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Abstract

Within SoC Design Environment (SCE), starting from an initial system specification, an implementation
of the system is created through a series of interactive and automated steps by gradually synthesizing and
assembling a system design using components taken out of a set of databases.

SCE uses four models to reflect design decisions during system-level synthesis: specication mode,
carchitecture model, network model and communication model. The communication model can be pin-
accurate or transaction-level model. This report defines and describes transaction-level communication
model (TLM) required for system-on-chip (SoC) design.

Generally, TLMs need to represent processing elements (PEs), memories, communication elements
(CEs) and protocol channels connecting components. In this report we aim to provide an exhaustive list of
requirements for transaction-level modeling in an automated SoC design flow using the example of concrete
models. Specifically, the communication model in this report is used successfully in SCE.
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1 Introduction
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Figure 1: SCE design flow.

SoC Design Environment (SCE) [4] is an environment for capturing the architecture and platform speci-
fication of embedded computer systems. It supports the design of such systems from the specification down
to the communication model. It does so by capturing of design decisions and automatic generation of new
models as shown in Figure 1. SCE follows a Specify-Explore-Refine methodology. The design flow starts
with a model representing the design functionality (Specify). At each following design step, SCE users first
explore the design space (Explore) and then make design decisions. Integrating those decisions, SCE then
automatically generates a new model at lower abstraction level (Refine).
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In the SCE design flow (Figure 1), four models are used for the representation of a design at different
levels of abstraction. Each design model is executable; it can be simulated to verify the correctness of the
design and obtain design performance metrics at each design step.

The specification model [5] is the most abstract model, which serves the as an input to SCE tools. It is
a purely functional model that captures the functionality of the designed design and should not imply any
implementation details.

The architecture model [6] reflects the allocation of system components and the mapping of the specified
functionality onto the allocated components. The communication between those components is still described
very abstract by message passing channels.

The network model [7] reflects the communication network of the design. It represents the allocation and
selection of network stations and logical links between them. While the communication between components
in the architecture models is captured end-to-end, in the network model this communication is refined down
to point-to-point.

Finally, the communication model incorporates bus protocols into the model. The communication model
can be pin-accurate [8] or a transaction-level model. The transaction level model abstracts away the pin-
accurate protocol details and thereby gains higher simulation speeds.

All models are captured in SpecC [1], therefore they do have to adhere to the syntax and semantics of
the SpecC language. It is recommended that the designer starts with the specification model and later uses
the SCE tools to automatically generate lower level models. However, the SCE tools also support manually
written low level models as long as they obey certain modeling rules. This report defines the modeling style
required for the two SCE communication models (pin-accurate communication model and transaction level
model), which are highlighted in the Figure 1.

This report can be used for two purposes. First, it can help user to interpret the code of the communi-
cation model, which is automatically generated by the communication synthesizer. Second, it gives the user
guidelines to manually write a valid communication model that is acceptable to the SCE tools.

The rest of the report is organized as follows. Section 2 presents the overall structure of a transaction-
level model. The major elements of a transaction-level model are described one by one in detail. Section 3
describes the guidelines to model processing elements shown in the transaction-level model. Section 4 de-
scribes the modeling of shared memories in the transaction-level model. Section 5 describes the modeling of
communication elements, such as bridges and transducers in the transaction-level model. Section 7 describes
the modeling of arbitration. Section 6 describes the modeling of interrupt handling for synchronization. In
Section 8, the protocol channels are described. Finally, Section 9 describes a example of transaction-level
model in SCE.

2 Overview of Transaction-Level Model
The transaction level model abstracts away pin-accurate protocol details and models the protocols as function
calls of channels. At the top-level of the design unit, the design consists of concurrent PEs, memories and
CEs which communicate through protocol channels. The SCE tools require that the transaction-level model
follow certain rules, which will be described below.

Figure 2 and Figure 3 show a template of a valid communication model. A communication model has
to be an executable SpecC model, therefore it has to define a Main behavior. A communication model is
composed of three parts: a stimuli generator, a monitor and a actual design unit as shown in Figure 2. The
stimuli generator (Stimulus) supplies test vector to the input ports of the design. The output produced
by the design unit is observed and validated by the monitor (Monitor). The design unit (Design) is the
target of the design space exploration in SCE environment. SCE tools require the design unit to follow certain
modeling rules and restrictions. Note that the modeling rules and restrictions defined in this report only apply
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Design MonitorStimulus

Main

Figure 2: Top-level structure of a communication model.

to the design unit, since the stimuli generator and monitor will not be considered and touched by SCE tools.
Therefore, the stimuli generator and monitor can be freely described using any valid SpecC code.

In general, it is hard for SCE tools to determine which behaviors are part of the design unit. Thus the user
has to specify the behaviors comprising the design unit. In practice, this is realized by attaching a pre-defined
annotation to the communication model.

Rule 1 A communication model has an annotation SCE TOP LEVEL, which contains the name of the top-
level behavior of the design unit.

For example in Figure 3, the annotation in the line 39, specifies the design unit. Once the top-level behavior
of the design unit is specified, the SCE tools can conveniently figure out all other behaviors that belong to the
design unit.

The design unit of the communication model must obey the following rules.

Rule 2 Design unit has exactly the same set of ports as the corresponding behavior in the specification
model.

Leaving the interface of the design unit unchanged, allows connecting it to the testbench behaviors (stimulus
and monitor) without changing the latter. Thus it allows simulation of the communication model.

Rule 3 Design unit has exactly one method, the main() method, which contains exactly one statement that
is a par statement.

Note that by the definition of a hierarchical behavior, each sub-behavior instance inside the design unit can be
called at most once in the par statement. For example, having two PE.main() calls in the par statement
is not allowed.

Rule 4 A design unit has a set of sub-behavior instances and a set of channel instances in the transaction-
level model.

The set of sub-behaviors of the design unit can be PE behaviors, memory behaviors, or communication ele-
ments behaviors - they will be defined later in more detail. In the transaction-level model, channels represent
bus protocols connecting PEs, memories and CEs.

