GX-GUI: A General Extensible Techniquefor 2-D
| nteraction with VR Applications

Bita Gorjiara, Falko Kuester, Pai Chou and Mehrdad Reshadi

Technical Report CECS-03-46
January 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425
(949) 824- 1421
{bgorijiar, fkuester, chou} @ece.uci.edu, reshadi@ics.uci.edu



GX-GUI: A General Extensible Techniquefor 2-D
| nteraction with VR Applications

Bita Gorjiara, Falko Kuester, Pai Chou and Mehrdad Reshadi

Technical Report CECS-03-46
January 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425
(949) 824- 1421
{bgorijiar, fkuester, chou} @ece.uci.edu, reshadi@ics.uci.edu

Abstract

Continuously increasing complexity of collaborativetual environments demands new interaction pgras. In particular, interactions
such as object selection and manipulation, infolenajuery and data augmentation can be made alailaing customized 2D
interfaces for 3D environments. When combined \withd-held devices these interfaces allow userdcerdntrol and customized access
to information in multi-user environmentsCurrent development techniques for 2-D interfappliaations need expertise in complex
programming languages and client/server conceps ¢hn impede the widespread implementation of gaisadigm. This paper
introduces GX-GUI (General eXtensible Graphical lUs¢erface) for 2-D interface development. GX-Glsles a combination of XML
and XSL (eXtensible Stylesheet Language) to keea diad its view. It hides client/server programmisgues and eliminates the need
for using complex programming languages from iatesf developer. Using this model, a prototype clgemver application has been
developed and tested. In order to test the intiegratf XML data and XSL views an Active Server Ajgpkion (ASP) is developed that
mimics the behavior of the client software and shtive appropriate views independently of the VRremment.



Contents

I 1 01 oo 18 o o o OO TSP O TSSO 5

2. Introduction to XML, XPath, XSL, DOM .....cccorrrrrirririeeseesse et sssssssens 6
2.1 XML FOIMIBL ...t ettt et £ £ £ e £ e e e e e e e e nnn e e e e nnnneenan
FZ D o - | S 6
12 T | SO 6
2.4 ProgrammMiNg APIS ......oo it ettt et a e tee e saeeesasee e s e s 2282228 e e e s mbe e e nbe e e nneeeanreeenneas

G I 1 1= T 6
3.1 Data EXChange FOIMALS .......ccuoiiiiiiiiieiii et e st e b e e nnteesnneas 7
3.2 The MOAEl BENETILS ..ottt ittt nne e

N 1 T o1 .01 01 = o N 7
4.1 (@4 =T o1 =T o) o] 0= 110 o PSPPSR 7...
VS Y NS 1 S V] o)1= o] o S
4.3 EXamPpPle: ODJECT EQITON .........viiiie e eeecee et v et e e et e e nneeesnneennnenans 8

CoNCIUSION @NA FULUN @ WO KS: ..ottt 9



List of Figure

Figure1l: Objects of a 3D environment that Models a faCtOny.........cooeiiiiiiiiiiiiee e 5
Figure2: Familial Tree of @n XIML COUE ...........oi e etee ettt etee ettt st e e mbeesnbeeenneeens 6
Figure 3: Example: XSL for generating C++ code and the QUERU..........cccverieeecer e e e 6
Figure4: Block Diagram of the GX-GUI MOE.........cceeririiiieeie e e eeee e 7
Figure5: Example: HYPerlinK @XPrESSION......... ... v cveeerteeesieeaieeasiaesssesssses s s e sseeesssessnsessnsesssnseens 7
Lo Y o o 0 0= B {0 g 0 T= 1 APPSR
Figure7: EXAmPIE OF PAIT 2.....cc.eio e ecmeeeme e st etee ettt e et e et e e s e 2 s e e et e e e neeeanseeansneennanens
Figure8: FOrmMat Of PAIT 3 ......coociieiiee et o 22 s e e et e e s e e enteeenneeeneeennns
Figure9: Format of Nyperlink @XPreSSION ............ e ettt e sttt nbe e b e e nneeens 7
Figure 10: Modules Of GX-GUI ClENL........coiiiiiiii et et e e e e neeenes 8
Figure 11: Modules Of ASP @pPliCAION ........coiiiiieieee et et e b e e nneeens 8
Figure 12: XML file for shape editor and tWO HTML VIEW.....c....eeiiuieeiieeiiee e o e 8

