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Abstract

This paper introduces Model Algebra (MA), a formalism for representing SoC designs at system level. We present the
definition of Model Algebra and show how system level models can be represented as expressions in this formalism. We
follow a system level design methodology, where design decisions gradually refine the functional specification model of the
system to an architectural model with components and communication structure. The various design decisions are verified
by checking the functional equivalence of models, before and after the design decision is implemented. For this purpose, we
define the execution semantics and a notion of functional equivalence for system level models. Then, we present well defined
rules for reducing a given model to a corresponding normal form. These rules are shown to be sound with respect to our
notion of equivalence. We claim that two models are equivalent if they can be reduced to identical normal forms. As a result,
it is possible to develop equivalence checkers to compare system level models for functional equivalence. Our approach
promises significant savings in functional verification of system level models, because we require simulation for only the
specification model. All models derived from the specification can be verified using equivalence checking and property
verification.
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Abstract not have to repeat costly simulations for each of the refined
models.

This paper introduces Model Algebra (MA), a formalism The verification effort for the specification model must
for representing SoC designs at system level. We presentherefore be leveraged for verifying the refined models.
the definition of Model Algebra and show how system level An analogy can be seen in logic synthesis, where expen-
models can be represented as expressions in this formalismsive gate level simulation is avoided by using logic equiv-
We follow a system level design methodology, where de-alence checking. The RTL model, which simulates much
sign decisions gradually refine the functional specification faster than a gate level model, is verified as exhaustively as
model of the system to an architectural model with compo- possible and then synthesized to a gate level implementa-
nents and communication structure. The various design de-tion. The gate level and RTL models are then compared for
cisions are verified by checking the functional equivalence equivalence using formal methods.
of models, before and after the design decision is imple- | recent years, not only are the RTL models increasing
mented. For this purpose, we define the execution semani, size, a significant part of the design is being implemented
tics and a notion of functional equivalence for system level iy software. Hence, exhaustive simulation and debugging at
models. Then, we present well defined rules for reducing athe cycle accurate level is also becoming very time consum-
given model to its corresponding normal form. These rules jng. |n an ideal scenario, one should need to simulate and
are shown to be sound with respect to our notion of equiva- gebug only the abstract system specification model. Lower
lence. We claim that two models are equivalent if they can |eye| models, that are derived from the specification, may be

ble to develop equivalence checkers to compare system levg}glism.

models for functional equivalence. Our approach promises

S ) ) . o In this paper, we introduddodel Algebra (MA), which
significant savings in functional verification of system Ieve! is a formalism for representing system level models and ver-

r_nod_els, because we require S'm“'a"on for only th_e_ Sp(_ac"ifying their transformations. System level models, written
ek m°‘?‘_e's- Al.l model_s derived from _the specification in SLDLs, can be abstracted into MA expressions. Model
can _be yenﬂed using equivalence checking and property ., nsformations are realized by manipulation of their MA
verification. expressions. The formalism provides a set of reduction
rules that can be used to derive a normal form expression for
1 Introduction any given MA expression. Thus two models can be checked
for equivalence by comparing their respective normal MA
The continuous increase in size and verification com- €xpressions.
plexity of SoC designs has raised the abstraction level of The rest of the paper is organized as follows. In Section
system modeling. Since these abstract models are also sim2, we give an overview of our system level design and veri-
pler to understand and debug, the designer can hope to elimfication methodology. Section 3 discusses the requirements
inate most functional errors early in the design process.for modeling at the system level. In Section 4, we present
Once the abstract system model is verified, it can be usedhe definition of Model Algebra in terms of its objects and
as a source for deriving more detailed lower level models. composition rules. Construction of models with objects and
As design decisions are made, the source model is refinecomposition rules of MA is discussed in Section 5. In Sec-
to reflect those decisions. During design space exploration tion 6, we deal with semantics of hierarchy and the impact
the designer might need to create several refined models tmf granularity on model analysis. The semantics of com-
represent the various design points. An important concernmunication channels in MA is defined in Section 7. The
in such a design methodology is that the designer shouldformal execution semantics of models in MA is defined in



Section 8 and the resulting functional equivalence verifica-
tion of MA models is discussed in Section 9. In Section 10,
we look at each design step in our system level methodol-
ogy and propose appropriate verification methods for them
using MA. Based on our methods for comparing MA mod-
els, we present a case study in Section 11 for verifying the
equivalence of input and output models for the first design
step. Finally, we give a brief overview of related work in
Section 12 and wind up with conclusions.

Executable
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HW/SW Partitioning

Unscheduled
Architecture Model
Akl e

Static Scheduling
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Scheduled Model
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Figure 1. A possible system level design methodology

2 System Level
Methodology

Design and Verification

A possible system level design methodology is illus-
trated in Figure 1. We start by distributing the behaviors
in the specification onto different HW and SW processing
elements (PEs) to derive an architecture model. However,
the behaviors in this architecture model are not yet sched-
uled. The static scheduling step allows for serializing the
concurrent behaviors on the HW PEs, since they will be im-
plemented with a single controller. Also, at this stage, the
communication between PEs may be statically scheduled
to optimize timing. During RTOS insertion, a scheduling

scheduling transform the model by creating additional hier-
archy of behaviors and creating a new schedule of their ex-
ecution. During these steps, no new functionality is added.
For this reason, we can employ an equivalence checker to
verify the models resulting from such transformations. This
reasoning shall be elucidated further when we look at ex-
amples of such transformations. Transformations result-
ing from steps such as RTOS insertion or communication
synthesis involve the addition of new functionality. For in-
stance, the RTOS is a new behavior that dynamically orders
the execution of concurrent behaviors. Similarly, communi-
cation synthesis requires the addition of a new protocol and
arbitration amongst transactions. These new behaviors can-
not be comprehended by an equivalence checker. Therefore,
to guarantee functional correctness of such transformations,
we need to employ property checking methods like model
checking or theorem proving. The property checker verifies
that the functionality added by the new behaviors does not
change the execution result of the model. Finally, cycle ac-
curate models resulting from SW and HW synthesis may be
verified using traditional co-verification tools.

3 Modeling Elements

A modeling formalism may be defined as a set of objects
and composition rules that represent relationships between
the objects. Our goal is to have a formalism that can allow
the designer to express executable system models at differ-
ent levels of abstraction. For instance, one should be able to
express a model that shows only the functionality of the sys-
tem using the objects and composition rules of the formal-
ism. Also, one should be able to express models with struc-
tural details, using the same objects and composition rules.
Given a model and its abstraction level, one should be able
to identify the various structural artifacts within the model.
Finally, a model expressed in such a formalism, should be
executable so that it may be used to evaluate the design. The
formalism must, therefore, have clear execution semantics.

A system can be viewed as a block of computation; with
inputs and outputs for stimuli and response, respectively.
This computation block is composed of smaller computa-
tion blocks that execute in a given order and communicate
amongst themselves. Thus, for modeling purposes, it is im-
perative to have primitives for computation and communi-
cation. We will refer to the computation units as behaviors.

policy is implemented for dynamic scheduling of behaviors A behavior has ports that allow it to be connected to other

mapped to SW. Bus insertion adds protocol and arbitration
policy, resulting in a completely scheduled bus transaction
model. Finally, the SW tasks are compiled for the target
processor and the HW behaviors are synthesized.

A verification methodology is also shown along side the
design methodology. From the above discussion, it can
be seen that the steps of HW/SW patrtitioning and static

behaviors. The units of communication are variables and
channels. These communication objects have different se-
mantics. Variables allow a “read, compute and store” style
of communication, while channels support a synchronized
double handshake style of communication. Composition
rules are used to create an execution order of behaviors and
to bind their ports to either variables or channels. A system



is thus represented as a hierarchical behavior composed oéxecuting concurrently use synchronized data transactions
sub-behaviors communicating via variables and channels. amongst themselves for communication. Channels serve as
the media for such transactions. Each transaction uses an
4 Model Algebra address to identify the sender and the receiver behaviors.
The transactions can, thus, be visualized to take place over

An algebra may be defined as set of objects and relaticmsvirtual links, that are labeled by distinct addresses. Each of

amongst those objects, often referred to as signature of théhe links is associated with a channel. Hence, such a link

algebra. The objects of MA can be defined as the tuple may be identified as < a>, where t_he link uses chanrel
<B.C.I1,V >, where and has the address Two transactions on a channel can-

B is the set of behaviors not share a link if they might take place simultaneously. In
C is the set of channels other words, all transactions on a single link must be totally

| is the behavior interface ordered in time.
V is the set of variables -
4.3 Composition Rules

We also define a subsBt of B representing the set of
identity behaviors. Identity behaviors are those behaviors Composition rules on the objects in MA are defined as
that, upon execution, produce an output that is identical torelations in MA. These relations may contain two or more
theirinput. In general, we will use the convention of naming objects. Each composition rule creates a term, which may
identity behaviors aefollowed by a subscript. be further composed to create hierarchical behaviors.