Rule 5 A design unit has a set of instances of processing elements, memories, communication elements,
synchronization channels, arbitration channels and protocol channels.
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1 i m p o r t ” c d o u b l e h a n d s h a k e ” ;
2
3 b e h a v i o r S t i m u l u s ( i s e n d e r i n p u t ) { / / S t i m u l i c r e a t o r
4 vo id main ( vo id ) {
5 / / w h i l e ( . . . ) { . . . ; i n p u t . send ( . . . ) ; . . . }
6 }
7 } ;
8
9 b e h a v i o r Moni to r ( i r e c e i v e r o u t p u t ) { / / Ou tpu t m o n i t o r

10 vo id main ( vo id ) {
11 / / w h i l e ( . . . ) { . . . ; o u t p u t . r e c e i v e ( . . . ) ; . . . }
12 }
13 } ;
14
15 b e h a v i o r Des ign ( i r e c e i v e r i n p u t , i s e n d e r o u t p u t ) { / / Sys t em d e s i g n
16 / / . . .
17
18 vo id main ( vo id ) {
19 / / f sm { . . . }
20 }
21 } ;
22
23 b e h a v i o r Main ( ) { / / Top l e v e l
24 c d o u b l e h a n d s h a k e i n p u t , o u t p u t ;
25
26 S t i m u l u s s t i m u l u s ( i n p u t ) ;
27 Design d e s i g n ( i n p u t , o u t p u t ) ;
28 Moni to r m o n i t o r ( o u t p u t ) ;
29
30 i n t main ( vo id ) {
31 p a r {
32 s t i m u l u s . main ( ) ;
33 d e s i g n . main ( ) ;
34 m o n i t o r . main ( ) ;
35 }
36 }
37 } ;
38
39 n o t e SER TOP LEVEL = ” Design ” ;

Figure 3: Top-level code of a communication model.
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The design unit consists of processing elements (PEs), memories and communication elements (CEs). They
are communicating with each other through protocol channels as shown in Figure 4. The synchronization
channels are used to support interrupt handling. The arbitration channels resolve multiple concurrent accesses
of protocol channels if necessary.

1 b e h a v i o r Des ign ( vo id )
2 {
3 / / A r b i t r a t i o n c h a n n e l s
4 c mutex cpuAccess ;
5 c mutex s l a v e A c c e s s ;
6
7 / / Bus p r o t o c o l c h a n n e l s
8 Toshiba GBus CPUBus ;
9 Toshiba GBus SlaveBus ;

10 Samsung KM684002A Bus SRAMBus ;
11
12 / / Programmable PE
13 Toshiba TX49H2 TLM CPU( CPUBus , cpuAccess ) ;
14
15 / / S y n c h r o n i z a t i o n c h a n n e l s
16 I n t r A i n t r A (CPU) ;
17 I n t r B i n t r B (CPU) ;
18
19 / / Hardware PEs
20 HW Standard DMA TLM DMA( CPUBus , CPUBus , cpuAccess , i n t r A ) ;
21 HW Standard HW TLM HW( SlaveBus , i n t r B ) ;
22
23 / / Memory
24 SRAM TLM SRAM(SRAMBus) ;
25
26 / / Memory c o n t r o l l e r
27 SRAMCtrl TLM SRAMCtrl ( CPUBus , SRAMBus) ;
28
29 / / B r i d g e
30 Bridge TLM B r i d g e ( CPUBus , SlaveBus , s l a v e A c c e s s ) ;
31
32 vo id main ( vo id ) {
33 p a r {
34 CPU . main ( ) ;
35 HW. main ( ) ;
36 DMA. main ( ) ;
37 B r i d g e . main ( ) ;
38 SRAM. main ( ) ;
39 SRAMCtrl . main ( ) ;
40 }
41 }
42 } ;

Figure 4: Design unit in transaction-level model.

The design unit usually contains finer model elements (system components). Those finer model elements
capture both the computation architecture and the communication network. The system components are:

• Processing element behaviors model the processing elements (PEs) allocated to perform the desired
computation.
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• Memory behaviors model the shared memories allocated to store data shared by PEs.

• Communication element behaviors model the bridge and transducer interfacing between different com-
munication protocols.

• Protocol channels or bus wires model the connection between PEs, memories and CEs.

The model elements are defined one by one in the following sections.

2.1 Layered Structure of Transaction-level Model
In order to separate the concerns of modeling different aspects of a functionality in terms of communication
and computation, we take a layered approach, which is well known in the network community for describing
protocols.

2.1.1 Layers of Protocol Stack

For the communication functionality, we will implement several layers of protocol stack based on OSI refer-
ence model: application layer, presentation layer, session layer, transport layer, network layer, link layer,
media access layer, and protocol layer. The upper part of the protocol stack (from application layer to net-
work layer) is implemented during the network exploration. The remaining part of the protocol stack (from
link layer to protocol layer) will be inserted by communication synthesizer. In the following, we will describe
and define each layer in more detail.

The application layer corresponds to the computation functionality of the system, which defines the be-
havior of the application implemented by the system design. The application layers describe the processing
of data in the system components that exchange data by passing messages over channels.

The presentation layer is used to describe the formatting between typed data in the application and type-
less byte-stream transferred through the network. The presentation layer performs the type conversion. If the
data in the application is already untyped, the adapter channels may be omitted.

The session layer establishes a connection between components and is responsible for end-to-end syn-
chronization. The session layer marks the interface between application and operating system. In the session
layer, different streams originating from different sources may be combined, hence messages of different
channels need to be multiplexed on shared streams.

The transport layer is needed to break up the byte stream into smaller packets that will be routed over
the network if a transducer participates in the data transfer. The transport layer is modeled as a hierarchical
behavior. It contains an instantiation of the transport layer behavior. It may also contain a set of adapter
channels that perform the packetization.

The network layer determines routing of data packets from sender to receiver. Assuming reliable sta-
tions and links, routing in SoCs is usually done statically, i.e. all packets of a channel take the same fixed,
pre-determined path through the system. In a standard bus-based communication, a dedicated logical link
is established between two stations for each channel routed through them, assuming the underlying layers
support a large enough number of simultaneous logical links between all pairs of stations. The network layer
may also contain a set of adapter channels that perform the routing.

