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Abstract

Leakage energy consumption is an increasing concern in current and future CMOS technology gener-
ations. Procrastination scheduling, where task execution can be delayed to maximize the duration of idle
intervals, has been proposed to minimize leakage energy drain. We address dynamic slack reclamation
techniques under procrastination scheduling to minimize the static and dynamic energy consumption.
In addition to dynamic task slowdown, we propose dynamic procrastination which seeks to extend idle
intervals through slack reclamation. While using the entire slack for either slowdown or procrastination
need not be the most efficient approach, we distribute the slack between slowdown and procrastination
to exploit maximum energy savings. Our simulation experiments show that dynamic slowdown results
on an average 10% energy gains over static slowdown. Dynamic procrastination can extend the average
sleep intervals by up to70%, while meeting all timing requirements.
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1 Introduction

Portable embedded systems are pervasive with applications in multimedia, telecommunications and
consumer electronics. These systems are usually battery operated and power management is important
in the design and operation of these systems. A processor is central to an embedded system and con-
tributes to a significant portion of the total power consumption of the system. The two primary ways of
reducing the processor power consumption areshutdownandslowdown. To understand the benefits of
each technique, one needs to consider the two distinct contributors to device power consumption: (1)dy-
namicpower consumption arising due to switching activity in a circuit and (2)staticpower consumption
which is present even when no logic operations are performed. Slowdown (through dynamic voltage
and frequency scaling) is known to reduce the dynamic power consumption at the cost of increased
execution time for a given computation task. However, the increased computation time arising from
slowdown results in increasing the static energy consumption. Shutdown, on the other hand, eliminates
the static energy drain. With the increasing static power consumption (a result of increasing leakage cur-
rents), a combination of slowdown and shutdown techniques are important to minimize the total energy
consumption of the system.

Most of the prior works have addressed processor slowdown to minimize the dynamic power con-
sumption. Slowdown computation techniques can be broadly classified into: (1)static slowdown fac-
tors, computed using static analysis based on worst case task execution times and (2)dynamicslowdown
factors, which utilize slack arising from varying task execution times to extend slowdown. Among the
earliest works on this problem, Yaoet. al. [14] presented an off-line algorithm to compute the optimal
static slowdown (speed) schedule for a set ofN jobs. This work has been later extended to consider
realistic processor models and different scheduling policies [12, 10, 6]. Dynamic voltage scaling tech-
niques for real-time periodic task systems has been the focus of many works, where known feasibility
test have been extended to compute static slowdown factors [13, 2]. While static slowdown factors are
computed based on the worst case execution time (WCET) of tasks, variations in task execution times
result in dynamic slack which can be exploited for further energy savings. Slack reclamation heuristics
have been proposed in [1, 5] to increase the extent of task slowdown. However, these techniques are
primarily targeted for dynamic energy minimization.

With the shrinking device dimension, leakage currents are rapidly increasing. A five-fold increase in
leakage current is predicted with each technology generation. Recently, leakage abatement has been an
important focus on the work on power and energy minimization. Procrastination scheduling has been
shown to minimize the leakage energy consumption by seeking to maximize idle intervals through de-
layed task execution. Iraniet. al. [3] consider the combined problem of slowdown and shutdown and
proposecompetitiveoff-line and on-line scheduling algorithm (for non-periodic task set). Procrastina-
tion scheduling has also been extended to periodic real-time systems. Leeet. al. [7] have proposed
Leakage Control EDF (LC-EDF) algorithm and later works have enhanced the procrastination scheme
[4, 11]. These techniques are based on statically computed slowdown factors and pre-computed pro-
crastination intervals (based on the worst case execution times). In this paper, we propose dynamic
slack reclamation techniques that work in conjunction with procrastination scheduling. We show that
prior works on dynamic slowdown can be used in conjunction with procrastination scheduling, while
ensuring task deadlines. While dynamic slack can be used for task slowdown, it can also be beneficial
to use the dynamic slack for extended (dynamic) procrastination for leakage reduction. We propose
slack reclamation techniques, which enable both dynamic slowdown and dynamic procrastination in a
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system. We achieve energy efficiency by wisely distributing the slack between slowdown and procras-
tination. We show that dynamic procrastination can increase the idle intervals to up to 1:7 times over
static procrastination, which reduces the idle energy consumption by up to 60%.

