HW-SW partitioning for architectures with partial dynamic
reconfiguration

Sudarshan Banerjee Elaheh Bozorgzadeh Nikil Dutt
Center for Embedded Computer Systems
University of California, Irvine, CA, USA
Irvine, CA 92697-3425,USA

{banerjee,eli,duji@ics.uci.edu

CECS Technical Report #05-#02

April, 2005

Abstract

Partial dynamic reconfiguration is a key feature of modercorigurable architectures such as
the Xilinx Virtex series of devices. However, this capapilinposes strict placement constraints
such that even exact system-level partitioning (and sdireguformulations are not guaranteed
to be physically realizable due to placement infeasibilitye first present an exact approach for
HW-SW partitioning that guarantees correctness of implgaten by considering placement im-
plications as an integral aspect of HW-SW partitioning. @xact approach is based on ILP (in-
teger linear programming) and considers key issues sucloafiguration prefetch for minimizing
schedule length on the target single-context device. Nexpresent a physically-aware HW-SW
partitioning heuristic that simultaneously partitionghedules, and does linear placement of tasks
on such devices. With the exact formulation we confirm thess#ty of physically-aware HW-SW
partitioning for the target architecture. We demonstrdiattour heuristic generates high-quality
schedules by comparing the results with the exact formandtr small tests and with a popular,
but placement-uanaware scheduling heuristic for a largeafeover a hundred tests. Our final
set of experiments is a case study of JPEG encoding — we deaterthat our focus on phys-
ical considerations along with our consideration of mukigask implementation points enable
our approach to easily handle heterogenous architectunath(specialized resources distributed
between general purpose programmable logic columns). Xheugion time of our heuristic is
very reasonable- task graphs with hundreds of nodes areggs®d (partitioned, scheduled, and,
placed) in a couple of minutes.

Contents

1 Introduction 4
2 Related work 5
3 Problem description 6
4 Key issues in scheduling on target architecture 8
4.1 Criticality of linear task placement 8
4.2 Heterogeneity considerations in scheduling 10
4.3 Scheduling for configuration prefetch, 11
5 Approach 11
5.1 Notation e e 11
5.2 ILPformulation e 11
5.2.1 ILPvariables 21
5.2.2 Constraints e e 2
5.2.3 Extending the ILP for multiple, heterogenous implatagons 15
5.3 Heuristicapproach 16
5.3.1 Heuristicformulation 16
5.3.2 Placementand EST computation 18
5.3.3 Heterogeneity 20
5.3.4 Worst-casecomplexity e 20
6 Experiments 21
6.1 Experimentalsetup e 21
6.2 Experimentsonfeasibilityo L. 22
6.3 Experimentson heuristicquality, 22
6.3.1 First-fitVsbest-fit 24
6.3.2 Run-timeofheuristic 25
6.4 Casestudyof JPEGencoder 25
7 Conclusion 27
8 Acknowledgements 28

List of Figures

1 Dependency taskgraph 6
2 System architecture 6
3 Heterogenous FPGA withpartial RTR 7

PP O0~NO O~

— O

Simpleinfeasible 10
Detailed infeasible 10
Moves in HW-SW partitioning with multiple implementatipoints 17
Task parameters e e 18
Optimallyplaced e 18
Syntheticexperiments L 23
Sample experimentsforve0 o 23
Task graph forjpegencoder. 26

1 Introduction

Dynamic reconfiguration, often referred to as RTR (run-tie@nfiguration) provides the abil-
ity to change hardware configuration during applicatiorcexien. This enables a larger percentage
of the application to be accelerated in hardware, hencecnegoverall application execution time
[16]. Modern-day SRAM-based FPGAs are examples of suchwerddevices. Additionally,
some FPGAs such as the Virtex devices from Xilinx [25] allowdification of only a part of the
configuration (partial RTR). This is a very powerful featspecially for single-context FPGAs, by
enabling the possibility of overlapping computation wigdtonfiguration to reduce the significant
reconfiguration time overhead. Multicontext devices susiMarphosys [8] incur a lower over-
head by paying a very significant area penalty to simultasigatore multiple contexts. Our work
focuses on single-context devices where the dynamic repoafion overhead is very significant.

In this work, we consider the problem of task level HW-SW piaming for a resource-constrained
system, where the HW unit has partial RTR capability. Givempplication represented as a task
DAG (directed acyclic graph), our goal is to maximize apgtion performance (minimize sched-
ule length) when there exists a a hard resource constraititeoamount of available configurable
logic.

In a traditional codesign flow, HW-SW patrtitioning optimézihe design latency and is followed
by the physical design stage that places the tasks scheidH on the underlying device. How-
ever, for tasks mapped onto our target architecture, p&Ti& capability imposes strict linear
placement constraints. Under such constraints, an optatedule generated by a HW-SW par-
titioning approach that does not consider the exact phiyication of the task while scheduling
[10], may be physically unrealizable becauselaicement infeasibility.

Another key aspect of modern reconfigurable architectukeste Virtex-ll is heterogeneity
Such architectures contain dedicated resource columnsultipiiers, block memories, etc., dis-
tributed between general purpose programmable logic amunsuch dedicated resources often
lead to more efficient implementations that operate at adniffjequency. It is important to con-
sider the area-execution time trade-offs arising from oggeneity during HW-SW patrtitioning-
for our problem, the placement restrictions due to hetereig pose an additional challenge.
Feasibility issue, Exact approach With the above two factors in mind, we first demonstrate
that existing partitioning (and scheduling) approaches tlo not consider physical task layout
can result in unrealizable (infeasible) designs. This wadéis us to present an exact approach to
study the solution space. Our exact approach is an ILP @nt@wear programming) formulation
that incorporates physical layout into the HW-SW patrtitimn(and scheduling) problem. Our ap-
proach additionally integrates the key feature of configongprefetch [13] — given the significant
reconfiguration overhead of our target architecture, #agire is critical for minimizing schedule
length.

Heuristic approach: While the ILP formulation is a key first step in exploring theblem space,
the significant run-time makes it impractical for all but $implest problems. So, we next present
a KLFM-based heuristic (Kernighan-Lin/Fiduccia-Mathsythat considers detailed linear place-
ment as an integral part of scheduling. Our heuristic aol#ily considers the existence oiul-
tiple task implementation pointpotentially arising from compiler optimizations. We coane

our approach with the exact approach as well an approaclhstieensitive to placement impli-
cations during scheduling — the experimental data overgelaet of benchmarks (more than a
hundred data points) confirms the necessity of considedimgement implications as an integral
part of scheduling on our target architecture. The run-theur heuristic is very reasonable —
task graphs with hundreds of nodes pegtitioned, scheduled, placed a couple of minutes.
Heterogeneity A key benefit of considering placement and multiple tasklengentations is the
ability to extend our approach to consider heterogeneitit vélatively minor modifications. In a
detailed case study of mapping a jpeg encoder task graplr uegt®urce constraints, we explore
the benefits and issues with dynamic task implementationg ireterogenous resources on such
architectures.

2 Related work

HW-SW partitioning is an extensively studied problem witplathora of approaches. This in-
cludes ILP (Integer Linear Programming)-based exact aures [17], GA (genetic algorithm)
based approaches [5], and, multiple KLFM-based approaétersighan-Lin/Fiduccia-Matheyes
[22], [21]) such as [11], [15]. Of course, most of the exigtimork does not consider the special
challenges posed by dynamic reconfiguration— the traditiBtW-SW partitioning formulations
implicitly assume that HW istatic i.e., the HW functionality can not be modified during appli-
cation execution. Partial RTR imposes additional placdroenstraints that need to be explicitly
incorporated into the problem formulation.

