)Y _se@ Y oie()(Thonsza (Y oee ()(nonsea Y s=a Y)Y _see
HADDRE1:0] 0 ) I ) O § O 0 ) ) G § G | G | SR ) S
HREADY 7 N 0
HRESP OkAY XX RETRY XX OKAY
HWDATA Y XX Y\ Y\ ) ) ) Y\ )X YO oaa X N ) )
e X YO conol o burs o i s Y Yo e

HSIZE[2:0]
HPROT[3:0]

Figure 27: Reference sequence from [1] showing an aborted dwestb the slave sending a retry

Il nE /84100 ps 849400 ps 914700 ps 980100 ps
base/ HLK L e L e L L er
ar bi t er/ HBUSREQk0 ] I e
arhi t er/ HBUSREQx1 1
ar bi t er/ HGRANTX0 I S e I
arbi t er/ HGRANTX1 T 1
arbi ter/ HWASTER[ 0: 3] $F [50 [$1 [$0 I3l
mast er/ HTRANS[ 0: 1] 900 [oa0 | [0 [%0 [0 [%0
base/ HADDR{ 0: 31] $00000000 [$40000000 [$40000004 [$40000008 [$00000000 [$40000004 I$
sl ave/ HREADY
sl ave/ HRESP[ 0: 1] 700 [0 [0
base/ HADATA[ 0: 31] $00000000 [$000000DL [$000000D2 [$000000DL [$00000002

mast er/ HBURST] 0: 2] 7900

Figure 28: Waveform of implemented bus model, showing handling of a reeyation. Note that
in this model the recovery from a retry happens with individual transfestead of an undefined
length burst.

11 [7000

the request and grant lines are swapped between the two masters to maefarérece waveform.
The following points are of interest for comparing the waveforms:

1. In bus cycle 2 the low priority master gets the bus granted and subshygiarts an unlocked
burst transfer. While the burst is in progress the high priority masteestgthe bus as well.

2. The arbiter observes the request of the higher priority master andehthe bus grant from
the low priority master to the high priority master in bus cycle 5 (the third beat aflucked
burst).

3. The now granted high priority master starts its transfer in bus cycle 6.e/dame time the
low priority master requests again the bus in order to complete the interruptstetrar hese
two facts can be seen in both waveforms.
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However the two waveforms disagree in cycle 6 for the HGRANT lines: whaadfierence
waveform shows a change of bus grant from the high priority master téotheriority
master in this cycle, the same change is delayed by one cycle in the implemented mode
It is the author’s understanding that the bus grant change is a redalvefing the request

line of the high priority master, which happens at the very same time in the cycaiéh
immediate change (without a rising HCLK) would require combinatorial logic irettéter.

This however is not allowed according to ARM’s FAQ [4, question #4120]

Following the argumentation presented in the FAQ the implemented model showsitte g
change one cycle later, after the arbiter has sampled the input lines atrigeedge of HCLK.
Although this difference exists between the two waveforms it has no beanirige further
timing, since the slave of the preempted burst inserts a wait state in the lagalseatycle
6). This extends the transfer of the high priority master by one cycle anksitas difference
in bus grant state between the two waveforms.

. In bus cycle 8 the low priority master owns again the address bus andeeshe interrupted
burst. The remaining last beat is performed as an individual transfeigtiésis visible during
the bus cycle 9.

T T2 T3 T4 5 T6 7 T8 To T10
e! o0 5 - -+ 7 [ [F & 1
HBUSREQ_M1 [] 0 [ T
HBUSREQ_M2 1] 1\
HGRANT_M1 [] T [7 T
HGRANT_M2 T 1
HMASTER[3:0] |} W= N XX
HTRANSs[1:0] J)(vonsea Y)Y sea Y\ _sea () nonsEa Y nonsea Yo
HADDR[31:0] W a W= X = X s 0> XX
HRESP OKAY
HREADY [ 1 [
HwoaTa X XX XX Y e Y)Y oaaa XY Data(A3) ) paam ) vaare
N — T I

HSIZE[2:0]
HPROTI3:0]

Figure 29: Reference sequence [1] showing loss of bus grantgowirst
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“ n'e 508400 ps 559200 ps 610 ns 660900 ps
base/ HOLK | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 [
arbi t er/ HBUSREQx1 T 1 [ 1

ar bi t er/ HBUSREQxO [ 1

ar bi t er / HGRANTX1 1 | I
ar bi t er/ HGRANTX0 | 1

arbiter/ HWASTER 0: 3] 3F [$1 30 31 T

mast er / HTRANS[ 0: 1] %0 90 [9a1 90 [0

base/ HADDR] 0: 31] $00000000 [$40000AA0 [$40000AA4 [$40000AA8____ [$00000AB0 [$40000AAC T
sl ave/ HRESP[ 0: 1] %0

sl ave/ HREADY

base/ HWDATA[ 0: 31] $00000000 [$00000DAT [$00000DA2 [$00000DA3 [$00000DBT [$00000DA4

mast er / HBURST[ 0: 2] 700 @11 %000

Figure 30: Waveform of implemented bus model, showing loss of the buss\ghale in a burst.
NOTE master 0 and master 1 are exchanged to match the reference wavefor

4.3 Timing Validation of the Transaction Level Models

The previous section has evaluated the timing accuracy of the bus furdctiodal. Hence this
model can now be used as a reference model for comparing the almstdels (the Transaction
Level Model and the Arbitrated Transaction). This section will evaluatdithieg accuracy of the
abstract models in comparison to the bus functional model.

The more abstract models do not capture all properties of the modeledchiteeture. There-
fore they do not have the same accuracy in all situations. It is howewsilpe to define a set of
restrictions, so that the properties, which are not implemented in the alrstdets, are not exer-
cised. When these restrictions apply, all models have to agree on thesaxaettiming. For this
modeling of the AHB the restrictions are:

e Usage of only a single master and a single slave. As described in the désigierceach
model handles the handover between masters at different level aagcuBy eliminating
such handovers the differences will not be perceivable.

e Utilization of locked burst transfer only; the more abstract models have ineglemented
making this assumption.

e A transfer initiating master should not be the default master, hence it haguestethe bus
for each access. Again the abstract models use this assumption for the tiewagse they
cannot distinguish between accessing from the default master and fmrom@efault master.
The arbitration is not modeled this detail.

