
Center for Embedded Computer Systems
University of California, Irvine

System-On-Chip Architecture Modeling Style Guide

Junyu Peng
Andreas Gerstlauer

Rainer Dömer
Daniel D. Gajski

Technical Report CECS-TR-04-22
July 31, 2004

System-On-Chip Architecture Modeling Style Guide

Junyu Peng
Andreas Gerstlauer

Rainer Dömer
Daniel D. Gajski

Technical Report CECS-TR-04-22
July 31, 2004

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

http://www.cecs.uci.edu

Abstract

The SCE system-level design flow consists of a series of refinement steps that gradually transform an
abstract specification model into an architecture model, a network model, a communication model and
finally a detailed implementation model. The transformations can be automated with model refinement
tools.

This report describes the styles of architecture models automatically generated by the architecture re-
finement tool. Therefore it can help designers understand the architecture models. It can also be used
as a reference maunal if designers want to write their own architecture models that are valid input to the
network refinement tool.

Contents
1 Introduction 1

1.1 SoC Design Flow . 1
1.2 SpecC Language . 2

2 An Overview of Architecture Model 3

3 System Channels 5

4 Memories 7

5 Processing Elements 7

6 Top-Level Design Behavior 10

References 13

i

List of Figures
1 SoC design flow. 2
2 Architecture model top-level code. 3
3 Architecture model top-level structure. 4
4 Interfaces implemented by typed c double handshake and c queue. 5
5 Interfaces implemented by c handshake. 6
6 Example of instantiating double-handshake channel. 6
7 Example of instantiating queue channel. 6
8 Example code of a memory behavior. 8
9 Example code of memory-mapped IO modeling. 9
10 Example of top-level behavior code. 11
11 Point-to-point channel connection. 11

ii

System-On-Chip Architecture Modeling Style Guide

J. Peng, A. Gerstlauer, R. Dömer and D. D. Gajski.
Center for Embedded Computer Systems

University of California, Irvine

July 31, 2004

Abstract
The SCE system-level design flow consists of a series of refinement steps that gradually transform an ab-
stract specification model into an architecture model, a network model, a communication model and finally
a detailed implementation model. The transformations can be automated with model refinement tools.

This report describes the styles of architecture models automatically generated by the architecture re-
finement tool. Therefore it can help designers understand the architecture models. It can also be used as a
reference maunal if designers want to write their own architecture models that are valid input to the network
refinement tool.

1 Introduction
System design in the SoC approach takes an initial specification of the system down to an actual implemen-
tation through a series of interactive and automated steps. Starting from a purely functional description of
the desired system behavior, an implementation of the design on a heterogoeneous system architecture with
multiple processing elements (PEs) connected through system busses is produced at the end of the design
flow.

This report describes and defines guidelines and rules for developing SpecC based system models in
general and the input to the SoC tools in particular.

1.1 SoC Design Flow
In the SoC design flow (Figure 1), five design models are used to represent the design at different abstraction
levels. The design models are executable so that they can be simulated to verify the correctness of the design
and obtain design performance metrics at each design step.

The most abstract model is the specification model that serves as the input to SoC tools. Specification
model is a pure functional model that captures the functionality of the desired design. It should not contain
any implementation details.

The architecture model is the output of architecture exploration. It exactly reflects the overall computation
architecture consisting of processing elements (PEs). The architecture model encapsulates the communica-
tion between PEs through abstract message-passing channels.

After network exploration a network model is produced to reflect the communication network chosen for
the design. It represents the allocation and selection of network stations and the links between them. While
the communication is end-to-end between PEs in the architecture model, it is refined into point-to-point in
the network model.

1

Architecture Explorer

Network Explorer

Communication Synthesizer

PE
Database

CE
Database

Bus
Database

Li
br

ar
y

B
ui

ld
er

Specification Model

Architecture ModelArchitecture Model

Network Model

TLM

Communication Model

SpecC

Simulation
Capture

SpecC

Simulation
Capture

SpecC

Simulation
Capture

Simulation

SpecC

Simulation

Figure 1: SoC design flow.

Finally, the communication model incorporates bus protocols into the model. The communication model
can be pin-accurate or transaction-level. The transaction level model abstracts away the pin-accurate protocol
details.