Recently there has been work on simultaneous schedulinglandment for partially reconfig-
urable devices [2], [7]. However, they do not consider keyés in run-time reconfiguration such
as prefetch to overcome latency, the resource contentiertalsingle reconfiguration controller,
etc. In such work, the task reconfiguration is bundled aloith task execution and treated as a
single process — while such simplifications makes the prololeser to rectangle packing [18], the
proposed strategies are not applicablsitwle-contexarchitectures with resource contention for
reconfiguration, and, significant reconfiguration overisead

There have been different proposals such as configuratimpiassion, configuration caching
[4], etc., to reduce the effect of large reconfiguration gelan such architectures. One of the
popular approaches is configuration reuse, where the week agbnsiders all tasks to be of equal
area and focuses on exploiting similarity between a givéofsscheduled tasks [3]. In our work,
we currently do not exploit such resource-sharing acrassstaWe focus on integrating key ar-
chitectural constraints and placement consideratiomstive scheduling formulation for the more
realistic scenario of varying task sizes.

Our work is most closely related to [9] and [10]. Mei et al. [@ksent a genetic algorithm for
partial RTR that considers columnar task placement. Howdéveir approach does not consider
prefetch or the single reconfiguration controller bottine Jeong et al. [10] present an exact
algorithm (ILP) and a KLFM-based approach. Their ILP coessdprefetch and the single recon-
figuration controller bottleneck— however, while schedglithey do not consider the critical issue
of physical task placement. We will demonstrate that amagitformulation that does not simulta-
neously consider placement while scheduling can genechtzlsiles which can not be placed and

W [

‘ HW-SW communication

Shared memory

SW

FPGA
)

Figure 1. Dependency task graph Figure 2. System architecture

hence are not physically realizable.
Last but not the least, a distinctive feature of our work caned to existing work is our consid-
eration of heterogeneity in resources, a key feature of mmogeonfigurable architectures.

3 Problem description

We consider the problem of HW-SW partitioning of an applimatspecified as a task depen-
dency graph extracted from a functional specification ingdnHevel language like C, VHDL, etc.
In a task dependency graph (Figure 1), each vertex repseadnaisk. Each edge represents data
that needs to be communicated from a parent task to a chkd Eaesch task in the task graph can
start execution only when all its immediate parents haveptetad,and, it has received all its
input data from its parents.

Target system architecture

Our target system architecture as shown in Figure 2 conslistsSW processor and a dynam-
ically reconfigurable FPGA with partial reconfiguration alpity. The processor and the FPGA
communicate by a system bus. We assume concurrent exedcftilba processor and the FPGA.
We assume that the dynamically reconfigurable tasks on tB&f®mmunicate via a shared mem-
ory mechanism- this shared memory can be physically mapgpkmtal on-chip memory and/or
off-chip memory depending upon memory requirements of fhy@ieation. Under this abstrac-
tion, communication time between two tasks mapped to theA-B@dependent of their physical
placement. Thus, when adjacent tasks in the task graph gpeddo the same processing unit
(processor or FPGA), the communication overhead is coraidasignificant, while tasks mapped
to different units incur a HW-SW communication delay.

Dynamically reconfigurable FPGA

Our target dynamically reconfigurable HW unit as shown iruFég3 consists of a set of config-
urable logic blocks (CLB) arranged in a two-dimensional imatAdditionally, a limited number
of specialized resource columns are distributed betwedd €illumns. The basic unit of config-
uration for such a device is a frame spanning the height ofihece. A column of resources

6

Heterogenous
resource Frame

/

VY
0ooood
0ooood
NONO00

CLB

N

Height

HEEEEn

N

AN

N

I

Width

Figure 3. Heterogenous FPGA with partial RTR

consists of multiple frames. A task occupies a contiguoti®seolumns. Such a device is con-
figured through a bit-serial configuration port like JTAG obwe-parallel port. Howevegnly
onereconfiguration can be active at any time instant. The regordtion time of a task is directly
proportional to the number of columns (frames) occupiedigytask implementation.

An example of such a dynamically reconfigurable HW unit is Xilénx Virtex architecture.
In this architecture, there are dedicated columns of emdmbdulltipliers (MULTX18), and block
memories (BRAM) always placed adjacent to each other. Imesieof this report, we consider the
(MULTX18,BRAM) column pair as a single resource column foe purpose of generating sample
numerical data on a representative architecture. Someedfitkex devices (such as the Virtex-II
Pro), havehard SW processors such as the PowerPC. However, all the Virtageteare capable
of instantiating thesoft MicroBlaze processor.

Problem parameters

On the target system architecture, a task can have muliigdeeimentations: as a simple exam-
ple, compiler optimizations like loop unrolling often réisim a faster implementation with more
HW area. Another example is the possibility of a area-efficimplementations using dedicated
resources like embedded memory. Thus, each implemenfation of a task can be summarized
by the following set of parameters:

e execution time
e area occupied in columns (for HW implementation points pnly
e reconfiguration delay (for HW implementation points only)

and, the device-related constraints can be summarized as:

e columnar implementations of dynamic tasks

e single reconfiguration process

e location of specialized resource columns (for heterogsmavices only)
HW-SW partitioning objective

Our objective for HW-SW patrtitioning is to minimize the ex#on time of the application while
respecting the architectural and resource constraintssegby the system architecture. Thus, our
desired solution is a task schedule where each task is bouhé HW unit or the SW processor,
along with a suitable implementation point for each task.

Before presenting our proposed approach to solve this @nobin the next section we take a
detailed look at key issues such as implementation feagitfilat are addressed by our proposed
approach.

4 Key issues in scheduling on target architecture

In this section, we present a detailed discussion on the $&yes we have addressed in our
formulation. First, we consider the criticality of consiohg physical constraints in a HW-SW
partitioning formulation for a system with partial RTR.

4.1 Criticality of linear task placement

In the target architecture, eadignamictask is implemented on a set of adjacent columns on the
FPGA. Inter-task communication is realized through a gshanemory accessible from each task
with the same latency and cost. Since this latency is idalfic all the HW tasks and negligible
compared to runtime reconfiguration overhead and HW-SW conication delay, inter-task com-
munication delay for tasks mapped to the FPGA is not consilduring HW-SW patrtitioning.
This simplifies the placement of the tasks on the device tplgrinear placement. Of course,
since physical connectivity between tasks is not relevadeua shared memory abstraction, this
linear placement problem is simpler compared to the liné&argment problem in physical design
where the objective is to minimize the total connectivitiMzeen the modules [24].

The linear task placement problem is formulated as:

e Given a scheduled task graph under resource constraint, and

the size of the implementation for each task (in terms of timalmer of columns on a FPGA),

e find afeasibleplacement on reconfigurable hardware.

We look at this problem for two different cases. In the firssesawe assume that each task
occupies an identical number of columns. This assumptisrbkean considered in previous work
in dynamic reconfiguration such as [3]. In this case, feagithcement is guaranteed after tasks
are scheduled on the FPGA under a total resource constraints

Lemma 1 For a given scheduled task graph with inter-task commurocatia shared memory
and equal size tasks, a feasible and optimal placement isagteed and can be generated in
polynomial time.