The rest of the paper is organized as follows: Section 2 introduces the preliminaries and the system
model. In Section 3, we present dynamic slack reclamation algorithms under procrastination scheduling.
The experimental results are given in Section 4 and Section 5 concludes the paper with future directions.

2 System Model

The system consists of a task set ofn periodic real time tasks, represented asΓ = fτ1; :::;τng. A task
τi is a 3-tuplefTi ;Di;Cig, whereTi is the period of the task,Di is the relative deadline andCi is the worst
case execution time (WCET) of the task at the maximum processor speed. The tasks are scheduled on
a single processor system based on a preemptive scheduling policy. A task set is said to befeasibleif
all tasks meet the deadline. The processor utilization,U = ∑n

i=1Ci=Ti , of less than or equal one is a
necessary condition for the feasibility of any schedule [8]. In this work, we assume task deadlines are
equal to the period (i.e.Di = Ti, for each taskτi) and tasks are scheduled by the Earliest Deadline First
(EDF) scheduling policy [8]. All tasks are assumed to be independent and preemptive. Each invocation
of the task is called ajob. The notation of a task and the task instance (job) is used interchangeably,
when the meaning is clear from the context. A priority functionP (J) is associated with each invocation
of a task such that if a jobJ has a higher priority thanJ0, thenP (J)> P (J0).

A wide range of current embedded processors support variable voltage and frequency levels. We con-
sider a uni-processor system with support for Dynamic Voltage Scaling (DVS). Aslowdown factor(η)
is defined as the normalized operating frequency, i.e., the ratio of the current frequency to the maximum
frequency of the processor. Processors support discrete frequency levels and slowdown factors are dis-
crete points in the range [0,1]. A static slowdown factor (ηi) is assigned to each taskτi which ensures
feasibility of the system. With the increasing dominance of leakage drain, performing the maximum
possible slowdown need not be the most energy efficient operating point. Considering the static and
dynamic energy consumption, the processor speed that minimizes the total energy per processor cycle is
called the critical speed, denoted byηcrit . The speedηcrit can be computed for a given processor and is
used as a lower bound on the static and dynamic task slowdown factors.

Procrastination Scheduling

Procrastination scheduling [7, 4], whereby task executions can be delayed to extend processor sleep
intervals, is a part of our scheduling policy. We say a task isprocrastinated(or delayed) if on task
arrival, the processor is in a shutdown state and continues to remain in the shutdown state, despite
the task being ready for execution. Procrastination scheme presented in [4] is an efficient scheduling
algorithm and forms the basis of our work. Under this algorithm, a maximum procrastinated interval,
Zi, is pre-computed for each taskτi , based on static slowdown factors. The details of the procrastination
algorithm and the computation ofZi (for each taskτi) can be found in [4]. It has been shown that all
deadlines are guaranteed if each taskτi is procrastinated by no more thanZi time units. We extend
the work in [4] by proposing energy efficient slack reclamation algorithms. Note that the processor is
shutdown only when the processor ready queue is empty and tasks are procrastinated only when the
processor is shutdown. (Procrastination is handled by an additional controller, which takes over on
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processor shutdown.) Procrastination is also proposed in [11], however the algorithm has a worst case
exponential time complexity, making it impractical.

Algorithm 1 Static Procrastination Algorithm
1: On arrival of a new job Ji:

2: if (processor is in sleep state)then

3: if (Timer is not active)then

4: timer Zi; fInitialize timerg

5: else

6: timer min(timer;Zi);

7: end if

8: end if

9: On expiration of Timer (timer= 0):

10: Wakeup Processor;

11: Scheduler schedules highest priority task;

12: Deactivate timer;

13: Timer Operation:

14: timer – –;fCounts down every clock cycleg

The following results describes the computation of task procrastination intervals for a period task-set.

