
The Phantom Serializing Compiler

André C. Ńacul

Tony Givargis

Technical Report CECS-04-30

November 22, 2004

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8168

{nacul, givargis}@cecs.uci.edu

The Phantom Serializing Compiler

André C. Ńacul

Tony Givargis

Technical Report CECS-04-30

November 22, 2004

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8168

{nacul, givargis}@cecs.uci.edu

Abstract

Embedded software continues to play an ever increasing role in the design of complex embedded ap-

plications. In part, the elevated level of abstraction provided by a high-level programming paradigm im-

mensely facilitates a short design cycle, fewer design errors, design portability, and Intellectual Property

(IP) reuse. In a large class of embedded systems, dynamic multitasking using traditional OS techniques

is infeasible because of memory and processing overheads or lack of operating systems availability for

the target embedded processor. We propose a serializing compiler as an alternative solution to enable

a designer to develop multitasking applications without the need of OS support. A serializing compiler

is a source-to-source translator that takes a POSIX compliant multitasking C program as input and

generates an equivalent, embedded processor independent, single-threaded ANSI C program, to be com-

piled using the embedded processor-specific tool chain. The output of our tool is a highly tuned ANSI

C program that embodies the application-specific embedded scheduler and dynamic multitasking infras-

tructure along with the user code. In this work, we present the Phantom serializing compiler, discuss its

architecture and scheduling technique, and show the feasibility of the proposed approach by comparing

execution efficiency to solutions based on traditional OS implementations.

Contents

1 Introduction 2

2 Related Work 3

2.1 VM Based Techniques . 4

2.2 Template Based Techniques . 4

2.3 Static Scheduling Techniques . 5

3 The Phantom Approach 5

3.1 Introduction . 5

3.2 Preemption and Scheduling . 7

3.3 Synchronization . 10

3.4 Interrupts . 11

4 Partitioning 12

4.1 Strategy for Clustering . 13

4.2 Exploration Framework . 15

5 Architecture of Generated Code 16

5.1 Code Layout . 16

5.2 Memory Layout . 19

5.3 Scheduler . 21

6 Experimental Results 23

6.1 General Execution . 23

6.2 Partitioning Exploration . 25

6.3 Phantom Performance . 27

7 Conclusions 29

8 Acknowledgements 30

i

References 30

ii

List of Figures

1 OS Gap in Embedded Software Designs . 3

2 Phantom Compiler Architecture . 6

3 Code Example . 8

4 CFG transformations for functiongame . 9

5 Excerpt of the Generated Code . 10

6 The Generic Clustering Algorithm . 14

7 Execution of Clustering Algorithm . 15

8 The Search Heuristic . 16

9 Clustering Exploration Methodology . 17

10 Code Layout of Input and Output Programs . 18

11 The Task Context Data Structure . 19

12 The Frame Data Structure . 20

13 Code Structure of Setup Functions . 20

14 Code Structure of Cleanup AEB . 20

15 Code Structure of Scheduling Function . 21

16 Code Structure of Optimized Scheduling Function . 22

17 PhantomSpeedup . 25

18 Client Server - server . 26

19 DCT - fpixel . 26

20 Consumer Producer - main . 26

21 Quick Sort - quicksort . 26

22 PhantomContext Switch Cost in Instructions with Multiple Threads and Multiple Priorities . 29

23 PhantomContext Switch Cost inµs with Multiple Threads and Multiple Priorities 30

iii

The Phantom Serializing Compiler

Andr é C. Nácul, Tony Givargis

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

{nacul,givargis}@cecs.uci.edu

http://www.cecs.uci.edu

Abstract

Embedded software continues to play an ever increasing role in the design of complex embedded applica-

tions. In part, the elevated level of abstraction provided by a high-level programming paradigm immensely

facilitates a short design cycle, fewer design errors, design portability, and Intellectual Property (IP) reuse.

In a large class of embedded systems, dynamic multitasking using traditional OS techniques is infeasible

because of memory and processing overheads or lack of operating systems availability for the target embed-

ded processor. We propose a serializing compiler as an alternative solution to enable a designer to develop

multitasking applications without the need of OS support. A serializing compiler is a source-to-source

translator that takes a POSIX compliant multitasking C program as input and generates an equivalent,

embedded processor independent, single-threaded ANSI C program, to be compiled using the embedded

processor-specific tool chain. The output of our tool is a highly tuned ANSI C program that embodies the

application-specific embedded scheduler and dynamic multitasking infrastructure along with the user code.

In this work, we present the Phantom serializing compiler, discuss its architecture and scheduling technique,

and show the feasibility of the proposed approach by comparing execution efficiency to solutions based on

traditional OS implementations.

1

1 Introduction

The functional complexity of embedded software continues to rise due to a number of factors such as

consumer demand for more functionality, sophisticated user interfaces, seamless operation across multi-

ple communication and computation protocols, need for encryption and security, and so on. Consequently,

the development of embedded software poses a major design challenge. At the same time, the elevated level

of abstraction provided by a high-level programming paradigm immensely facilitates a short design cycle,

fewer design errors, design portability, and Intellectual Property (IP) reuse. In particular, the concurrent

programming paradigm is an ideal model of computation for design of embedded systems, which often

encompass inherent concurrency.

Furthermore, embedded systems often have stringent performance requirements (e.g., timing, energy,

etc.) and, consequently, require a carefully selected and performance tuned embedded processor to meet

specified design constraints. In recent years, a plethora of highly customized embedded processors have

become available. As an example, Tensilica [15] provides a large family of highly customized application-

specific embedded processors (a.k.a., the Xtensa). Likewise, ARM [2] and MIPS [12] provide several

derivatives of their respective core processors, in an effort to provide to their customers an application-

specific solution.

These embedded processors ship with cross-compilers and the associated tool chain for application

development. However, to support a multitasking application development environment, there is a need for

an operating system (OS) layer that can support task creation, task synchronization, and task communication.

Such OS support is seldom available for each and every variant of the base embedded processor. In part,

this is due to the lack of system memory and/or sufficient processor performance (e.g., in the case of micro-

controllers such as the Microchip PIC [10] and the Phillips 8051 [13]) coupled with the high performance

penalty of having a full-fledged OS. Additionally, manually porting and verifying an OS to every embedded

processor available is a high-cost job, in terms of time and money, and yet does not guarantee correctness.

Thus, there exists a gap in realizing a multitasking application targeted at a particular embedded pro-

cessor, as shown in Figure 1. In this work, we fill this gap by providing a fully automated source-to-source

translator, thePhantomcompiler, that takes a multitasking C program as input and generates an equivalent,

embedded processor independent, single-threaded ANSI C program, to be compiled using the embedded

2

C Multitasking Application

ANSI C Single-Threaded Application

Cross
Compiler A

Cross
Compiler C

Cross
Compiler B

Embedded
Processor A

Embedded
Processor C

Embedded
Processor B

High Level Programming Paradigm

Available
from

Processor
Vendor

OS Gap

Figure 1: OS Gap in Embedded Software Designs

processor-specific tool chain. The output of our tool is a highly tuned, correct-by-construction ANSI C pro-

gram that embodies the application-specific embedded scheduler and dynamic multitasking infrastructure

along with the user code.

The remainder of this work is organized as follows. In Section 2, we summarize prior related work.