Figure 13: An example of XSL file and correSponding HTMLu....ccveeeiieiieeeiiee e o000 8
Figure 14: Client application running 0N iPaQ ..........ceoeeiriiiieiiieeiiee ettt st e sseeesreeenseeeas 9



GX-GUI: A General Extensible Technique for 2-D Interaction with VR
Applications

Bita Gorjiara, Falko Kuester, Pai Chou and M ehrdad Reshadi
University of California, Irvine
{bgorjiar, fkuester, chou} @ece.uci.edu, reshadigici.edu

Abstract

Continuously increasing complexity of collaborativértual
environments demands new interaction paradigmsahticular,
interactions such as object selection and maniipulat
information query and data augmentation can be naadédable
using customized 2D interfaces for 3D environmentghen
combined with hand-held devices these interfacéswvalser-
centric control and customized access to informaitiomulti-user
environments. Current development techniques for 2-D interface
applications need expertise in complex programnargguages
and client/server concepts that can impede the spigad
implementation of this paradigm. This paper introeii GX-GUI
(General eXtensible Graphical User Interface) fdd Mterface
development. GX-GUI uses a combination of XML an&LX
(eXtensible Stylesheet Language) to keep data endiew. It
hides client/server programming issues and eliramahe need
for using complex programming languages from iatesf
developer. Using this model, a prototype clientsseapplication
has been developed and tested. In order to teshtigration of
XML data and XSL views an Active Server ApplicatiohSP) is
developed that mimics the behavior of the clierftveare and
shows the appropriate views independently of the VR
environment.

Keywords:

Human Computer Interaction, 2-D Interface Desigb)] G/irtual
Reality, XML, XSL, Hand-Held Device, User Interface
Development Technique.

1. Introduction

A common approach to developing user interfaces Jdp
applications is based on 3-D interaction technigWghile 3-D
user interfaces work well for spatial interactiomny other types
of interactions can be represented more efficientith 2-D
interfaces. For example, text view and annotatiges) selection,
parameter adjustment, generating complex commatdgssing
system information, etc [Bowman et al. 2001; Hadliet al.
2002].

A 2-D GUI can be run on a hand-held device for user
interaction or on a desktop workstation for runtisogervisory or
debugging purposes. There have been many preatterapts on
using handheld devices for interaction with VR &milons [Park
et al. 2001; Greenhalgh et al. 2001; Chen 2001;eHieet al.
1999; Cheverest et al. 2000; Benford et al. 2001l;add Cruz-
Neira 2000]. Common to these techniques is thatphemote ad-
hoc, application-specific clients. This means tiaich effort can
be potentially wasted in adapting or redesignirgdlients to new
applications.

In order to extensively use 2-D interfaces in fatwirtual
reality applications, it is desirable to developvnédser Interface
Development Techniques (UIDT) that reduce the cemipl of 2-
D Ul development. At the same time reusability séuinterface
components is of primary concern and must be stpgadn the
next generation design schemes.

With the rapidly increasing performance of commpditaphics
hardware, ever more complex VR applications arengdei

developed for large-scale data sets. In order toaga large-scale
models efficiently, hierarchical schemes are usedmanage,
store, access and render relevant informatiogure 1 shows a
logical hierarchy of objects. This hierarchical negentation
facilitates reusing objects in new applications.ti#¢ same time
the UIDT should allow the same reusability for nfaee data and
views.