Theorem 1 [4] Given tasks are ordered in non-decreasing order of their period, the procrastination

algorithm guarantees all task deadlines if the procrastination interval Zi of each taskτi satisfies:

8i; 1� i � n :
Zi

Ti
+

i

∑
k=1

1
ηk

Ck

Tk
� 1 (1)

8k<i Zk� Zi (2)

3 Dynamic Slack Reclamation

Dynamic slack reclamation schemes build upon static task slowdown factors for further energy sav-
ings. Prior works do not address slack reclamation in the presence of procrastination, which is the focus
of this work. We begin with an overview of slack reclamation and define the following terms (same
terms are used in prior work [15]). Arun-timeof a job is the time budget assigned to the job based
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on the static slowdown factor. The run-time for a taskτi with workload (execution time at maximum
speed)Ci and a static slowdown factor ofηi is Ci=ηi. Each run-time has an associated priority, which
is the same as the job (task instance) priority. A job consumes run-time as it executes and early task
completion results in dynamic slack (run-time). The unused run-time of a job is maintained in a priority
list called theFree Run Time list (FRT-list). It has been shown that a task can reclaim run-time with a
priority higher than and equal to its own priority while guaranteeing all deadlines. The run-time that can
be reclaimed by taskτi at timet is denoted byRF

i (t). The list is maintained sorted by the priority of the
run-time with the highest priority run-time at the head of the list. Run-time consumed form the FRT-list
is always consumed from the head of the list (the highest priority run-time). The following rules are
used in consuming the available run-time.

� As taskτi executes, it consumes run-time at the same speed as the wall clock (physical time). If
RF

i (t) > 0, the run-time is used from the FRT-list, else the task uses its own run-time.

� When the system is idle (includes shutdown), it uses the run-time from the FRT-list if the list is
non-empty.

Note that the rules need to be applied only on the arrival of a task in the system and on task completion.

3.1 Motivation

Prior slack reclamation techniques use additional slack to further slowdown task executions. Exces-
sive slowdown can increase the static energy contribution and it can be beneficial to reclaim slack for
extended task procrastination interval, thereby minimizing leakage drain. We extend slack reclamation
techniques to enable both dynamic slowdown and dynamic task procrastination. Prior works have shown
that a taskτi can reclaim available higher priority run-time (RF

i (t)) for dynamic slowdown. We show
that, even under procrastination scheduling, tasks can reclaim higher priority run-time (than the reclaim-
ing task) to perform dynamic slowdown. Furthermore, we also propose algorithms to perform dynamic
procrastination.

An intuitive solution for dynamic procrastination is to use free run-time (RF
i (t)), available on task

arrival timet, to extend the procrastination interval. We illustrate with an example that this approach
can result in tasks missing the deadline. Consider a task set with two tasksτ1 = f5;5;1g and τ2 =
f7:5;7:5;1g. The task arrival times and deadlines are shown in Figure 1(a). Based on the procrastination
algorithm in [4], the statically computed procrastination intervals for the tasks areZ1 =Z2 = 4. Consider
that the processor is idle prior to timet = 0, when tasksτ1 andτ2 arrive. Since the processor is idle,
the tasks can be procrastinated up to timet = 4 (by the procrastination algorithm). The processor wakes
up at timet = 4 and executes the highest priority task. Both tasks have shorter execution times than
their WCET and complete earlier, leaving the processor in the idle state prior to timet = 5. The next
instance of taskτ1 arrives at time 5 with a deadline oft = 10. Since the processor is idle, the execution
of τ1 can be procrastinated. According to the run-time usage rules, run-time of taskτ1 is consumed in
the interval[4;5]. The processor is idle att = 5, with run-time of taskτ2 (1 time unit with a deadline of
7:5) still available. The available run-time (1 unit) has a higher priority and can be reclaimed by taskτ1.
However if this run-time is used to extend the procrastination interval by 1 time unit beyond the static
procrastination interval ofZ1 = 4 (total of 4+1= 5 time units), then the processor remains idle up to
time t = 10. This results in taskτ1 missing its deadline as shown in Fig. 1(b).
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Figure 1. Slack reclamation for dynamic procrastination. (a) Task set description: task arrival times with worst case execution

times. (b) Using the available (higher priority) run-time on task arrival to extend the static procrastination result in taskτ1

missing its deadline. (c) Procrastination by the maximum of the static procrastination interval and the (higher priority) slack

available on task arrival meets all task deadlines.