In Section 3, we present thePhantomapproach. Section 4 discusses the partitioning problem from the

Phantomperspective. In Section 5, the code and memory layout, and scheduler organization are detailed.

Section 6 contains experimental results, comparingPhantomto traditional approaches and showing the

effect of different partitioning solutions. Finally, in Section 7 we conclude the paper.

2 Related Work

There are three categories of solutions that partially address the problem stated in this work, namely, a class

of virtual machine (VM) based techniques, a class of template based OS generation techniques, and a class

of static scheduling techniques.

3

2.1 VM Based Techniques

In the VM based techniques, an OS providing a multitasking execution environment is implemented to run

on a virtual processor. A compiler for the VM is used to map the application program onto the VM. The

virtual processor is in turn executed on the target processor. Portability here is achieved by porting the VM to

the desired target embedded processor. The advantages of this class of techniques are that the application and

OS code do not require recompilation when moving to a different embedded processor. The disadvantage

of this class of techniques is a significant performance penalty (i.e., speed, energy, and memory footprint)

incurred by the VM layer, and specifically the VM instruction set interpreter. Moreover, the porting of

the VM to the target embedded processor may require more than recompilation efforts. Examples of such

VM based techniques are Java [8] and C# [11]. Research in this area tries to address the above-mentioned

disadvantages by proposing customized VM for embedded applications [17] or just in time (JIT) compilation

techniques [3].

2.2 Template Based Techniques

In the template-based OS generation techniques, a reference OS is used as a template in generating cus-

tomized derivatives of the OS for particular embedded processors. This class of techniques mainly relies

on inclusion or exclusion of OS features depending on application requirements and embedded processor

resource availabilities. The disadvantage of this class of techniques is that no single generic OS template

can be used in the variety of embedded processors available. Instead, for optimal performance, a rather cus-

tomized OS template must be made available for each line or family of embedded processor. In addition, for

each specific embedded processor within a family, an architecture model must be provided to the generator

engine.

In one example, Gerstlauer et al. [7] have used the SpecC language, a system-level language, as an

input to a refinement tool. The refinement tool partitions the SpecC input into application code and OS

partitions. The OS partition is subsequently refined to a final implementation. The mechanism used in this

refinement is based on matching needed OS functionality against a library of OS functions. In a similar

approach, Vercauteren et al. [16] have proposed a method based on an API providing OS primitives to the

application programmer. This OS template is used to realize the subset of the API that is actually used in the

4

application program. Finally, Gauthier et al. [6] have proposed an environment for OS generation similar to

the previous approaches. Here, a library of OS components that are parameterized is used to synthesize the

target OS given a system level description of application program.

2.3 Static Scheduling Techniques

In the static scheduling based techniques, it is assumed that the application program consists of a static and

a priori known set of tasks. Given this assumption, it is possible to compute a static execution schedule, in

other words, an interleaved execution order and generate an equivalent monolithic program. The advantage

of this class of approaches is that the generated program is application-specific and thus highly efficient.

The disadvantage of this class of techniques is that dynamic multitasking is not possible. Our technique

specifically addresses the dynamic multitasking issue. Moreover, our technique is orthogonal to such static

scheduling. For example, the set of a priori known static tasks can be scheduled using static scheduling

while the dynamically created tasks can be handled by a technique similar to ours.

A very good general survey on generating sequential code for a static set of tasks is done by Edwards

[5]. In a more specific example, Lin [9] has proposed a technique that takes as input an extended C code

that includes primitives for inter-task communication based on channels, as well as primitives for specifying

tasks and generates ANSI C code. The mechanism here is to model the static set of tasks using a Petri Net

and generate code simulating a correct execution order of the Petri Net. Similar techniques have also been

proposed by Cortadella et al. [4]. One important aspect to note in both Lin’s and Cortadella approaches

is that the generated code could still be multitasking, thus requiring the existence of an OS layer that can

schedule and manage the generated tasks.

3 The Phantom Approach

3.1 Introduction

Input to our translator is a multitasking programPinput, written in C. The multitasking is supported through

the nativePhantomAPI, which complies with the standard POSIX interface [14]. These primitives provide

functions for task creation and management (e.g., taskcreate, taskjoin, etc.) as well as a set of synchroniza-

5

Source
Code (C)

Generic
Front-End
Compiler

Phantom Calls
Identifier

Partitioning
Module

Live Variable
Analysis

Code Generation

ANSI C
Single-threaded

Application

AEB
Graphs

BB
CFG

Phantom
Support
System

Figure 2: Phantom Compiler Architecture

tion variables (e.g., mutext, semat, etc.). Output of our system is a single-threaded strict ANSI C program

Pout put that is equivalent in function toPinput. More specifically,Pout put does not require any OS support and

can be compiled by any ANSI C compiler into a self sufficient binary for a target embedded processor.

In order to support multitasking, there is a need for efficient sharing of the processor among multiple

tasks, providing synchronization mechanisms, and communication primitives. Sharing of the processor

among tasks requires preemption and, in turn, preemption requires a mechanism for saving/restoring task

specific information (i.e., the task context). In conventional approaches, multitasking is implemented within

the OS. When a taskTi is created, the OS allocates sufficient memory for savingTi ’s context information

(e.g., registers, function call stack, program counter, etc.). Periodically, an interrupt generated by the system

timer invokes, among other things, the OS scheduler. The scheduler saves the context of the currently

executing taskTold and restores the context of a new taskTnew to be executed. The OS, in turn, relies on

the underlying processor for invoking the scheduler (i.e., via a timer interrupt), context switching (register

load/store instructions), and synchronization (i.e., test-and-set instruction).

In our approach, the challenge is to achieve the same at a higher level of abstraction, namely, by using the

mechanisms provided by strict ANSI C language. Figure 2 is the block diagram of thePhantomCompiler.

6

The multitask C application is compiled with a generic front-end compiler to obtain the basic block (BB)

control flow graph (CFG) representation. This intermediate BB representation is annotated, identifying

Phantomprimitives. The resulting structure is used by a partitioning module to generate non-preemptive

blocks of code, which we call AEBs (Atomic Execution Blocks), to be executed by the scheduler. Every

task in the original code is potentially partitioned into many AEBs, generating an AEB Graph. Then, a

live variable analysis is performed on the AEB graphs and the result is fed back to the partitioning module

to refine the partitions until acceptable preemption, timing, and latency are achieved. The resulting AEB

graphs are then passed to the code generator to output the corresponding ANSI C code for each AEB

node. In addition, the embedded scheduler along with other C data structures and synchronization APIs

from Phantomare included from thePhantomsystem support library, resulting in the final ANSI C single-

threaded code.

Next, we discuss the major components ofPhantom, presenting implementation details for the source-

level multitasking framework. Throughout the next sections, we will be referring to our running example

shown in Figure 3. Our running example implements a simple game between two tasks that are picking up

random numbers until one of them picks its ownid, making it the winner of the game.

3.2 Preemption and Scheduling

Since the output ofPhantomis a single-threaded program, the first problem faced is how to simulate a

multitasking system with a single-threaded code, using ANSI C resources. In order to schedule the different

tasks, we need to define a context switching mechanism and a basic unit of execution.