Factory

[ Line-1 |[ Line-2 ][ Line-3 ||

[ Device-1] [ Device-2|
Figure 1: Objects of a 3D environment that models a factory

Different UIDTs have targeted extensibility and sahility in
development of 2-D interfaces. [Watsen et al. 19%fjs
developed an applet loader, which runs on the tchad executes
applets developed for interacting with differentrtpaof the
system. Each time that user enters to a specifi; {he interface
of that part migrates from the server to the cliand the loader
will load the applet in the client. [Hartling et.ak002] has
developed a similar system that runs Java Beatiseodlient, and
deploys a collection of technologies (C++, JavajaJ8eans,
XML and CORBA) to make interface development prsces
systematic and extensible.

On the other hand, there are some commercial amd no
commercial attempts at reducing the complexity oR V
application development by eliminating the need éomplex
programming languages such as C or C++. EON Refi@N
2002] has designed a graphical development envieohrthat
allows the user to construct a hierarchy of objeutsl define
action for these objects. They also use scriptargliages for
complex events and behaviors. [Griepp and Cruza\N2@02] has
designed an XML schema for rapid development oftrsstic
environment applications. The schema works with XBtitors
for auto completion and error checking. This basscdption is
then compiled into application code for execution.

For VR applications most of the available 2-D ifdee
development methodologies are using different caramd
programming technologies. In this project we présannew
approach, General eXtensible Graphical User Inter{&X-GUI)
that uses a combination of XML and XSL to maintttie data
and the interface description. The techniquenslar to certain
web services that automatically generate interfafes their
applications. Using this technique, the interfdesign becomes
simpler and ultimately faster by changing it intelbwsite design
rather than programming. Because of the simpli@fy this
approach and its text-based format, it can be sesstyl integrated
with visual and interpretive development tools allwas
traditional programming-based development envirarsie



Using this model, a prototype client-server appicahas been
developed and tested. In order to test the intiegratf XML data
and XSL view, an Active Server Application (ASP)dsveloped
that mimics the behavior of client software and vehothe
appropriate views independently of the VR environine

Section 2 presents a short introduction to XML aethted
technologies used in this project. In Section 3,-GMI is
introduced and the format of messages is definegpldmented
components and system functionality are describgdexample,
in Section 4.

2. Introduction to XML, XPath, XSL, DOM

In this section we briefly introduce XML and itdated concepts
used in GX-GUIL. We also show some examples totittis the
concepts.

2.1 XML Format

The first standard version of Extensible Markup duaage (XML)

was introduced in 1998 by the World Wide Web Cotigor

(W3C). Like HTML, it is based on Standard Genéviarkup

Language (SGML), a mark-up language designed &oimgf very

large structured documents. Tags and attribute8vL describe
the structure and meaning of the data and in tl. is both

data and structure. XML grammar relies on regabgressions
and consequently its grammar is simple and itdstfaprocess.

In XML every object is represented by a begin-tad an end-
tag and each begin-tag can have some attributékags that
appear between a matching pair of a begin-tag andnal-tag,
represent children objects. An object that dagsave any child
can be represented with a single tag, called enatyXML is
very powerful in representing tree-like data stuoes.

2.2 Xpath

XPath is a search language for addressing spet#ivents in an
XML file [Goldfarb 2000; W3]. The XPath data moddaews a
document as a tree of nodes, leans heavily onitanaiéscription
of a document and uses genealogical taxonomy toridesthe
hierarchical makeup of an XML document. It refexchildren,
descendents, parents and ancestbrgure 2 shows a simple
XML example and the corresponding tree.

