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Abstract 
 

 As System-on-Chip (SoC) designs become more complex, it becomes increasingly harder to design 
communication architectures which satisfy designer constraints. Manually traversing the vast communication 
design space for constraint-driven synthesis is not feasible anymore. In this report we propose an approach that 
automates the synthesis of bus-based communication architectures for systems characterized by (possibly several) 
throughput constraints. Our approach accurately and effectively prunes the large communication design space to 
synthesize a feasible low-cost bus architecture which satisfies all throughput constraints. We present a case study 
of a broadband SoC subsystem, for which we were able to synthesize a bus architecture in a matter of hours, 
instead of days or even weeks it would have taken for a manual effort. 

                                                 
∗ This work was partially supported by grants from Conexant Systems Inc. and UC Micro (03-029) 
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I. Introduction 
 

The performance of System-on-Chip (SoC) designs today is heavily dependent on the efficiency of their 
communication architectures. Increasing SoC complexity, however, has made it harder to design communication 
architectures which meet performance constraints. Bus-based communication architectures, which are widely 
used in SoC designs today, have customizable topologies, arbitration protocols, pipeline depths, buffer sizes, 
DMA burst modes, bus widths and speeds, all of which combine to create a vast exploration space. Changing just 
one of these parameters requires a reevaluation of the others due to their highly interdependent nature. For 
instance, increasing DMA burst size on a shared bus can improve performance for one part of the system, but it 
can degrade the performance of another master on the same shared bus, requiring a change in arbitration strategy 
or bus topology to preserve its performance. As a result of this complex interdependence, it becomes impossible 
to manually evaluate all possible implementation alternatives. Therefore communication synthesis attempts to 
automatically determine a cost efficient communication architecture implementation which meets all performance 
constraints. 

Typically, systems are characterized by performance constraints which are highly dependent on the nature of 
the application. Throughput of communication connections is a good measure of the performance of a system. It 
can be used to characterize the whole system (system throughput) or parts of the system (subsystem throughput). 
Several modern application domains such as broadband, networking, tele-communication and image processing 
have average throughput constraints which must be satisfied in order to avoid bottlenecks and to function 
correctly [3]. 

In this report, we propose an approach for automated synthesis of low cost bus-based communication 
architectures for systems characterized by (possibly several) throughput constraints. We chose bus-based 
communication architectures like AMBA [11] because of their widespread use in SoC designs today. We assume 
that hardware/software partitioning has already taken place, and appropriate functionality has been mapped onto 
hardware IPs and software code. Our approach attempts to prune the vast communication design space and uses a 
fast simulation engine [6] to quickly analyze interesting combinations of communication parameters. The novelty 
of our approach is in the ability to automatically satisfy multiple throughput constraints while synthesizing a 
feasible low-cost configuration of a standard bus-based communication architecture (such as [11]) which is 
commonly used in SoC designs. We not only synthesize the bus topology, but also determine values for 
communication architecture parameters such as arbitration strategies, bus widths, bus speed, Out-of-order (OO) 
buffer sizes [12] and DMA burst sizes. Our approach is easily portable across different standard bus-based 
communication architectures such as CoreConnect [13], Wishbone [14] and OCP [15], and can be extended to 
automatically synthesize other communication architecture specific parameters as well. To demonstrate the 
usefulness of our approach, we present an interesting case study of an AMBA based SoC subsystem from the 
broadband communication application domain. Using our approach, we were able to synthesize a feasible low-
cost bus architecture which satisfied all throughput constraints for the SoC subsystem in a matter of a few hours. 
Performing such an exploration manually would have taken a designer several days or even weeks. 

The rest of the report is organized as follows. Section II discusses related work in the area of bus-based 
communication architecture synthesis. Section III formulates the problem and presents our approach for 
automated throughput-driven bus architecture synthesis. Section IV describes a case study of a broadband 
communication SoC subsystem where we used our approach to automatically synthesize the bus architecture. 
Finally Section V concludes the report and gives directions for future work. 