Proof:The problem is same as track assignment on a set of intemelgraph coloring on interval
graphs (which are perfect graphs) [6]. Each scheduled ggslesents an interval and each set of
columns (equal to the size of tasks) represents a track.e $imecgraph is scheduled under total
number of columns, the number of resources available at ti@aehis equal to the density of the
tasks. Hence by applying efficient algorithms for graph dapon interval graphs (e.g. left-edge
algorithm), a feasible placement can be found.

Thus, task placement is trivial for tasks with identicaksand can follow HW-SW patrtitioning.
So, there is no need to integrate placement with HW-SW paniitg.

In the other case, we assume that tasks can occupy diffememtber of columns during imple-
mentation. After the tasks are scheduled, the feasibifitglacement is not guaranteed even if
it is checked with an exact algorithm. Similar to the firstegahe placement problem is a track
assignment problem for a set of intervals under the comsttiaat each interval gets assigned to
a certain number of adjacent tracks. We can extend the aéméomed algorithm for track as-
signment based on a dynamic programming approach. Whilegng the time steps, we add the
current interval to all existing feasible arrangementsliifaaly visited intervals. Due to adjacency
constraint, some of those are not acceptable and the feasbignments are pruned further. We
continue until the end of the tracks. All the feasible conalimns are examples of feasible place-
ment. If no feasible combination is found, it implies thas turrent scheduled tasks do not have a
feasible placement. The algorithm is linear in terms of thmhber of intervals but has a factorial
growth on number of tracks. The complexity of this problerstisan open problem. However, the
exact solution can be obtained by the proposed extensisadk assignment or using ILP solvers
to check the feasibility of the placement. In this paper, fmaus is on feasibility of placement
after scheduling. We thus apply an exact solver to checkdasilbility of the placement in order
to show that the infeasibility in the placement comes fromplygpg distinct consecutive stages of
partitioning and placement rather than using suboptinedgrhent algorithms.

Thus, for tasks that occupy a different number of columns&@itmplementatiorijnear place-
ment feasibility is not guaranteed even with an exact algothm on a scheduled graph

In Figure 4 we demonstrate an instance of such infeasihitgg an exact approach for parti-
tioning and scheduling followed by linear placement forlsuaulti-column tasks. This is a two-
dimensional view of the task schedule where the Y-axis {l@ngorresponds to time, the X-axis
(width) corresponds to number of columns. The FPGA has 4naotuand 3 tasks mapped onto it.
TasksT, T,, Tz occupy column€, (Cp, C3), andC, respectively. At time,, a model that does not
consider placement information would indicate that 2 uoitarea were available. So a new task,
sayTy, that requires 2 columns, could be scheduled at timEowever, this would be incorrect as
2 adjacent columns are not availableat

In Figure 4, of course there is the opportunity for bettecpraent by initially placing task>
into columns C3,Cy4)— then, at timdy, 2 adjacent column<g,Cy) would be available to place
a 2 column task. However, the more detailed example in Figudemonstrates that there are
schedules that can not be placed by an optimal placement ftdime step 9, task1p needs
4 columns for execution- even though there are 6 columngadlaiin the FPGA, 4 contiguous
columns are not available. Note that changing the task plaogat prior time-steps (for example
swapping physical location of task with task T4) would only lead to placement failure at a

Time| C1 C2 C3 C4 C5 C6C7|C8|C9
1 2—— 1(>
T4 T3
Cl C2 C3/Cc4 2 :) 2)
© THHHF 3 | J | St
HHHHH T
£ HHHH 4 °)
= 5 i
S 5
-+ pgEgEpgEpEn _
S| bR S T
Q _—_—T-—_—_— [)
g | HHBH g | | J Tog)
T o |8
e 10
Figure 4. Simple infeasible Figure 5. Detailed infeasible

previous time-step. To achieve a feasible placement, thle gehedule itself needs to change.
Therefore, it is critical to integrate linear placementloé tasks into the scheduling formulation in
order to generate feasible solutions.

4.2 Heterogeneity considerations in scheduling

Modern FPGASs (such as the Xilinx Virtex-Il) have heterogesarchitectures containing columns
of dedicated resources like embedded multipliers, emlkddamory blocks. Usage of such spe-
cialized resources usually leads to more area-efficientfastér implementations. As an exam-
ple, we consider post-routing timing data obtained fromtlsgsizing a 2-dimensional DCT (dis-
crete cosine transform) under columnar placement andn@uinstraints on the Virtex-II chip
XC2V2000. While the heterogenous implementation with 3 @oBimns and 1 resource column
has an operating frequency of 88 MHz, the homogenous impitatien with 4 CLB columns is
able to operate at only 64 MHz (we consider the adjacent colpair of BRAM (embedded mem-
ory) and MULTX18 (embedded multiplier) as a single resowckimn for generating numerical
data).

However, these heterogenous resources are typicallyelihmtnumber and present in specific lo-
cations. For instance, XC2V2000 has 48 CLB columns, but émigterogenous resource columns.
Since these resource columns are available only at fixedidmsa they impose stricter placement
constraints. Depending on where a task is placed, the HWugradime and area may vary sig-
nificantly. This provides further motivation for considagilinear placement as an integral aspect
of HW-SW partitioning on reconfigurable architectures.

10

4.3 Scheduling for configuration prefetch

Configuration pre-fetch [13] is a powerful technique thaeipts to overcome the significant
reconfiguration penalty in single-context dynamicallyaefigurable architectures by separating
a task into reconfiguration and execution components. Whéesxecution component is sched-
uled after data dependencies from parent tasks in the tagh @re satisfied, the reconfiguration
component is not constrained by such dependencies. Thes@osignificant challenge to any
scheduling formulation that incorporates prefetch.

5 Approach

First, we modify the problem description to address the iptevissues: We have a task graph
with n tasks, where each task has multiple possible implementatiBach HW implementation
of a task occupies a certain number of columns. We have onlalaeaSW processor, and a HW
resource constraint eh HW columns for application mapping. Our objective is to fimdogotimal
schedule where each task is bound to HW or SW, the task impietien is fixed, and, for HW
tasks, the physical task location is determined. In theak$tis section, we present an exact (ILP)
formulation that solves this problem and follow up with a Kifbased heuristic.

5.1 Notation

The problem input is a directed acyclic task dependencytg@&g (V, E).V is the set of graph
vertices ancE the set of edges. Each edgghas 1 weightt;j. ct; represents the HW-SW com-
munication time, i.e, if; is mapped to SW and its chilg is mapped to HW (or vice-versajt;
represents the time taken to transfer data between the SwharidW unit. Each tasK; corre-
sponding to vertex; has 4 weightst, tih, Ci, tirf). t3 is the execution time of the task corresponding

to v; on the SW unit (processor)-,h, Ci, tirf are the execution time, area requirement in columns,
and the reconfiguration overhead respectively, for Task the FPGA.

Our problem objective is to obtain an optimal mapping witmimial latency when the FPGA
has at mosCs pga cOlumMns available for application execution.

5.2 ILP formulation

In this section, we present an ILP (integer linear programa} provides an exact solution to
our problem. For ease of understanding, we restrict the drm@ilation to homogenous devices
with single HW task implementation points only. As mentidresarlier, our work differs from
existing ILPs in HW-SW partitioning such as [17] in that wenea@erlinear task placement as a
key aspect —thus, our underlying model is essentially adimzensional grid where task placement
is modelled along one axis while time is represented on ther@xis. While this model is similar
to existing ILP formulations for packing problems [20],ues such as configuration prefetch and
the reconfiguration controller are unique to our problemlaae not been considered in previous
work on packing.