All the models are captured in SpecC language and have to adhere to the syntax and semantics of the
SpecC language. Designers only need to write the specification model for the design and then use the tools
to automatically generate the lower level models. SoC tools also support partial specification, which allows
designers to start with a specification with incomplete computational functionality. Later designers can mod-
ify the computation part of the automatically generated models. However, for the modified models to be valid
for the SoC tools, they must follow certain modeling rules. This report in particular defines the modeling
style required for the SoC architecture model, which is highlighted in the figure. [4], [5], [7] and [6] focus
on the modeling styles of the other models.

1.2 SpecC Language
The SoC design flow is supported by the SpecC system-level design language ([1]). The SpecC language as
an example of a modern system-level design language (SLDL) was developed under support and control of
the SpecC Technology Open Consortium (STOC) ([2]) to satisfy all the requirements for an efficient formal
description of the models in the SoC design flow. It supports behavioral and structural views and contains
features for describing a design at all levels of abstraction.

In the SoC design flow, all five models of the design process, starting with the specification model and
down to the implementation model, are described in the SpecC language. One common language removes
the need for tedious translation. Furthermore, all the models in SpecC are executable which allows for vali-
dation through simulation while reusing one single testbench throughout the whole design flow. In addition,
the formal nature of the models enables application of formal methods, e.g. for verification or equivalence
checking.

2

Note that this report is not intended to be a tutorial of SpecC language and we assume that the reader
of this report is familiar with the language. This report can be used for two purposes. First, it can help
users understand the meaning of the automatically generated architecture model by the architecture explorer.
Second, it can help users modify the automatically generated architecture models such that they can be
accepted by the network explorer.

The rest of the report is organized as follows. Section 2 presents the overall structure of an architecture
model. The major elements of an architecture model are described one by one in detail. Section 3 describes
the communication channels allowed in the architecture model. Section 4 describes the modeling of shared
memories in the architecture model. Section 5 describes the guidelines to model processing elements. Finally,
Section 6 describes the rules on how to compose the element together to form an valid architecture model.

2 An Overview of Architecture Model

i m p o r t ” c d o u b l e h a n d s h a k e ” ;

b e h a v i o r S t i m u l u s (i s e n d e r i n p u t) { / / S t i m u l i c r e a t o r
vo id main (vo id) {

5 / / w h i l e (. . .) { . . . ; i n p u t . send (. . .) ; . . . }
}

} ;

b e h a v i o r Moni to r (i r e c e i v e r o u t p u t) { / / Ou tpu t m o n i t o r
10 vo id main (vo id) {

/ / w h i l e (. . .) { . . . ; o u t p u t . r e c e i v e (. . .) ; . . . }
}

} ;

15 b e h a v i o r Des ign (i r e c e i v e r i n p u t , i s e n d e r o u t p u t) { / / Sys t em d e s i g n
/ / . . .

vo id main (vo id) {
/ / f sm { . . . }

20 }
} ;

b e h a v i o r Main () { / / Top l e v e l
c d o u b l e h a n d s h a k e i n p u t , o u t p u t ;

25
S t i m u l u s s t i m u l u s (i n p u t) ;
Des ign d e s i g n (i n p u t , o u t p u t) ;
Moni to r m o n i t o r (o u t p u t) ;

30 i n t main (vo id) {
p a r {

s t i m u l u s . main () ;
d e s i g n . main () ;
m o n i t o r . main () ;

35 }
}

} ;

Figure 2: Architecture model top-level code.

3

Figure 2 and Figure 3 show an example template for a valid architecture model. A architecture model
has to be an executable SpecC model, i.e. it has to define a Main behavior. An architecture model con-
sists of a testbench that surrounds the actual design to be implemented. A testbench consists of stimu-
lating (Stimulus) and monitoring (Monitor) behaviors that are executing concurrently with the design
(Design) in the top-most Main behavior, and that drive the design under test and check the generated output
against known good values.

Design MonitorStimulus

Main

Figure 3: Architecture model top-level structure.

The actual design to be implemented is modeled by the design behaviors, such as Design and those
composed hierarchically inside Design in the figure. Design behaviors form a hierarchy tree by their com-
position relations. The root of the tree, for example Design in Figure 3, is called the top-level design
behavior.