 

II. Related Work 
 

There is already a significant body of research in the area of bus-based communication architecture synthesis. 
Early work from Narayan et al [16] was aimed at determining a minimum bus width when mapping several 
communication channels on one bus. Daveau et al [8] propose an algorithm for interface synthesis and simple 
synchronization protocol (e.g. handshakes, FIFO) selection during communication synthesis. Gasteier et al [3] 
describe the generation of a low cost communication topology after analyzing statically scheduled data transfers. 
However their approach synthesizes only simple busses without arbitration, to minimize cost.   
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Ryu et al [1] generate five different custom bus templates and compare throughput performance for 
applications mapped on them. Here the designer is limited to selecting busses from these simple pre-designed 
templates which lack the high performance features found in standard bus architectures such as in [12]. Pinto et al 
[4] propose a general purpose algorithm for constraint-driven communication synthesis. The goal is to minimize a 
communication cost function and assumes that relative positions of cores in a SoC are fixed, which is not possible 
when performing exploration early in the design flow (which is usually the case). Lyonnard et al [2] propose a 
synthesis design flow which supports two generic communication templates – shared bus and point to point 
connections. These templates need to be parameterized manually, which makes it cumbersome and time-
consuming for the designer to select appropriate combinations of parameters to meet design requirements. Lahiri 
et al [5] design communication architectures after exploring different solutions using fast performance simulation. 
However, they assume the bus topology to be given. Thepayasuwan et al [7] and Drinic et al [10] propose 
approaches which takes into consideration an estimate of the final layout of the design to generate a bus topology. 
However, neither of these approaches considers the effect of different communication parameters on system 
performance during synthesis. 

Our approach is different from existing approaches because we focus on satisfying throughput constraints 
while automatically synthesizing low cost bus architectures. And unlike existing approaches, we not only 
synthesize the bus topology but also generate values for the complex interdependent communication architecture 
parameters such as arbitration strategies, bus widths, bus speed, OO buffer sizes and DMA burst sizes.  

 
III. Automated Bus Architecture Synthesis 

 
We now describe our approach for automated throughput-driven bus architecture synthesis. First we 

formulate the problem and present our assumptions. Next we give an overview of the strategies we use to meet 
throughput constraints. Finally we present our automated bus architecture synthesis approach in detail.   
 
A. Problem Formulation 
 

We are given a SoC architecture with several components (IPs) that communicate with each other. The bus-
based communication architecture (e.g. OCP, CoreConnect, AMBA etc.), which determines the pins at the IP 
interface and for which the bus topology and communication parameter values must be synthesized, is also 
assumed to be specified. It is assumed that hardware software partitioning has taken place and that the appropriate 
functionality has been mapped onto hardware IPs (either standard IPs or ASIC blocks) and software (scheduled to 
run on a processor IP). The IPs are assumed to be standard “black box” components which cannot be modified 
during the synthesis process, except for the memory blocks. We are also given one or more throughput constraints 
for the system which must be met. These constraints can involve communication between two or more IPs. Fig. 1 
shows a communication throughput graph (CTG) where the vertices represent cores and the edges connect cores 
that communicate with each other. The figure shows a constraint path involving IPs MEM1, S1 and M2, for 
which average throughput of data streaming out of the master M2 must not fall below 360 Mbps (Megabits per 
second).  A throughput constraint path, in general, has a single master, possibly a DMA and can have any number 
of slaves and memories. The problem then is to generate a bus topology and determine communication parameter 
values for the selected standard communication architecture, which enables all valid inter-IP communication and 
satisfies every throughput constraint in the system. Additionally, the synthesized bus architecture which satisfies 
all constraints must be as low cost as possible. This means that, for instance, if we have a choice between two bus 
architectures that satisfy all constraints – one with a lower bus width than the other, then we will choose the 
architecture with the lower bus width. 
 
B. Strategies for Meeting Throughput Constraints  

 
Fig. 1 shows a communication throughput graph of a system and a simple bus mapping for it. All the bus 

masters and high performance slaves and memories are part of the main bus, while the high latency, low 
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bandwidth slaves and memories are part of the peripheral bus. Most standard bus communication architectures 
follow a similar bus classification scheme. AMBA [11] for instance calls the main bus an Advanced High 
Performance Bus (AHB). The peripheral bus is called Advanced Peripheral Bus (APB).  