For comparing the models, some example transfers have to be defined.védayirgen the
flexibility of the|AHB bus, it is not practical to exhaustively test all possibdngfers. Therefore
some representative examples with an increasing complexity have beanchdwe transfers are
defined at a level of a user transaction. Such a transaction is brokentgothe MAC layer into
smaller bus transactions depending on the user transaction size and tleldtass. The later is
important since the AHB standard makes the restriction, that all bursts haeesord aligned. As
an example the MAC layer has to transfer first an alignment byte, if the @sesfér starts at an odd
address.

35



Tablel 6 lists the selected transfers, with the transfer size, the base sadéfees to the word
boundary and an enumeration of the resulting bus transactions. All @éssattions were per-
formed with each implemented model and the number of cycles to complete eadduatiuser
transaction (which may be composed of multiple bus transactions) was netasuaedition to the
measurements, the number of cycles for each transfer has also beeallynealculated based on
the standard [3]. The results can be found in Table 7.

Offset to
Testcase| Size | Word Alignment | Resulting Bus Transactions
1 4 0 long
2 16 0 4 beat burst
3 17 3 alignment byte, 4 beat burst
4 50 0 8 beat burst, 4 beat burst, short
5 107 2 alignment short, 16 beat burst,|8
beat burst, 4 beat burst, byte

Table 6: Testcase definition for individual bus transfer timing validation.

Arbitrated
AMBA Bus Functional Transaction Transaction
Testcase Spec. Model Level Model Level Model
[specified cycles] [measured cycles] [measured cycles| [measured cycles|
1 4 4 4 4
2 7 7 7 7
3 11 11 11 11
4 22 22 22 22
5 46 46 46 46

Table 7: Results of individual bus transfer timing validation in number of lyakes.

As the Table 7 indicates all models take the exact same number of bus cycezcfoof the
test transfers. They also agree with the interpretation of the standarde i@ accuracy of the
bus functional model has been shown already (see Section 4.2), iec@nbluded that TLM and
ATLM are 100% accurate for the given conditions.

An automated test has been implemented to extend the validation above to motewnser
actions. During this test, a random set of user transactions, varyingerasix base address, is
transferred and the transfer time for each individual user transactmomipared among the mod-
els. After transferring 100000 user transactions per bus model, thisgestonfirmed as well the
timing equivalence of all models. Although the models are timing equivalentéagitien set of re-
strictions, their accuracy differs if these restrictions are taken awayioBe contains a discussion
of the accuracy results of the different models in such a case.
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4.4 Validation Summary

In summary, all the functional and timing validations were successful. All imphedemodels
have passed the functional validation. The timing accuracy of the buidnatmodel has been
successfully shown with the use of example transfers from the AMBA atand-urthermore, the
timing accuracy of the abstracted models was successfully validated fsirigted setup.

5 Model Analysis

The previous chapter has asserted that the implemented models are fulyctorract and that
the bus functional model is implemented according to. the AMBA specificatiorwa#t further
shown that the more abstract models, the TLM and the ATLM yield correct timiter certain
restrictions. With those results in mind, this chapter will explore how the implememeéels affect
the designer when modeling a system. For that two main aspects will be exafirstdimulation
performance will be evaluated, since the main premise of developing alystrdels was to speed
up simulation. This will show the benefit of each model. Secondly the accofdélce more abstract
models will be examined in a generic environment (outside of the restricticesipo Section 4.3),
which will explore the drawbacks for using the faster models. Combining bughdesigner will be
able to decide for the applicable trade-off between simulation speed anchagdor a particular
design stage.

5.1 Performance Analysis

The main goal of simulating with higher levels of abstraction is to increase the siomutpeed.
This section will give quantitative results about the performance andtassether this goal was
achieved in this implementation.

5.1.1 Test Setup

A test was devised, in order to measure the performance of each moddiicim a&/single master
is connected through the simulated bus to a single slave. No other mastengesrasia connected
to the bus. A user transaction of a certain size is performed repeatedhstaobnumber of times
without any delay in between, with that the simulation speed is limited only by the simulatio
environment. The simulation time for executing all repetitions of the user tramsacas measured
(simulation time can also be named as real time or wall clock time). The measured timié fo
repetitions was then divided by the number of repetitions, to yield the avexageition time for a
single user transaction. This process was repeated with a varying sigerafransactions, to gain
insight to the scalability of the implementation.

All tests have been performed on a Pentium 4, 2.8 GHz with HyperThreaditgy RedHat En-
terprise 2 with the kernel version 2.4.21-20.ELsmp. The simulation enviranwaenSCC version
2.2.0 (using QuickThreads).
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5.1.2 Simulation Time

The performance measurements in terms of simulation time are shown in [Figurke3{-axis de-
notes the execution time for an individual user transaction, the simulation tineex-akis denotes
the size of a user transaction in bytes. The start address for all usgattgns remains constant on
a word boundary, which avoids performance penalties due to alignmasfdra.

As described in the design section, the two abstract models have beentsplitanvariations
each. The two ATLM variations differ in the way they handle the arbitratiomLM/(b) makes
the arbitration decision immediately when a bus request arrives, wheeas itV (a) delays the
decision for one delta cycle. As a result the second variation handlesskenhere two masters
request the bus at the very same simulated time and grants the bus to the higfitgrpaster. In
contrary the variation (b) makes the grant decision immediately, hence thedrasited the master
with the earlier executed simulation code.

The both variations of the most abstract model, the Transaction LevellMitiffer as well in
the way arbitration is handled. The TLM (b) does not restrict the bussacées a result two masters
can access the bus concurrently at the same time. Hence each mastenpaddirit were the only
master on the bus. The TLM (a) does limit concurrent access and simulatieataon on the level
of a user transaction. Once a master got the bus granted, it remaingigratitéhe user transaction
finishes regardless of other masters’ requests to the same bus.

100 T T

Simulation Time [msec]

0.001 L L
1 10 100 1000

Transaction Size [bytes]

Figure 31: Execution time for completing a user transaction of varying size.