Note that the modeling rules and restrictions defined in this manual apply only to the design behaviors
since the testbench behaviors will not be considered and touched by tools. Therefor the testbench can be
freely described using any valid SpecC code. For example, while the code of the design to be implemented
has to be available completely in SpecC source form, the testbench can link against external translation units
(libraries) for additional functionality.

In general, it is hard for tools themselves to find out which behaviors are testbench behaviors and which
are actual design behaviors. This distinction is to be made by the designers attaching a predefined annotation
to the architecture model.

Rule 1 A architecture model has an annotation SER TOPLEVEL, which contains the name of the top-level
design behavior.

For the example shown in Figure 3, the annotation would look like the following:

n o t e SER TOPLEVEL = ‘ ‘ Des ign ’ ’ ;

Once the top-level design behavior is specified, the tools are able to figure out all other design behaviors.
If we zoom inside the top-level design behavior of an architecture model, we can identify a set of finer

model elements which are used to capture both the computation architecture and the communication network.

• PE behaviors are used to model the processing elements allocated to perform the desired computation;

• Memory behaviors are used to model the memories allocated to store data shared by PEs;

• System channels are used to model the connection between the processing elements.

4

Rule 2 The architecture model has an annotation AR PES attached to the top-level design behavior, which
contains the names, types and other attributes of all PEs and memories that allocated for the design.

In the following sections, we will define these model elements one by one before we describe how to put
them together.

3 System Channels
In an architecture model, SpecC channels are used to abstract inter-PE communication which will be later re-
fined during the communication synthesis. These inter-PE channels are called system channels to distinguish
them from the channels that are used exclusively inside a PE.

Rule 3 A system channel must be one of the following types defined in the SpecC Language Reference Man-
ual:

(a) c double handshake, typed or untyped

(b) c queue, typed or untyped

(c) c handshake

i n t e r f a c e i s e n d e r {
vo id send (c o n s t vo id ∗d , u n s i g n e d long l) ;

} ;

5 i n t e r f a c e i r e c e i v e r {
vo id r e c e i v e (vo id ∗d , u n s i g n e d long l) ;

} ;

i n t e r f a c e i t r a n c e i v e r {
10 vo id send (c o n s t vo id ∗d , u n s i g n e d long l) ;

vo id r e c e i v e (vo id ∗d , u n s i g n e d long l) ;
} ;

Figure 4: Interfaces implemented by typed c double handshake and c queue.

The untyped c double handshake channel encapsulates un-buffered type-less data transfer. It imple-
ments three interfaces: i sender, i receiver and i tranceiver as shown in Figure 4. The untyped
c queue channel encapsulates asynchronous, buffered type-less data transfer. It also implements the same
interfaces as the untyped c double handshake channel.

The c handshake channel encapsulates one-way handshake synchronization that does not need to carry
real data. It implements two interfaces: i send and i receive as shown in Figure 5.

Since data in the application in general is typed, typed double-handshake and queue channels are allowed
for system channels. The example code in Figure 6 is used to generate interfaces and double-handshake
channel of a float type. The example code in Figure 7 is used to generate interfaces and queue channel of
a float type.

In an architecture model that is generated automatically by the architecture explorer, the system chan-
nels come from two sources. Some of them are specification channels directly coming from the spec-
ification model as a result of behavior partitioning. The others are inserted by the architecture ex-
plorer to preserve behavior execution order (c handshake), to maintain coherence of distributed data

5

i n t e r f a c e i s e n d {
vo id send (vo id) ;

} ;

5 i n t e r f a c e i r e c e i v e {
vo id r e c e i v e (vo id) ;

} ;

Figure 5: Interfaces implemented by c handshake.

i n c l u d e <c t y p e d d o u b l e h a n d s h a k e . sh>

/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a t r a n c e i v e r ” ∗ /
DEFINE I TYPED TRANCEIVER (da ta , f l o a t)

5
/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a s e n d e r ” ∗ /
DEFINE I TYPED SENDER (da ta , f l o a t)

/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a r e c e i v e r ” ∗ /
10 DEFINE I TYPED RECEIVER (da ta , f l o a t)