As mentioned earlier, we define the basic unit of execution, scheduled by the scheduler, an atomic

execution block (AEB). An AEB is a block of code that is executed in its entirety prior to scheduling the

next AEB. A taskTi is partitioned into an AEB graph whose nodes are AEBs and edges represent control

flow. For example, Figure 4 pictures the CFG transformations for the functiongameof our running example.

Figure 4(a) shows the output of the compiler front end that is fed to the partitioning module. The partitioner

adds two control basic blocks,setupandcleanup, as shown in Figure 4(b), and subsequently divides the

code into a number of AEBs, as shown in Figure 4(c).

Figure 4(c) shows the AEB graph of functiongame as being composed of AEBsaeb0, aeb1, aeb2,

7

typedef struct {

 int id;

 pthread_mutex_t *lock;

 pthread_mutex_t *unlock;

}game_t;

int winner;

void *game(void *arg) { /* THREAD */

 game_t g = (game_t *)arg;

 int num;

 while(1) {

 pthread_mutex_lock(g->lock);

 if(winner) {

 pthread_mutex_unlock(g->unlock);

 return NULL;

 }

 else {

 num = rand();

 if(num == g->id)

 winner = g->id;

 pthread_mutex_unlock(g->unlock);

 }

 }

}

int main(int argc, char **argv) {

 pthread_t t1, t2;

 int r;

 struct game_t g1, g2;

 pthread_mutex_t m1, m2;

 pthread_mutex_init(&m1, NULL);

 pthread_mutex_lock(&m1);

 pthread_mutex_init(&m2, NULL);

 pthread_mutex_lock(&m2);

 g1.id = 1;

 g2.id = 2;

 g1.lock = g2.unlock = &m1;

 g2.lock = g1.unlock = &m2;

 winner = 0;

 pthread_create(&t1, NULL, game, &g1);

 pthread_create(&t2, NULL, game, &g2);

 pthread_mutex_unlock(&m1);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 printf("Winner is %d\n", winner);

}

Figure 3: Code Example

aeb3, aeb4 andaeb5. Within an AEB graph, thesetupbasic block is implemented as a function, with the

appropriate parameters derived from the original function in the multitasking C source. All the other AEBs

are implemented as a region of code, composed of one or more basic blocks, with a corresponding entry

label. For instance,aeb3 implementation is shown in Figure 5 (labelgame aeb3). The termination of an

AEB region transfers the control back to the scheduler (Figure 5, labelsched). The scheduler, then, has

a chance to activate the next AEB, from either the same task or from another task that is ready to run. A

detailed description of the code layout and the scheduler implementation is in Section 5.

It may happen that a functionf in the original input code is phantomized (i.e., partitioned) into more

than one AEB, each one of them being implemented as a separate region of code. In that case, there is a

need for a mechanism to save the variables that are live on transition from one AEB to the other, so that

the transfer of one AEB to another is transparent to the task. Also, every task must maintain its own copy

of local variables during the execution off as part of its context.Phantomsolves this issue by storing

the values of local variables off in a structure inside the task context, emulating the concept of afunction

frame. The frame of a phantomized functionf is created in a special function calledfsetup, and cleaned up

8

0

1

2

3

4
8

5
9

6

10
7

0

1

2

3

4
8

5
9

6

10
7

Partitioner
Step I

0

1

2

3

4
8

5
9

6

10
7

Partitioner
Step II aeb_0

aeb_1

aeb_2

aeb_3

aeb_4

aeb_5

(a) (c)(b)

Figure 4: CFG transformations for functiongame

in the last AEB of f . These operations are included by the partitioner for every function that needs to be

phantomized. They are represented by the dark nodes in Figure 4(b). For an example of the generated ANSI

C code, refer to Figure 5, functiongame, for setup, and labelgame aeb5 , for cleanup.

During runtime, there is a need to maintain, among others, a reference to the next AEB node that is to be

executed some time in the future, callednext aeb , in the context information for each task that has been

created (Figure 5, structurecontext t). When a task is created, the context is allocated, thenext aeb

field is initialized to the entry AEB of the task, and the task context is pushed onto a queue of existing task,

calledtasks , to be processed by the embedded scheduler.

We note that inPhantomimplementation, the partitioning is performed on the basic block intermedi-

ate representation of the input source program. In that sense, almost no high level code constructs, like

while, for loops, and switch statements are preserved in the equivalent ANSI C output (see Figure 5, label

game aeb2). Moreover, we note that an AEB node may be composed of one or more basic blocks. Code

9

char *game(void *arg, void **ret_val){

 // allocate and setup frame

 frame = push(...);

 frame->arg = arg;

 // save the ret_val in the frame

 frame->ret = ret_val;

 // setup next aeb

 current->next_aeb = 1;

 return frame;

}

game_aeb2: {

 // restore locals from frame

 game_t g = frame->g;

 if(1){

 current->next_aeb = 1;

 pthread_mutex_lock(g->lock);

 }

 goto sched;

}

game_aeb3: {

 int num;

 // restore locals from frame

 game_t g = frame->g;

 if(!winner) goto bb_4;

 current->next_aeb = 7;

 pthread_mutex_unlock(g->unlock);

 goto exit;

bb_4:

 num = rand();

 if(num != g->id) goto bb_7;

 winner = g->id;

bb_7:

 current->next_aeb = 2;

 pthread_mutex_unlock(g->unlock);

exit:

 goto sched;

}

........

........

game_aeb5: {

 // clean up frame structure

 frame = pop(current->frames);

 free(frame);

 goto sched

}

static void scheduler() {

 while(queue_size(&tasks) > 0) {

 sched:

 if(current->status == RUNNABLE)

 queue_push(&tasks, current);

 current = queue_pop(&tasks);

 if(current->next_aeb != 0) {

 switch(current->next_aeb) {

 case 1: goto game_aeb3;

 case 2: goto game_aeb2;

 case 3: goto game_aeb5;

 case 4:

 }

 }

typedef struct {

 int id;

 status_t status;

 task_info_t info;

 stack_t frames;

 join_info_t join_info;

 aeb_t next_aeb;

 void *ret;

}context_t;

context_t *current;

static pqueue_t tasks;

Figure 5: Excerpt of the Generated Code

partitioning and its implications on runtime behavior are described in Section 4.

The embedded scheduler is responsible for selecting and executing the next task, by activating the cor-

responding AEB of the task to be executed. Thenext aeb reference of a taskTi is used to resume the

execution ofTi by jumping to the region of code corresponding to the next AEB ofTi . At termination, every

AEB updates thenext aeb of the currently running task to refer to the successor AEB according to the

tasks’s AEB Graph. A zeroednext aeb indicates thatTi has reached its termination point, and thus is

removed from the queue of existing tasks.

The scheduling algorithm inPhantomis a priority based scheme, as defined by POSIX. The way priori-

ties are assigned to tasks, as they are created, can enforce alternate scheduling schemes, such as round-robin,

in the case of all tasks having equal priority, or earliest deadline first (EDF), in the case of tasks having pri-

ority equal to the inverse of their deadline, priority inversion, and so on. Additionally, priorities can also be

changed at run-time, so that scheduling algorithms based on dynamic priorities can be implemented.