The link layer provides services to establish logical links between adjacent stations and to exchange data
packets those. The link layer is the highest layer of drivers for external interfaces and peripherals in the
operating system. The link layer defines the type of a station (e.g. master/slave) for each of its incoming
and outgoing links. As a result, it implements any necessary synchronization between stations by interrupt or
acknowledgment. As part of link layer, polling might be required for synchronization, for example, in case
of interrupt sharing.
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The media access layer is responsible for slicing blocks of bytes into transfer units available at the physical
interface. In the process, its implementation has to guarantee that the rates of successive transfers within a
block match for all communication partners. Furthermore, the media access layer determines who is allowed
to access a shared medium at a given point in time. In other words, it resolves the simultaneous access of bus
masters by means of arbitration. Depending on the chosen arbitration scheme, additional arbitration stations
are introduced into the system as part of the media access layer.

The protocol layer implements the transfer protocols over a medium in the hardware of component’s in-
terface. It is responsible for driving and sampling the external pins according to the protocol timing diagrams
and thereby matching the transmission timing on the sender and receiver side. As part of the protocol layer,
protocol converters are introduced into the system. Protocol converter connects two busses with different
protocols by translating different protocols.

Due to characteristics of standard bus-based SoC communication, layers have been tailored specifically
to these requirements. For example, in a reliable bus-based communication architecture, error correction,
flow control, buffering or dynamic routing are not required. Therefore, the transport layer is empty and the
network layer is largely simplified.

2.1.2 Layered Shells of PEs

In order to separate the concerns of modeling different aspects of a programmable PE, we also take a layered
approach [9]. From inside out, five layers have to be followed to model a PE: application layer shell, op-
erating system layer shell. hardware abstraction layer shell. hardware layer shell, and bus-functional layer
shell.

The inner-most application layer shell encapsulates the computation required by the application that is
executed on the PE. In general, the application layer shell is hierarchically composed of smaller behaviors,
each contains a piece of the computation assigned to the PE. For inter-behavior communication inside the
application layer, both channels and variables can be connected to the behavior ports. The modeling styles
inside the application layer can be found in SpecC specification model reference manual. However, the
application layer shell can only have interface type ports and no variable ports. Furthermore, only certain
interface types are allowed for the ports.

Rule 6 An application layer shell has only interface ports and no variable ports. It may contain a set of
channel adapter instances such as application and presentation layer. The interface types allowed are as
follows:

i sender (un-typed)

i receiver (un-typed)

i tranceiver (un-typed)

i send

i receive

memory interfaces

The operating system layer shell encapsulates the communication functionality related to operating sys-
tem on the PE.

Rule 7 The operating system layer shell contains exactly one behavior instance, of the type application layer
shell. It may contain a set of channel adapter instances such session, transport, and network layer.

7



Same as the application layer shell, the operating system layer shell only has interface ports and obviously,
only untyped interface types are allowed.

Rule 8 An operating system layer shell has only interface ports and no variable ports. The interface types
allowed are as follows:

i sender (un-typed)

i receiver (un-typed)

i tranceiver (un-typed)

i send

i receive

memory interfaces

Rule 9 An operating system layer shell needs to have interrupt handling tasks, which invoke the applications
that are waiting on the corresponding interrupt.

The rest of the shells, such as hardware abstraction layer, hardware layer, and bus-functional layer shell,
are defined in PE database [9]. The refinement tools will insert the shells into the model and connected them
properly.

3 Processing Elements
In the transaction-level model, each processing element is represented by a PE behavior, which implements
a part of computation of the specification. It specifies the functionality that has to be implemented on the PE
rather than the internal structure of the PE.

Rule 10 A PE has to be represented by a hierarchical SpecC behavior.

PEs are represented by SpecC behaviors and should be shown in top-level of behavior hierarchy. The defini-
tion of hierarchical behavior can be found in specification model report [5]. he composition type of the PE
behavior can be either seq, par, or fsm as defined in LRM.

Rule 11 A PE has to be annotated by AR MAPPED TO.

The PE allocation table contains the names of the allocated PEs. The PE is assigned to one of the allocated
PEs by AR MAPPED TO. This annotation is attached during architecture exploration.

Rule 12 Each PE must have only interface ports and no variable ports.

The port type of PE behaviors can be the interfaces out of the protocol channels for each bus. The interfaces
can have master/slave interfaces. The port type will be either master or slave.

The basic functionality of a PE is data processing or the computation on typed data, such as integer,
float and other data types. However, the communication media can not recognize the type of data when the
data is transferred between PEs. Therefore, the PE behaviors in the transaction-level model must provide con-
version of typed message to the corresponding untyped message at their interface. Also the synchronization
between the PEs for safe data transfers needs to be implemented, e.g. interrupt handling.
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In the transaction-level model, communication element (CE) may be needed to interface between two
busses with incompatible protocols. Basically the CE receives the data from one PE, buffers it and then
send it out to the other PE. Usually a CE has a finite amount of internal buffer, which limits the size of data
exchanged between the transducer and the PEs in one transaction. In this case, PEs have to break data into
smaller packets to avoid over-run of the buffer in the transducer. Therefore PE behaviors in the transaction-
level models must also model the packetization process if necessary.

Rule 13 Each PE has the implementation of a protocol stack at its interfaces.

Inside each processing element, a protocol stack is implemented. Some layers in the protocol stack are
automatically generated by refinement tools while others are taken out of bus database.

3.1 Channel Adapters
During network exploration and communication synthesis, the protocol stack implementations are inlined
into the components. The components that implement interfaces need to be inlined into the other components
connected by inserting adapters. Three types of adapter are available: the protocol adapter, the memory
adapter and the bridge adapter.

3.1.1 Protocol Stack Adapters

In order to separate the concerns of modeling different aspects of communication in a PE, a layered approach
is taken. From inside out, several layers have to be followed to model a communication functionality of a
PE: application layer, presentation layer, session layer, transport layer, network layer, link layer and media
access layer.