11

5.2.1 ILP variables

We introduce the following set of 0-1 (decision) variables.
X j k = 1, if taskT; starts execution on FPGA at time-stgp
andk is leftmost column occupied bj.
=0, otherwise
yi,j = 1, if taskT; starts execution on processor in time-sjep
=0, otherwise
ri,jk = 1, if reconfiguration for task; starts at time-step,
andk is leftmost column occupied bj.
=0, otherwise
ini, i, = 1, if tasksT;; andT;, are mapped to different
computing units and thus incur a HW-SW =
communication delay.
=0, otherwise
Some of the constraints necessitate introduction of amtditibinary variables to represent logi-
cal conditions. All such variables are represented.as
The ranges of the variable indices are of course determinpéaoproblem input. i.e,
i € (1 .. number of tasks)
] € (1 .. upper bound on schedule length)
k€ (1.. number of FPGA columns)

5.2.2 Constraints

1. Unigueness constraint
Each task can start (is executed) exactly once.

Vi, o D+ D k(%K) =1 1)

2. Processor resource constraint
Processor executes at most one task at a time

Vio i D i <1 ")

3. Partial dynamic reconfiguration constraints
(a) Every task needs at most 1 reconfiguration; and, recaatfigu is not needed if taskexe-
cutes on processor.

Vi, D it Dk(rije) <1 (3)

(b) Resource constraints on FPGA: total number of columitgghesed for task executions and
number of columns being reconfigured is limited by the totahber of FPGA columns.

i . . k g j k .
Vi, ZI Zk(:r‘:jftthrl Zn:k,ciJrl()ﬁ,m,k)‘*‘ Zl{n:jftiru—l Zn:k,ciJrl(rl,m,k)) <
Cf pga (4)

12

(c) At every time-steg , at most single task is being reconfigured.

vi, i) D k(rimk) <1 (5)

m:jftirf +1

Note that in this equation we do not need to consider the nuwfelumns required for this
task.

(d) At every time-steg, mutual exclusion of execution and reconfiguration for g\aumn.

v, vk, zi(Zr]n:j7tp+12ﬁ:qu+1(xi,m,n)+
J Zﬁ:k—ci+1(ri,m,n)) <1 (6)

m=j-t"4+1
Note that this is a critical step that enforaamntiguity. The inner termZﬁ:kfciH(ri,m,n en-
sures that if a task requiresc; columns for reconfiguration (execution), it can proceed oviien
a contiguous set af; columns are available.

(e) If reconfiguration is needed for ta3k execution of tasH; must start in same column. Ad-
ditionally, execution can start only after the reconfigimadelay.

Vivk Y rije) =1=
Yilisrij + ' <=Yili*xi0 (@

We can rewrite the above constraint as the following set obtraints:

f(X) = > j(rijx) >0,
9(X) = D (i *Xijk—] *TijK) *tirf >0
if (f(X] > 0) theng(X) > 0

This enables us to apply tliethentransformation as in [23]

—g(X) <Mb
f(X) <M(1-b)
be (0,1)

where M is a large number such tHg¢iX) < M, —g(X) < M for X satisfying all other constraints.
An appropriate value foM iS jmax* jmax

Note that in this equation and equation 3a, we do not inclbdeé¢configuration time for the
initial set of tasks placed on the device. This enables usdaorately compare results with a tradi-
tional HW-SW partitioning formulation where execution #rdoes not include system setup time
of reconfiguration for the set of tasks placed on the device.

(f) When a task execution is using a column, the previoustemethis column can never be an-
other execution. Note that this possibility arises becafiige gap (idle interval) possible between
reconfiguration and execution, as discussed in the pregectson.

13

We solve this problem by computing the difference betweenrd¢iconfiguration start times and
execution start times for all tasks that have used a colultranpiarticular time-step. If this differ-
ence is more than the start time of the current executing tash this column was previously used
by another execution just prior to this execution, but, maonfigured in between- this situation
must never happen.

VK-,vjy Zizin:j—tiﬁ-l zﬁ:qu_l_l(xi’m’n) =1—
ZiZﬁ:quH Zgnzl(r_n*xi,m,n — Mk Tjmn) <

ZiZﬁ:quH Z,Jn:j,tihﬂ(m*xi,m,n) (8)

We can rewrite the above constraint as the following set obtraints:

f(X) = Zizgn:jftiﬁ—l Zﬁ:k,cﬁl(xi,m,n) > 0,

9(X) = Ziz_ﬁ:quu (Zirbjftihﬂ(m*xivm’”)-l'

b1 (MET =M% X mn))) > 0

if (f(X) > 0) theng(X) >0
and apply thef-thentransformation as in the previous constraint.

(g) Simple placement constraint: a task can start execotibnif there are sufficient available
columns to the right.

V|,VI,Vk € (Cf pga— Ci + 1Cf pga)y
Xjk="Tijk=0 (9)

4. Interface (communication) constraints
For each directed edg®, j,, communication (interface) overhead is incurred if taksand
Ti, are mapped to different computing units, i.e, one is mappedtid@ processor and the other is
mapped to the FPGA.
If task Ti, is mapped to the process@,j (Vip,j) = 1.
Thus, the communication overhead corresponding to the @gdgés incurred under the following
set of conditions.
Either, (Zj(yilvj) =1 and Zj(yim-) =0)
or, Qji.j)=0 and >y, =1).
That is, if we introduce a new variable,
Piiz =2 i Vs)+ i ¥Via,j) +inig iy
R,i, can only belong to the s¢0,2}.
Thus, the communication constraint is simply
vedgesiy, io),
P, =2x%b (20)

14

whereb is a binary 0-1 variable.

5. Precedence constraints
For each directed edg ;,, the start time for taskKi, is necessarily at least the sum of the start
time of taskT;; and the HW-SW communication time if any.

i.e, Vedgesis,iz),
(ki * %y jx0) + J # Yig)+
zi(Zk(tﬂ*Xil,j,k) +tisl #Yia, j) =+ Clig,ip *Nigiy; <
DD k(i %Xz k) + 1% Vinsj) (11)

6. Objective function to minimize schedule length

This is equivalent to minimizing the start time of the sinkkd,,.

minimize) j(j*Ynj+ Y k(i *%n,j)

Of course, by introducing simple additional constraints iorce the tasK,, to execute on the
processor and all tasks to have 0 communication delay wélsithk task, the objective function
can be simply written as:

minimize) j(j *Yn)

Along with the necessary constraints, we also introchdditional constraints that help signif-
icantly in reducing the time the ILP solver needs to find a sofu

7. Tighter placement constraints

For columnk, at every time instan,

total number of executions using this column so far is at rhidess than total number of recon-
figurations.

vk Vi S D ma Y ifimn Xmn) <1 (12)

8. Tighter timing constraints
ASAP, ALAP constraints.

5.2.3 Extending the ILP for multiple, heterogenous implematations

While our ILP formulation is based on single homogenous tagkementations, we believe that
it can be easily extended for single heterogenous task mmgaations by a simple preprocessing
step that adds extra placement constraints to the homogémaaulation. Extensions for handling
multiple task implementation points is more challenginge@rude but effective way would be to
represent eack j as a linear sum of a set of 0-1 variables representing therdiff possible task
implementations. Then all product terms of the fozrs ax b obtained by substituting the x
terms in the homogenous implementation can be linearizassing Fortet’s linearization method
[19].