3.3 Synchronization

Phantomimplements the basic semaphore (sema t in POSIX) synchronization primitive, upon which any

10

other synchronization construct can be built. A semaphore is an integer variable with two operations,wait

and signal (sema wait and sema post in POSIX). A taskTi calling wait on a semaphoreS will be

blocked if theS’s integer value is zero. Otherwise,S’s integer value is decremented andTi is allowed to

continue. Ti calling signal on S will increment S’s integer value and unblock one task that is currently

blocked waiting onS. To implement semaphores, there is a need to add to a taskTi ’s context an additional

field calledstatus . Status is one ofblockedor runnableand is set appropriately when a task is blocked

waiting on a semaphore.

A semaphore operation, as well as a task creation and joining, is what is called a synchronization point.

Synchronization points are identified by a gray node in Figure 4. At every synchronization point a mod-

ification in the state of at least one task in the system might happen. Either the current task is blocked,

if a semaphore is not available, or a higher priority task is released on a semaphoresignal, for example.

Therefore, a function is always phantomized when synchronization points are encountered, and a call to a

synchronization function is always the last statement in its AEB. At this point, the scheduler must regain

control and remove the current task from execution in case it became blocked or is preempted by a higher

priority task.

Right before any synchronization, an AEB will set the task’snext aeb to the successor AEB according

to the AEB Graph. If the task is not blocked at the synchronization, it will continue and thenext aeb will

be executed next. Otherwise, thenext aeb will be postponed, and it will be executed as soon as the task

is released on the synchronization point.

3.4 Interrupts

Preempting an AEB when an interrupt occurs would break the principle that every AEB executes until

completion without preemption. Instead, inPhantom, the code for an interrupt service routineI is treated

as a task, with its associated AEBs. On an interrupt destined forI, a corresponding task is created, having a

priority higher than all existing tasks. Note that if multiple interrupts destined forI occur, multiple tasks will

be created and scheduled for execution. This is a uniform and powerful mechanism for handling interrupts

in a multitasking environment. However, the latency for handling the interrupt will depend on the average

execution time of the AEBs, which in turn depends on the partitioning scheme used. Some interrupts

11

may need architecture specific code, like those associated with some device drivers. Architecture specific

constructs in the original code are preserved by thePhantomserializing compiler, and copied verbatim to

the output.

4 Partitioning

The partitioning of the code into AEB graphs is the key to implementing multitasking at a high-level of

abstraction. Recall that boundaries of AEB represent the points where tasks might be preempted or resumed

for execution. Some partitions are unavoidable and must be performed for correctness, specifically, when

a task invokes a synchronization operation, or when a task creates another task. In the case when a task

invokes a synchronization operation and thus is blocked, the embedded scheduler must regain and transfer

control to one of the runnable tasks. Likewise, when a task creates another, possibly higher priority task,

the embedded scheduler must regain and possibly transfer control to the new task in accordance with the

priority based scheduling scheme. Additionally, the programmer can also manually specify points in the

code where a context switch should happen by calling theyield function of thePhantomAPI.

Any original multitasking C program is composed of a set of functions (or routines). InPhantom, and

for correctness, all functions that are the entry point of a task need to be partittioned. In addition, and for

correctness, any function that invokes a synchronization primitive also needs to be partitioned. We call the

process of partitioning functions into AEBsphantomization. Finally, and for correctness, a function that

calls aphantomizedfunction also needs to bephantomized. To illustrate why this is, considerf calling

a phantomizedfunction g. Upon termination ofg, the scheduler must transfer control back tof . Since

transfer of control inPhantomis achieved through a branch in the scheduler,f must at least be decomposed

into two blocks,f 1 and f 2. Moreover,f 1’s last instruction will be the instruction that transfered control

to g, andf 2’s first instruction will be the one immediately following the call tog. However, partitioning

beyond what is needed for correctness impacts timing issues as described next.

In general, partitioning will determine the granularity level of the scheduling (i.e., the time quantum),

as well as the task latency. A good partitioning of the tasks into AEBs would be one where all AEBs have

approximately the same average case execution timeµ and a relatively low deviationδ from the average,

which can be computed if the average case execution time of each AEB is known. In this case, the application

12

would have a very predictable and stable behavior in terms of timing. Note that the average case execution

timeWi of an AEBNi is defined as the time taken to execute the codeCi in Ni plus the time taken to store

and restore all live variablesVi at the entry and exit ofNi . Moreover, an estimate ofVi can be obtained by

performing a live variable analysis. An estimate ofCi can be obtained by static profiling.

The range of partitioning granularities is marked by two scenarios. On one end of the spectrum, par-

titioning is performed only for correctness, and yields cooperative multitasking1. On the other end of the

spectrum, every basic block is placed in its own partition, resulting in a preemptive multitasking with ex-

tremely low latency, but high overhead. Specifically, to evaluate a partition we can apply the following

metrics,average, minimum, andmaximumlatency;standard deviationof latency; and context switchover-

head. Clearly, to shorten latency, there is a need to context switch more often, and thus pay a penalty in

terms of overhead.

In the next sections, we explore the range of partitioning possibilities, defining a strategy for clustering

and an exploration framework for obtaining a set of Pareto-Optimal partitions.

4.1 Strategy for Clustering

The generic clustering algorithm used to group basic blocks into partitions that correspond to AEBs is based

on two algorithms traditionally used for data flow analysis by compilers, namelyinterval partitioningand

interval graphs[1]. The generic clustering algorithm takes as input a CFG, and returns a set of disjoint

clusters, each cluster grouping one or more of the basic blocks of the original CFG. The generic clustering

algorithm ensures that a cluster of basic blocks has a single entry point (i.e., the head of the cluster), but

possibly multiple exit points. This requirement is necessary since every cluster is implemented as a non-

preemptive block of code, with one single entry.

Our generic clustering technique is shown in Figure 6. Initially, for a given CFG and its entry basic

block n0, a set of clusters is computed, each containing one (reachable fromn0) basic block of the CFG

(line 3). Subsequently, pairs of clustersci ,c j are merged if all ofc j ’s predecessors are in clusterci . The

predecessors ofc j are all clusters containing one or more basic block(s) that are predecessor(s) of at least

one basic block inc j . The algorithm iterates until no more clusters can be merged.

1Cooperative multitasking is when tasks explicitly yield to each other or are preempted by a synchronization prim-
itive.

13

Input: c f g,n0 ∈ c f g the entry point of the CFG
Output: clustersc1,c2, . . . ,cn

clust←{ci ← bi |bi ∈ c f gand reachable fromn0}
changed← 1
while changed= 1

changed← 0
for eachci ,c j ∈ clust

if every pred. ofc j is in ci

cnew← ci ∪c j

clust← (clust−ci−c j)∪{cnew}
changed← 1

endif
endfor

endwhile

Figure 6: The Generic Clustering Algorithm

Note that if the algorithm described in Figure 6 were to run on a CFG it would cluster all the basic blocks

into a single partition, as expected. Therefore, we introduce a mechanism to modify the input CFG such

that, using the same algorithm, we obtain a desired partitioning for correctness and timing. The mechanism

is to modify the original CFG with two special empty basic blocks,synch-markandtime-mark. Neither of

these marker basic blocks are reachable from the entry basic blockn0, and are, for that reason, not a member

of a cluster (line 3). All points of partitioning that are required for correctness or timing will be pointed to

by one of the markers prior to running the algorithm shown in Figure 6.