Rule 14 If a component is connected to other components, the protocol adapters for the protocol stack is
instantiated at its interface of the component.

In the transaction-level model, the implementation of protocol adapters such as presentation, session, trans-
port, network, link and MAC layer are inlined into the component.

3.1.2 Memory Adapters

Rule 15 If a component is connected to shared memories and hardware components with local memories,
then it needs adapters to connect them in transaction-level model.

A memory adapter is necessary if components are connected to a shared memory. Figure 5 shows an
example of memory adapter channel. The memory adapter implements the interface of the memory
(I AR MEM SRAM), which is defined in the corresponding network model.

3.1.3 Bridge Adapters

Rule 16 If a component is connected to bridges, it needs to have adapters to make them connected in
transaction-level model.

The bridge adapters are necessary if components are connected to a bridge. Figure 6 shows an example of
a bridge adapter channel. The bridge adapter implements the interface of the bridge (I Bridge), which is
defined in the corresponding network model.
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1 c h a n n e l c mem adap te r ( i m e m l i n k m) implemen t s I AR MEM SRAM
2 {
3 u n s i g n e d long i n t r e a d v 1 ( i n t i ) {
4 l ong i n t v a l ;
5 m. r e a d ( OFS v1 + i , &va l , s i z e o f ( v a l ) ) ;
6 r e t u r n v a l ;
7 }
8 vo id w r i t e v 1 ( i n t i , u n s i g n e d long i n t d a t a ) {
9 l ong i n t v a l ;

10 v a l = d a t a ;
11 m. w r i t e ( OFS v1 + i , &va l , s i z e o f ( v a l ) ) ;
12 }
13 } ;

Figure 5: An example of memory adapter channel.

1 c h a n n e l c b r i d g e a d a p t e r T L M (
2 i t r a n c e i v e r hw ) implemen t s I B r i d g e
3 {
4 vo id r e c e i v e ( vo id ∗ da ta , u n s i g n e d long l e n )
5 {
6 hw . r e c e i v e ( da t a , l e n ) ;
7 }
8 } ;

Figure 6: An example of bridge adapter channel.
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3.2 Programmable PEs
For PEs with fixed, pre-defined interfaces and communication functionality, the transaction-level implemen-
tation and bus-functional implementation of the PE are stored in the PE database. The transaction-level im-
plementation of the PE is the abstraction of its pin-level, bus-functional implementation as shown in Figure 7.
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Figure 7: An example of programmable PE in transaction-level model.

Rule 17 A programmable PE must implement an interface for interrupt handling if it has interrupt pins.

The interrupt handling is accomplished in HAL shell of the programmable PE. The HAL shell must pro-
vide interrupt service routines. The methods in the implementation interface of a PE will be called by the
synchronization channels that will be explain later in Section 6.

Rule 18 A programmable PE must have PE BF MODEL and PE BF BUS annotation.

The PE BF MODEL indicates the bus function implementation of the PE in the PE database. The transaction
level implementation of the PE contains interface ports at its interface. The interface ports will be connected to
the associated protocol channels. The associated bus protocol is represented by the PE BF BUS annotation.

Rule 19 The bus functional implementation of a programmable PE must have a PE HAL MODEL annota-
tion.

As described in database manual [9], a transaction-level programmable PE model in the database can be
thought of as an additional communication layer that wraps around the PE behavioral model, which in turn
comes from the architecture model. A transaction-level model of a PE can consist of several layers of behav-
iors that create a hierarchy or a tree. A top-level transaction-level layer has to exist that provides a protocol
channel interface of the PE.

Rule 20 The HAL shell of the programmable PE should contain implementations of the MAC layers of the
associated bus interface protocols. The MAC layer implementations are stored in PE database.

11



The HAL shell of the programmable PE is defined in the PE database. The communication refinement tool
takes the HAL shell from the PE database and instantiates OS layer shell in it. The implementation of MAC
layers will be connected to the interface ports of the programmable PE.

Rule 21 The operating system layer shell of the programmable PE can contain the implementations of trans-
port, network and link layer.

The operating system layer shell is inserted with implementations of transport and network layer during the
network exploration. The link layer is implemented during communication synthesis.

Rule 22 The operating system layer shell can have only one behavior instance, which is the application layer
shell of the programmable PE.

As shown in Figure 8 and Figure 9, the operating system layer shell contains the application layer shell of the
programmable PE.

Rule 23 The HAL shell of the programmable PE can contain only one behavior instance, which is its oper-
ating system layer shell.

As shown in Figure 10, the operating system layer shell is instantiated in HAL shell of the programmable PE.

3.3 Hardware PEs
Programmable PEs are general purpose programmable processors while hardware PEs are application specific
hardware devices that need to be synthesized. Figure 11 shows a typical hardware PE in the transaction-
level model. An implementation of each protocol stack is instantiated and connected at the interface of the
hardware PE.

3.3.1 Hardware PE with a local memory

One common scheme for communication between processors and hardware devices is to use memory
mapped-IO. Basically, the hardware unit provides a set of registers that can be accessed by the processor
like memory. Note that memory-mapped IO modeling is not applicable to the programmable PEs.

In this case, the hardware PEs in the transaction-level model is described as a combination of a PE behav-
ior and a memory behavior. More specifically, a memory behavior is instantiated inside the application layer
behavior. Note a typed memory interface is implemented by the memory behavior as shown in Figure 12, so
that behaviors inside the application layer of the hardware PC can access the memory.

Rule 24 A hardware PE with a local memory must have memory sub-behaviors running concurrently with
the rest of sub-behaviors.

The local memory sub-behavior must run concurrently with other sub-behaviors in the HW PE, because they
need to be accessed by the PEs without the help of any synchronization.

Rule 25 The local memory sub-behavior in a HW PE must implement the read/write interfaces which can be
used by the sub-behaviors in the HW PE and can be accessed by other PEs.

A memory behavior inside a hardware PE provides read/write interfaces, so that the PE can access the local
memory by interface method calls.