As Figure 31 indicates there is no significant difference between thetivasaof the two ab-
stract models (ATLM and TLM). There is a significant difference betwtbe major models; they
are two orders of magnitude apart.

As expected, the most accurate model, the bus functional model, is the sinveaaulation
speed. It requires 34ms for transferring 1000bytes. The Arbitrataasaction Level Model model
is faster. Here the 1000 byte transfer takes 0.48ms. The TransactiehMedel model executes
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fastest, with mere 0.0025ms. It is noticeable that the simulation time for the TLMrahbé@screase
much with an increase in size. The simulation code is almost independent chtisadtion size,
only a singlememcpyis used for the data transfer and the performance ofrtamcpydoes not
change much in the measured range. The performance graphs|forltMeaiid the bus functional
model are sawtooth shaped. A user transaction in this models is sliced into dnalteainsactions.
However, the number of bus transactions does not increase linearly withs#r transaction size,
since fixed length bursts are used. To give an example: a user transatc8owords requires 3
individual bus transactions, a 4-word user transaction on the other ¢em be transferred in a
single burst of 4 beats, resulting in a single bus transaction.

5.1.3 Simulated Bandwidth

For a better understanding, the same measurements have been graghdd Rigure 32. Here
the performance is expressed in simulated transfer band\/\@gﬁ% , In terms of
simulation performance the TLM reaches the highest bandwidth: 382MByteitsllowed by the
ATLM with 2MBytes/sec. The bus functional model only reaches a bantivaif0.028 MBytes/sec.
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Figure 32: Simulation performance expressed as simulated transfer ioémdw

The significant difference between the simulation models can be explainetheitiespective
simulation detail. The TLM model handles data transfers on the level of anasesaction. Only
C primitives are used for this communication. The ATLM model on the other ldaed break a
user transaction into many bus transactions, thus the effort is multiplied. effontine the ATLM
model uses the standard implementation of the MAC layer, hence it has teddhée interface
between the MAC and the protocol layer. Since this interface uses alb@aagtors, the simulation
requires more effort. The bus functional model is by far the sloweste sirsimulates the transfer
on a bus cycle level. Since this model is a synthesizable model all wires |[ofHBeate modeled
and additional bus elements such as the multiplexers are covered as wSe@®n 2).
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In summary, the expected performance gains where actually achievededtfirmore abstract
model the simulation speed increases by two orders of magnitude. Judgimghiegperformance
results, no selection can be neither made for a variation of the ATLM nor aafgation of the
TLM. The accuracy analysis that will be done in the next section is nefdeddecision between
the variations.

5.2 Accuracy Analysis

In the previous section, the gain of speedup by using models at highérofeabstraction was
guantified. The drawbacks of abstract modeling in terms of accuracy limisatidhbe evaluated

in this section. Unlike the performance measurements before, it is hardne defingle expressive
number that allows comparing the accuracy of the different models. Tthalaxccuracy depends
too much on the environment and the actual application properties. Therafgeneric test setup
and procedure was defined that covers a range of application spesifichat the designer can
derive the expected accuracy for a particular setup. The next seetsanibes the test setup and test
methodology, followed by the presentation of the results.

5.2.1 Test Setup

For the test setup a generic scheme, with two masters and two slaves cdria¢cgesame bus, was
used. Each master accesses one slave exclll%i\ﬁ-:igurd@ shows the logical connection scheme
for the test setup.

Test Master 1 Test Slave 1

Figure 33: Logical connection scheme for accuracy tests

During the test, each master transfers a predefined set of user transa€he user transactions
vary in the base address, length of the transaction and in the delay bdtmetansactions. The
delay between transactions simulates local computation time. During the teatierethe start
time and the duration (each in simulated time) of each individual user transactiecorded for
further analysis. The test is repeated once for each implemented bus mivadel tf& same set of
user transactions is transferred by each of the models, their resulsrapau@ble.

It is expected that the accuracy changes significantly with the amountofiocent bus access
between two masters. As an example, all transfers may be executed witlyocorzcurrent bus
access between the masters. That means, there is no overlap betwéso asgr transactions. In
such a case the timing for each master is as if it were the only master conneittetdts. Therefore
the logical connection is as if each master had its own bus and the equalttite models, as
asserted in Section 4.3 applies; then all models perform with 100% accusaeyever, with an

50ther configurations have been measured as well, but their results dddadditional insight. Hence, their presen-
tation is omitted.
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increasing amount of overlap between the user transactions, the masterfuence each other
more in the bus access and the timing accuracy will differ with each model.

The amount of bus utilization, and subsequently the expected amountsfeiramerlap, depend
on the type of application. A communication-bound application will have a highutilization, a
computation-bound application, on the other hand, results in a low bus utilizationder to cover
the range between those two extremes, the previously described testseeavecpeated with a
step-by-step increasing amount of overlap between transactions of tateriaBy adjusting the
average delay time between two user transactions of the same master, thigizai®on of each
master was varied. As a result the overlap between the transfers of thmasters differs too.
This overlap was measured during the experiment using the bus funatiadgl. The overlap (in
percent) has been defined as:

number of bus cycles with two active user transactions
number of bus cycles with at least one active user transaction

(1)

overlap= 100x

A user transaction is seen as active during the time the application is blockedtieg a user
transaction. Note that this definition is independent of the stage within the @gddduns access.

In the following subsections, the achieved accuracy of the implemented niodielsked trans-
fers and unlocked transfers will be shown. The first subsection witl @goduce the analysis
methods when they are first used. The results for each master will beydidaparately; due to
their difference in priority, the accuracy results may vary. As one effethe prioritized bus grant,
especially with higher amounts of overlap, the higher priority master may firaskferring the test
sequence earlier than the lower priority master. After that point, the lowifyrimiaster operates
undisturbed on the bus, which will affect the accuracy measuremerdsdénto exclude this effect,
only those measurements are taken into account, when both masters hgeefmighed their test
sequence, hence a chance of a concurrent access exists.

5.2.2 Accuracy of Locked Transfers

As previously described in the test setup, a test run yields an executiordref each individual
user transaction. This subsection will describe how this data is analyzttetflocked transfers. As
a reminder, a burst in a locked transfer cannot be interrupted, notxva higher priority master.