We show that tasks can reclaim higher priority run-time, available at the end of the static procrasti-
nation interval (and not on task arrival), to further extend the idle interval. Since run-time is consumed
when the processor is idle, slack can be exhausted by the end of the static procrastination interval. Thus
on arrival of a taskτi at timet, the task procrastination interval can be set to the maximum of the static
procrastination interval (Zi) and the free run-time (RF

i (t)). In the above example, this results in taskτ1

(arriving at timet = 5) to be procrastinated bymax(1;4) = 4 time units. This rule results in a feasible
schedule as shown in Fig. 1(c). When the reclaimable slack is greater than the static task procrastination
interval, the slack can be reclaimed for extended procrastination.
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Algorithm 2 Dynamic Slack Reclamation (DSR)
1: On arrival of a new job Ji: fJi is an instance of taskτig

2: Rr
i (t) 

Ci
ηi

;

3: Add jobJi to scheduler Ready Queue;

4: if (processor is in sleep state)then

5: ZD
i �max(Zi ;RF

i (t)); fset procrastination intervalg

6: if (Timer is not active)then

7: timer ZD
i fInitialize timerg

8: else

9: timer min(timer;ZD
i );

10: end if

11: end if

12: On execution of each jobJi :

13: setSpeed(max(ηcrit ;
Cr

i (t)
Rr

i (t)+RF
i (t)

));

14: On completion of job Ji :

15: Add to FRT-list(Rr
i (t);P (Ji));

16: On expiration of Timer (timer= 0):

17: Wakeup Processor;

18: Scheduler schedules highest priority task;

19: Deactivate timer;

20: Timer Operation:

21: timer – –;fCounts down every clock cycleg
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3.2 Dynamic Slack Reclamation

We now present a dynamic slack reclamation algorithm that works in conjunction with procrastination
scheduling. First, we describe the notation used in the algorithm.

� Ji : the current job of taskτi .

� Rr
i (t) : the available run-time of the current instance of taskτi (i.e. Ji) at timet.

� RF
i (t) : the free run-time (slack) available to jobJi at timet (i.e. run-time from the FRT-list with

priority� P (Ji)).

� Cr
i (t) : the residual workload of jobJi.

� Rcrit
i (t) : the run-time required to execute the residual portion of jobJi at the critical speedηcrit .

Algorithm 2 describes the slack reclamation scheme which can perform both dynamic slowdown and
dynamic procrastination. The task run-time and dynamic slowdown is managed as follows. When a task
arrives in the system, it is assigned a time budget based on the static slowdown factor and added to the
ready-queue (line 2). On execution of a task, the available run-time for the task is its own run-time as
well as the higher and equal priority run-time from the FRT-list (RF

i (t)). The dynamic task slowdown
factor is set to be the ratio of the residual workload to the available run-time. The algorithm ensures that
the slowdown is never set below the critical speed, since it is not energy efficient to execute lower than
the critical speed (line 13). On completion of the job, the unused run-time is added to the FRT-list. The
algorithm also states how the dynamic slack can be used to extend task procrastination intervals. LetZi

be the statically computed procrastination interval for each taskτi andRF
i (t) be the available run-time on

task arrival timet. The dynamic procrastination interval (ZD
i ) of each taskτi is limited bymax(RF

i (t);Zi),
which guarantees all task deadlines (line 5). Similar to the procrastination algorithm in [4], a timer is
maintained to ensure that no task (τi) is delayed by more than its computed procrastination interval
(ZD

i ). Note that Algorithm 2 does not explicitly determine the distribution of slack among slowdown
and procrastination, but describes how slack can be utilized in either case. The two key points of this
algorithm are: (1) the limit on dynamic task procrastination (line 5); and (2) the limit on dynamic task
slowdown (line 13).

Lemma 2 Given tasks are scheduled by the dynamic slack reclamation policy along with the dynamic

procrastination algorithm, the run-time of each job is depleted at or before the job deadline.

Proof: Suppose the claim is false. Lett be the first time that a run-time of a job or that in a FRT-list
is not depleted by its deadline. In the rest of the proof, we use the termhigh priority run-time (job) to
represent run-time (job) with a deadline less than or equal tot. Let t 0 be the the latest time beforet such
that the following two conditions are satisfied:
(1) the FRT-list does not contain any high priority run-time beforet 0;
(2) either (a) no high priority jobs with arrival times beforet 0 are pending ; or (b) the processor is idle
before timet 0 (with or without high priority tasks pending).
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Since no requests can arrive before system start time(time= 0), t 0 is well defined. Constructed in this
manner, the processor never stops consuming high priority run-time during the entire interval[t 0; t]. We
consider the following two cases depending on whether high priority jobs are pending before timet0.