<?XML version="1.0"?>
<class name="test">
<protection type="public">
<param type="int"
name="m_count"/>
<param type="char”
name="m_char"/>
</protection>
</class>

Protection

Figure2: Familial Tree of an XML code

In XPath the first “/” selects the root and theetrean be
traversed using element names. For examfillass/param
selects thgparamelement whose parentdétass Symbols “@”,
“" and “.” select attributes all and current element(s),
respectively. A very important part of XPath is fisedicates,
which is useful in conditional selection of treedes. These
predicates are XPath expressions enclosed in kea¢kp. For
example/class/*[@type="int"] selects every child of class for
which the attribute named type has a valueirmtf Also
/class/param[2]selects the seconghram of everyclasschild of
the root. Predicates are also cascadable; for dramp
[class/param[2][@sizelselects the secormaram children of any
classthat the selectegaramelement has an attribute nanszke.

2.3 XSL

Extensible Style sheet Language (XSL) [Harold 19%9]a
powerful tool that operates on XML and generatesttaar XML

or text formats. It applies a set of recursive sute tags to
generate the new format. In rules the “key” fordfing tags is an
XPath expression. For example, suppose that we twaggnerate
C++ header code for XML representation of a cldssws in
Figure 2. Figure 3 shows the XSL format and its corresponding
output after being applied on the XML.

<xsl:template match="class">
class <xsl:value-of select="@name"/>

<xsl:apply-templates select="protection"/>

b
</xsl:template>
<xsl:template match="protection">
<xsl:value-of select="@type"/>:
<xsl:apply-templates select="param"/>
</xsl:template>
<xsl:template match="param">
<xsl:value-of select="@type"/> <xsl:value-of
select="@name"/>;
</xsl:template>
class test

public:
int m_count;
char m_char;
h
Figure 3: Example: XSL for generating C++ code and
output

2.4 Programming APlIs

Every XML structure must be processed using a pmogwW3C,
the World Wide Web Consortium, which supports XMhda
related standards, provides an API for XML prograrsn This
helps the programmers use any implementation of ARl for

loading and saving XML files. This API is calledOM

(Document Object Model) and provides a library widtions and
classes for creating and accessing XML data strestin the
memory. Compared to XPath and XSL, it is more fxibut
requires more programming efforts.

A tree containing interface data corresponding lte tbject
hierarchy Figure 1) can be captured in the XML format. Each
object contains its own data, and when generathmy data
structure for the whole environment, every objesbtsats children
to generate this XML format. The tree is storedthe server
application and a sub-tree will be sent to thentli@he sub-tree
generated for the client will vary based on usesigation in the
environment. The parts that are not available atransmitted to
the client on demand. We load the XML data to theMDdata
structure for future use. As we mentioned befor&LXcan
transform XML format to many other text formats. Wiave
chosen HTML as the output format that can be viegraghically
by the client.

3. The GX-GUI

The General eXtensible Graphical User Interface {&X) uses
XML format to model data and XSL for representinigws.
Several views may be associated with a given datdemin
XML. To create each page of interface one of th¥Si
descriptions will be used to generate the HTML viewthe data
modeled in XML.

Figure 4 shows a block diagram of GX-GUI model. In the
beginning, the VR application sends an XML filerajavith some
XSL files. The XML file is loaded into the DOM dastructure
and the XSL files are loaded into a library objethe first XSL
is then applied to XML to create an HTML view. #&se user
clicks on the hotspots (hyperlinks and buttons)tade the



hyperlink expression will be used to update the D@lsta
structure, to update the status of the server egin and to
choose the next XSL for the next view.

XSL Lib
update
(xml) DOM
data HTML
structure
xml+xsl y
(2)xml (3)xml Hyperlink
expressio
(1)datz Message |
Handler [

Figure4: Block Diagram of the GX-GUI model

3.1 Data Exchange Formats

In regular HTML pages there is a tag under eadhthiat keeps
the information of the next page. In the rest & praper we refer
to this information as “hyperlink expression.” Hésean example:

Please <a href="
here </a>.

http://ww. uci . edu/ i ndex. ht ni> click

Figure 5: Example: Hyperlink expression

In GX-GUI “hyperlink expression” is composed ofék parts
(marked bye (1), (2) and (3) Figure 4). By designing a good
format for these three parts, the entire prograrh bé very
general and flexible. As seen Figure 4 the “data” part of
“hyperlink expression” will be sent to the serverhis part does
not have any predefined format and the developérseover
application can define their own. The format of gecond part,
which is used for updating the DOM object, is shawRigure 6.