Figure 7 shows, step-by-step, the working of the clustering algorithm. Figure 7(a) is the CFG for the

functiongame, augmented with thesetupandcleanupbasic blocks, where gray nodes represent those basic

blocks with a synchronization point. Figure 7(b) shows the addition of thesynch-markbasic blocks. Next,

every reachable basic blockbi of the sample CFG is assigned to clusterci as shown in Figure 7(c). Then, by

successive iterations, clusters are merged until the final partitioning is reached, as shown in Figure 7(c)-(f).

The introduction of thesynch-markblock is taken care of by thePhantomcompiler. The introduction

of the time-markis performed by the exploration framework, to be described later. In other words, the

exploration of the different partitions and the search for the Pareto-Optimal set of partitions is a matter of

determining the set of basic blocks that thetime-markpoints to.

14

0

1

2

3

4
8

5
9

6

10
7

s0

1

2

3

4
8

5
9

6

10
7

s0

1

2

3

4
8

5
9

6

10
7

s0

1

2

3

4
8

5
9

6

10
7

s0

1

2

3

4
8

5
9

6

10
7

s0

1

2

3

4
8

5
9

6

10
7

(a) (f)(e)(d)(c)(b)

Figure 7: Execution of Clustering Algorithm

4.2 Exploration Framework

Our overall exploration framework is pictured in Figure 9 and works as follows. Initially, the multitasking

application is processed by thePhantomcompiler, as shown in Figure 2, using the cooperative partitioning

scheme. Then, the generated code is instrumented with profiling instructions (i.e., basic block execution

counters). Next, the instrumented code is executed and a trace containing profiling information is retrieved.

Moreover, traces obtained from multiple runs of the same instrumented code but different input are merged

to obtain a single representative trace (i.e., by averaging the basic block counts). The trace is then processed

to extract performance numbers for each possible partition.

A partition is defined in terms of a set of edges from thetime-markbasic block to the basic blocks of the

original CFG. Thus, given a CFG withN basic blocks, there are an exponential number of possible ways to

introduce such edges, hence there are an exponential number of possible partitions. For each partition, and

using the profiling data, we can quickly compute all the evaluation metrics. Our search goal is to obtain a

set of Pareto-Optimal2 partitions that tradeoff latency, context switch overhead, and other metrics.

Our exploration technique employs a simple heuristic to obtain different clusters and is shown in Figure

2In a multi-objective optimization problem, a Pareto-Optimal set contains design instances where each design
instance is guaranteed to be optimal with respect to at least one objective.

15

Input: c f g
Input: K number of tries
Output:c f g1,c f g2, . . . ,c f gn wheren = |c f g|

N← |c f g| number of basic blocks inc f g
for i = 1 toN

for j = 1 toK
pick i random basic blocks inc f g
place an edge fromtime mark to basic blocki
execute Algorithm Fig. 6 and evaluate metrics

endfor
endfor

Figure 8: The Search Heuristic

8. For a CFG withN basic blocks, our algorithm attemptK random placements of 1,2, . . .N edges from

the time-markto basic blocks of the CFG. The parameterK is an arbitrary number and depends on the

amount of compute time available for exploration. Clearly, larger values forK are expected to yield a

better approximation of the Pareto-Optimal set. Although simple, this heuristic allows us to quickly reach a

reasonably good number of partitions and obtain a fairly good approximation of the Pareto-Optimal set.

Once the Pareto-Optimal set is computed, there is the final process of selecting the best cluster to meet

the application constraints. To do this, there are three different possibilities. The first is to have the designer

select the desired partition by examining the Pareto-Optimal set. Another alternative is to apply a single

constraint (e.g., specifying either a minimum latency, or maximum overhead) and let the tool select the

partition that meets the constraint while optimizing the other metrics. Finally, it is possible to define a cost

function (e.g., a weighted sum of the various metrics) to compute a unique goodness measure for each point

in the Pareto-Optimal set, allowing the tool to select the partition with the minimum cost.

5 Architecture of Generated Code

5.1 Code Layout

The code layout of the input programPinput, once processed by a C pre-processor, is conceptually organized

in two sections, as shown in Figure 10(a). The first section contains all global declarations and variables,

while the second section contains a set of functions. One of these functions is themain function, i.e., the

16

Source
Code (C)

Phantom
Compiler

Instrumented
Single-Threaded

Code

Profiling
Data

Execute

Partitioning
Explorer

Pareto-
Optimal

Partitions

Partition
Selection

Phantom
Compiler

Generated
Single-Threaded

Code (C)

User Intervention

Constrains

Cost Function

Figure 9: Clustering Exploration Methodology

entry point of the application. ThePhantomoutput programPout put is organized in five sections, as shown

in Figure 10(b). The first section contains global declarations and variables. The second section contains a

set of functions that are not phantomized. The third section contains a set of functions, each corresponding

to one phantomized function ofPinput. The fourth section contains a single function, calledscheduler ,

which contains the code for all the phantomized functions, as well as the scheduling algorithm. Finally, the

fifth section contains themain function ofPout put. We describe each of these sections in more detail next.

The first section contains global declarations and variables, which are copied verbatim fromPinput.

All the functions ofPinput are analyzed and classified in two groups: thephantomizedandnon-phantomized

functions. A function is phantomized if (i) it is the entry point of a task, (ii) contains a synchronization prim-

itive(s), or (iii) calls a phantomized function. Note that, sincemain is the entry point of the first task that

is created by default, it is automatically phantomized. The second section ofPout put contains all non phan-

tomized routines, copied over fromPinput. In the current implementation ofPhantom, non-phantomized

functions are compiled into intermediate form by the front-end, and re-assembled into an equivalent low

level C representation by the back-end. Thus, while functionally identical, the non-phantomized functions

of Pout put lack the high level code constructs (e.g., loops) found originally inPinput.

The third section contains the setup functions, each corresponding to a phantomized function ofPinput.

17

Global Declarations
& Variables

F_1(...) {
...
}

....
F_N(...) {
...
 F_2();
...
}

F_2(...) {
...
phantom_synch()
...
}

int main(int, char**) {
...
}

Pinput

F
u
n
c
t
i
o
n
s

Global Declarations
& Variables

F_1(...) {
...
}

...
F_N(...) {
// frame setup
}

F_2(...) {
// frame setup
}

int main(int, char**) {
create_task(_main_);
scheduler();
}

Poutput

void scheduler() {
 sched:
 switch(next_aeb)
 case 1: goto aeb_1;
 case 2: goto aeb_2;
 ...
 aeb_0:
 B_0_entry: ...
 B_0_1: ...
 ...
 phantom_synch();
 B_0_exit: goto sched;
 aeb_1:
 B_1_entry: ...
 B_1_1: ...
 B_1_2: ... F_2();
 B_1_exit: goto sched;
 aeb_2: ...
 ...
}

copied
verbatim

compiled

phantom
setup

main(...) {
// frame setup
}

Transformed by
Phantom Compiler

Figure 10: Code Layout of Input and Output Programs

A setup function is responsible for allocating the frame structure of each phantomized function. The frame

and task context memory layout is described in a later subsection.