/∗ c r e a t e ” f l o a t ” t y p e c h a n n e l ” i d a t a d o u b l e h a n d s h a k e ” ∗ /
DEFINE C TYPED DOUBLE HANDSHAKE(da ta , f l o a t)

Figure 6: Example of instantiating double-handshake channel.

i n c l u d e <c t y p e d q u e u e . sh>

/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a t r a n c e i v e r ” ∗ /
DEFINE I TYPED TRANCEIVER (da ta , f l o a t)

5
/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a s e n d e r ” ∗ /
DEFINE I TYPED SENDER (da ta , f l o a t)

/∗ c r e a t e ” f l o a t ” t y p e i n t e r f a c e ” i d a t a r e c e i v e r ” ∗ /
10 DEFINE I TYPED RECEIVER (da ta , f l o a t)

/∗ c r e a t e ” f l o a t ” t y p e c h a n n e l ” i d a t a q u e u e ” ∗ /
DEFINE C TYPED QUEUE (da ta , f l o a t)

Figure 7: Example of instantiating queue channel.

6

(c double handshake, c queue) and to handle complex channels such as c queue which are allowed
in the specification model.

4 Memories
In the architecture models, memory components are modeled with SpecC behaviors. A memory behavior
contains the variables that are stored in it. For other PE behaviors to access the stored variables, the mem-
ory behavior implements a memory interface which has a set of read and write methods. Since the actual
layout of variables inside a memory is not yet determined in the architecture model, the access methods are
variable-specific. Basically, for each variable, a pair of read and write methods are implemented by the mem-
ory behavior. (Note that for a struct type variable, more methods are needed to access its memebers.)
Other than implementing the memory interface, the memory behavior does not have other computational
functionality.

Rule 4 A memory behavior does not have any ports, sub-behavior instances or channel instances inside. The
main() method of a memory behavior has an empty body, i.e, does nothing at all.

Rule 5 A memory behavior has only one variable mem, which is a C struct type that contains all variables
stored in the memory.

The types of variables stored in the memory can be any valid ANSI-C data types except pointer type.
Note that SpecC bit-vector type is not allowed.

Rule 6 A memory behavior implements a memory interface which declares a set of access methods to read-
/write individual variables stored in the memory. The signature of an access method observes the following
conventions:

(a) The name of an access method always starts with either “read” or “write”. To make the method names
unique, a string is mangled from the variable name and appended to “read” or “write”. For the mem-
bers of a struct variable, the hierarchical name is used for mangling.

(b) If the method is to access an array element, an argument of int type is used to pass the index. Multiple
index arguments may be needed to access a nested array.

(c) A read method has a return type of the variable and a write method always returns void.

(d) The last argument of a write method is for the written data.

In an architecture model that is produced by the architecture explorer, the memory behavior is completely
generated automatically. An example code of memory behavior is shown in Figure 8. This memory contains
a scalar variable v1 and a struct variable v2 consisting of an array of float variables. In the memory
behavior, v1 and v2 are packed into a struct. Four access methods are implemented by the memory
behavior to read/write v1 and the array elements in v2. The signatures of the access methods follow above
rules.

5 Processing Elements
In an architecture model each processing element is represented by a SpecC behavior called PE behavior. A
PE behavior is a functional description of the computation that is to be executed by the PE. A PE behavior

7

i n t e r f a c e i mem1 {
u n s i g n e d long i n t r e a d v 1 (vo id) ;
vo id w r i t e v 1 (u n s i g n e d long i n t) ;
f l o a t r e a d v 2 y (i n t) ;

5 vo id w r i t e v 2 y (i n t , f l o a t) ;
} ;

b e h a v i o r Mem1 implemen t s i mem1
{

10 s t r u c t {
u n s i g n e d long i n t v1 ;
s t r u c t {

f l o a t y [1 0] ;
} v2 ;

15 } mem;

vo id main (vo id)
{
}

20
u n s i g n e d long i n t r e a d v 1 (vo id)
{

r e t u r n mem. v1 ;
}

25
vo id w r i t e v 1 (u n s i g n e d long i n t d a t a)
{

mem. v1 = d a t a ;
}

30
f l o a t r e a d v 2 y (i n t i)
{

r e t u r n mem. v2 . y [i] ;
}

35
vo id w r i t e v 2 y (i n t i , f l o a t d a t a)
{

mem. v2 . y [i] = d a t a ;
}

40 } ;

Figure 8: Example code of a memory behavior.