<mssgs>

<msg type="..." xPath="..." ID="..."> ... </msg>
</mssgs>
Message Types:
addChild
addSibling
Delete
deleteAllChildren
Replace
ChangeAttributeValue

Figure 6: Format for part 2

This part has a predefined XML format and send$eidint
basic messages to DOM data structure, such as tadgC
“delete” and “changeAttributes.” Using XPath exgmien a
particular node will be selected and modificatiovis be applied
to it. Each message (<msg>), based on its typg,ananay not
have a child node. For example for “addChild” nagsswe need
a tag for the new child that should be added todtita structure.
Figure 7 shows an example of “addChild” message.

<msg type="addChild’ xPath="/*[1]/*[2] >
<shape color="blue’ type='circle’ width="100’

height="200’ />

</msg>

Figure7: Example of part 2

The last part of the hyperlink expression is anofiredefined
XML format that is used for selecting the next X8bm the

library (Figure 8). Attributes of <info> can beadsfor passing
parameters to XSL files.

<info XSLFile="FileName’ paraml1="..." ... paramN="..."/>
Figure 8: Format of part 3

To maximize flexibility and generality, we imposeinimum
constraints on the XML and XSL formats. The iditivL file
(goes from server to client) does not have any iquaar
restriction; it should be just a valid XML. The KS$ormats can
generate any desired HTML, but the only requiremisnthat
hyperlink expressions should follow the formafadure 9.

xmlIFileName=...&

submit=...&

mssgs=<mssgs>

<msg type="* xpath="“> <...xml data...></msg>

</mssgs>&
nextPage=<info xsIFile="FileName" param1=""
param2=""..../>

Figure 9: Format of hyperlink expression

Some update messages can also be sent from ther serthe
client to initialize and update available DOM stwre. These
messages should follow the formatrafiure 6 as well.

3.2 The Model Benefits

Integrating the XML, XSL and HTML technology has aeathis
approach very powerful and flexible. In addition ftexibility,
there are also several other advantages:

By keeping a local database of required data artinge
different views of it, the client minimizes refemento the
server.

* The data and the view of application come to thentbased
on the user demand and there is no need for loattieg
information of the areas that user does not explore

» Designing the interface for a particular part obgnam is
now simplified tremendously. It is more like detitg a
web site rather than writing a program and gettmglved
with network concepts. This is the most importatantage
and can have a great effect on implementation time.

e It is easy to integrate the interface to VR destgnls
because it uses a text-based format.

In order to enhance interactivity, we can use siagplanguages
in HTML files.

4. Implementation

In the following we explain different componentsagplications
developed to verify this model. We also show thecpss of
interface development for an object editor example.

4.1 Client application

The modules of the client program are showifrigure 10. The

HTML viewer is a Pocket PC standard control andpldigs

generated HTML pages. The Socket handles the ctioneto

the server and sends and receives data. The Mestagdler
receives the messages from the Socket and HTML erieamd

either handles them or sends them to the “Servaln.'St The

Server Stub then loads the initial XML file, updatdhe DOM

data structure, selects XSL from the library, agpit to the data
structure and generates the desired HTML formats fiodule

uses MSXML library to parse XML and works with DOM.



DOM

scenel name: cwbel
Add new type: | cube |
cubel o

conel width: 100 height: 100 depth: 50
spherel <10 ¥:oo2002 150
Faw: |10 Pich: & |Roll: 10

Figure 10: Modules of GX-GUI Client

Figure 12: XML file for shape editor and two HTML view

4.2 ASP application

We have developed an ASP server that mimics thaviehof the
client application for manipulating data and getirgaviews, in
order to test the interface independently of the &#plication.
This setup can greatly assist interface debugging.