Each of the variables iV hastype associated with it.
The bgse. type in MA is théit_vector. All abstrac.t data 431 cControl flow
types like integer, float, boolean and even user defined struc-
tures and arrays can be converted to a bit vector representad control flow composition R;)determines the execution
tion. This representation, essentially, comes from the dataorder of behaviors during model simulation. We write the
organization in the memory of the PE. We define the subsetrelation as
Q to be the subset df such that all data i) is of type q:bi1&b&...&by~ b

boolean
whereVi,1 <i<nbb eBul,ge Q. The composi-

tion rule implies thab executes afteall the behaviord;
4.1 Ports . .
throughb,, called predecessors in the relation, have com-

Each behavior has an associated object called its inter_pletedandqevaluates to TRUER, is said tdead to bunder

face. The interface carries the control and data ports of thethe. conditionq. Itimplies a synchronization whetemust
. . . X walit for all predecessors. The degenerate case of the control
behavior. In the case of a hierarchical behavior, the ports

are by association of a variable to the interface. Hence, tofIOW relation is of the formg : by ~» b. Here, we only have

internal behaviors of a hierarchical behavior, the port is seen? single predecessor, bcmay start executing aftdn if g
. : evaluates to TRUE, even if there are other control flow re-
asl < p>,wherepe V. The portis treated like any other

; : ; lations leading td. If there are independent terms leading
local variable except that we allow only one kind of i/o op- o b, they represergrogram state machinetyle transitions
eration on it. Local behaviors can either write to a port, in  they rep 9

which case it is known as theut-port or they may read [5].
from the port, in which case it is called tlie-port. Ports
of thein-outtype are not allowed in MA. When the same 4.3.2 Non-blocking write

por_t PIS acc_es_sed from OUtS'd(.a the behavior, it 'S identified This composition ruleR,y) is used to indicate that a behav-
by its association to the behavior. For example, in our case,.

ort p of behaviorb would be written ad < b >. as seen ior writes to a variable or an out-port of its parent behavior.
Ey efternal behaviors b= In the case of a write to a data variable, we use the expres-

sion
4.2 Addressing b<p>—v

whereb < p > is the out-port of the writing behavior and
Behaviors communicate with each other using either v indicates the memory into which the data is written. In
memory or channels. Essentially, memory based communi-its other manifestation, this composition rule can be used to
cation follows the SW programming paradigm, where one create a port connection, written as
behavior writes data into a variable through an out-port
and another behavior reads it via an in-port. Behaviors b<p>—I1l<p>



In this case, the composition rule does notinclude any mem-4.3.6  Blocking read
ory, but only indicates a port-map in a hierarchical behavior.

Note that< p/ > must also be an out-port, This composition ruleRy,) is used to indicate the port con-

nection for the receiver part of a transaction link. The re-
. ceiving behavior(s) read(s) from the in-port of their parent
4.3.3 Non-blocking read behavgi]or through( o)ne of Eh)eir own in-po?ts. Eventualrl)y, the
This composition ruleRy) is used to indicate that a behav- port of the parent behavior will be bound to a channel trans-
ior reads data from a variable or through an in-port of its action. Thus, the blocking read relation facilitates the cre-
parent behavior. In the case of a read from a data variableation of hierarchy in the model. We represent a blocking
we use the expression read by the expression

vob<p> <a>:l<p>—b<pr>&bp<pr>..&bn< pp>

w_her'eb < p > is the in-port of the reading b_ehavior anq whereb; < p; > throughby, < pn > are the in-port(s) of the
v indicates the memory from which the data is read. In its receiving behavior(s). The pdrt< p’ > will eventually be
other manifestation, this composition rule can be used topoynd to another blocking read relation or a channel trans-
Create a port connection, written as action relation. The address of the virtual link & >) will

|l <pP>—b<p> be used for binding this port.

In this case, the composition rule does not include any mem-4 5 7 Grouping
ory, but only indicates a port-map in a hierarchical behavior.

Note that< p’ > must also be an in-port. This composition ruleRy)is used to indicate a collection of
composition rules. Essentially, grouping is used to create
4.3.4 Channel transaction hierarchy of behaviors, by collecting the various composi-

tions of sub-behaviors, local channels and local variables.
This composition rule R;) indicates a data transfer link  This commutative relation is written as

from the sender behavior to one or more receiver behav-

ior(s) over a channel. The semantics of the compaosition ri.ro....n
rule ensure that the sender and the receiver(s) are ready at i .

the time of the transaction. In other words, it follows a ren- Wherevi,1 <i<n

dezvous communication mechanism. The sender and refi € U{Re; Raw, Rar, R, Row, Ror, Ry}

ceiver ports as well as the logical link of the channel are ) o ) .
also indicated in the relation. We write this relation as 4.4 Visualization of Objects and Composition

Rules
c<a>b<p>—bi<pr>&by<p2>..&by< pn>

whereb < p > is the out-port of the sending behavior and

by < p1 > throughb, < p, > are the in-ports of the receiv- bh,-e,
ing behaviors. The transaction takes place over channel
and uses the link addresseddby. a >. bleaf Ejp

4.3.5 Blocking write @

This composition ruleRy,y) is used to indicate the port con-
nection for the sender part of a transaction. The sender be-
havior writes to the out-port of its parent behavior through Figure 2. Visualization of various objects in MA

one of its own out-ports. Eventually, the port will be bound

to a channel transaction. Thus, the blocking write relation  Figure 2 shows how we visualize the various objects
facilitates the creation of hierarchy in the model. We repre- of MA. A behavior is represented by a rounded rectangle,
sent a blocking write by the expression while a channel is represented by an ellipse. Variables in-
side behaviors are represented by rectangular boxes. Note
that hierarchical behaviors likbnier are shown by white
whereb < p > is the out-port of the writing behavior. The rounded rectangles. Leaf level behaviors g, s, that
port| < p’ > on the parent behavior df will eventually cannot be decomposed any further, are represented using
be bound to another blocking write relation or a channel colored rounded boxes. Identity behaviors l&are also
transaction relation. shown as white rounded boxes. Ports are represented by

b<p>—1I1<p>



little rectangles on the circumference of the box for corre- pl

sponding behavior. A port labelgrimay be seen for behav-
2

ior bhier in Figure 2. p2

= a
% -
Figure 4. Visualization of data flow via ports

(@) (b)

Figure 3. Visualization of control flow relations in MA The channel transaction relation is illustrated in Figure
4(b). For now, let us consider only the simplest case of
a channel transaction, that is a point-to-point transaction.
Here, the porp; of by uses the linka of channek to write
4.4.1 Control flow data. On the other side, pgut of b, uses the same link to
) ) i read the data. The communication follows a double hand-
Control flow relations are represented using broken d'reCtedshake protocol. The protocol guarantees that the receiver

edges as shown in Figure 3. A FSM-like control flow can i \ait until the sender is ready to write data. The sender
be realized as shown in Figure 3(a). In this case, behaviory, yhe other hand, will write data only upon the ready no-
b can start executing igither of the following conditions

i tification from the receiver. Hence, the channel semantics
hold true: ensure that both the sender and receiver are synchronized at

1. by has completednd g; evaluates to TRUEDR the time of the transaction.
2. by has completednd g, evaluates to TRUE.

Such a control flow can be expressed in MA as a grouping p
of the two control terms as follows

ql:bl«» b.qZZbgvb

A more complex control flow is realized by the generic Figure 5. Visualization of multi-cast channel transac-
control relation that involves synchronization. This case is  tion
illustrated in Figure 3(b). The AND-gate symbol is used
to indicate the synchronization before behawaran start
executing. In other worddy) may start executing only if
both b; andb, have completed ang evaluates to TRUE.
This instance of control flow can be expressed with a single
term as follows

The more complex case of multi-cast channel transaction
is shown in figure 5. The transaction consists of simultane-
ously sending the same data from a single sender to several

: receivers. For this reason, all the receiving behaviors and

g: b1&by~ b . .

the sender must be executing concurrently. Also, a single

address is used for a multi-cast transaction. The transaction
4.4.2 Data flow link is visualized using a channel and the AND-gate sym-
) o bol as shown in figure 5. The multi-cast communication still
Non-blocking communication takes place between behav-fo|iows rendezvous semantics like the point-to-point com-
iors using composition ruleBny andRyr. Essentially, be-  yynication. The difference is that instead of synchronizing

haviors read or write data to variables _through their ports. 4o behaviors, alh-+ 1 participating behaviors must be syn-
The type of the port used and the variable should be thechonized. The transaction link as shown in figure 5 can be
same for the relation to be valid. Figure 4(a) illustrates the gxpressed in MA as a single term

non-blocking data flow fronb; to b, via variablev. Behav-
ior by uses its out-porp; to write data tov, while b, uses
its in-portpx to read data from. c<a>b<p>—b <p1>&bp<p2>..&bn < pn>



5 Model Construction with MA

So far, we have seen the various objects and compaosition

rules of MA. In this section, we look at how to construct
hierarchical system models in MA. The objective is to rep-
resent models written in typical SLDLs using the objects
and composition rules of MA. For simplicity, we will be
using visual illustrations introduced in Section 4.4.

Virtual Starting Point

\ 92

S
Virtual Terminating Point

Figure 6. Control flow within hierarchical behaviors

5.1 Hierarchy

Using the control flow relations, we can compose be-

b par btsm
vsp
AN ¥

; \\ : q 2
vtp b
:
(a) (b)

Figure 7. (a)Parallel and (b)FSM style compositions
of behaviors

5.2 Parallel and Conditional Execution

Most SLDLs provide for special language constructs to
create different types of behavioral hierarchies. The com-
mon ones are parallel composition and fsm-style composi-
tion. A sequential composition is simply a degenerate form
of the fsm-composition. In MA, we can realize both these
types of composition by using hierarchy and control rela-
tions.