15

5.3 Heuristic approach

While our ILP formulation enabled us to study the problemcspats implementation using a
commercial ILP solver (CPLEX) required an very significamicaint of computation time to obtain
an optimal solution even for relatively small problem imgtes. This motivated us to develop
a heuristic approach that generates reasonably goodygealutions with a computation effort
many orders of magnitude lower. We obtain quality solutittngroblems with hundreds of tasks
in a couple of minutes with our heuristic.

5.3.1 Heuiristic formulation

Our approach is based on the well-known Kernighan-Lin/EaiarMatheyes (KLFM) heuristic
[22], [21] that iteratively improves solutions to "hard”giylems by simple moves. At each step
of the KLFM heuristic, the quality of a move needs to be evida Similar to previous work in
HW-SW partitioning such as [11], we evaluate the quality ai@e by a scheduler. However, our
target platform requires that our scheduler is aware of tiysigal and architectural constraints of
the underlying device.

Code segment 1: KLFM loop
while (more unlocked tasks)
for each unlocked task
for each non-current implementation point
calculate makespan by physically aware list-scheduling
select & lock best (unlocked task, implementation poinp)eu
update best partition if new partition is better

In Code segment e present our adaptation of the KLFM kernel. Essentialiy igithe outer
loop of the heuristic: while there are more unlocked tasks, "best” task is chosen in every
iteration of the loop. The kernel is itself repeatedly exedw times wherec is a small constant,
around 5-6. As can be seen above, our kernel considers iatigk implementation points. In
simple cases where each task has a single HW and a single SW&hmetation, a "move” in
HW-SW partitioning implies moving the task to the other gan. In task implementations on
FPGAs, multiple area-time tradeoff points are very commBestricting a move to onl{HW-
SW, or vice-versa would restrict the solution space. Thus wiaede move as generic, possible
betweenany two implementation pointsf a task, including HW-HW, HW-SW. In Figure 6 (a)
we see an example of a traditional HW-SW partitioning movergha move consists of selecting
the SW implementatiom® of the task instead of selecting the HW implementation oitﬂs;dx'l’ih.
However, in Figure 6 (b) we see a move that consists of satpeth alternate HW implementation
point T.". k instead ofT.", j because this leads to the most improvement in the objectivetibn.

For the scheduler, we choose a simple list-scheduling idfigeras shown irCode segment 2
In a list-scheduler, at each stage there is a set of readiesahose parents have been scheduled.
The scheduler chooses the ’best’ node based on some pnoedgure— the schedule quality de-

16

HW SW

(a) (b)

Figure 6. Moves in HW-SW patrtitioning with multiple impleme ntation points

pends strongly on priority assignment of nodes. Note thatsttheduler is embedded inside the
partitioner; thus, the scheduler always sees a bound grapheveach task is assigned to HW or
SW and hence the HW-SW communication on each edge is known.

We do simultaneous scheduling and placement— once a no@eidted for scheduling, it is
immediately placed onto the device. This ensures that akigged schedules are correct by con-
struction. Thus, at every KLFM step, along with task binding also have the placed schedule
available.

Code segment 2: Choose best schedulable task
For each schedulable task,
compute (EST), earliest start time of computation
(EFT), earliest finish time of computation
Choose task that maximizes f (EST, longest path, area, EFT)

In traditional resource-constrained scheduling, pwofitnctions like "nodes on critical path
first” are applied uniformly to all nodes. But, given the spécharacteristics of our target HW,
it is undesirable to use the same priority assignment fanatiniformly for nodes. Factors that
affect placement, such as configuration prefetch, play ar@&kyin scheduling. So we propose
that during task selection, processor tasks are compatesée themselves on the simple basis
of longest path, while FPGA tasks are compared using a manplex function. Key parameters
of any such function are EST (earliest computation staré tohtask), EFT (earliest finish time),
task area, and the longest path through the task, i.e, tletidarcan be described as:

f (EST, longest path, area, EFT)

The EST computation embeds physical issues related torplmeresource bottleneck of single
reconfiguration controller in the configuration prefetclogass, etc., as described in more detail
later.

Our observations indicate that it is usually more benefimdirst place tasks with narrower
width (fewer columns): this leads to the possibility of lggable to accomodate more tasks without
needing dynamic reconfiguration. Similar consideratiarsother key parameters lead us to a
linear priority assignment function:

17

Time C1 C2 C3 C4 C5 C6 Proc
1 E: E
2
3 R‘)’E | Ps
Task HW| SW| HW 4 S
time| time | area 5 &@ @:‘y
1 5 23 3 6 Rs E4§§;Eq
2 2 9 3 7
3 2 11 2 8 Cﬁsi
4 | 3 | 14| 1 9 B
5 2 10 2 10
6 3 7 4
Figure 7. Task parameters Figure 8. Optimally placed

—Axcolumns- BxEST+ Cx pathlength-D«EFT

Note that components for which it is preferable to have senatlagnitude, such as earlier start
time (EST), or, fewer columns, have a negative weightagéavgaithlength has positive weightage.
Pathlength is of course the classical ‘critical path’ gtiofunction that is often used as the single
node selection criterion in list-scheduling.

5.3.2 Placement and EST computation

To illustrate the effectiveness as well as the challengegdy configuration prefetch to place-
ment and scheduling, consider the task graph shown in Figuaiad its associated parameters in
Figure 7. The HW area is specified as the number of homoge@iB) (columns. For this exam-
ple, we assume that any HW-SW communication incurs one fidielay and the reconfiguration
overhead of a task is equal to the HW area of the task.

Under a resource constraint of 6 homogenous columns, th@altolution to our problem of
minimizing latency is given by the task schedule and phys$ask location as shown in Figure 8.
In this schedule, each execution (and reconfiguration ifledecomponent of a task is represented
as a rectangle of fixed size, such that the length is the eawec(dr reconfiguration) time of the
task implementation while the width is the number of columetiired.

In Figure 8,E; andR, represent the execution start time, and reconfiguratioh tétee respec-
tively, for vertexv;. Cjj represents HW-SW communication between taskndv;. P, represents

18

execution of task; on the processor. For this example, with static HW-SW partiihg, the sched-
ule length would be 36 with verticag andv, mapped to HW and the remaining vertices mapped
to SW. Since partial dynamic reconfiguration capabilityhyatefetch improves the schedule length
to 10, prefetch is a key consideration.

However, a key challenge is posed by the gap betwRgeand Esz illustrating the idle time
interval of column<C5,C6 required for an optimal schedule: in this interval the FP&aimn has
been reconfigured, but the task can not start execution dspisndencies have not been satisfied
yet. Note that the earlie§i; can start is at time step 6. So, if we forcgglto start at time step 4
and contiguous t&3, then eitheiR4 would need to be separated frdf or, the schedule length
would increase.

This idle time interval is part of scheduling in that we wougldefer to have a schedule with
minimum idle time where resource are underutilized. Siteeextent of the interval can not be
determined apriori, placement is complicated: if we coasitie aggregatgime X areg rectangle
occupied by a task in the two-dimensional view, where theeggie rectangle consists of both the
execution and reconfiguration component of a task, this ecengle of unknown length. Thus,
with prefetch, we are unable to directly apply rectangubaeiqing algorithms from work like [18].