Case I : where no high priority jobs are pending prior to timet 0. In this case, the run-time consumed
in the interval is that generated by the high priority jobs arriving in the interval[t 0; t]. The run-time
generated by the high priority jobs in the interval[t 0; t] is bounded by∑n

k=1b
X
Tk
cCk

ηk
. Since the run-time is

not depleted at timet, the generated run-time must be greater than the run-time consumed in the interval
[t 0; t], which isX. Therefore,

n

∑
k=1

b
X
Tk
c
Ck

ηk
> X

SinceX
Tk
� b X

Tk
c, we have

n

∑
k=1

1
ηk

Ck

Tk
> 1

which contradicts with Equation 1 (assumingZn = 0).
Case II: the processor is idle prior to timet 0 with pending high priority jobs that arise due to task

procrastination. Note that in this case, the high priority run-time generated in the interval[t 0; t] can be
larger than Case I due to the pending tasks. Lett2 be the latest time beforet when there are no pending
high priority task prior tot2. The run-time consumed in the intervalX is generated by the high priority
jobs arriving in the interval[t2; t]. LetY = t� t2 be the length of the interval[t2; t], then the high priority
run-time generated in the interval of lengthY is bounded by∑ j

k=1b
Y
Tk
cCk

ηk
, where j is the maximum task

index withTj �Y. The FRT-list has no high priority run-time prior tot 0 and the run-time generated in
the interval[t2; t] (lengthY) is consumed in the interval[t 0; t] (lengthX = t� t 0). Since the run-time is
not depleted at timet, the run-time generated in interval of lengthY must be greater than the run-time
consumed in the interval[t 0; t], which isX.

Therefore,
i

∑
k=1
b

Y
Tk
c
Ck

ηk
> X

Note that the high priority job arriving at timet2, sayτh, is not procrastinated by more thanZh time
units (cannot be procrastinated byRF

h (t) > Zh). If the task were procrastinated byRF
h (t) > Zh then

there should be high priority run-time throughout the sleep interval. Thus there would be high priority
run-time prior tot 0, contradicting the definition oft 0. Thus the job arriving at timet2 ensures that the
procrastination from timet2 is bounded byZh. Note thatj is the maximum task index such thatTj <Y.
Since the taskτh has a deadline less thant, Th� Tj and by Equation 2, the procrastination intervalZh is
bounded byZj . Thus it is true thatY < X+Zj.

Therefore,
i

∑
k=1
b

Y
Tk
c
Ck

ηk
>Y�Zj

SinceY
Tk
� b Y

Tk
c, we have

Zj

Y
+

j

∑
k=1

1
ηk

Ck

Tk
> 1
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Since all high priority jobs that contribute to the run-time in interval of lengthY have their arrival time
and deadline in the interval[t2; t], we haveTj �Y, and

Zj

Tj
+

j

∑
k=1

1
ηk

Ck

Tk
> 1

which contradicts with Equation 1. Thus the run-time of each job is depleted no later than its deadline.

Theorem 3 All tasks meet the deadline when scheduled by the dynamic slack reclamation algorithm

(Algorithm 2) with procrastination scheduling.

Proof: Note that a run-time is reserved for each job and the unused run-time is not added to the
FRT-list until the job completes. Each run-time has the same deadline as the job deadline, and thus by
Lemma 2 it follows that all jobs complete by their deadline.

3.3 Slack Distribution Policy

Given additional run-time (slack) for a job, using the entire slack for either dynamic slowdown or
dynamic procrastination need not be an energy efficient solution. Slack reclamation should be wisely
performed since the slack used for procrastination influence that (slack) available for slowdown and vice
versa. Given the system is idle, using the entire slack for dynamic procrastination would not be energy
efficient, if the incoming task has a static slowdown factor greater than the critical speed. On the other
hand, leaving the slack entirely for dynamic slowdown need not be beneficial since the task might not
be able to utilize the entire slack. Execution below the critical speed is not energy efficient and the extra
slack available can result in many small idle intervals and increase leakage energy consumption. Once
the processor is on and executing jobs, each task reclaims the slack to attain a speed as close as possible
to the critical speed (this minimizes the energy consumed in executing the task).