Figure 7(a) shows a parallel composition of behavimrs
andby. A typical SLDL may allow construction of a paral-
lel composition using a statement like
par {run by; run by}.

haviors such that they execute in a desirable order. Most| et the resulting behavior be calléxl,,. The execution of

SLDLs provide for hierarchical compositions of behaviors
to aid modeling. In MA, hierarchy is achieved using the in-

bpar indicates that both, andb, are ready to execute. The
execution obpar completes when bothy andb, have com-

terface object and its relation to behaviors. Figure 6 showspleted. In the corresponding MA expressius,,, and

a hierarchical behavidrconsisting of sub-behaviobg and
bo. The interface ob is visualized as the circumference of
the box representinyg Note thevirtual starting poinfVSP)
and thevirtual terminating poinfVTP) behaviors ob. The
VSP is the identity behaviorsp, that is the first to execute
insideb. Other sub-behaviors df are executed aftersp,,
depending on outgoing control relations fresp,. We can
see infigure 6 that the VSP in this casg, is triggering the
execution of sub-behavidi. Due to its nature, a VSP be-

havior would only have outgoing control edges to other sub-

behaviors ob. Similarly, the identity behaviovtp, is the
last behavior to execute insitke In other words, the com-
pletion of b is indicated by the execution etp,. Due to

its nature, the VTP behavior will only have incoming edges
from other sub-behaviors df. All hierarchical behaviors

Vi, Serve as the starting and terminating points, respec-
tively, of the hierarchical behavidsps;. We can see, that
insidebpar, by andb, are allowed to start simultaneously.
This is ensured by the control relations
VS e~ D1.VSh, ~ 2
Hence, the parallelism is realized by orthogonality of the
execution of behaviorb; andb,. The control relation at
the end
b1& by ~ vt Pbpar
ensures that both; andb, must complete their execution
beforevtpy,,,, executes. The execution ufpy,,, indicates
the completion of the hierarchical behavigy,.

A typical FSM style composition of behaviors is shown
in Figure 7(b). The control flow between behaviors is typ-
ically expressed using switch-case or goto constructs in

are assumed to have a unique VSP and a VTP. Hence, thg|DLs. A simple pseudo code example for a hierarchical

starting and terminating control relationsioéan be written
as

VS~ b1.by ~ vipy

behaviobtsmis as follows

[1: run by; if gg == 1 gotol2 elsebreak;

12: run by; if g == 1 gotoll elsebreak;

The control relations obssm can be written as follows in



MA the actual order of execution of concurrent behaviors and

VShpe ~ b1.G1 1 b1~ bo.qf 1 b1~ VE Py - hence, it is not possible to tell if the receiving behavior will

02 : b2~ b1.G5 - b2~ iy, execute after the sender. To allow safe and predictable data
transfer between behaviors, we use a channel transaction.

Figure 9. Blocking data flow bound to channel

Figure 8. Using ports for non-blocking data flow in As in the case of non-blocking reads and write, MA pro-
hierarchical behaviors vides mechanism for blocking reads and writes via ports.
For instance, in Figure 9, we see a channel transaction from
b1 to b, overc. After zooming into the hierarchy df; and

b, we see that the transaction is taking place figjto

b,. The portp; of by makes the channel visible to b].

. . o o Therefore, using the relation
In MA, as in most SLDLs, a variable is directly visible

only to the behaviors that are at the same level of hierarchy <a>:bj<pi>—1<p>

as the variable itself. Therefore, in order to access variables

at higher levels of hierarchy, data ports are used. As shownbehaviotb; can access chanmelHowever, this requirep;
in Figure 8, behaviob; reads variabler; present inbpjer to be bound to the virtual link addresseddySimilarly, on
via the port “in” of its parenb. Hence, to realized this port the other side, sub-behavibj insideb,, uses the blocking
connection, we need terms at different levels of behavior relation

hierarchy. At the level obpier, We use the non-blocking <a>: |l <pp>—b,<p,>

relation

5.3 Variable Access via Ports

to access the read methodmfia portp,. In this case, port

p2 makes the channelvisible tob,. As before,p, must be
At the level ofb, we use the port connection from the inter- pound to the virtual link addressed hy
face ofb to b;. We can write this as the relation

vi—b<in>

| <in>—by<py> b

The dual of read port connection is the write port con-
nection as shown by the access of variablfrom behavior
b, in figure 8. In this case, the port “out” df is used to
realize the variable access. The term at the levbhgf is

b<out>—w

while the term at the level di is Figure 10. Sharing channel for transactions with dif-

ferent addresses
b, < p2 >— | <out>

5.4 Channel Access via Ports In MA several virtual links may share a single channel.
Each of the virtual links are assigned a different address, but
Non-blocking communication is typically used for se- the data transfer takes place on the same medium. Figure
guentially executing behaviors. The sender behavior writes10 shows an instance of channel sharing. In this model, we
to the communicating variable. The receiver behavior exe-have two virtual links with addressesa; > and< ap >.
cutes after the writer has completed and reads from the com-Transactions may be attempted concurrently on these links.
municating variable. However, when behaviors are execut-However, due to sharing of the channel, we can allow only
ing concurrently, such a method of communication would one transaction at a time. This is a classic case of bus ar-
not be safe anymore. In other words, we cannot guaranteebitration, where an arbiter ensures that only one transaction



The typical SLDL implementation af; would look like

G e behavior el (in, out]
Int temp;
@ temp = in;
out = temp;

p |
it
NIRRTy b

The second case of identity behavior is shown in figure

®) 11(b). Here, the “in” port is connected to a variable, hence
the input is read using a non-blocking relation. On the other
@D_, a hand, the “out” port is connected to chancelHence, the
a 5 °“‘ output needs to be sentlausing a blocking write relation.
In MA, the read/write relations a are expressed as
© Voe<in>.c<a>ie<out>—b<p>
@}p—n_><z>\ga\~ The typical SLDL implementation @b would be as follows
a out ,
"G - behavior e2 (in, out)
@ a a int temp;
temp = in;

Figure 11. Various manifestations of the identity be- out.write(a, temp);

havior 3
The third case of identity behavior is shown in figure
11(c). Here, the “in” portis connected to a chantidience

ke ol b . InMA. th the input is read from behavidrusing a channel transac-
may take place over a bus atany time. In MA, the same con-,, o, the other hand, the “out” port is connected to vari-

?apt 'S |dmpledmer_1tted ufr']n%ml;t?hal e;](dus'?n |n|the Chtannel'ablev. Hence, the output needs to be written using a non-
ereadandwrite methods orthe channelimplement a mu'blocking write relation.In MA, the read/write relationsef

tual exclusion pollc;y, vyhere the channell is asharfed resource, expressed as
and each transaction is treated as a critical section. This al- .
lows us to connect several different virtual links to the same c<a>:b<p>—e<in>.eg<out>—v

channel. The typical SLDL implementation @k would be as follows

behavior e3 (in, out)

int temp;

in.read(a, &temp);

A class of behaviors in MA is known as the identity out = temp;
behavior. As the name suggests, these behaviors have thé ;
same output as the input. As a result they do not have any Finally
computation inside them. They have two ports namely the ;
“in” port for reading the input and an “out” port for writing
the output. In general, the identity behavior first reads dataread using a channel transaction relation. The “out’ port
from the “in” port to a local variable and then writes this of & is also connected to a channel naneédor writing
variable to the “out” port. The actual implementation of the data tob/. Hence, the output is also written using a channel
read and write within the identity behavior depends on the transaction relati,on. In MA, the read/write relationseaf
port connections. are expressed as '
There are four basic manifestations of the identity behav-

ior as shown in figure 11. Let us assume that the data reaf <@>:b<p>—es<in>.c'<a > es<out>—b' <p' >
and written by the identity behavior is of integer type. Inthe The typical SLDL implementation @& would be as follows
first case, as shown in figure 11(a), both the “in” and “out”
ports of the identity behavias are connected to variables.
Hence, the respective read and write are non-blocking rela-
tions. In MA, the read/write relations @ are expressed
as

5.5 Using Identity Behaviors

the fourth manifestation of identity behavior is
shown in figure 11(d). Here, the “in” port ef; is connected
to a channet for reading data fronb. Hence the input is

behavior e4 (in, outj
int temp;
in.read(a, &temp);
out.write(a’, temp);

+

V—e <in>.e <out>—V



6 Hierarchical Modeling in MA We can also see control flow relations that determine the
execution scenario under the conditions labeled on the con-

The model of a system is a behavior in MA. Typically, it trol arcs. We also see data flow relations, both amongst

is a hierarchical behavior showing the various Componemssub-behaviors and between sub-behaviors and the interface.

and connections of the system and the functionality within The grouping of relations between local objects will be re-

these components. While modeling, it is imperative to pro- ferred to as thenternal termsof a hierarchical behavior.

vide the right amount of detail for analysis purposes. The Similarly, the grouping of relations involving the interface

granularity of the leaf level behaviors is an important factor Will be referred to as thinterface termf the hierarchical

in deciding if the model can be analyzed. Typically, leaf Pehavior.

behaviors are treated as atomic by the model analysis and \We can write the hierarchical behavior as a grouping of

transformation tools. In one extreme case, a system modepll its internal and interface terms, along with the internal

can be represented as a single leaf behavior. Although the€rms of its sub-behaviors. The grouping of internal terms

model may simulate correctly, it is useless for performing for a given behaviob is represented a]. Thus, we can

any transformations. On the other hand, too much gran-Wrte

ularity may make design decisions too cumbersome. For[bhier] = [VSRy,]-[01]. [02]. [Vt oy | VS By, ~> b1

example, each statement in the SLDL description may bedx : b1~ 2.0y 1 b1~ vt py . b2~ Vipy, 1 < pra>—v.

treated as a leaf behavior. Such a description will presentY — b2 < p21>

too many design choices, with only few of them being use- The interface terms dihier is represented bibhie|. From

ful. Usually, the designer knows what functionality should figure 12, we can see that

not be distributed on different PEs. For instance, operations|Phierl =<a>:1 <p1>—by <p11>.

that work on the same set of data or use the same type ob2 < p2>—1 < p2>

resources are grouped into one behavior. Fina”y, we write the hierarchical behavior as a grouping

of its internal and interface terms. We will use the conven-

tion of enclosing the expression for a hierarchical behavior

in braces. Therefore, we get

bhier = ([bhier]-|bhier|)

6.1 Internal and Interface Terms

As mentioned earlier, hierarchy is a key feature in
SLDLs. Hierarchy allows us to compose systems in a mod-
ular way. In MA, it is possible to represent a behavior as a b var

. . . . o p b oar
grouping of terms involving its sub-behaviors, its interface 2
and its local variables and channels.