 

M1M1

M2M2

M3M3

S1S1

S3S3

S2S2

MEM1MEM1

MEM2MEM2

MEM3MEM3

360 Mbps

 

BridgeBridge
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M2M2

M3M3

S2S2 MEM2MEM2

MEM3MEM3 S3S3

S1S1

main bus

peripheral bus

 
 

Fig. 1. Example of Communication Throughput Graph (CTG) with corresponding simple bus mapping 
 

The shared bus structure shown in Fig. 1 may or may not violate the throughput requirement of the system. In 
the case that there is a violation, we need to transform and customize the bus architecture till the throughput 
requirement is met. We classify the changes to be made to the bus architecture into two categories – Architecture 
Transformations and Parameter Customizations. These are discussed below. 

 
a. Architecture Transformations 
 

These transformations change the memory architecture and transform the bus topology by adding or removing 
busses to the existing bus architecture, and redistributing components on them. The aim of these transformations 
is to improve system performance so that throughput constraints are satisfied. For the purpose of our synthesis 
algorithm, we identified five such transformations. Note that this is not an exhaustive list, and can be extended to 
include additional transformations.  

 
(i) Splitting Memories: It is possible that different masters access non overlapping regions (in memory space) 

of a memory block. If the access times for these masters overlap in time (i.e. simultaneous access), only 
one of these masters can get access to the memory while the others must wait till the transfer is complete. 
In such a case, it is beneficial to split the memory, to improve performance. Fig. 2(a) shows this 
transformation for the system in Fig. 1. MEM1 is split into MEM1a and MEM1b, which now allows 
masters to gain access to the separate regions in MEM1 without having to wait for the other master to 
complete its operation. The splitting of memories is also beneficial for an efficient bus split 
transformation, presented later. 

 
(ii) Dedicated Slaves: Memories and other slaves which are only accessed by a single master can be removed 

from the bus and made private to the accessing master. This prevents unnecessary traffic on the bus due to 
transfers between the master and the slave. Fig. 2(b) shows how the MEM3 is made private to master M3 
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which is the only master that accesses it. Any slave on the main bus or the peripheral bus can be made 
private. This frees up bandwidth on the bus and improves performance. 
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(b) Making Dedicated Memory/Slave  
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(c) Splitting Main Bus 
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(d) Splitting Peripheral Bus and Extending Memory Ports 
 

Fig. 2. Architectural Transformations 
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(iii) Splitting Main Bus: If the accesses of multiple masters overlap frequently in time, performance can be 
improved by assigning the masters to different busses. This has the effect of increasing bus bandwidth 
available to the masters and reducing arbitration conflicts that degrade performance. Fig. 2(c) shows how 
master M1 is assigned to a separate bus from the one which has masters M1 and M3 on it. Such a switch 
requires that other IPs on the shared bus also be allocated to the appropriate bus. This decision depends on 
how frequently a master interacts with these IPs. To improve performance it makes sense to transfer IPs 
to the bus where they are accessed the most, because inter-bus accesses encounter the overhead of the 
bridge, which can actually degrade performance. It is possible that an IP is accessed frequently by masters 
on the two separate busses, and due to the bridge overhead the performance gets degraded. In such a case, 
splitting busses is not the best option. However, if the set of IPs accessed by masters on separate busses is 
mostly disjoint, then performance improves substantially with bus splitting. The major cost of splitting 
the main bus is the addition of a bridge for inter-bus access. 

 
(iv) Splitting Peripheral Bus: If slaves on the peripheral bus are accessed simultaneously by several masters, 

only one master can gain access while the others must wait for the operation to finish. This can degrade 
performance. To overcome this bottleneck, the peripheral bus can be split so that slaves which are 
accessed simultaneously are on different peripheral busses. Fig. 2(d) shows the case when slave S1 is 
separated from the rest of the peripherals on the peripheral bus, and attached to a newly created peripheral 
bus. The major cost of splitting the peripheral bus is the addition of bridges, just like in the case of 
splitting the main bus. 

 
(v) Increasing Memory Ports: For memories for which requests from masters overlap both in space and time, 

performance can be improved by adding additional ports. Fig. 2(d) shows how Memory MEM1a can be 
simultaneously accessed by more than one master because it has multiple ports. 

 
b. Parameter Customizations 
 

Certain communication parameters can have a significant impact on system performance. We have identified 
five such customizable parameters which we use in our synthesis approach. Just like the architecture 
transformations, this list is not exhaustive and can be extended to include additional parameters.  