The next section ofPout put contains the phantomized functions, along with the scheduler. All of these

(i.e., the phantomized functions and scheduler) are embodied into a single C function ofPout put, namely

scheduler . Recall that a phantomized function is partitioned into a set of AEBs,aeb0,aeb1, . . . ,aebn.

An AEB aebi is in turn composed of one or more basic blocksBi,enter,Bi,2,Bi,3, . . . ,Bi,exit. By definition,

execution of AEBaebi starts at the entry basic block ofBi,enter and ends at the exit basic blockBi,exit. The

exit basic blockBi,exit of AEB aebi transfers control to a special basic blocksched that serves as the entry

point of the scheduling algorithm. Thescheduler function contains all these basic blocks, starting with

basic blocksched , in low-level C, using C labels to denote basic block boundaries and C goto statements

as a branching mechanism. The scheduling algorithm is described in a later subsection.

18

Finally, the fifth section ofPout put, contains an implementation of the main function, which creates a

single task, corresponding to the main entry point ofPinput, and calls thescheduler function to invoke

the scheduling algorithm.

5.2 Memory Layout

As described earlier, each time a task is created, memory is allocated to store its context. At any given

time, a special global variable, namedcurrent , is made to point to the context of the running task by the

scheduler. Moreover, a queue of running tasks, namedtasks , is maintained, according the priorities of

each task, by the scheduler, as described in the following subsection. The context of a task is further defined

in Figure 11.

struct context_t {
id // an integer unique identifier
status // one of runnable or blocked
priority // one of possible priority levels
next_aeb // a reference to the next aeb to be executed
stack // an array based stack set aside for function frames
waiting // a reference to a task waiting to join this task
ret_val // memory to hold the exit value of this task

}

Figure 11: The Task Context Data Structure

Most of the fields of this structure were discussed earlier. Here, we focus on thestack field of a

context. The purpose of the stack is to store the task-local data of each phantomized function. Moreover,

the choice of a stack is to allow for recursion and nested function calls. The collection of all this data for

a phantomized functionf is called f ’s frame, and is structured as shown in Figure 12. The frame of each

phantomized function includes function arguments and local variables which are live at the boundary of its

AEBs. The code in all basic blocks off ’s AEBs access the most recent instance off ’s frame.

The stack is managed by the setup functions and the cleanup AEBs of phantomized functions. Specif-

ically, when a functiong of the current task calls a phantomized functionf , the setup functionfsetup is

invoked. Then,fsetuppushesf ’s frame onto the stack of the current task, copiesf ’s arguments to the frame,

saves the return AEB of the calling functiong, and makes the current task’s next AEB point to the entry

AEB of f . The structure of the setup function is shown in Figure 13.

19

struct f_frame_t {
arg_0 // first argument of phantomized function
arg_1 // second argument of phantomized function
...
arg_N // last argument of phantomized function
local_0 // live variable
local_1 // live variable
...
ret_aeb // a reference to the next AEB of calling function

}

Figure 12: The Frame Data Structure

void f_setup(arg_0, ... , arg_N) {
f_frame_t *frame
frame = ¤t->stack.buffer[current.stack.free]
current->stack.top = current->stack.free
current->stack.free += sizeof(f_frame_t)
frame->arg_0 = arg_0
...
frame->arg_N = arg_N
frame->ret_aeb = current->next_aeb
current->next_aeb = f_aeb_0

}

Figure 13: Code Structure of Setup Functions

Conversely, when a called functionf complete its execution, the cleanup AEBaebexit of f performs the

following. First, it restore the current task’s next AEB to point to the next AEB of the calling functiong,

which was stored in the frame off by the f ’s setup function. Then, it pops the frame of the current task’s

stack, as shown in Figure 14.

f_aeb_exit: {
f_frame_t *frame
frame = ¤t->stack.buffer[current.stack.top]
current->next_aeb = frame->ret_aeb
current->stack.free = current->stack.top
current->stack.top -= sizeof(f_frame_t)

}

Figure 14: Code Structure of Cleanup AEB

20

5.3 Scheduler

The scheduler’s code is included in the same C function containing the phantomized functions, called

scheduler . The scheduling algorithm makes use of a priority queue that stores all the runnable tasks.

The priority queue guarantees that the highest priority task is always the first task in the queue. In case of a

priority tie among two or more tasks, the scheduler implements a round-robin scheme among them, so that

all equal-priority tasks fairly share the processor. When a task is selected by the scheduler for execution, the

globalcurrent pointer is updated accordingly.

As stated eariler, each AEB returns the execution to the scheduler upon termination. This is accom-

plished through a jump to the first basic block of the scheduler. Once the scheduler determines the next task

Ti to be executed, it usesTi ’s next aeb reference to transfer control back to the next AEB. The transfer

of control from the scheduler to the next AEB of the running task is implemented using a switch statement

containinggoto ’s to all AEB’s of the application. (This level of indirection is necessary because ANSI C

does not allow for indirect jumps.) When the AEB completes execution, control is returned to the scheduler,

which then pushes the current task’s context back to the queue of runnable tasks if the task is not blocked or

terminated. An overview of the scheduler is depicted in Figure 15.

queue_t *tasks
context_t *current
void scheduler() {

while(tasks->size > 0) {
sched: {

if(current->status == RUNNABLE)
tasks->push(current)

current = tasks->pop()
switch(current->next_aeb) {

case 1: goto aeb_0
case 2: goto aeb_1
...

}
}

}
// code for all the AEBs follows

}

Figure 15: Code Structure of Scheduling Function

An optimization in the scheduling algorithm allows a task to execute more than one AEB each time it

21

queue_t *tasks
context_t *current
void scheduler() {

while(tasks->size > 0) {
if(current->status == RUNNABLE)

tasks->push(current)
current = tasks->pop()
cnt = RATIO;
sched: {

if(cnt-- && current->status == RUNNABLE)
switch(current->next_aeb) {

case 1: goto aeb_1
case 2: goto aeb_2
...

}
}

}
// code for all the AEBs follows

}

Figure 16: Code Structure of Optimized Scheduling Function

is selected from the priority queue. We call this ashort context switch. With the short context switch, it is

possible to save the overhead of pushing/popping a new task from the priority queue with a bypass. A full

context switch is executed every so often, alternating short and full context switches with a pre-determined

ratio. A full context switch ensures a fair sharing of the processor among equal-priority tasks.

In order to implement the short context switch, we add a counter to the scheduling algorithm, used to

keep track of the number of consecutive short context switches performed. The counter is initialized to a

value representing the ratio between short and full context switches. The value of the counter defines atime

quantum, i.e., a number of consecutives AEBs of the same task to be executed before a full context switch.

The counter is decremented at every short context switch, and a full context switch is executed once the

counter reaches zero and expires. Obviously, a full context switch can happen before the counter expires, in

the case that a task is blocked or terminates. Alternatively, a timer can be used in place of a counter, yielding

a realtime-sharingof the processor in the round-robin approach. Figure 16 shows the modified scheduler

algorithm, incorporating the short context switch optimization.