Algorithm 3 describes a policy for distributing the slack between slowdown and procrastination. De-
termining the extent of dynamic procrastination for a task, when the processor is in the shutdown state,
is crucial. We use the slack available on task arrival and the static task slowdown factor in computing
the procrastination interval. Line 3 checks if the slack is sufficient to execute at the critical speed. If
the entire slack would be consumed on execute the task at critical speed, then the algorithm does not
perform dynamic procrastination (line 4). If extra slack is available even on executing the task at the
critical speed, then the extra slack(ZE

i ) is used for dynamic procrastination (line 6). The dynamic pro-
crastination intervalZD

i is the maximum of the static procrastination interval (Zi) andZE
i (shown in line 7

of Algorithm 3). The timer maintained for procrastination is updated based on the value ofZD
i . The rest

of the algorithm is the same as that of Algorithm 2. When the processor is woken up it uses the available
slack for dynamic slowdown, with the critical speed being the lower bound on dynamic slowdown. We
distribute slack between slowdown and procrastination in this manner to maximize energy efficiency.

Theorem 4 All tasks meet the deadline when scheduled by the dynamic slack reclamation algorithm

according to the slack distribution policy described in Algorithm 3.
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Proof: The task procrastination interval under the combined procrastination algorithm is always
less than or equal to the available free run-time,RF

i (t). Since the static slowdown factors are greater
than or equal to the critical speed, as seen in line 6 of the Algorithm 3 the procrastination interval will
be smaller thanRF

i (t). Thus the correctness of the algorithm follows from Theorem 3.

Algorithm 3 Slack Distribution Policy
1: On arrival of a new job Ji:

2: if (processor is in sleep state)then

3: if (RF
i (t)+Rr

i (t) < Rcrit
i (t) ) then

4: ZE
i  0;

5: else

6: ZE
i  RF

i (t)+Rr
i (t)�Rcrit

i (t); fNote thatZE
i �RF

i (t)g

7: end if

8: ZD
i  max(Zi ;ZE

i );

9: if (Timer is not active)then

10: timer ZD
i ; fInitialize timerg

11: else

12: timer min(timer;ZD
i );

13: end if

14: end if

15: Rest of the algorithm is same as Algorithm 2

4 Experimental Setup

We have implemented the proposed scheduling techniques in a discrete event simulator. To evaluate
the effectiveness of our scheduling techniques, we consider several task sets, each containing up to
20 randomly generated tasks. We note that such randomly generated tasks is a common validation
methodology in previous works [1, 7, 13]. Based on real life task sets [9], tasks were assigned a random
period and WCET in the range [10 ms,125 ms] and [0.5 ms, 10 ms] respectively. Each task is assigned a
static slowdown factor equal to the utilization at maximum speed, which is the optimal slowdown under
EDF scheduling policy, to minimize the dynamic energy consumption [1]. If this slowdown factor is
smaller than the critical speed,ηcrit , then the slowdown factor is set to the critical speed. We generate
varying execution times by varying thebest case execution time (BCET)of a task as a percentage of its
WCET. The execution times are generated by a Gaussian distribution with mean,µ= (WCET+BCET)/2
and a standard deviation,σ = (WCET-BCET)/6. The BCET of the task is varied from 100% to 10%
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in steps of 10%. Experiments were performed on task sets with varying processor utilization (U) at
maximum speed.

We use the power model for the Transmeta processor, based on the 70nm technology, consisting
of both static and dynamic power consumption [4]. As described in the model, the critical speed of
execution isηcrit = 0:41, the processor shutdown overhead is 483µJ and the threshold idle interval
for shutdown is 2:01 msec. We assume that the processor supports discrete voltage levels in steps of
0:05V in the range 0:5V to 1:0V. These voltage levels correspond to discrete slowdown factors and
each computed slowdown factor is mapped to the smallest discrete level greater than or equal to it. The
upcoming idle interval is assumed to be the time period before the next task arrival in the system. The
minimum guaranteed static procrastination interval is used to estimate the minimum idle interval.

We compare the energy consumption of the following techniques:

� No Dynamic Slack Reclamation (no-DSR): where all tasks are executed at the static slowdown
factor.

� Dynamic Slack Reclamation with Static Procrastination (DSR-SP): where the reclaimed slack
is used only for dynamic slowdown of the processor. Procrastination is based on statically com-
puted task procrastination intervals (Zi).

� Dynamic Slack Reclamation with Dynamic Procrastination (DSR-DP): where the reclaimed
slack is used for both dynamic slowdown and dynamic procrastination (combined slowdown and
procrastination given by Algorithm 3).