Three XSL files must be designed to generate tii&®IL
files: One for the menu page, another for the “Adielv’ page
and the third one for the “Edit” pagEigure 13 shows the XSL
script for retrieving the menu page and correspanéi TML.

The modules of the ASP application are highlighitedigure

11. Once the user sends a query to the ASP servelidiyng on <xsl:template match="scene™
. . . <a
a ||n.k ora submit button (in the .format bfgure 9), the ASP href="xmIFileName=&amp;submit=&amp;mssgs=&amp;nextP age
application loads the database file to the DOM dstacture, =&lt;info xs|File="showScenelnfo.xsIt/&gt;">
applies changes to it, selects and loads one X&h the library, Sxslvalue-of select="@name"/> <fa><br/>
applies the XSL to DOM, generates HTML, and finadigves hrelf:">;mIFillell\lam%z&?]mp;suﬁn}itz&amp(;jrgssgs:%amp;nextP age
i =&lt;info xsIFile="addShape.xslt/&gt;"> Add new < a>
DOM to XML for fut,ure use. The generated HTML isen <bri>  <ul><xsl-apply-femplates
forwarded to the user’s browser. select="obj"/></ul>
</xsl:template>
<xsl:template match="obj">
<li><xsl:element name="a"><xsl:attribute
name="href"><![CDATA[
?xmliFileName=&submit=&mssgs=&nextPage=<info
xslFile="showShapelnfo.xslt' ID="]><xsl:value-of
select="@ID"/><![CDATA[/>]]> </xsl:attribute>
<xsl:value-of select="@name"/></xsl:element>
</li>
<a
href="xmlIFileName=&amp;submit=&amp;mssgs=&amp;nextP age
=<info xslFile="showScenelnfo.xslt/>">scene 1</a>< br>
<a
_ href="xmlIFileName=&amp;submit=&amp;mssgs=&amp;nextP age
=<info xslFile="addShape.xslt'/>"> Add new </a><br>
<ul>
H . H H <li><a
Figure 11: Modules of ASP application href="xmlIFileName=&amp;submit=&amp;mssgs=&amp;nextP age
=<info xsIFile="showShapelnfo.xslt' ID="1" />
. . ">cubel</a></li>
4.3 Example: Object Editor <li><a
. . . href="xmlFileName=&amp;submit=&amp;mssgs=&amp;nextP age
In this section, we show the process of interfaeestbpment for =<info xlene:'shOWShap%|nfo,xs|r D2 s : 9
a simple application. Suppose that we have a saedeve want l>“0>0<r;el</a></ll>
to put dlf'fere_n_t kinds (_)f objects in this scene ah:_i?e them at the href="xmIFileName=&amp;submit=&amp;mssgs=&amp;nextP age
desired positions, using a 2-D interaction applicat The first f:'nfl;) éﬂflfjl,s:\owShapelnfO-xslt'ID=‘3' 1>
step is to determine the data that should be kehe client and aus
also determine the views that we want to see.
Figure 12 shows the XML file and two views of this XML. Figure13: An example of XSL file and corresponding
One of the views is a tree that shows the availabjects in the HTML

scene and the other is the edit form for the objoperties.
When the user clicks on a link usually a differerw of the

XML database is shown and there is no interactiith werver,

but when the user clicks on a button, an eventlvéllsent to the
server and the status of the DOM structure shoelddziated.

<?XML version="1.0" encoding=' "UTF 8"’7>
<scene name="scene 1" lastID=" ">
<obj name="cubel" x="100" y—"100" —"150" w="100"
h="200" depth="50" yaw="10" pitch="5" roll="10"
type="cube" ID="1"/>

</scene>

In the Figure 14 the client application, which is running on a

hand-held device is shown.