Another key issue in EST computation is the resource batkrof a single reconfiguration
controller. The reconfiguration for a task can start only wkeough area is availabland the
reconfiguration controller is free. The goal is to complemonfiguration before task dependencies
are satisfied, leading to minimization of schedule lengtbweler, realistically, it is not possible to
hide the overhead for all tasks that need reconfiguratiosuch cases, task execution is scheduled
as soon as its reconfiguration ends.

In Code segment 3ve present our approach to EST computation that addresséssties we
discussed above.

Code segment 3: Compute EST for task bound to FPGA
find earliest time slot where task can be placed
reconfig start = earliest time instant space and reconfigaibert
are simultaneously available.
if ((reconfig start + reconfig time} dependency time)
Il reconfiguration latency hidden completely: possibitify
// timing gap between reconfig end and execution start
EST = earliest time parent dependencies satisfied
else /[not possible to completely hide latency
EST = end of reconfiguration

Our goal is to find the earliest time slot when the task can bedwuled, subject to the various
constraints. We proceed by first searching for the earlrestant when we can have a feasible
task placement, i.e. enough adjacent columns are avafiabtae task. Once we have obtained
a feasible placement, we proceed to satisfy the other @ntgr If the reconfiguration controller
was available at the instant the space becomes availabtethb reconfiguration component of the
task can proceed immediately. Otherwise, the reconfigamatomponent of the task has to wait

19

till the reconfiguration controller becomes free. Once #eonfiguration component is scheduled,
we check to see if the execution component can be immedistélyduled subject to dependency
constraints. As an example, we consider EST computatioasi(Tg in Figure 8 when task$;
andT, have been scheduled, and placed. The initial search shovesile placement starting at
time 3 and the reconfiguration controller is free, so recaméigon for T3 can start immediately
and finishes at time 4. However, the execution component eatlheduled only at time 6 when
its dependency is satisfied. In this case, EST computatghoates that it is possible to completely
hide the reconfiguration overhead for the task.

The EST computation thus embeds the placement issues andgesonstraints related to re-
configuration. As discussed earlier, the scheduler assagikriorities based on this information,
leading to high-quality schedules, as shown in our expertaieection.

Comments on current implementation

The first search for earliest feasible time instant is culyamplemented as a a simple sweep
through all active time instants (when an event has beendstda). At each time instant we
represent the resource constraint as a simple array withaaay entry in one of two states- free
or used. Note that the number of active time instan@(is). To search for space to fit a task, we
implemented various packing algorithms such as first-fa{4ig etc. Our initial set of experiments
indicated that first-fit worked well, so all our results in #nperimental section are based on first-
fit packing. A subsequent detailed set of experiments (alesgmted in the experimental section)
confirmed that the difference between first-fit and best-fé wegligible. However, best-fit needs
significantly more expensive computation during the spaegreh confirming that our choice of
first-fit is reasonable.

5.3.3 Heterogeneity

One key benefit of considering linear placement and multggk implementations in our heuristic
is the ease with which we were able to extend our approachnsider scheduling onto heteroge-
nous devices.

To adapt our approach for heterogeneity, the primary cheamdred is in the search for space
to fit a task. We achieve this by simply adding a type desarifsioeach column in our resource
description . Thus all resource queries at a time instardicties type descriptor of a column while
looking for available space at that instant. Since the keylization of a heterogenous resource
is to constrain placement, we did some simple initial prepssing to make our searches more
efficient.

5.3.4 Worst-case complexity

Consideration of placement as an integral part of HW-SWitparing guarantees correctness of
implementation. However, it does increase the worst-casgtexity of HW-SW partitioning.

For an area constraint of C columns, our current simpligtiglementation of the EST computa-
tion has a worst-case complexity@fn?C). Thus, the worst-case complexity of each list-scheduler
invocation isO(n*C). For the simple case of one HW and one SW implementation dflg the

20

HW unit similar to XC2V2000, organized as a CLB matrix of
56 rows and 48 columns

SW unit PowerPC processor operating at 400 MHz
Communication bus 64-bit wide PLB operating at 133 MHz

Frames/CLB column 22 frames (a total of 1456 frames on the entire device)
Reconfiguration time 17.01 ms for entire device (SelectMAP port at 50 Mhz);

Reconfiguration frequency 66 MHz (maximum suggested)
Reconfiguration overhead/CLB22/1456 * 17.01 * 50/66 = 0.19 ms

Table 1. Basis for numerical data

list-scheduler is calle@®(n?) times in the main KLFM loop shown in Code Segment 1. Thus, the
overall worst-case complexity @(n®C). While this seems to be a polynomial of significantly high
degree, execution time measurements presented in ouriregmeal section indicate a run-time of

a couple of minutes for our largest experiments on graphswtidreds of nodes.

6 Experiments

We conducted a wide range of experiments to demonstratatiokty of our formulation and the
schedule quality generated by our heuristic. We also caedu detailed case study of the JPEG
encoding algorithm, where we explored heterogeneity irctrgext of multiple task implementa-
tion points. Note that we are concerned with statically aeieing the best run-time schedule for
a HW-SW system under resource constraints, where the HWdréialpglynamic reconfiguration
capability. Thus, while it is possible for example to fit alifdd PEG tasks in a suitably-sized device,
for our experimental purposes we assume a resource caoni$&ss than the aggregate HW size of
all tasks leading to the necessity of HW-SW partitioning.

6.1 Experimental setup

The following assumptions in Table 1 form the basis of our atioal data:

Area and timing data for key tasks like DCT, IDCT, was obtdibg synthesizing tasks under
columnar placement and routing constraints on the XC2V26i0ilar to the methodology sug-
gested for "reconfigurable modules”. Software task execautime on the PowerPC processor is
typically 3 to 5 times slower than the HW implementation of thsk. HW-SW communication
time was estimated by simply dividing the aggregate amolidata transfer by the bus speed. As
an example, data transfer time for a 25%6 block of 8-bit pixels in a typical image processing
application is estimated as:

256 * 256 * 8/64 cycles at 133 MHz = 0.06 ms.
Note that HW-SW communication time for even this significaolume of data transfer is only
around 30% of the reconfiguration overhead for a single CLIBroa: thus, for generating syn-
thetic experiments, we assumed that HW-SW communicatioa tas quite low compared to task
reconfiguration time.

21

Placement-UnawargPlacement-Aware
Testcase | T Feas. Topt Theu
tgl 10 Y 10 11
tgs 25 NO 26 26
Mean-value| 21 Y 21 21
tg7 20 Y 20 20
tg10 27 NO 28 29
FFT 25 Y 25 25
tgll 36 NO 38 41
tgl2 14 NO 15 18
4-band eq 27 Y 27 27

Table 2. Feasibility results and heuristic quality for smal tests

6.2 Experiments on feasibility

Table 2 shows experimental results on feasibility for a $etymthetic task-graphs and well-
known graph structures like FFT, meanval, etc. These testscavere reasonably small graphs
with between 10-15 vertices such that we could generatenaptiesults with the ILP. For each
test, we assumed that the number of columns available femt@pping was approximately 20-
30% of the aggregate area of all tasks mapped to hardwareh&se tests, one unit of time is the
reconfiguration time for a single column.