Figure 13. Hierarchical behavid,ar with a parallel
composition

Figure 12. A hierarchical behavior with local objects . .
and relations 6.2 Multiple Levels of Hierarchy

In the above example, fsmtlike hierarchical composi-
Figure 12 shows a hierarchical behavipf,;. The ex- tion was created. The resulting behavilp, can be used
pression for the hierarchical behavior is written using the further to create more hierarchical behaviors. For instance,
local objects and composition rule. For instance, in the in figure 13, we see behavibgier in a parallel composition
given behaviolbyier, we can see sub-behavidss and bs. with behaviorbs. The two behaviors exchange data using



the virtual link addressed, over channet. The hierarchi-  predecessor, it may be replacedvby,, . This is because
cal composition results in a new behavior callgd;. The vty IS always the last behavior to execute indigg;.

expression fobpgr is written in MA as follows This allows us to define the first two laws for flattening a
Bpar = ([VS s, [Bhier]-b3. [Vt Ppar] VS s, ~ Dhier- given hierarchical behavidr. The term on the LHS is part
VShpa ~ b3.bhier& b3 ~» vt phpar. of the original expression involving The term of the RHS
c<a>:bz < p3g > bpier < p1>. is the one that replaces the LHS term ohégflattened. We
bhier < p2>— 1 <p>) will use symbolsc, yandzas free variables.

6.3 Flattening of Hierarchical Behaviors FL1 gix~b=q:x~vsp
FL2 q:b~Xx=q:vtpp~ X

Hierarchy is only a modeling artifact in MA. Addition
of hierarchy allows the designer to group different behav- To enable data flow, hierarchical behaviors allow for
iors together. It does not add any functionality to the model. ports on their interface. These ports are essentially a conduit
Unlike SLDLs, MA does not have different types of hier- for data transfer from one leaf behavior to another. During
archical compositions. Hierarchy by itself does not influ- flattening, these ports can be optimized away by appropri-
ence how a particular set of behaviors would execute. Thatately making new port connections as shown in figure 14. A
execution order is already captured using the control flow virtual link addressed over channet is used for blocking
and data transaction relations in MA. The usefulness of hi- data transfer frorbs to b;. However, due to the hierarchical
erarchy comes in representing the structural entities in thebehaviorbnier, channek is not visible from the local scope
model. For instance, in an architecture model, different PEsof by. Thus, the porp; is used to facilitate the connection
execute different sets of behaviors. These sets of behavior®f by with channek. When the interface dinier disappears

are grouped into different hierarchical PE behaviors. during flattening, we can directly connect channiéd b;.
Similarly, the portpy on byier can be optimized away by
directly connectingdp, < p2> > to portp onbpg interface.

b per Therefore, we have the following additional laws for port

optimization during behavior flattening. On the LHS, we
show the expression for the hierarchical behavior enclosed
in braces. Only the interface term for the relevant port is
shown.

FL3 (.y—=l<p>.)<p>—X=y—X
FLA x— (.l <p>—y.)<p>=x—y>

FL5 z<a>:ix— (..<a>l <p>—y.)<p>=
z<a>ixX—y>

FL6 z<a>:i(..<a>y—l<p>.)<p>—x=
z<a>iy—X>

6.4 Granularity of Leaf Behaviors

From the verification perspective, it is important that the
Figure 14. Behaviobp, after flattening obner model should have a fine enough granularity of leaf be-
haviors. Recall that during analysis of system models, we
For functional validation, we need to be concerned with treat leaf behaviors as atomic units. Channel transactions,
only the leaf level behaviors. Hence, we may getrid of hier- and consequently blocking reads and writes, impose im-
archy by flattening the model. The laws for flattening a hier- plicit control relations between communicating behaviors.
archical behavior follow from the semantics of hierarchical Therefore, such communication points must be explicitly
behaviors in MA. Consider the hierarchical behatgg; in represented in the model description.
figure 12. Now, by the semantics of the VSP, any controlre-  Our goal is to clearly distinguish the control relation be-
lation leading tdonier is effectively leading tarspy,,.,. This tween two leaf behaviors. This relationship will form the
is becausesp,,, is always the first behavior to execute in- basis for comparing two models for functional equivalence.
sidebpier. Similarly, in any control relation wheta,e, is a If there is a leaf level behavior with a blocking read or write
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b flow insideb; makese; execute beford,,. Therefore. in
the above two scenarios, the execution order of leaf behav-
PN iors are different. Note that if both behavidrsandb, were
g S treated as leaf behaviors, the two scenarios shown in figure
‘ a a ° 16 couldnot be distinguished.
. Based on the above discussion, we can establish the sim-
\p\l pf, ple rule for granularity of analyzable behaviors. We impose
e -~ the modeling restriction that channel transaction relations
*Q‘ or blocking data flow relations can involve only hierarchical
behaviors or identity behaviors. Hence, after flattening the
model may have channel transaction relations only between
N\ identity behaviors. In other words, in a completely flattened
analyzable model, if there is a terox a >: x — Y, then
Figure 15. Leaf level behaviors communicating using  x,y € B&.

channek
7 Channel Semantics

to a channel, then during execution it must wait at some  The channel object allows for reliable communication
unknown point to complete that blocking transaction. The between two concurrently executing behaviors. In an SLDL
lack of granularity, therefore, restricts us from knowing the implementation, the channel uses events and data variable to
actual order of computations. This problem is illustrated implement a rendezvous communication protocol. As dis-
by a simple example in Figure 15. Consider a hierarchi- cussed before, a channel transaction implies a control de-
cal behaviorb formed by the parallel composition of leaf pendency between parts of the communicating behaviors.
behaviorsh; andb,. Behaviorsh, andb, communicate in - Hence, we will assume both the sender and the receiver to
a rendezvous fashion, using chanoelSince leaf behav-  pe identity behaviors in future discussions.

iors are atomic for our analysis, we cannot tell exactly when

does the transaction overtake place. In other words, we a a

cannot tell what part o, or b, executes before the trans- €yr T—1i —

action and what part executes after it. By the execution se- out "

mantics of the channel transaction, there is a control depen-
dence between parts bf andb,. However, due to the lack

.. .. . . time
of granularity in the description, we cannot determine this
dependf?nce- o . _ Case A: wait wr wait
The importance of granularity is further illustrated in Writer arrives first >

Figure 16. This time we assume that behavimraindby,
from Figure 15, are hierarchical. Thus, the MA description
now provides more details, so that the control ordering im-
posed by the transaction relation can be analyzed. Bpth
andb, are sequentially composed. The channel is linked
to identity behaviors on either side, namelyande,. By
virtue of being identity behaviors, bot#y ande, do not
carry any computation. Therefore, for a channel transaction
involving e; andey, we need not be concerned about any
hidden ordering of computation. Essentially, by the ren-
dezvous semantics of the transaction, all execution preced-
ing e; also precedes all execution followirey, and vice
versa.

Case B:
Reader arrives first

~d,

wr wait
. —rt—>
wait rd

Atomic Transaction

Figure 17. Timing diagram of a transaction on a chan-

nel

In the first scenario, shown in Figure 16(a), we see that7.1 Channel with Single Virtual Link

b12 inside behaviob; executes before;. Considering the

rendezvous semantics of the channel transaction, we can tell

thatbi2 has no ordering wittp;. However, in the scenario

bo1 to execute beforbyo. This is because now, the control

11

Figures 17 shows a transaction taking place over channel

c. We can express this transaction MA using the term
shown in figure 16(b), the same rendezvous semantics force

c<a>.ey <out>—eq <in>



(a)

The timing diagram for this channel transaction shows two
instances of execution. In the first instance, called Case
A, the writer reaches the communication point before the
reader. By this we mean that during model executipnis
scheduled to execute befogg. However, the rendezvous
semantics dictate thaj, must wait untileq is ready before
executing. It may be noted that if there is a control depen-
dency fromey, to e4, the resulting model would deadlock.
Hence,eq must be allowed to start independently epf;

and vice versa. Oncey is ready to start the transaction,
it notifiese,r. The transaction is thus initiated Iy, that
performs a write on the local memory of the channel. Sub-
sequentlygq reads the data from this memory.