The transfer duration of an individual user transaction is an importanturee&sr predicting
the application latency due to bus access. Therefore, in a first stegdieey of the models has
been evaluated with respect to the transfer duration. For this purpeseettentage inaccuracy of
an individual user transaction is defined as:

durationys : transfer duration in bus functional model
durationest: transfer duration in model under test
. durationest— duratio
inaccuracy = 100*} Mest - rbf‘ 2)
durationy¢

Given this inaccuracy definition, a timing accurate model exhibits 0% inacgutavas avoided
to directly express the accuracy in percent, since a particular model mayhanaccuracy of more
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than 100% (i.e. the model under test predicts more than twice the simulated timef), wduld
incorrecly lead to a negative accuracy. The average inaccuracyabueser transactions of a test
sequence is displayed in the first set of graphs. Figure 34 shows ¢hagavinaccuracy of each
model over an increasing amount of transfer overlap.

T 0
—+— Bus Functional Model —+— Bus

—e— i L
—*— TLM (a) T o T (a)

. n
30 40 50 0 10
ns of Two Masters in Percent Overlap Between Trans

(a) High priority master (b) Low priority master

Figure 34: Locked transfer accuracy based on duration

As Figure 34 indicates, the ATLM (a), which collects bus requests fordaf@ cycle before
making a decision, exhibits no inaccuracy over the whole range of evdlaoegelap. Since all trans-
fers are executed locked, the arbitration decisions are done even ingffigrztional model only at
the bus transactions boundary. With this limitation the bus functional model amTthd (a) do
the arbitration decision at the same time points and yield the same simulated timing.

The ATLM|(b) yields more imprecise results. It may mispredict the arbitrationersttuation
when two masters access the bus at the exact same simulation time. Then thewrthgter earlier
executed simulation code, will gain bus access, even though it may be thepioaréy master. For
both the high priority and low priority master the inaccuracy rises with an isereé overlap; it
plateaus at 40%. Due to the higher bus utilization, fewer simultanious arbitratioests happen.
With the shorter delays between the transactions, it becomes likely that the decupied by the
other master when requesting the bus.

It is interesting to note, that the ATLM (b) performs also worse than the ThM The latter
yields a timing as if the bus were used exclusively by each master, thus ysapvadicts the
optimal transfer time. As expected, its results get linearly worse with an seiieaoverlap, since
the individual transfers will increasingly take longer than the optimum.

The TLM (a) shows the highest inaccuracies. Its arbitration decisiomaie on the level
of user transactions, whereas the real decisions are way more finedyra&urthermore, the bus
access decision in this model is independent of the master’s priority. Tbeuirsecy produced by
this model increases linearly with the amount of overlap and tops with 35%%&yerlap.

Summarizing the first measurements, all models show only little difference insggdoetween
the high and low priority master. Between the two variations of the ATLM, theiearwith delta
cycle delay is preferable, since it reaches optimal results. Between theatvabion of the TLM
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model, surprisingly the version without any arbitration yields better resul® ekpectation was
that the lack of arbitration would yield worse results.

Additionally to the average inaccuracy (computed from the absolute irsaxes), the deviations
of the inaccuracies are displayed. The standard deviation indicates aiutiaey range, so that
68% of the individual transfers exhibit an inaccuracy within this range.oAe example from the
measurements, 68% of the user transactions have an inaccuracy ofr288g,avhen transferred
using the ATLM (b) with an overlap of 40%.

viation
t

Standard De
Standard Deviation

ob— 4 . L — . ! e ob— ——

n . . . . n
0 10 20 30 40 50 0 10 20 30 40 50

Overlap Between Transmissions of Two Masters in Percent Overlap Between Transmissions of Two Masters in Percent
(a) High priority master (b) Low priority master

Figure 35: Locked transfer deviation based on duration

Figure 35 shows the graphs of the standard deviation based analysis tfgrgraphs stem from
the same set of measurements, the same conclusions as shown aboveeshdlterbus functional
model and the ATLM (a) deliver 100% accurate results. The TLM (b) isenamcurate than the
ATLM (b), since the latter may mispredict the bus grant, whereas the forasermees an always
avaiable bus. As with the previous results, the TLM (a) shows the mosturatecresults, due to
the coarse granularity of arbtiration decision.

The accuracy analysis based on the transfer duration is the measusglict ine application
latency due to bus traffic. Additionally, the overall timing (e.g. when does pipécation finish?)
may be of interest for design decisions. For this, the cumulative transferthatds the sum of the
user transactions durations, was evaluated. The cumulative transfer inreéeiged over the actual
finish time, since the latter includes the constant computation time between transdsiioulated
by a delay), which is independent of the utilized bus model.

Figurel 36 shows the results of the accuracy based on the cumulativietrame. Here the
differences between the two variations of the ATLM are significantly smalkan th the duration
based analysis. The mispredictions made in the ATLM (b) model seem tol aartcaver time.
The remaining inaccuracies between the two variations are within 2% anddmgeimdent of the
amount of overlap.

It is noticeable that the inaccuracies of the two TLM variations have reddérscomparison to
the duration based evaluation. Now the TLM (b) exhibits the highest inacias;, since this model
assumes an always available bus. With that, the predictions are almoss abhwayptimistic, hence
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Figure 36: Locked transfer accuracy based on cumulative transfer time

the error accumulates over many transactions and creates an increiffeirgnce in application
timing. The TLM (a) does perform better in that respect, even though dumes larger error on
an individual user transaction level, the mispredictions fall on both sides(tort and too long) so
that they average out. The TLM (a) predicts more correctly the timing thanlthe(id).

In summary, the models with more detail perform better than the more abstraetanibdhe
main focus rests on the cumulative transfer time. Between the variations ofLiideniodels,
the version with arbitration is selected, because it predicts more accurateadyehall application
timing. Among the ATLM variations, the version with the delta cycle delay - ATLMi¢achosen,
since it reaches 100% accuracy. It has to be noted that for lockesddrarthe bus functional model
does not have an accuracy advantage. Due to the locked transfarbiti@&ion decision is done at
the same level of granularity for the ATLM and the busfunctional model.