In Phantom, and for efficiency reasons, a limited priority queue is implemented. A limited priority

queue is one that allows a finite, and a priori known, number of priority levels (e.g., 32). However, this does

22

not pose any limitations, since the number of priority levels, required by the application, can be provided to

thePhantomserializing compiler. The implementation of the priority queue is as follows. A separate array-

based queue is allocated for each priority level, which are accessed by the scheduler in order of highest to

lowest priority. Manipulation of the array-based queues at each priority level is very efficient, and takes

constant time. At any given point, a reference is maintained to the highest non-empty priority queue. Given

this, the overall access to the queue of runnable tasks by the scheduler requires constant running time,

regardless of the number of runnable tasks.

6 Experimental Results

ThePhantomapproach described in this paper was successfully applied to a number of applications devel-

oped for testing the translation flow. In general, multitasking applications synthesized withPhantomshowed

a much improved performance. The reason is two fold. Firstly, the generated application encompass a highly

tuned multitasking framework that meets the application’ specific needs. Second, the multitasking infras-

tructure itself is very compact and efficient, resulting in a much lighter overhead for context switching, task

creation, and synchronization.

Eight different applications were implemented using thePhantomPOSIX interface, so that its perfor-

mance could be compared to the Unix implementation of POSIX. Unix represent a generic OS layer, similar

to those that would be found in a traditional multitasking environment for embedded systems. The bench-

marking applications that were used in the experiments are described in Table 1.

6.1 General Execution

Table 2 summarizes the performance of the benchmarks withPhantomand POSIX. All benchmarks were

executed on an UltraSPARC-IIe workstation with 256Mb of RAM. One can easily see thatPhantomoutper-

forms standard UNIX-POSIX implementations, being 2 to 3 times faster in execution time. Figure 17 plots

the speed-up obtained for each application by usingPhantom. On the average, multitasking withPhantom

achieved a speed-up of 2.07, with a maximum of 2.8. These results come specially due to the lightweight

implementation ofPhantom, and as a consequence of being able to, at compile time, generate specific code

for each different application.

23

Table 1: Benchmark applications
Name Description

client server Client-Server implementation of
a calculator. Communication
through shared memory.
100 servers and 2000 clients.

consumerproducer Classical consumer producer problem,
100 consumers and 100 producers.
Buffer with 1000 entries.

dct Multitask implementation of
8x8 dct. One task for each point
in the result matrix.

deepstack Multiple recursive tasks. Tests
the cost of recursive function calls
in thePhantomsystem.

matrix mul Multitask implementation of
matrix multiplication. Resulting
matrix is 150x150 elements.
One task per element in the result.

quick sort Multitask implementation of
the traditional sorting algorithm.

vm Multitask simulator for a simple
processor.

watch Time-keeper application, used to
test timing behavior of the
generated code.

It is important to point out that with embedded applications, being fast is not always the most desired

functionality. Instead, many times we are interested only in being accurate and precise, i.e., meeting time

constrains, given that embedded systems interact with the physical environment very constantly. In that

sense,watchis an application of our benchmark that is worth discussing further.Watchwas implemented as

two tasks, a background task that periodically updates physical time information, including hours, minutes,

seconds, and milliseconds, to a shared data structure, and a foreground task that uses the shared data structure

to perform some action. Further, the foreground task waits for 67 seconds before terminating itself. The

overhead of thePhantomgenerated code was sufficiently efficient not to disturb the timing behavior of this

particular application.

24

Table 2: Performance Results
Application POSIX Phantom #Threads #Ctx.Sw.

client server 5.14 s 1.84 s 501 110179
consumerproducer 7.23 s 3.54 s 201 2000198
dct 1.02 s 0.49 s 12673 32670
deepstack 2.05 s 0.84 s 1001 91556
matrix mul 1.10 s 0.55 s 22501 57518
quick sort 2.97 s 1.12 s 6640 11019
vm 2.83 s 5.35 s 501 3834
watch 67.01 s 67.00 s 2 1492

 0

 5

 10

 15

 20

 25

 30

P
ha

nt
om

 S
pe

ed
up

cli ser
con prod

dct
dp stk

mmul
qsort

vm
watch

Figure 17:PhantomSpeedup

6.2 Partitioning Exploration

We used the same algorithms of Table 1 to evaluate the impact of partitioning in the generated code. We

applied the partitioning exploration methodology described earlier to obtain Pareto-Optimal sets of partitions

for all the applications. Figures 18, 19, 20, and 21 show the resulting Pareto-Optimal partitions for the most

interesting cases.

Overall, we observe the trend of increased overhead as latency is reduced (i.e., more partitions are

created). Furthermore, by using different partitioning schemes, it is possible to modify latency by as much

as two orders of magnitude at the expense of an increase in the overhead by a factor of 120.

Figure 18 shows the Pareto-Optimal partitions for the functionserver in theclient serverbenchmark.

In this example, there is a fairly regular behavior. The maximum and the minimum partitions differ by a

factor of 3 in latency, and by a factor of 3.5 in performance. The range of latencies is covered reasonably

25

 0

 5000

 10000

 15000

 20000

 0 2 4 6 8 10 12

O
ve

rh
ea

d
(c

tx
 s

w
itc

he
s)

Latency (instructions)

ClientServer-server Exploration

Figure 18: Client Server - server

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

O
ve

rh
ea

d
(c

tx
 s

w
itc

he
s)

Latency (instructions)

dct-fpixel Exploration

Figure 19: DCT - fpixel

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20

O
ve

rh
ea

d
(c

tx
 s

w
itc

he
s)

Latency (instructions)

ConsumerProducer-main Exploration

Figure 20: Consumer Producer - main

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

O
ve

rh
ea

d
(c

tx
 s

w
itc

he
s)

Latency (instructions)

quick-sort Exploration

Figure 21: Quick Sort - quicksort

well by our partitioning methodology.

A completely different picture is shown in Figure 19, the Pareto-Optimal partitions for functionfpixel

in DCT. Here, latency ranges from a large 720 instruction delay to a tiny 5 instruction delay on the other

extreme. The overhead also changes significantly, from a minimal number of context switches in one case

to a large overhead in the other. Moreover, it is possible to detectislandsof partitions as we break the code

in different parts. One can identify at least four separate grouping of the Pareto-Optimal partitions.

Figure 20 shows yet a different scenario as a result ofphantomizingfunctionmain of theconsumerproducer

benchmark. Here, the latency reduces very quickly with almost no penalty in performance up to a certain

point. Then, for a quite small improvement in latency, there is a huge penalty in performance. After that,

latency continues to decrease at almost no cost. In this case, it is easy to estimate that the large cost imposed

by one specific partition is caused by breaking a largefor loop, causing a context switch to happen at every

iteration of the loop.

Finally, Figure 21 shows the Pareto-Optimal partitions for thequick sort function, and again we

have a different picture. Here, there is a large gap in reducing the average latency initially. Once that barrier

is broken, latency can be further reduced, but in the processes, the overhead increases at a steep rate, being

26

Table 3: Partitioning quicksort
part min max avg std ctx sw
number latency latency latency deviation overhead

0 4 100.7 20.2 32.9 5.5
1 4 87.2 19.4 26.5 6.0
2 4 34.3 9.3 9.3 10.3
13 4 12.3 6.5 3.3 18.9
16 4 11.0 5.9 3.2 23.3
18 4 11.0 5.6 3.4 25.0

almost 5 times higher than the case with the largest partitions.