 
(i) Data Bus Width: The width of the data bus can significantly impact the throughput of the system. 

Changing the width from 32 to 64 bits for instance effectively doubles the theoretical bus bandwidth, 
allowing more data to be transferred per unit time. 

 
(ii) Arbitration Protocols: Shared busses require an arbitration protocol to determine which master gets 

control of the bus when multiple masters request access to the bus simultaneously. There are several 
arbitration protocols that can be used, such as static priority, round robin (RR), random and time division 
multiplexed access (TDMA). The arbitration protocol can effectively control the frequency of allowed 
accesses and performance for the masters on the bus. 

 
(iii) DMA burst size: Changing DMA burst size can have varying effects on system performance [5]. 

Increasing burst size on a shared bus can improve throughput for certain masters while limiting it for 
others. 

 
(iv) OO Buffer Size: Out of order (OO) buffers are used by slaves that support out-of-order transaction 

completion [12]. OO transaction completion allows a variable latency slave to signal the completion of a 
read or write transaction regardless of the order in which the transaction was received. Normally, if OO 
completion is not supported, a transaction cannot complete before other transactions issued before it have 
completed. Thus OO completion improves performance. The buffer size determines how many out of 
order requests can be simultaneously handled, and directly affects performance in systems that support 
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OO completion.  
 

(v) Bus Speed: Finally, increasing the bus speed can improve throughput performance. However, this 
parameter is technology dependent and cannot be increased beyond a certain value. Also, increasing 
speed has several costs associated with it such as the addition of buffer blocks to synchronize core speeds 
with bus speeds, and the addition of register slices to meet timing closure, which actually increases 
latency in the design. 

 
C. Synthesis Approach 

 

This section describes our synthesis approach. We start with a few definitions. A communication throughput 
graph, CTG = G(V,A) is a directed graph, where each vertex v represents a component in the system, and an edge 
aij connects components i and j that need to communicate with each other. Furthermore, each arc is associated 
with an average throughput constraint �(aij) if it lies within a throughput constraint path. For simplicity, we 
assume that an edge can only be part of one throughput constraint path, and have only one value for �(aij). Fig. 1 
shows a communication throughput graph with arcs aMEM1|M2 and aS1|M2 between components MEM1 and M2, and 
S1 and M2 respectively having a throughput constraint value of 360 Mbps, corresponding to the constraint path 
they belong to. 

Standard communication architectures [11-15] classify IPs as high performance, low latency components 
which must be added to the high performance (main) bus, or as low performance, high latency peripherals which 
must be added to the slower peripheral bus. We take this classification into account and define �(v) which 
indicates whether a component belongs to the main bus or the peripheral bus. This allows us to determine valid 
moves for the component in our automated synthesis approach. 

We classify the architectural transformations discussed earlier into two categories. The first category consists 
of all the transformations which improve performance of the entire system and not just for the throughput 
constraint paths. We call these the Throughput Path Independent (TPI) transforms. The set of these transforms is 
defined as STPI = {Tsm,Tds} where Tsm is the split memory and Tds is the dedicated slave transformation described 
earlier. The second category consists of all the transformations which improve performance for the throughput 
constraint paths. These are the Throughput Path Dependent (TPD) transforms. The set of these transforms is 
defined as STPD = {Tsmb,Tspb,Timp} where Tsmb is the split main bus, Tspb is the split peripheral bus and Timp is the 
increase memory port transformation. 

Next we define �k as the kth throughput constraint set, which contains all the vertices (components) that are 
part of a throughput constraint path. Then set � is a superset of all n throughput constraints in the system, and is 
defined as 

�
n

1k

k

=

= ΓΩ  

Let � = {Asm, Ads, Asmb, Aspb, Aimp} be a superset of sets corresponding to all the architecture transformations, 
where each set element contains a list of components which are eligible for the particular transformation. For 
instance, Aimp will hold the list of all memory blocks for which the number of ports can be increased. This ensures 
that the transformation occurs only on those memory blocks.  

Similarly, let � = {Pwd, Psp, Pdma, Parb, Poo} be a superset of sets corresponding to all the parameter 
customizations, where each set element contains a list of valid values for the corresponding customizable 
parameter. For instance, Pwd can contain the values 16, 32 and 64 which represent the allowed data bus widths that 
can be selected during synthesis. 