In the second execution scenario, called Case B, the
reader is scheduled before the writer is ready. This forces
&g to wait until ey, is ready to start executing. The shaded
part of the execution, in the timing diagram, indicates the
atomic nature of the transaction. Note that the channel re-
sources (i.e. its local memory) are occupied only during the
actual reading and writing of the data.

7.2 Channels with Multiple Virtual Links

b
———————— .
by b,
b1l
b21
A a a a
e o S NG
out pl p2| R
L o e2
e ez |
|
Y A J
VP g VP
-/ ——
A |

(b)

Arrival times

Transaction times

time

A e2be

Waitl Wait2 wr(al) rd(al)

wait wr(a22 rd(a22

Atomic Transaction

Figure 18. Multiple simultaneous transactions on a

single channel

is to allow greater bandwidth on the channel. Consider the

As discussed earlier, channel sharing is possible for dif- configuration shown in figure 18. In this case, two virtual
ferent virtual links, but the transactions are scheduled se-links, addressed; anday, are shared over chanrelThese
guentially. This mutual exclusivity of transactions can be links can be written as a grouping of the following terms
achieved by the use of semaphore (or test and set) constructs < a; >: e; < out>— € <in>.
in SLDL. Thus, the shaded part representing the actual data < a; >: e < out >— €, < in >
read and write over the local memory of channel is mutu- The timing diagram shows the actual arrival schedule of
ally exclusive. The reason why we do not make the entire the four communicating identity behaviors and the result-
transaction (including synchronization) mutually exclusive ing communication schedule on the channel. Note that de-

12



spite the fact thag; arrives first, transaction oa, takes 2. Any behavior following the receiver identity behavior
place before that om;. This is because, the data transfer would not execute until the sender identity behavior
of transaction omy is ready to be performed before that for has executed.

ai. Thus, the data transfers on the channel are scheduled on o

first-ready first-serve basis. Although the transactiomon |f We were to optimize away the channel to extract only
is ready to be performed whes arrives, it must wait for the control dependencies, the result will be as shown in fig-

the durationwait, since the transaction am is in progress. ~ Ure¢ 19. As per the above premises, behabiofollowing
sendere; cannot start untié; has completed. This is guar-

. - anteed by including the term
(el pr>tn{e2) ! /,}\’\\ i 1 €186~ by
| a1 a2 : = ql U ‘Cﬁ q2
| H In the dual of the above casbh; following e is blocked
until the sendee; has executed. This premise is ensured by
the term
(@) O e&e ~ by

a a Figure 19(b) shows the general case, where the behaviors
o > e2 | \\ - following the sender and the receiver may already have sev-
[}

=T~ eral predecessors. In that case, the new predecesdor (

[ v -
. 'Q/ \d 0 - a b‘;’ ‘:d a2 b, ande; for by) is simply added to the list of predecessors
i i i | in the corresponding blocking relation.
b) 8 Execution Semantics

In order to define the execution semantics of MA, we first
Figure 19. Resolution of channels into control depen-  introduce the underlying model of computation. The con-
dencies trol flow in the model is captured using tBehavior control
graph(BCG). BCG is similar to the popular computation
model of Kahn process network (KPN). KPN is a directed
graph, where nodes represent processes and edges repre-
sent unbounded FIFO queues. Each edge is directed from

the writer to the reader process. Also, writes are unblocked,

hAS STe.n d“ljzn_g thle dlsctusls;?n O(fj changel sgmint;\ils, th%hile reads are blocking. This means that the reading pro-
channeis in Imply control Tlow dependencies DEWWEeN o st wait until the queue the required amount of data

communicating behaviors. Our eventgal goal is collect all for the reader process to execute. Note that all queues have
qor_1tro| dependencies between _behawors _to form a mono'only one reader and only one writer, and that the queues
lithic control flow graph of behaviors. We will now see how are the medium for data transfer between processes. KPN
to resolve the virtual links in flattened MA models into con- can effectively model concurrency and synchronization, but
trol dependencieg Figure 19 demonstrates this control de'they are not useful for modeling non-determinate behavior
pendency extraction. : . or conditional control flow. The data flow in the model is
Recall that in an a_malyzab_le model_, blocking re_latlons captured using thBort Connection NetworPCN), which

and channel transaction relat|on_s can involve only_ldent|ty is a net-list of behaviors, variables and control conditions,
behaviors or hierarchical behaviors. Upon flattening, the with directed arcs denoting the data dependencies amongst

?nglyza;)ble modg(jl WO_UIdboﬂly have_lc_:r:lanr;el trhansactlon re]:them. Together, the BCG and the PCN are used to define
ations between identity behaviors. Thus, for the purpose ofy . o o tion semantics of the model.

control flow extraction from channel transaction relations,
we need to consider only the case where sender and receiv
are both identity behaviors.

The synchronization properties of a channel would en-
sure the following two premises:

7.3 Control Flow Resolution of Links

9.1 Behavior Control Graph

The BCG is similar in principle to the Kahn Process Net-
work [10], but with some remarkable differences.ltis a di-
1. Any behavior following the sender identity behavior rected graph (N,E) with two types of nodes, namadhav-

would not execute until the receiver identity behavior ior nodeg¢Ng) andcontrol nodeéNg). The behavior nodes,

has executed. as the name suggests, indicate behavior execution, while the

13



° tion 6.3. We also saw the control relations that may result

& o from a communication channel. After, flattening the model

bl_queue n\r;& and extracting the control dependencies, we are left with
111 a set of leaf level behaviors and control relations amongst

them. This can be directly translated into a BCG in a triv-
ial fashion. For each leaf behavior, we introduce a behavior
node in the BCG, labeled by the leaf behavior'sid. For each
control relation, we introduce a control node in the BCG, la-
beled by the control condition id. Also, edges are added to
the BCG depending on the control relation. For instance, a
control relation of the form

ﬂeue

‘0\(/0‘“/ q: by~ by
Figure 20. The firing semantics of BCG nodes would imply two directed edgefb;,q) and(g,by) in the
BCG. On the other hand, a control relation of the form

control nodes evaluate control conditions that lead to further g:b1&by...&by~b
behavior executions. Directed edges are allowed from be-
havior nodes to control nodes and vice versa. Also, a controlwould imply n+ 1 directed edge¢bs,q), (b2,q),...,(bn,q)
node can have one, and only one, out going edge. Thus, and(g,b) in the resulting BCG.
E(BCG) C Ng(BCG) x Ng(BCG) UNg(BCG) x Ng(BCG) Recall that each hierarchical behavior has unigpand

The execution of a behavior node, and similarly, evalua- vtp identity behaviors. Let us assume that the top level be-
tion in a control node, will be referred to adiang. Node havior in the model is calleth. Thenvspy, is the first node
firings are facilitated by tokens that circulate in the queuesto fire in the BCG ofm. Therefore,m may be simulated
of the BCG as shown in Figure 20. Each behavior node by placing a single token in the queue f@pn. The sim-
(shown by rounded edged box) in the BCG has one queueulation terminates when there are no more tokens left to be
for instanceb1_queuefor behavior nodds;. All incoming consumed. In other words, if all the FIFOs in the BCG are
edges to a behavior node represent the various writers to th&mpty, then the execution has terminated.
gueue. A behavior node blocks on an empty queue and fires
if there is at least one token in its queue. Upon firing, one
token is dequeued from the node’s queue. The control node
(shown by circular node), on the other hand, has as many
gueues as the number of incoming edges. For instgnce
hask queues, one each for edges frémnthroughby. A
control node, sequentially checks all its queues and blocks
on empty queues. If the queue is not empty, it dequeues a
token from the queue and proceeds to check the next queue. Figure 21. Port connection network showing data de-
The node fires after it has dequeued one token from each of  pendencies
its queues.

After firing, a behavior node generates as many tokens as
its out-degree, and each token is written to the correspond-
ing queue of the destination control node in a non-blocking 8.3 Port Connection Network
fashion. Upon firing, the control node evaluates its condi-

tion. If the condition evaluates to TRUE, then a token is The PCN is a directed graph which has three types of
generated and written to the queue of the destination behavnodes, namely behavior nodesj, condition nodesNq)

ior node. and variable nodes\(). The edges represent data depen-
o _ dencies in the model and are labeled using the port names
8.2 Deriving BCG from MA Expression involved in the dependency as shown in Figure 21. For in-

stance, a directed edge from a behavior nbde a vari-

Now that we have described the BCG, we can create aable nodev (shown by rectangular box), label@dwritten
unique BCG from a given MA expression. This will al- (b,v, p)) would mean thab writes to the storage indicated
low us to establish the execution semantics of MA. We have by v via its out-portp. Similarly, an edge from a variable

seen how to create a flattened behavior for a model in secnodeVv' to a behavior nod¥/, labeledp’ (written (V,b', p'))
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would indicate thab’ reads variable’ using its in portp'. case, we need a notion of functional equivalence of models
Note that for each variable there can be only one writer in MA. Using these notions, we can build tools for check-
behavior (written asvr(v)). Control conditions also create ing if two MA models are functionally equivalent. In this
data dependencies in the model. Thus, if a control condi- section, we will define our notion of equivalence and the al-
tion g is a boolean function cali = fy(v1,V2,...,Vy), then gorithms needed for comparison of models based on such
the node representimghas a directed edge from all time notion.
variable nodes; thoroughvy,.
9.1 Notion of Functional Equivalence
8.4 Deriving PCN from MA Expression
Our notion of functional equivalence is based on the
In MA, a non-blocking write is represented by the rela- trace of values that the variables hold during model exe-
tion cution. In particular, we are interested in the variables that
b<p>—v are written to by non-identity behaviors. We will refer to
such variables agbservedrariables. The reasoning is that
variables that are connected to the output ports of identity
behaviors are simply a copy of another variable. Informally
speaking, we consider two models to be functionally equiv-
alent, if they have identical observed variables and the trace
of values assumed by those variables during model execu-
tion is identical, given the same initial assignment. The for-
results in an edge from a variable nodéo a behavior node  mal notion of equivalence is as follows.