Figure 13 and Figure 14 show SpecC code of a hardware PE with a local memory.
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1 / / a p p l i c a t i o n l a y e r s h e l l o f p r o c e s s o r
2 b e h a v i o r Toshiba TX49H2 (
3 I B r i d g e br ,
4 i t r a n c e i v e r L2 ,
5 i m e m l i n k ml )
6 {
7 / / p r e s e n t a t i o n l a y e r a d a p t e r s
8 c c p u d m a d o u b l e h a n d s h a k e c2 ( L2 ) ;
9 c c p u d m a d o u b l e h a n d s h a k e c3 ( L2 ) ;

10
11 / / memory a d a p t e r
12 c mem adap te r mem( ml ) ;
13
14 / / b r i d g e a d a p t e r
15 c b r i d g e a d a p t e r c1 ( b r ) ;
16
17 / / o r i g i n a l b e h a v i o r
18 B2 b2 ( c1 , c2 , c3 , mem) ;
19
20 vo id main ( vo id ) {
21 b2 . main ( ) ;
22 }
23 } ;
24
25 / / i n t e r r u p t s e r v i c e r o u t i n e s
26 i n t e r f a c e I T o s h i b a T X 4 9 H 2 I n t S e r v i c e s
27 {
28 vo id DMAHandler ( vo id ) ;
29 vo id HWHandler ( vo id ) ;
30 } ;
31
32 / / i n t e r r u p t v e c t o r e t a b l e
33 i n t e r f a c e I T o s h i b a T X 4 9 H 2 I n t V e c t o r s
34 {
35 vo id i n t 0 h a n d l e r ( vo id ) ;
36 vo id i n t 1 h a n d l e r ( vo id ) ;
37 } ;

Figure 8: An example of programmable PE in SpecC (application layer shell).
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39 / / o p e r a t i n g s y s t e m l a y e r s h e l l o f p r o c e s s o r
40 b e h a v i o r Toshiba TX49H2 OS (
41 ITosh ibaGBusLinkAccess mac ,
42 IToshibaGBusMasterMemAccess mem) implemen t s I T o s h i b a T X 4 9 H 2 I n t S e r v i c e s
43 {
44 c h a n d s h a k e intDMA , intHW ;
45
46 / / l i n k l a y e r a d a p t e r s
47 ToshibaGBusMasterLink dma ( mac , intDMA , ADDR DMA) ;
48 ToshibaGBusMasterLink hw ( mac , intHW , ADDR HW) ;
49 ToshibaGBusMasterMem shm (mem, ADDR MEM) ;
50
51 / / b r i d g e a d a p t e r
52 c b r i d g e a d a p t e r T L M br ( hw ) ;
53
54 / / a p p l i c a t i o n l a y e r s h e l l
55 Toshiba TX49H2 cpu ( br , dma , shm ) ;
56
57 / / i n t e r r u p t s e r v i c e r o u t i n e s
58 vo id DMAHandler ( vo id ) {
59 intDMA . send ( ) ;
60 }
61 vo id HWHandler ( vo id ) {
62 intHW . send ( ) ;
63 }
64
65 vo id main ( vo id ) {
66 cpu . main ( ) ;
67 }
68 } ;

Figure 9: An example of programmable PE in SpecC (operating system layer shell).
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70 b e h a v i o r Toshiba TX49H2 TLM (
71 ITosh ibaGBusMas te r p r o t o c o l ,
72 i s e m a p h o r e a c c e s s ) imp lemen t s I T o s h i b a T X 4 9 H 2 I n t V e c t o r s
73 {
74 / / MAC l a y e r a d a p t e r s
75 ToshibaGBusMAC mac ( p r o t o c o l , a c c e s s ) ;
76 ToshibaGBusMas te rLinkAccess l i n k ( mac ) ;
77 ToshibaGBusMasterMemAccess mem( mac ) ;
78
79 / / o p e r a t i n g s y s t e m l a y e r s h e l l
80 Toshiba TX49H2 OS c p u o s ( l i n k , mem) ;
81
82 / / i n t e r r u p t v e c t o r t a b l e
83 vo id i n t 0 h a n d l e r ( vo id ) {
84 c p u o s . DMAHandler ( ) ;
85 }
86 vo id i n t 1 h a n d l e r ( vo id ) {
87 c p u o s . HWHandler ( ) ;
88 }
89
90 vo id main ( vo id ) {
91 c p u o s . main ( ) ;
92 }
93 } ;

Figure 10: An example of programmable PE in SpecC (HAL shell).
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Figure 11: An example of hardware PE in transaction-level model.
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Figure 12: An example of hardware PE with a local memory.

1 b e h a v i o r Local Mem TLM (
2 IToshibaGBusSlaveMemAccess shm )
3 imp lemen t s I AR HW Standard
4 {
5 c h a r mem[ MEM SIZE ] ; / / a r r a y or s t r u c t t y p e v a r i a b l e
6
7 / / memory a d a p t e r
8 l ong i n t r e a d v 1 ( vo id ) {
9 l ong i n t ∗ p t r ;

10 p t r = ( long i n t ∗ ) mem+OFS v1 ;
11 r e t u r n ∗ p t r ;
12 }
13 vo id w r i t e v 1 ( long i n t d a t a ) {
14 l ong i n t ∗ p t r ;
15 p t r = ( long i n t ∗ ) mem+OFS v1 ;
16 ∗ p t r = d a t a ;
17 }
18
19 vo id main ( vo id ) {
20 w h i l e ( t r u e ) {
21 shm . s e r v e (ADDR MEM, mem, MEM SIZE ) ;
22 }
23 }
24 } ;