In Table 2,Topt denotes the schedule length obtained with our ILP fommﬂafranE?a denotes
the schedule length obtained from an exact formulation¢basiders available HW area instead
of exact task placement (i.e, placement-unaware) [10]. #s€r2 shows, in some casdgy®
is shorter tharTopt, butin these cases the schedules were physically unrealizabléth exact
placement, while our ILPT,) guarantees placement through correct by construction.

6.3 Experiments on heuristic quality

For each of the initial set of experiments we also generasdlts with our proposed heuristic,
as denoted by, in Table 2. The data indicates that for the small ca3gs, corresponds to
schedules that are reasonably close in quality to the erpadien.

For analysis of schedule quality generated by our heumstilarger test-cases, we generated a
set of problem instances with suitable modifications to TGEH. In these tests, each task had
a single homogenous implementation point. In subsequsnusgsionsy20, v80, etc, denote sets
of graphs that have approximately 20 nodes, 80 nodes, etiseldets were generated by varying
the graph parameters such as indegree, outdegree. Fomeladdual test case belonging to a set
like v20, we varied the area constraint from 8 to 20 columns in sbé@sto generate a problem
instance. The resulting space of over a hundred experingesit®wn in Figure 9.

For each generated problem instance, we compared the $elemyth generated by our placement-
aware heuristic with that generated by the placement-ureafd@ngest path first”I(PF) heuristic.
The LPF heuristic is widely used in resource-constrainéedualing to assign higher priorities to

22

TGFF

* © @@ @

Outdegfe | 1 |

Figure 9. Synthetic experiments

‘ Placement unaware (longest pat

Schedule length -->

12 20
Testcase 1 Testcase 2

Figure 10. Sample experiments for v60

23

m Placement aware priority function

Test Few cols| More Cols| Avg gain
group (8,12) (16,20)

v20 6.07% 6.79% 6.43%
v40 5.44% 10.64% | 8.04%
v60 10.36% | 10.56% | 10.46%
v80 11.68% | 13.64% | 12.66%

v100 16.68% | 19.09% | 17.89%
Avg gain| 10.05% | 12.15% | 11.09%

Table 3. Aggregate improvements in schedule length

tasks on critical paths. Note: LPF is used only for prioriggignment at each scheduling step—
once atask is selected, the same linear placement approsctes correct schedules, and, hides
the reconfiguration latency, if possible.

In Figure 10 we present a sample of the tests we conductedwbaest graphs in se60 we
show schedule length data corresponding to a total of 8 pnobistances. To present the aggregate
data for the complete set of experiments, we defiggyest path @S the schedule length generated
by LPF for a problem instance. And, the quality criterionigading improvement (decrease) in
schedule length for each problem instance when our pladeaveare priority function is used
compared to placement-unaware LPF as:

100+ (Tiongest path — Theu)/ Theu

Figure 10 shows that our placement-aware priority functionsistentlygenerates better sched-
ules. Table 3 summarizes the result for 120 problem ins&ar€ach entry in the table represents
data from a set of instances. As an example, the entry camesmpy to the row labelled60 and
column labelled "Avg gain (16,20)” is 10.56%. This implidsat for a set of problem instances
where the graph size is approximately 60 nodes and the @sagonstraint was set at 16 and 20
columns, the average improvement in schedule length geeby our heuristic over LPF was
6.86%.

As is clear from Table 3, while a simple longest path heuwristirks reasonably well with small
graphs and few columns, our heuristic clearly generatesrgup(shorter) schedules, both with
increasing problem size. The key difference is that LPF #lss to improve schedule length by
prefetch, but only after selecting the task to be schedwide our heuristic considers placement
implications in task selection.

6.3.1 First-fit Vs best-fit

Similar to our previous table, we compare the quality ddfere between first-fit placement and
best-fit placement by the measure:

100+ (Tbest— Tfirst) /Tfirst

24

Test Few cols| More Cols| Avg gain
group (8,12) (16,20)

v20 0.0% 0.0% 0.0%
v40 0.0% -0.25% | -0.12%
v60 0.14% -0.02% 0.06%
v80 -0.26% | -0.07% | -0.17%
v100 0.26% 0.55% 0.40%
Avg gain 0.03%

Table 4. Comparison of first-fit Vs best-fit

Test | Average run-time(s
group 20 columns
v20 0.2

v40 2.0

v60 22

v80 90

v100 180

Table 5. Run-time of proposed approach

Table 4 indicates that the quality difference between uaifigt-fit placement policy and a best-
fit placement policy is negligible. However, the best-fitqggment incurs additional computational
overhead in the EST computation. This confirms our choicéneffirst-fit placement policy as
suitable.

6.3.2 Run-time of heuristic

Table 5 shows the average run-time of our approach (in se3dodthe experiments with an area-
constraint of 20 columns. The measurements were done on EIB®&Sparcv9 processor (SUnOS
5.8). While the run-time of our placement-aware approaciwgmwith increase in area-constraint,
we believe that the data, corresponding to our largest erpets, is a fair representation of the
expected run-time in reasonable scenarios.

6.4 Case study of JPEG encoder

We next conducted a detailed analysis for the JPEG encodijogithm Figure 11 under re-
source constraints. We obtained data for tasks like quantiaffman, by synthesizing the tasks
under placement and routing constraints. For each taskbtened implementation points with
only homogenous resources, and with heterogenous resoWdée assumed that the SW imple-
mentation for each task was approximately 4 times slower the HW implementation using only
homogenous resources. With only homogenous implemengtibe total area occupied by the
tasks in the coarse grain task graph in Figure 11 was 11 cauwa assumed a resource constraint
of 8 columns was available for mapping the task set.

25

Colour image

‘ RGBZYCbCr‘ (R) (Ra)
|
| bCT |
l 5 =
‘ Quantize ‘ .
| Ol

‘ Huffman ‘

Compressed image

Coarser grain Finer grain

Figure 11. Task graph for jpeg encoder

Experiment Latency (ms)
Coarse-grain HW-SW patrtitioning (no dynamic reconfiguration) 16.74
graph HW-SW + partial RTR 9.9
HW-SW + partial RTR + perfect prefetch 9.04
Fine-grain | HW-SW + partial RTR (single homogenous implementatipn) 7.51
graph Multiple implementation points 6.82
Best implementation points 9.58

Table 6. Schedule length for different HW-SW patrtitioning of JPEG encoder

Numerical data on the significant reconfiguration time fol@8@olumn confirms observations
from previous researchers [1] that execution time for a tgemkeating on a 88 block of 8-bit data
is orders of magnitude lower than the reconfiguration owesiled such tasks. So, all our schedule
length data is for processing a larger block correspondiraya56<256 colour image.

Table 6 presents a summary of schedule length estimatesjiwengenerated from various ex-
periments. The first rond®.74mg represents our initial experiment of HW-SW partitionirfglee
coarse-grain graph — in this experiment the HW deoatshave dynamic reconfiguration capability.
The next row 9.9mg represents the experiment where we consider the HW to havalpRTR
capability. It clearly demonstrates the potential for parfance improvement with partial RTR.
For this experiment, we assumed that there was no configarptefetch, i.e., reconfiguration for
a task was done exactly before its execution. In the thirceerpent 0.04mg, where we add
configuration prefetch to partial RTR capability, theredsli@onal performance improvement.

We subsequently exposed more parallelism by making meltppies of tasks like DCT based
on our knowledge that data blocks can be independently psedeby such tasks. The remaining
results from the fourth row onwards corresponds to experiat€ata for the finer-grain task graph.
The fourth row 7.21mg represents the results generated by our heuristic on tbednain graph-
this is optimal for this representation.