5.2.3 Accuracy of Unlocked Transfers

The analysis of the locked transfers may suggest questioning the aaldedo¥ the bus functional
model. This will be revisited in this section, where the unlocked transfers\aleated. In case
of an unlocked transfer an arbitration decision is done on each indiMidigecycle. A transaction
initiated by a low priority master may be preempted by a higher priority master. Smmgethe
bus functional model deals with arbitration on each bus cycle, it is expeztaelthe only accurate
model.

Figurel 37 shows the graphs for the accuracy evaluation based on tiséetrduration. Here
unlike for the locked transfers the graphs between the high and the lovityritaster differ now.
With the preemption possibility of the unlocked transfers, there are highercebahat the low
priority master has to yield access for the high priority master.

The differences previously observed between the two variations of ThMAnodel are no
longer significant for the unlocked transfers. Bioth ATLM models exhiigihiicant inaccuracies
over the bus functional model, caused by the lower granularity of the aiibitrdecision. The
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Figure 37: Unlocked transfer accuracy based on duration

ATLM model decides per bus transaction, whereas the bus functionall mewigts the arbitration
on each bus cycle.

The results for the twio TLM variations differ even more dramatically betweemrtasters. For
the high priority master the TLM (b) reaches almost 100% accruacy. Atg@smmodel assumes
an alway available bus. This is actually close to reality for the high priority masitece it may
preempt a tranfer of the low priority master. On the other hand, the oppogiigeigor the low
priority master. The predicion of the TLM (b) are always too optimistic. With amaase of the
transfer overlap, the prediction becomes linearly less.

Thel TLM (a) performs most inaccurately for both the high and the low prigrister. The
inaccuracy increases linearly for the high priority master, with the increseansfer overlap.
Since the TLM (a) performs the arbitration decision only once for eachttesaction, the error
increases with the transfer overlap. For the low priority master it is interetimgte that the
inaccuracy does not increase linearly, but it rather tails off.

As done before the duration based accuracy data is displayed agajrihesstandard deviation,
see Figure 38. The graphs do confirm what has been already aebtoitthe previous set.

The graphs for the cumulative transfer time are shown in Figure 39. Euétsdor the high
priority master are similar to what has been observed during the duratied baslysis. For the
low priority master, only the variations of the ATLM model perform comparabi@vever the TLM
models behave opposite to what has been seen in the duration basestpevatuation. Now the
TLM (b) shows the highest inaccuracies. Its constantly overoptimistidgireds accumulate and
result in almost 50% inaccuracy at 50% overlap. The TLM (a) perforetiebthan the TLM (b).
Although it exhibits a high error amout for the duration based analysis,rtbeseon the individ-
ual transfers average out, yielding a lower inaccuracy for the cumelatwsfer time. In general
comparing back to the locked transfers, all abstract models exibit higaecuracies simulating
unlocked transfers.

Considering the accuracy of unlocked transfers, there is no clea&rechetween the variations
of the TLM model. The differences between the accuracy for the highitgrand the low priority
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Figure 39: Unlocked transfer accuracy based on cumulative tratisier

master are too significant. However, since the accuracy of TLM (a) is predictable, preference
is given to this model. Both variations of the ATLM model perform very similahlygeneral, for
unlocked transfers a designer should use at least a variation of thd Alarder to gain predictable
results. However it becomes clear that only the bus functional model yetdgate results.

5.3 Analysis Summary

The performance analysis of the different models did show a speedtup afrders of magnitude
with each additional abstraction level (i.e. among the major models). Theréfar goal of dras-
tically speeding up simulation, by means of abstract models, has been fulliledperformance
analysis alone does not yield a decision for choosing among the variafitmes ATLM/and TLM;
no significant performance difference was measured between edatiorapair.
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Combining the accuracy analysis of both the locked and the unlockedaramsbvides a better
ground for making a decision in this aspect. Between the TLM variations,lNe(®) is selected. It
performed more accurately in the cumulative tests for the locked tranafetsyas more consistent
in its predictions for the unlocked transfers. The ATLM (a) is chosen antioe ATLM variations,
since it was accurate in the locked transfer tests and both variationsmpedaimilarly for the
unlocked transfers.

In general the accuracy analysis has shown that the advantagéeofsiasulation speeds has to
be weighted against the loss in simulation accuracy. The more abstract rdatididiver overall
more inaccurate results. However, the results are strongly correlatedheitipplication charac-
teristics. The guidelines of model use, extracted from this correlationdeseribed in the next
chapter.

6 Summary and Conclusions

This work has reported on the modeling of the AMBA AHB bus architectutee@ major models
have been implemented: the bus functional mode, arbitrated transactiomlegel (ATLM) and
the transaction level model (TLM). Additionally, two variations have beeated for each of the
ATLM and the TLM. The correctness of each model in terms of functionatityia terms of timing
has been validated. The AMBA models have been integrated with the SCH @esigonment.

The usability of the models has been evaluated. With respect to the simulatfompeaance, a
speedup of two orders of magnitudes was measured with each abstréetioA sletailed analysis
of the simulation accuracy of each model has been done. As a resultarfidhgsis the TLM (a) —
which models concurrency — and the ATLM (a) — which implements the delta dgtdey for arbi-
tration requests — have been chosen for continued use. Based oralygsaresults, the summary
as shown in Table/8 can be made for the user of the implemented models.

Environment Condition Applicable Model
single master bus

no overlap between masters bus access TLM
only locked transfers ATLM

unlocked transfers and low overlap
unlocked transfers and high overlap bus functional

Table 8: Conclusion summary

For computation bound applications, or when almost no overlap betweesattéons of two
masters on the same bus is expected, all models have almost accurate lrethikscase the most
abstract model — the TLM — delivers acceptable results the fastest.

In a system, where only locked transfers are used, already the ATLMeIngixes accurate
results, hence in such a case a simulation with the bus functional model iseudchfor accuracy
reasons. Also the TLM model delivers usable results. It peaks with @Hy ihaccuracy at 50%
tansfer overlap.
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Should the system use unlocked transfers, the importance of the bumfhahenodel comes
into play. It is the only one that delivers accurate results. [The ATLM maouk} be used for
estimation, in case the transmissions between masters do not overlap too Bcimé2curacy at
25% overlap). The TLM model should be avoided since it gives incomsistsults between a high
and a low priority master.