b/, labeledp’, indicating thab’ reads variable’ using its in Given a modeM, let (M) be the initial assignment of
port p’. We must note that for each variable, there can be gpserved variables iNl. Let
only one writer behavior. The restriction of having a single vy e Ny (PCN(M)), 3wr(v) € Ng(PCN(M))
writer behavior for each variable would simplify modeling et d;,i > 0 be the value written tw after theit" execution
and analysis, since we do not have to deal with hazards reof wr(v). Let dy be the initial assignment value gf We
lated with multiple writers. define the ordered set

Finally, the channels are also impose edges in the PCN.y(y, M, | (M)) = {do,dy,d2,...}
In the flattened form, we would expect to see channel rela-we claim that two models! andM’ are equivalent iff
tions only between identity behaviors. A channel transac- vy, | (M) = I(M’) = T(v,M,(M)) = T(v,M’, 1 (M’))
tion, represented by the MA relation From the above discussion, we have the following impli-
cations on equivalence checking using BCG and PCN. For
two models, say M and M’, to be functionally equivalent,
they must have

In a PCN, this results in a directed edge from a behavior
nodeb to a variable nodg would mean thab writes to the
storage indicated by. The edge labep indicates the out
port used byb for writing v. Similarly, the non-blocking
read relation

V-b<p>

c<a>:e <out>—e <in>

will result in a directed edge frore; to e in the PCN. A

multi-cast transaction of the type 1. A one to one mapping of leaf level behaviors,

c<a>:e<out>—e <in>&e<in>&..&e <in> 2. A one to one mapping of observed variables, and
will resultinnedges in the PCN, each such edge originating 3. |dentical firing order for any two behaviors with data
ate and terminating at nodes throughe. dependence.

9 Equivalence Checking of Models 9.2 Graph Reduction

The motivation behind MA is to enable the functional For building an automated tool for equivalence checking,
verification of various model transformations taking place we need to define methods for reducing two models to a
during system level design. As a result of every design de-normal formrepresentation. The reduction procedure must
cision, the system model is transformed to reflect the prop-preserve the functionality of the model, as per the above no-
erties imposed by the design decision. However, we musttion. If the normal form of two models is identical, we can
be able to ensure that the original intended functionality hasclaim that the models are functionally equivalent. Other-
not changed as a result of this transformation. We can en-wise, the result is inconclusive.
sure thiseither by using only proven correct transforma- Let us now consider some functionality preserving trans-
tions, or by having an equivalence checking tool to verify formations to a model that will lead to its normal form. We
the models before and after the transformation. In eitherwill perform these transformations on the BCG and PCN
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representations of the model. We choose these graph repvariablesy; andgz). However, it must be noted that as a re-
resentations to demonstrate the transformations for sake ofult of elimination ofe, the variable thae was writing to,
clarity. The transformations can also be shown on corre-also becomes invalid. This variablgis shown in the PCN
sponding MA expressions, since the two representationsin figure 22(a). Now, variable; is simply a copy ofvy,
have one-to-one mapping. by definition of the identity behavior. Therefore, all depen-
Our goal is to eliminate identity behavior nodes and dencies ons, including in-port connections for behaviors
redundant dependencies from the BCG and PCN, as theand parameters for control conditions, must be replaced by
model is reduced to its normal form. Redundant dependen-dependencies om. The elimination ofe from the origi-
cies include control dependencies that do not influence thenal model results in the PCN shown in figure 22(b). This
value trace of the observed variables. simple example of identity elimination shows how the re-
duction rule works in principle. We now present the general

: Lo definition of the rule.
9.2.1 Identity elimination

The identity behavior, by definition, does not perform any Identity elimination rule (R1)
computation. Hence, we may remove the identity behaviors
from BCG and PCN, while making appropriate changes to
the variable dependencies.

Given a model M, lee € Ng(M) be an identity behavior.
Let M’ be the model resulting from elimination & Let
there bem edges tae from control nodes); throughgy, in
BCG(M). Also, let there ba& edges frone to control nodes
labeledq; throughgp, in BCG. Now, Vi, j,st.1<i<m,1<
j<n

In BCG(M), g has in-degred(i) and gj has in-degree
k(j)+1. _ _

Let’ (XIjI_aQi)v (X|27qi)a ] (Xi(i)aQi) € E(BCG(M))' and

(e,q’j),(yjl,q’j),...,(ylj((j),q’j) € E(BCG) Also, let (q},z) €
E(BCG). After, elimination ofe, the merger of control
BCG PCN nodes would result im x n new control nodes. Therefore,
Vi,j,stl<i<ml<j<n
Gi Ad] :x'l&...&xi(i)&yjl&...&yll((j

b,

(a) Before applying identity elimination

|~ 2 €BCEM)

In the PCN, if(€/,e), (e,v,out) € PCN(M),€ € B!, then
PCN(M') = (PCN(M) — (€,€)) U (€, v, out).
" If (v,ein), (e,V,out) € PCN(M),
& ” D ; thenvx, s.t(V,x, p) € PCN(M)
a1 ha2 PCN(M’) = (PCN(M) — (V',x, p)) U (V,X, p).
PCN

(b) After applying identity elimination

: N
Figure 22. Parts of BCG and PCN before and after domiler N
identity elimination

(a) BCG before redundant control elimination

The simple example illustrated in figure 22(b) shows

parts of the BCG and PCN involving an identity behavior
e. In the BCG,e is part of the control path frorb; to b,.
It must be noted that there are no other edges to eétber \ (a) u
. . \
the control nodesg; andq,. As per the semantics of BCG, dominator "N _
we can eliminate by merging the control nodeg andqgp 2
as shown for the BCG in figure 22(b). Note that in both (b) BCG after redundant control elimination

the modelsp, will execute afterb; if both control condi-

tionsg; andg, evaluate to TRUE. Hence, the elimination  Figure 23. BCG before and after redundant control
of e leads to the merging of nodeg andq, to form the elimination

new control node labeled as A g2 (ANDing of the boolean
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9.2.2 Redundant control dependency elimination betweenb, and gy, then changing the order of firing be-
tweenb, andqp, or b, andbs would not change the value
trace for any variable in M. Therefore, the artificial con-
trol dependency fron, to g, may be removed, as illus-
trated in figure 24. However, the rule applies only if the
nodesq; and b, must have an in-degree of 1, while the
nodebz has an out-degree of 1. With these restrictions,
dom(by,M) = b; udom(by,M). Thus, firing ofb; will en-
gueue a token on the queue feyif g is TRUE. Also, the
1. If x € Ng(BCG), then domx,M) = dom(x,M) U token released by firing df>, must be enqueued tg if the
Ngxce@cam)ly Y € dom(g,M)} edge(by,qy) is to be removed. Hence, the transformationil-
' lustrated in Figure 24 is functionally correct under the given
2. If x e NQ(BCG), then dOTT‘(X,M) = dOfT‘(X,M) @] restrictions.

Ubxee@camy{bU{y:y € domb,M)}}

An instance of control dependency elimination is shown in Control relaxation rule (R3)

Figure 23. Giverg € No(BCG(M)). Let .

by, by € Ns(BCG) and(by, q), (b, q) € E(BCG) Given model M, let

Thusb; andb, must fire forg to fire.If we can show that ~ (P2:02); (G2, bs), (b1,01). (G1,02), (b3, d3) € E(BCG(M)).
by € dom{bp, M) then the edgeby,q) can be eliminated T the following conditions hold

from the BCG. This is because, upon executiobgfa to-

ken will be enqueued in the queue correspondingpioq). L. Ab7 by, st (b,qr) € E(BCGM)), and
Now, if by executes, we know théh has already executed 2. s.t. (a.b») € E(BCGM)) and
and enqueued the relevant token. The ngdeéll dequeue Ad# ta, s.t.(g,bz) € E(BCGM))

this token fromb; and will wait for a token fronb,. Hence, 3. Ab #bg, s.t.(b/,q3) € E(BCG(M)) and
a token fromb; means thab; must already have a token

sent tog. If we remove edgébs,q), while keeping edge 4. Av,p,p' € N(PCN(M)), s.t.

(b2,q), the order of firings in BCG would not change. (b2,v,p), (V,02), (v,b3, p') € E(PCN(M))

In order to eliminate spurious edges in a BCG, we first
need a control dependence analysis. Given model M, let
y € Ng(BCG(M)),x € N(BCGM)). If during any execu-
tion of M, y alwaysfires at least once between every firing
of x, then we defing/ to be adominator of x. The set of
dominator nodes fok will be represented bgom(x,M).

The setdom(x,M) can be defined inductively as follows

then

Redundant control dependency elimination rule (R2)
E(BCGM)) =E(BCGM))U{(b1,02), (b2,03) } — (b2, 2).

Given model M, letj € No(BCG(M)).