Figure 13: An example of a hardware PE with a local memory in SpecC (local memory).
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26 b e h a v i o r HW Standard (
27 i t r a n c e i v e r L1 ,
28 IToshibaGBusSlaveMemAccess shm )
29 {
30 / / l i n k l a y e r a d a p t e r
31 c h w c p u d o u b l e h a n d s h a k e c1 ( L1 ) ;
32
33 / / l o c a l memory
34 Local Mem TLM LM( shm ) ;
35
36 / / o r i g i n a l b e h a v i o r
37 B2 b2 ( c1 , LM) ;
38
39 vo id main ( vo id ) {
40 p a r {
41 b2 . main ( ) ;
42 LM. main ( ) ;
43 }
44 }
45 } ;
46
47 b e h a v i o r HW Standard TLM (
48 ITosh ibaGBusS lave p r o t o c o l ,
49 i s e n d i n t r A )
50 {
51 / / CPUBus s l a v e MAC l a y e r a d a p t e r f o r g e n e r a l da ta a c c e s s
52 Tosh ibaGBusSlaveLinkAccess a c c e s s ( p r o t o c o l ) ;
53
54 / / CPUBus s l a v e l i n k l a y e r a d a p t e r f o r g e n e r a l da ta a c c e s s
55 ToshibaGBusSlaveLink L1 ( a c c e s s , i n t r A , ADDR HW) ;
56
57 / / CPUBus MAC l a y e r a d a p t e r f o r memory a c c e s s
58 ToshibaGBusSlaveMemAccess shm ( p r o t o c o l ) ;
59
60 HW Standard HW( L1 , shm ) ;
61
62 vo id main ( vo id ) {
63 HW. main ( ) ;
64 }
65 } ;

Figure 14: An example of a hardware PE with a local memory in SpecC (hardware PE).
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4 Memories
Memory is represented by a SpecC behavior and should be shown in the top-level of the behavior hierar-
chy. Each memory, corresponding to a transaction-level implementation needs to exist in the PE database.
Since the transaction-level model captures type-less data communication, the memory model also should
provide byte-oriented access instead of type-specific. Figure 15 shows an example of a shared memory in the
transaction-level model.
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Figure 15: An example of shared memory in the transaction-level model.

The SCE tools require that memories follow certain rules, as presented below.

Rule 26 A memory is represented by a SpecC behavior, which has only interface ports and no variable ports.

A memory is represented by a SpecC behaviors. Its ports are of a interface type defined in the protocol
channel for each bus. The interface must be a slave interface of the associated memory interface protocol.

Rule 27 A memory behavior generally has one variable, which is a C char type array. This array contains
all variables stored in the memory as its members.

The size of memory is the same as the size of the char type array variable. The memory behavior provides
methods to read/write the char type array variable.

Rule 28 A memory behavior contains an instance of the MAC layer implementation from the associated
memory interface protocol.

A slave memory interface protocol from the bus database is instantiated in the MAC layer of a memory
behavior.

Rule 29 A memory behavior must be bus slave. Thus, the memory behavior continuously calls a serve
method in its main method.
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The serve method is defined in the bus database and provides access to the char type array variable
in the memory behavior. The serve method takes the base address of the memory, the char type array
variable, and the size of the memory as arguments.

Figure 16 shows the SpecC code of a shared memory. In the example, all variables that are stored in the
memory are packed into a char type array variable mem. As required the serve method is invoked in the
main body.

1 b e h a v i o r SRAM TLM(
2 IKM684002ASlave p r o t o c o l )
3 {
4 c h a r mem[ MEM SIZE ] ;
5
6 / / SRAMBus MAC l a y e r a d a p t e r
7 KM684002AMemServe shm ( p r o t o c o l ) ;
8
9 vo id main ( vo id ) {

10 w h i l e ( t r u e ) {
11 shm . s e r v e (ADDR MEM, mem, MEM SIZE ) ;
12 }
13 }
14 } ;

Figure 16: An example of shared memory in SpecC.

5 Communication Elements
elements such as transducers and bridges are represented by SpecC behaviors and should be instantiated in the
top-level behavior. A CE behavior may have sub-behaviors. In order to use a behavior as a communication
element it has to be annotated by CR MAPPED TO.

Rule 30 A communication element is represented by a hierarchical SpecC behavior.

Rule 31 A CE may only have interface ports and no variable ports.

The port type of the CE is of the interface type defined in the according bus protocol channel. The interfaces
can be either master or slave interfaces.

5.1 Bridges
In the network model a bridge is captured on an abstract level. During the communication synthesis this
abstract model is replaced by a more concrete version out of the CE database as shown in Figure 17.

Rule 32 A bridge must have CE BF MODEL and CE BF BUS annotation.

The CE BF MODEL indicates the bus functional implementation of the bridge in the CE database and
CE BF BUS contains a list of the two busses to be connected.

Rule 33 Bridges do implement only the MAC layer of a protocol stack.

The corresponding SpecC code is shown in Figure 18.
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Figure 17: An example of a bridge in transaction-level model.

1 b e h a v i o r Bridge TLM (
2 ITosh ibaGBusS lave cpuBus ,
3 ITosh ibaGBusMas te r s l aveBus ,
4 i s e m a p h o r e s l a v e A c c e s s )
5 {
6 / / CPUBus s l a v e MAC l a y e r a d a p t e r
7 ToshibaGBusMAC mac ( s l aveBus , s l a v e A c c e s s ) ;
8
9 vo id main ( vo id ) {

10 b i t [ 3 5 : 0 ] add r ;
11 b i t [ 6 3 : 0 ] d ;
12 u n s i g n e d b i t [ 1 0 ] t ;
13 w h i l e ( t r u e ) {
14 add r = 0 x00000000 ;
15 t = cpuBus . L i s t e n (& addr , 0 x00000000 ) ;
16 i f ( ( ( u n s i g n e d i n t ) add r ) == ADDR HW) {
17 s w i t c h ( ( u n s i g n e d i n t ) ( t [ 1 : 0 ] ) ) {
18 c a s e 1 : / / cpu read
19 d = mac . LoadCycle ( addr , t [ 9 : 2 ] ) ;
20 cpuBus . W r i t e C y c l e ( d ) ;
21 b r e a k ;
22 c a s e 2 : / / cpu w r i t e
23 d = cpuBus . ReadCycle ( ) ;
24 mac . S t o r e C y c l e ( addr , d , t [ 9 : 2 ] ) ;
25 b r e a k ;
26 }
27 }
28 }
29 }
30 } ;

Figure 18: An example of bridge in SpecC.
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5.2 Transducers
During the communication synthesis, transducers are treated like PEs. The protocol stack at the interface of
the transducers needs to be implemented. In the transaction-level model, a transducer implements the network
layer, link layer and the MAC layer of the selected protocol stacks. A PE on the other hand implements all
layers except protocol layer. An example is shown in Figure 19.
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Figure 19: An example of a transducer in transaction-level model.