8

in general is hierarchically composed of smaller behaviors, each of which contains a piece of computation
assigned to the PE. The communication inside a PE is modeled using channels and variables. Since later
communication synthesis is not going to modify the PE behavior internally, a PE can be freely modeled with
any SpecC constructs. For example, any type of channels or behavior compositions can be used as long as
the back-end tools are able to handle them.

In the architecture model, variables shared by PEs are moved inside PEs or shared memory components.
The PEs must communicate with each other through system channels (see Section 3) and shared memory
components (see Section 4) that are connected (or port-mapped) to the PE behavior ports.

i n t e r f a c e i l o c a l m e m {
s h o r t r e a d x (vo id) ;
vo id w r i t e x (s h o r t) ;

} ;
5

b e h a v i o r Local Mem implemen t s i l o c a l m e m
{

/ / body o m i t t e d f o r space c o n s i d e r a t i o n
} ;

10
b e h a v i o r Computa t ion (i l o c a l m e m m)
{

vo id main (vo id)
{

15 s h o r t d a t a ;
d a t a = m. r e a d x () ;
d a t a ++;
m. w r i t e x (d a t a) ;

}
20 } ;

b e h a v i o r HW with LM implemen t s i l o c a l m e m
{

Local Mem loca l memory ;
25 Computa t ion c o m p u t a t i o n (loca l memory) ;

vo id main (vo id)
{

c o m p u t a t i o n . main () ;
30 }

s h o r t r e a d x (vo id)
{

r e t u r n loca l memory . r e a d x () ;
35 }

vo id w r i t e (s h o r t d a t a)
{

l oca l memory . w r i t e x (d a t a) ;
40 }

} ;

Figure 9: Example code of memory-mapped IO modeling.

Rule 7 A PE behavior has only interface ports and no variable ports. The interface types allowed are as
follows:

9

(a) i sender (typed or un-typed)

(b) i receiver (typed or un-typed)

(c) i tranceiver (typed or un-typed)

(d) i send

(e) i receive

(f) memory interface (Section 4)

In the architecture models produced by the architecture explorer, PE behaviors are automatically gener-
ated by re-arranging specification behaviors and introducing new behaviors for inter-PE synchronization and
data transfer. The channels and variables inside PEs are directly from the specification model.

A design may use both software and hardware PEs. Software PEs are general purpose programmable
processors while hardware PEs are application specific hardware units that need to be later synthesized. One
common practice for communication between a processor and a hardware device is by means of memory
mapped-IO. Basically, the hardware unit uses its internal memory, for example, registers as IO ports that are
mapped to the processor’s memory space. As such, these registers can be accessed by the processor as if they
were memories.

To model the memory-mapped IO, a memory behavior as defined in Section 4 is instantiated inside a
hardware PE behavior. The memory behavior implements the same memory interface which is also imple-
mented by the harware PE behavior. Therefore, the memory can be port-mapped to behaviors inside the
hardware PE and the hardware PE can be port-mapped to other PE behaviors that need to access the registers
in the hardware PE. An example of memory-mapped IO modeling is shown in Figure 9.

Rule 8 Software PE behaviors do not implement any interfaces and hardware PE behaviors can only imple-
ment a memory interface.

6 Top-Level Design Behavior
In previous sections, we have defined the set of model elements of an architecture model. In this section we
present the following rules on connecting the elements together to form an architecture model that is a valid
input to the network explorer. An example architecture model is shown in Figure 10.

Rule 9 The top-level design behavior is a hierarchical behavior that is composed of instances of PE behav-
iors defined in Section 5 and memory behaviors defined in Section 4. It may also have a set instances of
system channels as defined in Section 3. However, it must not have any variables.

Rule 10 A top-level design behavior has exactly one method, the main() method, which contains exactly
one statement that is a par statement.

According to the definition of a hierarchical behavior, each sub-behavior instance inside the top-level
behavior can be called at most once in the par statement. The top-level behavior of an architecture model
should not have any variables and inter-PE communication must go through the system channels which
include c double handshake, c queue and c handshake.