Table 3 details the minimum, maximum, and average latency; standard deviation; and context switching

overhead for some of the partitions explored in thequick sort function. The table shows that, for the

larger partitions, the average latency is high, but standard deviation is also high, due to the highly irregular

sizes of each cluster, while the overhead due to context switching is minimal. Then, as the clustering

methodology explores different partitions, one can see that the latency and the standard deviation are reduced

significantly, resulting in a more uniform clustering.

6.3 Phantom Performance

A set of synthetic benchmarks was implemented to evaluate the overhead imposed by the Phantom multi-

tasking infrastructure. Various parameters ofPhantomwere evaluated, like context switching overhead, task

creation cost, task joining cost, and mutex synchronization cost.

Cost was measured as the average number of instructions executed on the host processor for performing

a particular operation (e.g., task creation, task joining, etc.) We compiled and executed the applications

on the UltraSPARC-IIe workstation, running Solaris operating system. We usedcputrack tool to obtain

number of instructions and CPU cycles executed by a target program. (cputrack uses hardware counters

to track CPU usage). All benchmarks were compiled with GCC v3.3. The time cost of each metric was

calculated from the average CPI (cycles per instruction) of each benchmark, associated with the processor

cycle time.

For each benchmark, designed to measure a particular metric, we first obtained a baseline execution

count. The baseline execution count accounted for all the computation code less thePhantomgenerated

multitasking infrastructure. Then, the multitasking infrastructure was enabled and instruction counts were

27

re-evaluated. The difference between the baseline and the version with the multitasking infrastructure gave

us a measure of the performance ofPhantomfor that metric. All experiments in this phase were performed

using at most one task active and a single priority level. On average,Phantommultitasking infrastructure

overhead is small, and has an impact of less than 1% in the execution time of the synthetic benchmarks. Our

results are summarized in Table 4.

Table 4:PhantomMultitasking Performance Results

No optimization (-O0) With optimization (-O2)
Metric Instructions Time (µs) Instructions Time (µs)

full context switch 427 1.81 206 0.47
short context switch 82 0.35 37 0.08
mixed context switch (10:1) 124 0.52 58 0.13
task creation 1113 4.74 833 1.90
task join 506 2.15 227 0.52
mutex lock 68 0.29 40 0.09

Next, we evaluated the impact of multiple task and multiple priorities in task context switch. In these

experiments, we used a mixed scheduler, with a 10:1 ratio between short and full context switch. Figure 22

and 23 show the results. Here, the horizontal axis of the plot depicts the number of runnable tasks in the

system (i.e., one of 2, 10, 20, 50, 100, 500, and 1000 tasks). The vertical axis of the plot depicts the average

number of instructions/time for performing a context switch.

We note from Figures 22 and 23 that the overhead of task creation and context switch issmall, fairly

constant, and independentof the number of runnable tasks in the system. Contrary to intuition, there is

initially a slight decrease in the context switch time when the number of tasks increase. With a small number

of tasks, there are more reorganizations in the priority queue, since every context switch can possibly insert

a task with a different priority in the queue. As the number of tasks increase, reorderings are less constant,

since a task with the same priority is likely to be in the queue already. Therefore, context switch is slightly

faster. Nevertheless, the impact ofPhantomin the execution time of the benchmarks is typically less than

1%, for the applications tested. A similar trend is observed with respect to the number of priorities, i.e.,

increasing the number of priorities does not have a significant impact on context switch time. As before,

there is a slight difference in context switch time when few tasks are present. In this case, the priority queue

28

 40

 60

 80

 100

 120

 140

 160

 1 10 100 1000

C
on

te
xt

 S
w

itc
h

ov
er

he
ad

 (I
ns

tru
ct

io
ns

)

Number of Tasks

Average Context Switch Overhead

1 Priority -O0
2 Priorities -O0
4 Priorities -O0

8 Priorities -O0
1 Priority -O2
2 Priorities -O2

4 Priorities -O2
8 Priorities -O2

Figure 22:PhantomContext Switch Cost in Instructions with Multiple Threads and Multiple Priorities

has to be reorganized more often, increasing the context switch by a small margin. The efficiency of the

Phantomgenerated code makes it practical for designing multimedia, digital signal processing, or other

highly parallel applications, using the concurrent programming model.

7 Conclusions

We have presented a scheme for source-to-source translation of a multitasking application written in C

extended with POSIX into a single-threaded ANSI C program which can be compiled using a standard C

compiler for any target embedded processor. While compiler tool chains are commonly available for any

of the large number of customized embedded processors, the same is not true for operating systems, which

traditionally provides the primitives for multitasking at the application level. Our source-to-source translator

fills this missing OS gap by automatically generating a platform independent C program that encapsulates

multitasking support customized for the input application.

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000

C
on

te
xt

 S
w

itc
h

ov
er

he
ad

 (u
s)

Number of Tasks

Average Context Switch Overhead

1 Priority -O0
2 Priorities -O0
4 Priorities -O0

8 Priorities -O0
1 Priority -O2
2 Priorities -O2

4 Priorities -O2
8 Priorities -O2

Figure 23:PhantomContext Switch Cost inµs with Multiple Threads and Multiple Priorities

8 Acknowledgements

This work was supported by the National Science Foundation award number CCR-0205712 and by CAPES

Foundation, Brazil, award number BEX1054/01-5.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers Principles, Techniques and Tools. Addison-Wesley,
Reading, Massachusetts, 1988.

[2] ARM Inc. http://www.arm.com.

[3] J. Aycock. A Brief History of Just-In-Time.ACM Computing Surveys, 35(2):97–113, Jun. 2003.

[4] J. Cortadella et. al. Task Generation and Compile-Time Scheduling for Mixed Data-Control Embedded
Software. InProc. of DAC, Jun. 2000.

[5] S. Edwards. Tutorial: Compiling Concurrent Languages for Sequential Processors.ACM Trans. on
Design Automation of Electronic Systems, 8(2):141–187, Apr. 2003.

[6] L. Gauthier, S. Yoo, and A. Jerraya. Automatic Generation and Targeting of Application-Specific
Operating Systems and Embedded Systems Software.IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 20(11):1293–1301, Nov. 2001.

30

[7] A. Gerstlauer, H. Yu, and D. Gajski. RTOS Modeling for System Level Design. InProc. of DATE,
Mar. 2003.

[8] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-Wesley, Reading, Mas-
sachusetts, 1996.

[9] B. Lin. Efficient Compilation of Process-Based Concurrent Programs without Run-Time Scheduling.
In Proc. of DATE, Feb. 1998.

[10] Microchip Inc. http://www.microchip.com.

[11] Microsoft Corporation. The C# 2.0 Specification, Jul. 2003. Available at
http://msdn.microsoft.com/vcsharp.

[12] MIPS Inc. http://www.mips.com.

[13] Phillips Inc. http://www.phillips.com.

[14] POSIX Open Group. http://www.opengroup.org.

[15] Tensilica Inc. http://www.tensilica.com.

[16] S. Vercauteren, B. Lin, and H. D. Man. A Strategy for Real-Time Kernel Support in Application-
Specific HW/SW Embedded Architectures. InProc. of DAC, Jun. 1996.

[17] V. Verdiere, S. Cros, C. Fabre, R. Guider, and S. Yovine. Speedup Prediction for Selective Compilation
of Embedded Java Programs. InProc. of EMSOFT, Oct. 2002.

31