Rule 34 Transducers have to implement network, link and MAC layer of the chosen protocol stacks.

Rule 35 Transducers need to implement an interrupt based synchronization scheme.

The synchronization by interrupt is necessary in the transducer as part of the link layer implementation.

6 Synchronization Channels
The synchronization between programmable PEs and other system components is accomplished by interrupts.
A synchronization channel is represented by a SpecC channel and should be instantiated in top-level behavior.

Rule 36 A synchronization channel must have one port of the interface type defined in the HAL shell of the
programmable PE that provides the interrupt handling.

Each synchronization channel implements an interrupt pin of the programmable PE where it is attached. It
implements a i send interface to assert interrupt to the programmable PE. The programmable PE can be
mapped to the port of the synchronization channel.

Rule 37 A synchronization channel must invoke in its send implementation the interrupt handler method
(as defined in the HAL shell) of the programmable PE.

The synchronization channel must have the send method in the i send interface, that invokes the interrupt
service routine of the programmable PE.

Figure 21 shows examples of synchronization channels for interrupt handling. In the example, IntrA
has only one port, IToshiba TX49H2IntVectors, implemented by the programmable PE. In the send
interface method of the IntrA, the interrupt handler for IntrA interrupt line is invoked.

7 Arbitration Channels
If multiple masters are connected to the same bus, arbitration is necessary to resolve concurrent bus accesses.
In the transaction-level model, this arbitration is accomplished by arbitration channels.
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1 / / ne twork model o f t r a n s d u c e r
2 b e h a v i o r Tx NET (
3 i s e n d e r l ink GBus ,
4 i r e c e i v e r l i n k S I O )
5 {
6 vo id main ( vo id ) {
7 c h a r buf [ 1 2 8 ] ; / / b u f f e r
8 u n s i g n e d long i n t l e n ;
9 w h i l e ( t r u e ) {

10 l i n k S I O . r e c e i v e (& len , s i z e o f ( l e n ) ) ;
11 l i n k S I O . r e c e i v e ( buf , l e n ) ;
12 l i nk GBus . send ( buf , l e n ) ;
13 }
14 }
15 } ;
16
17 b e h a v i o r Tx TLM (
18 ITosh ibaGBusS lave cpuBus ,
19 IRS232BusMaster s ioBus ,
20 i s e n d i n t r A )
21 {
22 / / CPUBus s l a v e i n t e r f a c e (MAC and l i n k l a y e r )
23 Tosh ibaGBusSlaveLinkAccess cpuAccess ( cpuBus ) ;
24 ToshibaGBusSlaveLink cpuLink ( cpuAccess , i n t r A , ADDR SIO ) ;
25
26 / / RS232Bus m a s t e r i n t e r f a c e (MAC and l i n k l a y e r )
27 RS232BusLinkAccess s i o A c c e s s ( s i o B u s ) ;
28 RS232BusMasterLink s i o L i n k ( s i o A c c e s s ) ;
29
30 / / ne twork model o f t r a n s d u c e r
31 Tx NET Tx ( cpuAccess , s i o A c c e s s ) ;
32
33 vo id main ( vo id ) {
34 Tx . main ( ) ;
35 }
36 } ;

Figure 20: An example of transducer in SpecC.
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1 / / s y n c h r o n i z a t i o n c h a n n e l f o r i n t e r r u p t A
2 c h a n n e l I n t r A (
3 I T o s h i b a T X 4 9 H 2 I n t V e c t o r s cpu ) implemen t s i s e n d
4 {
5 vo id send ( vo id ) {
6 cpu . i n t 0 h a n d l e r ( ) ;
7 }
8 } ;
9

10 / / s y n c h r o n i z a t i o n c h a n n e l f o r i n t e r r u p t B
11 c h a n n e l I n t r B (
12 I T o s h i b a T X 4 9 H 2 I n t V e c t o r s cpu ) implemen t s i s e n d
13 {
14 vo id send ( vo id ) {
15 cpu . i n t 1 h a n d l e r ( ) ;
16 }
17 } ;

Figure 21: Examples of synchronization channels.

Rule 38 Each master on the bus has to be connected to a arbitration channel.

In the example shown in Figure 4, the arbitration is implemented by c mutex channels. The instances of the
arbitration channels are connected to the ports of the master components (CPU and DMA on the CPUBus and
Bridge on the SlaveBus).

8 Protocol Channels
In the transaction-level model, protocol channels represent the abstract bus protocols that connect PEs, mem-
ories, and CEs. Bus protocols are represented by SpecC channels and should be instantiated in top-level
behavior. Each channel implements the corresponding bus protocol and abstract away the pin-level commu-
nication functionality.

Rule 39 Protocol channels must provide master and slave interfaces. They connect system components.

As shown in Figure 22 and Figure 23, the interface provided by a protocol channel is invoked in the lowest
layer of the protocol stack of a system component 1. Master components use a master protocol interface,
slave components use a slave protocol interface. They are connected by the protocol channel.

9 Example
In the example as shown in Figure 24, the design has three protocols: SWProtocol, HWProtocol and Mem-
Protocol. Within each bus group, unique bus addresses and interrupts for synchronization are assigned to
each logical link channel. On the SWProtocol side, the memory is assigned a range of addresses with a base
address plus offsets for each stored variable.

As part of the MAC layer implementation in the transaction level model, arbitration protocol channel
Arbiter is connected to protocol channels to regulate multiple bus accesses of masters on SWProtocol.