In the architecture model, the system channels are used for pair-wise inter-PE communication. As il-
lustrated in Figure 11, the usage of a system channel on the left side is not allowed because the channel is
used by three PEs. The correct usage on the right side introduces additional channel instance to ensure that a
channel is used by only two PEs.

10

b e h a v i o r Mem1 implemen t s i mem ;
b e h a v i o r CPU1 (i d a t a s e n d e r , i mem) ;
b e h a v i o r CPU2 (i d a t a r e c e i v e r , i mem) ;

5 b e h a v i o r Des ign () {
c d a t a 1 d o u b l e h a n d s h a k e c1 ;
Samsung M1;
CPU1 PE1 (c1 , M1) ;
CPU2 PE2 (c1 , M1) ;

10
vo id main (vo id) {

p a r {
M1. main () ;
PE1 . main () ;

15 PE2 . main () ;
}

}
} ;

Figure 10: Example of top-level behavior code.

PE1

PE2

PE3

c1

c2

PE1

PE2

PE3

c1

a) Invalid channel usage b) Valid channel usage

Figure 11: Point-to-point channel connection.

11

Rule 11 Inside the top-level behavior, a system channel instance can not be connected to more than two PE
behaviors.

Furthermore, a system channel is used solely for inter-PE communication and not for intra-PE communi-
cation, i.e., a PE sends a data which is received by itself.

Rule 12 In the architecture model, intra-PE communication over a system channel is not allowed.

A c handshake channel implements i send and i receive interface which can either send or
receive, but not both. Therefore if for each PE only one port is mapped to the same c handshake channel
instance, we are sure that the channel instance is only for inter-PE communication.

However, the c double handshake and c queue channels implement a i tranceiver interface,
which allows both sending and receiving from the same PE even if only one port-mapping is permitted for a
PE. Therefore, it is users discretion to obey the rule while writing the model. However, SER tools will issue
a warning message if either of following situation occurs:

(a) A PE has a i tranceiver port mapped to a c double handshake or c queue channel instance;

(b) A PE has both i sender port and i receiver port mapped to the same c double handshake
or c queue channel instance.

The architecture models generated by the architecture explorer are guaranteed that no system channels
are used for intra-PE communication. If a designer is going to modify the generated models, he must not alter
this property. Otherwise, the model would become invalid for later communication synthesis.

Note that the top-level design behavior may have a set of ports to communicate with the testbench be-
haviors. The top-level design behavior keeps the same set of ports if the architecture model is derived from a
specification model. The same interface of the top-level design behavior enables re-use of testbench behaviors
for simulation of the architecture model without any modification.

12

References
[1] R. Dömer, A. Gerstlauer and D. D. Gajski. SpecC Language Reference Manual, Version 2.0, SpecC

Technology Open Consortium (STOC), Japan, December 2002.

[2] SpecC Technology Open Consortium. http://www.specc.org.

[3] SpecC Compiler V2.2.0, Center for Embedded Computer Systems, University of California, Irvine,
June 2004.

[4] A. Gerstlauer, K. Ramineni, R. Dömer, D. Gajski. System-on-Chip Specification Style Guide, Technical
Report CECS-TR-03-21, Center for Embedded Computer Systems, University of California, Irvine,
June 2003.

[5] D. Shin, J. Peng, A. Gerstlauer, R. Dömer and D. D. Gajski. System-on-Chip Network Modeling Style
Guide, Technical Report CECS-TR-04-23, Center for Embedded Computer Systems, University of
California, Irvine, July 2004.

[6] D. Shin, L. Cai, A. Gerstlauer, R. Dömer and D. D. Gajski. System-on-Chip Transaction-Level Modeling
Style Guide, Technical Report CECS-TR-04-24, Center for Embedded Computer Systems, University
of California, Irvine, July 2004.

[7] D. Shin, A. Gerstlauer, R. Dömer and D. D. Gajski. System-on-Chip Communication Modeling Style
Guide, Technical Report CECS-TR-04-25, Center for Embedded Computer Systems, University of
California, Irvine, July 2004.

13

	1 Introduction
	1.1 SoC Design Flow
	1.2 SpecC Language

	2 An Overview of Architecture Model
	3 System Channels
	4 Memories
	5 Processing Elements
	6 Top-Level Design Behavior
	References