In future work, the AHB model will be extended to support more complexttarsactions like
split transfers, which will expand the usability of the model. For a furthefopmance increase,
multi-threaded master / slave bus interfaces will be included in the model. Thisliwill the
modeling environment to take full advantage of the pipelined access evan lithaccesses of the
same master. Furthermore, it is planned to model the peripheral bus ABB édficient connection
to peripheral devices.
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A Header Files

This chapter will give an overview of the implemented software structurgeheral the following
file separation was used for the AMBA model:

i_ambaAHBbus.sh contains interface definitions which are used by all models. These irgsrfac
cover the MAC layer only.

ambaAHBbusMaster.sc defines the interfaces for the protocol layer and the physical layéndor
master side. It also contains the bus functional implementation of all layetbdanaster
side.

ambaAHBbusSlave.scis symmetric to the previous file. It contains all the interface definitions
for the slave side of the protocol and physical layer. The file also cantam slaves bus
functional implementation.

ambaAHBbusTLM.sc contains the implementations of the abstract models for master and slave
side. In particular it contains both variances of the ATLM and both vaesamt the TLM.
The file contains as well the arbitration implementation for the abstract models.

ambaAHBarbiter.sc implements the arbitration for the bus functional model. The main cvs branch
contains the arbiter for locked transfers, the branstockedTrans fergnplements arbitra-
tion for unlocked transfers.

ambaAHBMuxes.sc implements additional logic necessary for the bus functional model of the
AHB; these are in particular the multiplexers (read bus, write bus, addressontrol bus)
and the address decoder.

The following sections will show the interface definitions of the implemented modbkschan-

nel declarations are listed as well, which allows insight into how the diffdegnetrs (implemented
in channels) are composed to a bus model.

A.1 i_ambaAHBbus.sh: MAC Layer Interface Definitions for Master and Slave

/% interfaces visible to the upper layers— x/
[« all MAC layer interface definitions.

two access types memory and link

twice once for the master side and once for the slave side
*/

interface |IAmbaAHBbusMasterMACLink
{

void masterWrite (nsigned long addr, const void« data, unsigned long len);
void masterReadynsigned long addr, void« data, unsigned long len);

b
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interface |IAmbaAHBbusMasterMACMem
15 {
void masterMemWritegnsigned long addr, const void« data, unsigned long len);
void masterMemRead(nsigned long addr, void« data, unsigned long len);

b

20 interface IAmbaAHBbusSlaveMACLink
{

void slaveWrite Unsigned long addr, const void« data, unsigned long len);
void slaveRead(nsigned long addr, voidx data, unsigned long len);

b

25
interface |IAmbaAHBbusSlaveMACMem

{
void serve (unsigned long addr, voidx data, unsigned long len);

b

A.2 ambaAHBbusMaster.sc: Bus Functional Interfaces and Channel Definition for
Master

1 /% Physical layer, bus protocol handling—— x*/
[l regular bus primitives
interface IAmbaAHBbusMaster
{
6 /+* GS Access methods for the Address Cysle
/x Writes out address and control signals, waits for
completion of previous Slave.
NOTE: Has to be called at beginning of clock cyclex/

void AddressCycle (

11 tAHBAddr addr
tAHBWrite write ,
tAHBSIze size ,
tAHBProt prot,
tAHBBurst burst,

16 tAHBTrans trans
);

/+ writes out the address and control signals, without waitifigr timing
NOTE: Has to be called after rising edgex/

21 void AddressWrite (
tAHBAddr  addr,
tAHBWrite write ,
tAHBSize  size,
tAHBProt  prot,
26 tAHBBurst burst,
tAHBTrans trans
)
/x write the given data on the bus and wait until slave
31 has accepted the data,

RETURNS: Status code from slawed
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36

41

46

51

56

61

66

71

76

81

s

[x

tAHBResp DataWriteCycle (tAHBData data);

/x write the given data on the bus and wait until slave
has accepted the data,
RETURNS: Status code from slawd

tAHBResp DataReadCycle (tAHBDatadata);

physical layer for master sidex/

channel AmbaAHBbusMaster (

{

¥
/%
in

{

in signal bit[1] HCLK, // from external clk, all on rising edge

in signal bit[1] HRESETnh, // low active reset signal for bus component
out signal bit[31:0] HADDR, // 32 bit system address bus

out signal bit[1:0] HTIRANS, // transfer type (IDLE, ...)

out signal bit[1] HWRITE, // write on high

out signal bit[2:0] HSIZE, /! size of transfer
out signal bit[2:0] HBURST, // burst mode selection
out signal bit[3:0] HPROT, [/ protection bits
out signal bit[HDATA BUSHIGHBIT:0]
HWDATA,  // write data bus (master> slave)
in signal bit[HDATA BUSHIGHBIT:0]
HRDATA, // read data bus (slave> master)
in signal bit[1] HREADY, // slave indicates operation complete
in signal bit[1:0] HRESP Il slave indicates return code for op.

) implements IAmbaAHBbusMaster

Protocol Layer, includes arbitration—— x/
terface IAmbaAHBbusMasterProtocol

/x convention, all functions have to be called on a rising cloelige,
this has to be guaranteed by the calling mac layef

bit[7:0] ReadBytepit[31:0] addr);

bit [15:0] ReadWordpit [31:1] addr);

bit [31:0] ReadLongbit[31:2] addr);

/I multi burst size 4, 8, 16 longs

tAHBResp ReadBurstifit [31:2] addr, tAHBData data[],unsigned char size);

void WriteByte(bit[31:0] addr, bit[7:0] val);

void WriteWord(bit [31:1] addr, bit[15:0] val);

void WriteLong(bit[31:2] addr, bit[31:0] val);

/I multi burst size 4, 8, 16 longs

tAHBResp WriteBurstpit [31:2] addr, tAHBData data[],unsigned char size);
/1 NOTE not implemented undefined bursts, burst for wordsbytes
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[+ protocol layer master sidex/
86 channel AmbaAHBbusMasterProtocol (IAmbaAHBbusMaster bus,
i_semaphore access)
implements IAmbaAHBbusMasterProtocol
{
H

91

/% Media access layer, links—— x/
/x This is a simplified version of the memory access,
— no address increase
96 — no bursts
— no alignment for addresses, off aligned access
gives bus error simulated by core dump