1Note that although the example is for the TLM, individual signals are handled in this example.
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1 / / m a s t e r i n t e r f a c e
2 i n t e r f a c e ITosh ibaGBusMas te r {
3 b i t [ 3 1 : 0 ] LoadCyle ( b i t [ 3 5 : 0 ] addr , b i t [ 3 : 0 ] be ) ;
4 vo id S t o r e C y c l e ( b i t [ 3 5 : 0 ] addr , b i t [ 3 1 : 0 ] da t a , b i t [ 3 : 0 ] be ) ;
5 b i t [ 3 1 : 0 ] LoadWord ( b i t [ 3 5 : 0 ] add r ) ;
6 vo id StoreWord ( b i t [ 3 5 : 0 ] addr , b i t [ 3 1 : 0 ] v a l ) ;
7 } ;
8
9 / / s l a v e i n t e r f a c e

10 i n t e r f a c e ITosh ibaGBusS lave {
11 u n s i g n e d b i t [ 5 : 0 ] L i s t e n ( b i t [ 3 5 : 0 ] ∗ addr , b i t [ 3 5 : 0 ] mask ) ;
12 vo id W r i t e C y c l e ( b i t [ 3 1 : 0 ] v a l ) ;
13 b i t [ 3 1 : 0 ] ReadCycle ( vo id ) ;
14 vo id WriteWord ( b i t [ 3 1 : 0 ] v a l ) ;
15 b i t [ 3 1 : 0 ] ReadWord ( vo id ) ;
16 } ;
17
18 / / p r o t o c o l c h a n n e l
19 c h a n n e l Toshiba GBus ( )
20 imp lemen t s IToshibaGBusMaster , ITosh ibaGBusS lave
21 {
22 s i g n a l b i t [ 3 5 : 0 ] GA; / / a d d r e s s
23 s i g n a l b i t [ 3 1 : 0 ] GDOUT; / / da ta o u t p u t
24 s i g n a l b i t [ 3 1 : 0 ] GDIN ; / / da ta i n p u t
25 s i g n a l b i t [ 3 : 0 ] GBE = 0 ; / / b y t e e n a b l e
26 s i g n a l b i t [ 1 ] GRD = 1 ; / / read
27 s i g n a l b i t [ 1 ] GWR = 1 ; / / w r i t e
28 s i g n a l b i t [ 1 ] GACK = 1 ; / / acknowledge
29
30 b i t [ 3 1 : 0 ] LoadCycle ( b i t [ 3 5 : 0 ] addr , b i t [ 3 : 0 ] be ) {
31 b i t [ 3 1 : 0 ] d a t a ;
32 GA = addr ;
33 GBE = be ;
34 GRD = 0 ;
35 w a i t f o r (CPU CLK / 2 ) ;
36 w h i l e (GACK != 0)
37 w a i t (GACK f a l l i n g ) ;
38 w a i t f o r (CPU CLK / 2 ) ;
39 d a t a = GDIN ;
40 GRD = 1 ;
41 r e t u r n d a t a ;
42 }

Figure 22: An example of a protocol channel (I).
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43 vo id S t o r e C y c l e ( b i t [ 3 5 : 0 ] addr , b i t [ 3 1 : 0 ] da t a , b i t [ 3 : 0 ] be ) {
44 GA = addr ;
45 GBE = be ;
46 GWR = 0 ;
47 GDOUT = d a t a ;
48 w a i t f o r (CPU CLK / 2 ) ;
49 w h i l e (GACK != 0)
50 w a i t (GACK f a l l i n g ) ;
51 w a i t f o r (CPU CLK / 2 ) ;
52 GWR = 1 ;
53 }
54 b i t [ 3 1 : 0 ] LoadWord ( b i t [ 3 5 : 0 ] add r ) {
55 r e t u r n LoadCycle ( addr , 1111 b ) ;
56 }
57 vo id StoreWord ( b i t [ 3 5 : 0 ] addr , b i t [ 3 1 : 0 ] v a l ) {
58 S t o r e C y c l e ( addr , va l , 1111 b ) ;
59 }
60
61 u n s i g n e d b i t [ 5 : 0 ] L i s t e n ( b i t [ 3 5 : 0 ] ∗ addr , b i t [ 3 5 : 0 ] mask ) {
62 ∗ add r = GA & mask ;
63 r e t u r n GBE @@ GRD @@ GWR;
64 }
65 vo id W r i t e C y c l e ( b i t [ 3 1 : 0 ] v a l ) {
66 GDIN = v a l ;
67 GACK = 0 ;
68 w a i t f o r ( 5 ) ;
69 GACK = 1 ;
70 }
71 b i t [ 3 1 : 0 ] ReadCycle ( vo id ) {
72 b i t [ 3 1 : 0 ] v a l ;
73
74 v a l = GDOUT;
75 GACK = 0 ;
76 w a i t f o r ( 5 ) ;
77 GACK = 1 ;
78 r e t u r n v a l ;
79 }
80 b i t [ 3 1 : 0 ] ReadDoubleWord ( vo id ) {
81 r e t u r n ReadCycle ( ) ;
82 }
83 vo id WriteWord ( b i t [ 3 1 : 0 ] v a l ) {
84 W r i t e C y c l e ( v a l ) ;
85 }
86 } ;

Figure 23: An example of a protocol channel (II).
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Figure 24: An example of transaction level model.
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In the transaction level model (Figure 24), the application layer shell from the architecture model and
the implementation of logical link and media access layers are instantiated inside a hardware abstraction
layer shell of processor components or inside a bus-functional hardware shell for synthesizable components.
Depending on the type of transfer (e.g. memory transfer or normal message passing transfer), different types
of media access implementations can be implemented and inlined into a component.

The shaded parts (the shell SW HAL for SW and MAC layer implementations) in the figure indicate that
they are pulled from the (PE and bus) databases instead of being generated by tools. Logical link layer
adapters are automatically generated and inserted into the application layer shell by the tool. In case of
processors, a template for interrupt handlers is defined as part of the HAL shell in the PE database. The
behavior of interrupt handlers is automatically generated by the communication synthesizer on top of this
template.
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