Figure 14: Client application running on iPaQ

Conclusion and future works:

This paper presents a general model for developibginterface
applications running on hand-held devices to imtersith VR

environments. The model uses a combination of Xandd XSL
to maintain data and the interface description aetypely. A

client application takes care of the process ofdileg and
manipulating the XML format, and extracting diffateviews.

The interface designer defines the type of mantfrain a
predefined message format. The model is deignée textensible
for increasingly more complex VR environments bgasation of
interface data and its view.

Although designing the interface using this apphocnot as
simple as creating HTML files but it is much simplthan
designing the entire interface in programming laygs.
Besides, there exist many powerful tools that oglp developers
in this way. It can also be used on desktop compdte runtime
supervisory.

References:

[1] Benelli, G., Bianchi, A., Marti, P., Not, E. andr®ati, D.
1999. HIPS: Hyper Interaction within Physical Spate
Proc. ofInternational Conference on Multimedia Computing
and Systems (IEEE ICMCS’99).1075-1078.

Benford, S., Bowers, J., Chandler, P., Ciolfi, Elintham,
M., Fraser, M., Greenhalgh, C., Hall, T., Hellsttég O.,
Izadi, S., Rodden, T., Schnadelbach, H. and Tayl&001.
Unearthing virtual history: using diverse interfade reveal
hidden virtual worlds. IrProc. of International Conference
on Ubiquitous Computing (UBICOMP’20Q1).225-231.
Bowman, D., Kruijff, E., LaViola, J., and Poupyrdv2001.
An Introduction to 3D User Interface Design.
Teleoperators and Virtual Environments Jougnadl. 10, no.
1, p.96-108.

Chan, W., 2001. Project Voyager: Building an In&trn
Presence for People, Places, and Things. MasteesisTh
Department of Engineering and Computer Science,
Massachusetts Institute of Technology.

Cheverst, K., Davies, N., Mitchell, K., Friday, Aand
Efstratiou. 2000. Developing a Context-Aware Eleaic
Tourist Guide: Some Issues and ExperiencesProc. of
Human-Computer Interaction (ACM CHI'200@).17-24.

(2]

(3]

In

(4]

(5]

(6]
(7]

(8]

EON Reality:_http://eonreality.com

Goldfarb, C.F., Prescod, P. 2000. The XML Handbook.

Prentice Hall, Second Edition, Ch. 59.

Greenhalgh, C., Benford, S., Rodden, T., Anast&si,

Taylor, I., Flintham, M., Izadi, S., Chandler, Rgleva, B.

and Schnadelbach, H. 2001. Augmenting Reality Tdinou

The Coordinated Use of Diverse Interfaces. Teclhnica

Report, University Of Nottingham.

Griepp, T., Cruz-Neira, C. 2002. XJL: A XML Scherfm

the Rapid Development of Advanced Synthetic

Environments. In Proc. of the Immersive Projection

Technology Symposium (IPT'2003).294-303.

[10] Hartling, P., Bierbaum, A. and Cruz-Neira, C. 2002.
Tweek: Merging 2D and 3D Interaction in Immersive
Environments. InProc. of theWorld Multi-conference on
Systemics, Cybernetics, and Informatislume VI, p.1-5.

[11] Hill, L.C., Cruz-Neira, C. 2000. Palmtop Interactio
Methods for Immersive Projection Technology Systemns
the Proc. of the International Immersive Projection
Technology workshop (IPT2000)

[12] Park, K. S., Leigh, J., Johnson, A., E., Carter,Body, J.
and Sosnoski, J., 2001. Distance Learning Classrideimg
Virtual Harlem. InProc. of the International Conference on
Virtual Systems and Multimedia (VSMM'200)489-498.

[13] Watsen, K., Darken, R. P, Capps, M. V. 1999. A Huaid
Computer as an Interaction Device to a Virtual Emwinent.

In Proc. of the International Immersive Projection
Technology workshop (IPT'1999)
[14] World Wide Web Consortium http://www.w3.0rg/XML

9]