Compatible with AmbaAHBbusSlaveMacLinkNoAdddrinc
101 =/

channel AmbaAHBbusMasterMACLinkNoAddrinc(IAmbaAHBbusMastex®ocol mac)
implements 1AmbaAHBbusMasterMACLink

{

106 };

A.3 ambaAHBbusSlave.sc: Bus Functional Interfaces and Channel Definition for
Slave

/%

Physical layer, bus protocol handling—— x/

3 interface |IAmbaAHBbusSlave

{

/x listen to specified set of control signals without waitingrfclock */
tAHBSize ListenCntl(tAHBAddrxaddr,
8 tAHBAddr addrMask,
tAHBBurst xburst, /! burst mode
tAHBBurst burstMask,

tAHBProt xprot, /l protection type
tAHBProt protMask, // ~ mask
13 tAHBWrite xWrite , /I write mode ?

tAHBWrite writeMask );

/% listen to specified set of control signals with waiting fodock =/
18 tAHBSize ListenCntlCycle (tAHBAddrxaddr,
tAHBAddr addrMask
tAHBBurst xburst , /! burst mode
tAHBBurst burstMask,
tAHBProt xprot, // protection type
23 tAHBProt protMask, // ~ mask
tAHBWrite xWrite , /I write mode ?
tAHBWrite writeMask );
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28 [/« write data to bus (master read), and consume a cycle
void WriteCycle (tAHBData val);

/x read data from bus (masters write) and concume a cyele
33 tAHBData ReadCycleyoid);

/x signal an error or other condition to master, called
instead of WriteCycle or ReadCycle/

void TwoCycleRespbit [1:0] resp);

38 };

channel AmbaAHBbusSlave (

in signal bit[1] HCLK, // from external clk, all on rising edge
43 in signal bit[1] HRESETnh, // low active reset signal for bus component
in signal bit[31:0] HADDR, // 32 bit system address bus
in signal bit[1:0] HIRANS, // transfer type (IDLE, ...)
in signal bit[1] HWRITE, // write on high

in signal bit[2:0] HSIZE, /I size of transfer
48 in signal bit[2:0] HBURST, // burst mode selection
in signal bit[3:0] HPROT, [/ protection bits
in signal bit[HDATA BUSHIGHBIT:0]
HWDATA,  // write data bus (master> slave)
out signal bit[HDATA BUSHIGHBIT:0]

53 HRDATA, // read data bus (slave> master)
in signal bit[1] HSELXx, I/l select signal for slave
signal bit[1] HREADY, // slave indicates operation complete

out signal bit[1:0] HRESP // slave indicates return code for op.

)

58 implements IAmbaAHBbusSlave

e

63

/% */

Protocol layer, arbitration

interface IAmbaAHBbusSlaveProtocof

68 /x listen to specified set of control signals with waiting fodock =/
tAHBSIize ListenCntlCycle (tAHBAddr«addr ,
tAHBAddr addrMask,
tAHBBurst «burst, // burst mode
tAHBBurst burstMask,
73 tAHBProt xprot, /!l protection type
tAHBProt protMask, // ~ mask
tAHBW rite *Write ,
tAHBWrite writeMask); [/l write mode ?

78 I/« bus data cycle operations, each one consumes a cycié
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bit[7:0] ReadBytepit[1:0] addr);

bit [15:0] ReadWordpit[1:1] addr);

bit [31:0] ReadLongyoid);

void ReadBurst(tAHBData data[] unsigned char numBeats);
83

void WriteByte(bit [7:0] val);

void WriteWord(bit[15:0] val);

void WriteLong(bit[31:0] val);

void WriteBurst(tAHBData data[],unsigned char numBeats);
88

/% signal an error or other condition to mastek/

void TwoCycleRespbit[1:0] resp);

93
/x —— MAC layer, segmentation, reassmbly—— %/

I« MAC layer slave, randezvouz access (link accesg)

98 /x Reduced version of MACLink with the following simplifyingsamptions
— no address increase during transmission
— no bursts
— no alignment transfers, off alignment access results in
bus access violationx/

103 channel AmbaAHBbusSlaveMACLInk(IAmbaAHBbusSlaveProtocol poatol)

implements 1AmbaAHBbusSlaveMACLink

{
1

108 /+x MAC layer, slave, memory access/
channel AmbaAHBbusSlaveMACMem(IAmbaAHBbusSlaveProtocol protd)
implements I1AmbaAHBbusSlaveMACMem
{

i
A.4 ambaAHBbusTLM.sc: Interfaces and Channel Definitions for Abstract Models

/+ Transaction Level Modelling
on level of MAC.link,
3 Can be used instead of AmbaAHBbusMasterMACLink

Allows access of multiple multiple masters and multiple vwda at the
same time.
x/
8 channel AmbaAHBbusMasterMACLINKTLM {oid)
implements IAmbaAHBbusMasterMACLink,

IAmbaAHBbusMasterMACMem,
|IAmbaAHBbusSlaveMACLink,,
IAmbaAHBbusSlaveMACMem
13 {
}
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18

23

28

33

38

43

48

53

/x Transaction Level Modelling
on level of MAC.link,
Can be used instead of AmbaAHBbusMasterMACLink

Allows access of multiple multiple masters and multiple vda at the
same time.

ATTENTION without arbitration !x/
channel AmbaAHBbusMasterMACLINKTLMNoArbit{oid)
implements |AmbaAHBbusMasterMACLIink,

IAmbaAHBbusMasterMACMem,
|IAmbaAHBbusSlaveMACLink,
IAmbaAHBbusSlaveMACMem

{

}

/* give each master an identity for arbitration/

channel AmbaAHBbusMasterProtocol TLM (
unsigned int masterNr, // identity of the master
// tim model containing the bus and the arbitration modedin
IAmbaAHBbusProtocolTLMArbitration busAndArb

)

implements IAmbaAHBbusMasterProtocol

{
}

/x protocol layer implementation master and slave for ATkW
channel AmbaAHBbusProtocolTLM ()
implements IAmbaAHBbusSlaveProtocol,
IAmbaAHBbusProtocolTLMArbitration

{
}

/x same as above but no delta cycle collection of requests
channel AmbaAHBbusProtocolTLMNoDelta ()
implements IAmbaAHBbusSlaveProtocol,
IAmbaAHBbusProtocol TLMArbitration

{
}

B Testing Environment

B.1 Source Code Structure

In addition to the previously described files, which contain/the AMBA modelsetaof files is
required for the testing environment. For ease of debugging and corgralliwas decided that
each test group is captured in an own executable. Since for eachdeptigy to 5 different models
had to be validated, a large number of test executables is created dumpgaten process.