4.1 Experimental Results

Figures 2 to 5 compare the energy savings of dynamic slack reclamation for different processor uti-
lization (at maximum speed), U . For each value of U, we compare the following :

� sub-figure (a) (in Figs. 2, 3, 4, and 5) compares the total energy consumption of DSR-SP and
DSR-DP normalized to the no-DSR policy. The variation of the BCET is along the X-axis and the
normalized total energy along the Y-axis.

� sub-figure (b) (in Figs. 2, 3, 4, and 5) compares the average sleep interval and the average idle
energy consumption of the DSR-DP normalized to DSR-SP policy. The increase in the sleep
interval and the decrease in the idle energy is shown through two separate Y-axis for the same.

The energy gains forU = 80% are shown in Fig. 2(a). Reducing the BCET generates additional
dynamic slack that can be reclaimed for additional energy savings. At high values of BCET, dynamic
slowdown rarely reaches beyond the critical speed and it is energy efficient to utilize the entire slack for
dynamic slowdown. From Fig. 2(b), we see that DSR-DP further reduces the idle energy consumption
as BCET falls below 40%. A comparison of DSR-SP and DSR-DP shows that the average sleep interval
under DSR-DP increases to up to 1:6 times that of the DSR-SP policy. The average idle energy is seen
to reduce to up to 70% compared to DSR-SP.

We study the energy gains of dynamic slack reclamation for different values of processor utilization,
U . We observe that the energy gains are greater at higher values of utilization (U) and decrease with
lower utilization. Higher values of U result in higher static slowdown factors which consume more en-
ergy. Dynamic slack reclamation results in lowering the slowdown factors to result in higher energy
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Figure 2. Utilization,U=80% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison

of average idle energy and average sleep interval of DSR-DP normalized to DSR-SP
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Figure 3. Utilization,U=60% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison

of average idle energy and average sleep interval of DSR-DP normalized to DSR-SP

gains. As the utilization decreases, the difference in the energy consumption between the static slow-
down factors and the critical speed decrease and the relative gains are lower. DSR-DP improves the
procrastination intervals as the dynamic slowdown factors fall below the critical speed. This occurs at
lower values of BCET for higher values ofU and vice versa. We also see that the energy gains of DSR-
DP over DP-SP increase at lower values of U. Note that the total energy gains of DSR-DP over DSR-SP
are not high. Majority of the short idle intervals that result in leakage are already avoided through
static procrastination intervals which accounts for the bulk of the savings. Thus even though DSR-DP
increases the average sleep interval duration, we do not see significant energy savings. Dynamic pro-
crastination will result in significant energy gains when the static procrastination intervals are not long
enough to perform shutdown (less thantthreshold). Additional procrastination will enable shutdown and
reduce the leakage energy consumption.

For smaller values of U, dynamic slowdown reaches the critical speed for higher values of BCET.
A comparison of the Figs. 2-5 shows that DSR-DP results in additional gains below BCET of 60%
at U = 60% and below BCET of 80% atU = 50%. We see that the sleep intervals under DSR-DP
are increased up to 1:7 times and the idle energy is reduced to up to 60%. At a utilizationU = 40%
and lower, all tasks are executed at the critical speed(ηcrit = 0:41). Static procrastination intervals
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Figure 4. Utilization,U=50% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison

of average idle energy and average sleep interval of DSR-DP normalized to DSR-SP
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Figure 5. Utilization,U=40% (a) Comparison of total energy of DSR-SP and DSR-DP normalized to no-DSR (b) Comparison

of average idle energy and average sleep interval of DSR-DP normalized to DSR-SP

are computed for the tasks, which dominates over the dynamic slack used to extend procrastination.
Task execution are usually small and the accumulated free run-time slack rarely outperforms the static
procrastination intervals. Thus DSR-DP does not result in significant energy savings at utilization lower
than the critical speed.

5 Conclusions and Future Work

We present dynamic slack reclamation techniques that work in conjunction with procrastination schedul-
ing to minimize the total static and dynamic energy consumption in a system. Reclaiming slack for
dynamic slowdown results on an average 10% energy savings compared to no slack reclamation. We
further enhance slack reclamation to enable both dynamic processor slowdown and dynamic task pro-
crastination. Dynamic procrastination further decreases the idle energy consumption up to 70% while
extending the average sleep interval to up to 1:7 times. Such task slowdown techniques along with
combined static and dynamic procrastination are important as leakage drain continues to increase. The
proposed techniques are simple and result in an energy efficient operation of the system. We plan to
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extend these techniques for energy efficient scheduling of all system resources.
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