26

Experiment on heterogeneity

For the next experiment in the fifth ro8.82m9 we considered that the resource constraint of
8 columns now included one specialized resource (heteoag@rcolumn, i,e, the new resource
constraint was a set of 7 CLB columns and 1 resource columch Essk was allowed to have
either a homogenous implementation or a heterogenous ngpition.

In the schedule generated by our heuristic, some of the @mské¥ound to their faster het-
erogenous implementations while others are bound to slbax@ogenous implementations. This
experiment demonstrates the exploration capability oftauristic in considering multiple task
implementations while mapping onto a heterogenous devittepartial dynamic reconfiguration.

One important observation from our experiment with hetermgty was that the relative location
of the specialized resource column strongly affects thedale length. Specifically for our first-fit
placement policy, we observed that specialized resouriceretes located near the left edge of the
device (where the first fit algorithm initially tries to plataesks) lead to inferior schedule lengths.

Best implementation points only

For the final experiment in row ®(58m9 we restricted tasks to only their best implementation
points. Since the best implementation points are ofterrbgémous, the schedule length showed
significant degradation because of contention for the @gelicresources.

Overall, our case study confirms the importance of considgrhysical and architectural (het-
erogenous) constraints in a HW-SW patrtitioning algorittmme partially reconfigurable device. It
additionally confirms that partitioning (and schedulintpaaithms targeted towards such devices
need to have the capability of selecting between multipdé& tenplementations, some of which
might be using specialized resources.

7 Conclusion

In this paper, we focussed on physical and architecturastcaimts imposed on dynamically re-
configurable architectures by partial reconfigurationfeatWe first formulated an exact approach
bsaed on ILP (integer linear programming). With the helghedf €xact approach, we demonstrated
that ignoring linear task placement constraints imposegdnyial dynamic reconfiguration can
result in optimal, but physically unrealizable scheduléhlike existing ILP-based approaches
to HW-SW partitioning, our formulation simultaneously pés tasks while scheduling — it also
considers the key feature of configuration pre-fetch for im&ing performance along with the
resource contention due to a single reconfiguration meshani

Next, we proposed a placement-aware HW-SW partitioningisicibased on the well-known
Kernighan-Lin/Fiduccia-Matheyes paradigm for partitrapn Our proposed heuristic simultane-
ously partitions, schedules and does linear placemensk&$tan the target device. As a key step
of partitioning, our approach selects among multiple taggléementation points. A wide range of
synthetic experiments and a detailed case study of JPEGlegcaalidates the quality of solutions
generated by our proposed heuristic.

Placement and consideration of multiple implementatiansirtitioning make it easy to extend
our approach to heterogeneity, a key feature in modern FPGHAes case study on JPEG encoding

27

demonstrates the capability of our approach in selectitgyd®n heterogenous and homogenous
task implementations while mapping a given applicatiorocatheterogenous device. Finally,
the run-time of our approach is reasonable: task graphs mwittdreds of nodes are processed
(partitioned, scheduled, placed) in a couple of minutes.

Our approach has powerful capabilities, but there is scopérfprovement in our current im-
plementation in both solution quality and in the theorelgoathmic complexity by investigating
sophisticated placement techniques and data structurss, @ur heuristic currently is focused
on homogenous implementations. In the future, we will foongssues leading to high-quality
solutions in heterogenous scenarios.

8 Acknowledgements

This work was partially supported by NSF Grants CCR-0203818CCR-0205712.

References

[1] J. Noguera, R. M. Badia, "Power-Performance trade-faifseconfigurable computing”, CODES+ISSS, 2004

[2] P-H Yuh, C-L Yang, Y-W Chang, H-L Chen, "Temporal floorplaing using the T-tree formulation”, ICCAD,
2004

[3] S. Ghiasi, M. Sarrafzadeh, "Optimal Reconfiguration @&tce Management”, ASPDAC, 2003.

[4] Z.Li, "Configuration management techniques for recomfable computing”, Ph.D. Thesis, Northwestern Uni-
versity, 2002

[5] K Ben Chehida, M Auguin, "HW/SW patrtitioning approactr feconfigurable system design”, CASES 2002
[6] J. L. RRamirez-Alfonsin, B. A. Reed (Eds.), "Perfect Gha, John Wiley and Sons, 2001.

[7] S.P.Fekete, E.Kohler, J.Teich, "Optimal FPGA modukggiment with temporal precedence constraints”, DATE,
2001

[8] H. Singh, G. Lu, E. M. C. Filho, R. Maestre, M-H. Lee, F. utdahi, N. Bagherzadeh, "MorphoSys: case study
of a reconfigurable computing system targeting multimegijaliaations”, DAC, 2000.

[9] B. Mei, P. Schaumont, S. Vernalde, "A hardware-SoftwRaetitioning and scheduling algorithm for dynamically
reconfigurable embedded systems”, ProRisc workshop on Skstems and Signal processing, Nov 2000.

[10] B. Jeong, S. Yoo, S. Lee, K. Choi, "Hardware-Softwaras@ahesis for Run-time Incrementally Reconfigurable
FPGAs”, ASPDAC, 2000.

[11] K. S. Chatha, R. Vemuri, "An iterative algorithm for Hiware-Software partitioning, Hardware design Space
Exploration, and scheduling”, Jrnl Design Automation fonliedded Systems, V-5, 2000

[12] M Kaul, R Vemuri, "Optimal temporal partitioning and Bthesis for reconfigurable architectures”, DATE 1998
[13] S. Hauck, "Configuration pre-fetch for single contextonfigurable processors”, FPGA, 1998.
[14] R P Dick, D L Rhodes, W Wolf, "TGFF: task graphs for fre€ODES 1998

[15] F. Vahid, T. D. Le, "Extending the Kernighan-Lin hediisfor Hardware and Software functional partitioning”,
Jrnl Design Automation for Embedded Systems, V-2, 1997

[16] M. J. Wirthlin, "Improving functional density througRun-time Circuit Reconfiguration”, PhD Thesis, Electrical
and Computer Engineering Dept, Brigham Young Univesit@7.9

28

[17] R Niemann, P Marwedel, "An Algorithm for Hardware/Seftre Partitioning using mixed Integer Linear Pro-
gramming”, Jrnl Design Automation for Embedded System8,/19

[18] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, "Rangle-packing based module placement”, ICCAD, 1995

[19] P.Hansen, B. Jaumard, V. Mathon, "Constrained Noadim0-1 programming”, ORSA Journal of Computing,
Vol 5, No 2, 1993

[20] J.E. Beasley, "An exact two-dimensional non-guilhaticutting tree search procedure”, Op. Researchm V-33,
1985

[21] C. M. Fiduccia, R. M. Mattheyes, "A Linear-time heuitstor improving network partitions”, DAC, 1982

[22] B Kernighan, S Lin, "An efficient heuristic procedure foartitioning graphs”, The Bell System Technical Jour-
nal, V-29, 1970

[23] W L Winston, M Venkataraman, "Introduction to Mathencal Programming”, Thomson Brooks Cole Publish-
ers, 4'th edition, 2003

[24] M. Sarrafzadeh, C. K. Wong, "An Introduction to VLSI Pigal Design” McGraw Hill, 1994.

[25] www.xilinx.com

29