In order to minimize code duplication, as a means of reducing the maintenaadérethe on-
going project, a single test bench filestbenctscwas developed. This test bench file conditionally
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testMaster 0 testSlave 0

77

testMaster 1 testSlave 1

J

Figure 40: Generic connection scheme

includes a particular test group and a particular bus model. All necessargonents are instan-
tiated and connected in the test bench. This includes the test master belzandahe test slave
behaviors, which are connected to selected bus model (see FigurkdtiXjonally supporting ele-
ments are handled, e.g. in the bus functional model: multiplexers, arbitek,diiver, and address
decoder. Since the test bench file contains all wiring information, havimgéesrersion for all test
cases significantly simplified changes during the development time.

For each group of tests a separate master and slave behavior were intplEnf@recompiler
directives were used to conditionally include the selected master and skiweFar ease of identi-
fication the naming convention below was followed:

testMaster_testName.sh contains common definitions used for both the behavior running in the
master and the behavior running in the slave.

testMaster_testName.sc implements the behavior for the master side of the bus access.
testSlavetestName.sc implements the behavior for the slave side of the bus access.

The test behaviors use an interface to the according MAC layer (either memoendezvous
style) as an input. They are connected by the test bench through the e under test. The
the parttestNamaen the file name above is replaced by the short name as defined in Table 9 of the
according test. The set of files that have to be included for a particutasetesp are selected using
preprocessor directives within the test bench. Table 9 lists the testciabebeair short names and
the macro definitions for test selection.

B.2 Test Executables

As indicated earlier, the test bench will not only select a test group todmieed, but also a model
for the actual transmission. As for the testcases the according modek(statk of channels) is
selected with the precompiler directives as shown in Table 10.

With the short names defined for the test group and the bus model, the nathe ek-
ecutables can be constructed. All test executables obey the following gacoimvention:
test channelName_testName. Where thechannelNamés replaced with the short name of the bus
model (3% column of Table 10) and thestNames replaced with the short name of the test group
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| Test Name | Section | Short Name | Macro Definition
Individual Transfers 4.1.1 indiv TEST.INDIV
Random Access using Memory Style | 4.1.2 randMem TEST.RAND
Access
Random Access using Rendezvous 4.1.3 randMsg TEST.RAND_MSG
Style Access
Timing Validation for Bus Functional 4.2 print TESTPRINT
Model
TLM Timing Validation versus Bus 4.3 timTiming TEST.TLM _TIMING
Functional Model
Explicit Timing Measurements for 4.3 memTiming | TEST.MEM _TIMING
Example Transfers
Transfer Performance for Memory Styléb.1 perfMem TEST.PEREMEM
Access
Transfer Performance for Rendezvous.1 perfRand TEST.PERFRAND
Style Access
Timing Accuracy of TLM Models 5.2 perfTiming | TEST.PERETIMING

Table 9: List of implemented tests, with the section where the results are did¢casshort name
that is used for test file naming, and the define statement used in the telstfbetne test selection.

(39 column of Tablé 9). As an example the executable for testing individual gengifith the bus
functional model is named: tebf_indiv.

With the large amount of test executables an automatic test execution bececessary. As
described in the results section, the test execution is categorized into #nrgelhe functional tests
have a build in failure detection and terminate with an error. The timing validatidimeofbstract
models with respect to the bus functional model includes an error deteAtimakefile rule can be
used to iterate through all bus models and the tests in these two categories &gt thill stop on
the first detected error:

make test

A large number of test executions is required for the performance testsetthis has been

| Model Name | Section | Short Name | Macro Definition \
Transaction Level Model (A) 3.3 tim USE. CHANNEL_TLM
Transaction Level Model (B) 3.3 timb USE CHANNEL_TLM B
Arbitrated Transaction Level Model (A)/3.4 prot USE.CHANNEL_PROT
Arbitrated Transaction Level Model (B)'3.4 protb USE.CHANNEL_PROTB
Bus Functional Model 3.5 bf USE CHANNEL _BF

Table 10: List of implemented bus models, with a reference to the chapteirérgl#éhe design,
a short name for file naming convention, and the macro name for the cheglgaetion in the test
bench.
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automated with wrapping shell scripts. Measuring of the execution perfmenaf the memory and
rendezvous style access over all implemented channels can initiated wittidkgrfg commands:

run_perfMem
run_perf Rand

Octave [9], a Matlab-like numerical evaluation environment, is used fonzatioally graphing the
results of the performance tests. Two scriggsr(trans ferTimem andgentrans ferTimeRanain)
generate graphs for the performance in terms of execution speadsf{erTimesps and
transferTimeRangps see Figure 31) and transfer bandwidtiags ferBandwidtteps and
trans ferBandwidthRand ps see Figure 32).

The measurements for the timing accuracy of the implemented models have laggedinto:

run_perfTimng

Again the results are automatically graphed by Octave scrigemn perfTiming generates the
graphic files as listed in table Table 11. In addition to the files in the table, whickpercific to the
first master, a same set of files is created for the second master. Thes nambe distinguished
by an_M1 instead of MO in the end of the file name.

| File Name | Description \
accurayduration2M2SP.MO.eps accuracy based on transfer duration (Fig. 34)
accuracyfinish.2M2SP.MO0.eps accuracy based on finish time of each transfer

accuracycomulative2M2SP.MO0.eps | accuracy based on cumulative transfer time (Fig. 36)
deviationduration2M2SP.MO0.eps | deviation based on transfer duration (Fig. 35)
deviationfinish.2M2SP.MO0.eps deviation based on finish time of each transfer
deviationcomulative2M2SP.MO0.eps| deviation based on cumulative transfer time

Table 11: Generated graphics for timing accuracy
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