If 3bs, b, € Ng(BCG(M)), s.t. \ AN
by, € dom(bz, M) and(by,q), (b2,q) € E(BCGM)), then /'. .bz "’@g
E(BCGM)) = E(BCGM)) — (by,q). ya / e .

(a) Original BCG without in/out degree restrictions

(a) BCG before edge relaxation \ \
@ ®

@ @ (b) BCG after addition of identity behaviors el and e2

(b) BCG after relaxation of edge (b2, q2)

Figure 24. Control relaxation for eddby, q2)

(c) BCG after relaxation of edge (b2, g2)

9.2.3 Control relaxation

Figure 24 illustrates the control relaxation rule. Given  Figure 25. Control relaxation for edgey, q2) without
model M, let(by,q2) and(dz,bs) be edges in the BCG of in and out-degree restrictions
M. If there is no data dependency betwdenandbs and
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Control relaxation can be further generalized by remov- consists of rearrangement and/or replacement of objects in
ing the restrictions on the in-degree lnf andqg; and the the input model to create an output model.
out-degree obz. The original BCG, with arbitrary degrees Each of the design decisions result in different types of
for the relevant nodes can be transformed as shown in fig-transformations. For different types of transformations, we
ure 25. Using the inverse of rule on identity elimination, we need a different verification technique to validate it. We
can add identity behaviors ande, beforeb, and afterbs, will follow the system level design methodology, as shown
respectively. This would allow us to use the control relax- in Figure 1. The following design steps are encountered as
ation transformation to derive the BCG shown in the midle we start from a functional specification model and produce
of figure 25. Finally, after control relaxation, the identity a scheduled transaction level model.
reduction rule can be applied to optimize aveyande;.

=

. Behavior partitioning
9.3 Comparison of MA Models

N

. Static scheduling

In order to validate functional equivalence of M and M’, 3. RTOS insertion
we convert their BCG and PCN to the normal form. The
normal form of M is derived by iteratively applying the

reduction rules to the BCG(M), PCN(M) pair until none \ve il now look at the model transformations resulting

of the rules is applicable anymore. The resulting normal ¢, these design decisions and the requirements for veri-
form graphs are represented by NBCG(M) and NPCN(M). fying those transformations.

Similarly, we derive the normal form graphs for M’. If
NBCG(M) is identical to NBCG(M’) and NPCN(M) is
identical to NPCN(M’), then M is equivalent to M’. This
follows from transitivity of the equivalence relation and the
functionality preserving nature of the reduction rules. In the
following sections, we will look at the verification require-
ments at each stage of system level design. We will also
present the application of our equivalence checking method
for some of these design steps using simple examples.

Library of Objects
channels/ behaviors

4. Bus insertion

10.1 Behavior Partitioning

A given specification consists of an arbitrary hierarchy of
behaviors. During partitioning, we determine the number of
PEs that will be needed to implement the design. The leaf
behaviors in the specification are then distributed over these
PEs. The PEs are assumed to execute concurrently. Thus,
in this step, the design decision is to map each leaf behavior
in the specification model to a PE.

The output model must follow a well defined template
to reflect the mapping decision. The output shows the PEs
as a parallel composition of hierarchical behaviors. Each

7\ PE behavior is composed from the leaf level behaviors that
were mapped to it. Hence, the transformation produces a
\ rearrangement of behaviors. Additional channels are added

Design
Decisions
(GUI)

Model

, Equivalence from the library for synchronization amongst behaviors. We
Transformation

Checker . k . . ..
need this synchronization since the original order of execu-
tion of the leaf behaviors must be maintained in the new
model as well. The data flow relations in the original model
must also be modified to reflect the locality of memory in
each PE. The original data transfers between leaf behaviors,
Figure 26. Automatic equivalence checking of system  mapped to different PEs, will now go across PEs. Hence,
level models they must be routed via identity behaviors using channels.
Figure 27 shows a simple specification moliebn the
LHS with two behaviord; and b, and condition control
flow. After the execution ob,, if condition g evaluates to
10 System Level Verification Methodology TRUE, thenb; is executed, else the execution terminates.
On the RHS, we see an architecture level implementation
Figure 26 shows the methodology for generating a re- M’ whereb; is assigned t&E; andb, is assigned t¢E,.
fined SLDL model from the input and checking the func- Identity behaviors andw are added along with rendezvous
tional equivalence of the two models. The model genera- channekyncto preserve the original control flow.
tion algorithm uses the design decisions and syntactically  Since the transformations consist of rearrangements and
transforms the input model. The transformation essentially addition of identity behaviors and channels, equivalence

Output Model
(SLDL)
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execute, execution inside PE1 will stall, as it waits for the
data transaction. Behavibp may be scheduled before the
transaction, if it has no data dependencybanThe result-
ing schedule,shown in 28(b), optimizes timing.

Since, the static scheduling process changes only the
control dependencies, the leaf level behaviors in input and
output models should match. As in partitioning, we do
not add any new non-identity leaf behaviors to the model.
Therefore, equivalence checking is also applicable in this
design step.

Figure 27. Model generation after behavior partition-
ing
10.3 RTOS Insertion
checking would work for this transformation. Note that in As explained above, static scheduling is one way of seri-

this step, we do not add any new non-identity leaf behaviors yjization of behaviors in a model. However, PEs that imple-
to the model. Hence, the equivalence checker can resolVeyent software may provide for dynamic scheduling. In this

the new objects in the model. case, the non-determinism of concurrency is resolved at ex-
. . ecution time. In a parallel composition of behaviors, the or-
10.2  Static Scheduling dering of behavior execution is done during run time. This

] o ) _ ordering is performed by a scheduler that is part of the PE’s

Static scheduling is performed in system level models ei- gperating system. In a SLDL implementation, the sched-
ther due to resource constraints or timing optimization. Be- yjer js another behavior that models the Real Time Oper-
haviors mapped to HW are typically targeted for implemen- 4ting System (RTOS). The concurrent behaviors are then

tation with a single controller. As a result, any parallelism g gified to make calls to the OS behavior, before starting
in the HW PEs must be serialized statically. Consider an gyacytion. If a behavior is scheduled for execution, it is

unscheduled HW PE with two threads of execution. The pqtified by the scheduler. Upon completion, the behavior

first thread executes behavior followed by by, while the  myst notify its completion to the RTOS and release the PE

second thread executbsfollowed bybs. A possible seri-  esources. Competing scheduler requests are resolved using

alization of the PE would sequentially execute the behaviors g scheduling policy. Most of these policies are well known

in the order{by, bs, by, bs}. Other schedules are also pos-  |ike EDF, Round Robin, FIFS etc. Essentially, during RTOS

sible as long as they do not violate data dependencies.  jnsertion, the dynamic scheduling policy of the SLDL sim-
ulator is replaced by that of the explicit RTOS.

T®T T®T The addition of a new non-identity behavior (in this case,
the scheduler) renders our equivalence checker unusable.

PE1 PE2 PEL PE2 Therefore, for dynamic scheduling, we need to ensure that
run (bl) e wn 1) || o the scheduler behavior, and hence the scheduling policy,
c.send (d) crriﬂv( (&)d) run (b2) Crrizv( (&)d) satisfies the same properties as the scheduler of the SLDL

un(02) || c.send (d) simulator. This can be verified using a property verification
""""""""" tool. If the property verification is successful, the sched-
uler behavior can be abstracted away from the model. The
@ () MA expression during this SLDL transformation can, thus,

. . o remain unchanged if the dynamic scheduler of the RTOS
Figure 28. Different communication schedules for  tg|iows the simulator’s properties.

transaction over channel

10.4 Bus Insertion

Reordering of behaviors can also take place as a result

of communication scheduling. Such a scenario is shown in  After behavior partitioning and scheduling, the sys-
Figure 28, where datdis sent from PE1 to PE2 over chan- tem model consists of concurrent behaviors communicat-
nelc. The channel implements rendezvous communicationing with several channels. Although, the model shows the
semantics, i.e. both sender and receiver must synchronize&omputation structure correctly, the communication struc-
for the transaction to take place. Consequently, for the caseture still needs to be implemented. In a bus-based SoC
shown in Figure 28(aj, must wait untilbs has completed = communication scheme, the various PEs are connected to
and the transaction is performed.bff takes a long time to ~ system busses. The communication model can thus be rep-
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resented using channels for busses. All virtual links in the
input model are shared over the néws channels The

design decision in this case is choosing the number of bus
channels and mapping the virtual links to the bus channels.
Also, the ordering of transactions on the bus may be done

using an arbitration policy. By default, in MA, we follow
a first-come first-serve policy as explained in Section 7.2.

However, if the designer chooses to use a different schedul-

ing, he or she may add a newbiter behaviorto schedule

transactions over a bus. The arbitration of transactions is
analogous to dynamic scheduling of behaviors, described

above.

For verification, we have the same scenario as that in

RTOS insertion. Equivalence checking is not directly ap-

plicable since the output model has a new non-identity leaf
behavior. As before, we can use property checking to verify

that the arbitration policy preserves the functionality of the
model. If we can prove, using a property checking tool, that
the arbiter behavior will

1. never cause a deadlock
2. eventually schedule a transaction request
then we can abstract it away.
11 Case Study: Verification of Behavior Par-
titioning

In this section, we will use a simple example to demon-

strate functional equivalence checking of models before and

after behavior partitioning. We start by capturing the speci-

fication and (partitioned) architecture model as hierarchical

behaviors in MA. The models are flattened using the flat-

tening laws described in Section 6.3. Then, we resolve the
channels and derive the BCG and PCN for the two models.

Finally, we use the reduction rules in Section 9.2 to obtain
the normal form graphs for the models. The isomorphism

of the normal form graphs is used to check the equivalence

of the specification and architecture models.
11.1 Specification and Architecture Models

The specification modé¥l, shown in figure 29 is com-
posed of two leaf level behaviobg andb, and variabley,
which is written byb; and read b¥,. The following pseudo
code describes the specification
M: begin;run by; if v<5run by;end
Assume thab; uses porp; to write v andb, uses portp,
to readv. Also, letqg=v <5 andq =v> 5. The MA ex-
pression foM can be written as follows:

M = [vSpm|.[Vtpm].[b1].[b2].b1 < p1 >— Vv — by < p2 >
VS~ b1.q: by~ bo.d 1 by~ vt pm.bo ~ vipn
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BCG(M) PCN(M)

Figure 29. Example of a simple specification model
and its graph representations

Figure 30. Architecture model derived after partition-
ing

Let us assign two PEs, namely PE1 and PE2 to imple-
ment this specification. Also, let us map to PE1 andb,
to PE2. A possible architecture model, created from the
specification and the mapping decision, is shown in Figure
30. Note that additional hierarchy is created for PE1 and
PE2, which execute in parallel. New identity behaviors
andw are introduced in PE1 and PE2, respectively. These
identity behaviors are used to send data in variatflem
PE1 to PE2, via the channel This data is needed Ky,
and the control conditiongandg’. Note that the data from
v is copied into variable’, which is local to PE2. In MA,
the architecture model can be written using the following
expressions.
M’ = [vspy]. [Vt p].[peL].[p€2].vS i ~ per.
VS ~ P&.per& pe ~ Vit Py
c<a>:pe < p|>— pe<p,>



thatw now reads directly fronv via itsin port. Similarly,

peL = [VShe |- [Vt Ppe |- [D1].[N].VS e, ~» b1.b1 ~> N in step 3, nodev is optimized away using R1. Hence, all
N~ VtPpe b1 < pr>—vv—on<in>. edges fronw are replaced by those froms,y in the BCG.
<a>:n<out>— Il <p]> In the PCN, this reduction results in nodendv' being op-
timized away. All edges frond are now converted to edges
P& = [VShe, - [Vt Ppe,]. [W]. [02]. VS e, ~> W. fromv.
q: W~ bo.q' 1 W vt ppe,.b2 ~> Vit Ppe, - Step 4 uses redundant control elimination rule R2 to get
<a>:l<p,>—ww<out>—VV-b<p> rid of redundant edges frowspy in the BCG. It may be
noted that by definition of dominator in Section 9.2.2, we
11.2 Flattening of Models havevsp,y € domb;,M’) Note that in the BCG after Step

3, nodes labeled, g’ and 1 have control dependencies from

The specification model has only one level of hierarchy, Pothbr andvspy. Since,vspy is a dominator oby, we
so it cannot be flattened any further. The architecture model,can eliminate the edgésspy, 1), (vspw, d) and(vspy, o).
on the other hand, has two levels of hierarchy. Therefore, There are no changes to the PCN. . o
we can flatten the architecture model to remove the hier- N Step 5, we use R1 once again to eliminate identity be-
archy created by behaviope, and pe,. Using the laws ~ haviorsvtppel andvtppe from the BCG. Again, the PCN
in Section 6.3, the flattened architecture model can be ex-"émains unchanged since these behaviors do not have any

pressed in MA as follows data dependencies. Finally, in step 6, we use R2 to get rid
M’ = [VS ] [Vt Py - [VS Ppey |- [Vt Ppey - [b1].[N]. of edge(by, 1). This is possible because, from the definition

S vt b of dominator, we can see thiat € dombp, M’). Again, the
[VSPbe, |- [Vt Poe - (W 2] ; . H ned af
VS ~ VSPhe, VS ~> VS he, -Vt Ppe, & Vi Ppe, ~> Vt Py PCN remains unchanged. The BCG and PCN obtained af-
VSfhe, ~ b1.by ~> NN~ Vtppe, ter Step 6 cannot be reduced any further and, thus, represent
VS e, ~> WGt W~ bp.qf 1 W Vit Ppe. the normal form for the architect}Jre n".nodeI.M’.
bz~ VtPpe,.b1 < p1 >— Vv —n<in>. The normal form graphs of M _are_ldentlcal to the BCG
W< OoUt>— V.V — by < pp>. apd PCN of corresponding specification model M, showp in
c<a>n<out>—w<in> Figure 29(b). Hence, we have shown the function equiva-

lence of the two models before and after mapping of speci-

11.3 Reduction to Normal Form fication behaviors to PEs for our example.

We will now use the reduction rules in Section 9.2 to 12 Related Work
derive the normal form representation of the two models.
Let us start by considering the architecture model. Channel Significant research has been done in the past for devel-
cin the flattened MA expression of M’ can be resolved into oping modeling formalisms for system level design. Pro-
edges in the BCG and PCN as described in Section 7.3.  cess algebras, such as CSP [8] and CCS [12] have been

Figure 31 shows how the BCG and PCN for the archi- used for verifying distributed software, but have limitations
tecture model shown M’ are reduced to its normal formin a in modeling. For example, CSP allows only rendezvous
step wise fashion. The BCG is the graph shown on the leftcommunication between parallel processes. StateCharts [7]
and the PCN is the graph shown on the right. At each step,provide for hierarchy, synchronization and exceptions, but
we use the applicable reduction rule until we cannot apply have unclear execution semantics, which have led to several
them any more. The topmost BCG and PCN in Figure 31 variants. Colored Petri Nets are widely used for analysis
are derived from the architecture model. The resulting con- and modeling of concurrent systems, and verification tech-
trol dependencies from resolution of chanoelre seen in  niques have been developed to check for their equivalence
the edges emanating fromandw in the BCG. Also, the  [9]. Formal methods, developed for hardware verification,
edge(n,w) in the PCN indicated the channel connection.  have been applied to embedded systems like bounded model

The reduction to normal form takes place as follows. In checking [4] and theorem proving [13]. The problem with
the first step, we optimize away identity behavigsfhe most state based approaches, as above, is that their com-
andvspye from the BCG using identity elimination rule  plexity increases exponentially with design size. Our goal is
R1. Thereis no change made to the PCN since these behawo correctly derive detailed system level models, so that we
iors do not have any data dependencies. In Step 2, we usean leave the functional verification task for only the specifi-
R1 again to optimize away node As a result, in the BCG,  cation model. Correct by construction techniques have been
all edges emanating fromare replaced by those from. widely applied at RT Level to prove the correctness of high
In the PCN, this results in the nodend its edges being re-  level synthesis steps [13] [3]. A complete methodology for
moved. A new edgév,w,in) is added to the PCN to indicate correct digital design has been proposed in [11], but they
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Figure 31. Reduction of architecture model BCG, PCN pair to normal form
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only consider synchronous models which are insufficient at [4] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe. Case

system level. studies of model checking for embedded system de-

More recently, research is being directed towards com- signs. InThird International Conference on Applica-
parison of SLDL models using textual correlation and sym- tion of Concurrency to System Desjgrages 20-28,
bolic simulation [14], but their approach requires two mod- June 2003.

els to be very similar. Verification of only the synchroniza-

tion primitives of SpecC [6] are presented in [15]. Correct ) ) . .

by construction approaches at the system level have been tem Design with Spec®|uwer Academic Publishers,

proposed for HW/SW partitioning [2]Jand model generation January 2002.

[1], but they restrict the designer to follow a given refine- [6] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and

ment algorithm. S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[5] D. Gajski, R. Domer, A. Gerstlauer, and J. PeSys-

13 Conclusions [7] D. Harel. Statecharts: A visual formalism for com-

plex systems. Science of Computer Programming
In this paper, we introduced a formalism called Model 8(3):231-274, June 1987.

Algebra, which can be used for functional verification of o )
system level models. The objects and composition rules of [8] C. Hoare.  Communicating Sequential Processes
Model Algebra allowed us to represent hierarchical SLDL Prentice Hall, 1985.
models_as EXpressions. Wg then pre.sented_the execlJtlon[9] J. Jorgensen and L. Kristensen. Verification of colored
semantics of model algebraic _descr|pt|on§ using BCG. and petri nets using state spaces with equivalence classes.
PCN graphs. We also established a notion of functlonql In Proceedings of the Workshop on Petri Nets in Sys-
equa_lence of two models_, based on the vglue trace of vari- tem Engineeringpages 2031, September 1997.
ables in the models. This led us to define functionality
preserving transformation rules on model algebraic descrip-[10] G. Kahn. The semantics of a simple language for par-
tions. The expressive power and well defined rules in MA allel programming. Innfo. Proc, pages 471-475, Au-
can be used to derive new equivalent models from the spec- gust 1974.
ification. On the other hand, these rules can also be used to _ _
verify functional correctness of model refinements resulting [11] Middlehoek. A methodology for the design of guar-

from system synthesis. We showed how models in MA can anteed correct and efficient digital systems.|E&E
be reduced to a normal form, which allowed us to compare International High Level Design Validation and Test
the input and output of system level design steps. The for- ~ WorkshopNovember 1996.

malization of models using Model Algebra has significant [12]

: A R. Milner. A Calculus of Communicating Systems
impact on system level verification.

Springer, 1980.
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