We will now explain our automated synthesis flow. The inputs to the flow (from the designer) include a CTG 
graph, constraint superset �, architecture transformation superset � and parameter customization superset �. The 
general idea is to map all the components from the CTG to a simple bus topology and then systematically 
performing architectural transformations on it till all constraints are satisfied. We first perform all Throughput 
Path Independent transforms in order to improve performance of the entire system. Next we select a throughput 
constraint path and focus on it, performing different Throughput Path Dependent transforms till the constraint is 
satisfied. The latter process is repeated for every constraint, until all constraints are satisfied.  
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Fig. 3 depicts the flow. In the first step, all components from the CTG are mapped to a simple topology 
having a single main bus and a single peripheral bus. We then call the execute function which simulates the 
simple design for the various combinations of customizable parameters. The function takes a parameter which 
indicates the constraints that it needs to check for, during simulation. The value all_constr which is passed to the 
function in this case, indicates to the function that we want to check for all constraints in the system. The function 
then returns a true value if all throughput constraints are satisfied for some combination of communication 
parameters, and false otherwise. If all constraints are satisfied, we proceed directly to Step 8 and call the minimize 
function which attempts to reduce the cost of the system. If all constraints are not satisfied then we proceed to 
Step 2 and apply all the transformations in the set STPI. We call execute again to check if all constraints are met for 
some combination of communication parameters, after the transformations. If the constraints are still not met, we 
select a throughput constraint from set � (Step 3), and then randomly select and apply a transformation from the 
set STPD (Step 4). Next, we call execute again, this time to check if the selected constraint was satisfied after the 
transformation. If the constraint is not satisfied, we check to see how the best result (defined as the largest 
throughput for a combination of communication parameter values, which is still lesser than the desired 
throughput) after the current transformation compares with the best result from before the transformation. If the 
result is worse, we undo the effect of the transformation (Step 5) before returning to Step 4 to try another 
transformation from STPD. If the constraint is not satisfied even after all the transformations in STPD have been 
applied, we return the best result for the unsatisfied constraint path to the designer and exit (Step 7). If the 
constraint is satisfied, we remove the satisfied constraint from set CS (Step 6) and return to Step 3 to select the 
next constraint to be satisfied. We repeat the sequence of steps, till all constraints are satisfied or we encounter a 
constraint which cannot be satisfied. 

Ideally, every time we call the execute function to explore the effect of customizable parameters on the bus 
architecture we would like to test every possible combination of the parameters specified by the designer. 
However, this makes the exploration space prohibitively large and too time consuming to traverse while searching 
for a solution to satisfy the throughput constraints in the system. Therefore we must prune the design space to 
achieve realistic run times. The execute function incorporates design pruning for customizable parameters, and is 
shown in Fig. 4. For every combination of customizable parameter values for which the system must be 
simulated, we assume a single value for the bus speed, bus width and OO buffer size, which is the maximum 
allowed value for these parameters specified in Pwd, Psp and Poo. These values give us the best performance and a 
greater likelihood that the throughput constraint will be met. This leaves us with a design space requiring 
combinations of (i) arbitration protocol and (ii) DMA burst size. We can reduce the exploration space further by 
intelligently pruning values from their parameter sets Parb and Pdma. For instance, consider the case of a throughput 
constraint path with a single master which is given the maximum static arbitration priority on a bus with other 
masters. If the constraint is not satisfied for any combination of communication parameters, we can ignore all 
other static priority combinations for which this master has the maximum priority, because they will always 
produce inferior results. This is one way in which the arbitration protocol space can be pruned. Similarly, the 
DMA burst size exploration space can also be restricted. Once a DMA burst size is found to satisfy a constraint 
(which is part of a combination of communication parameter values satisfying the constraint), we can effectively 
eliminate all burst size values lower than the selected value, when we proceed to satisfy other constraints. Thus 
the customizable parameter space is greatly restricted, speeding up the synthesis process.   

Once a bus topology and a set of communication parameter values are found which satisfy all throughput 
constraints, we call the minimize function. This is a simple function that attempts to minimize the ‘optimistic’ 
values we selected for the bus widths, speeds and OO buffer sizes, to reduce the cost of the final system. In the 
function, we first select the bus speed set Psp, and repeatedly simulate the design for values of bus speed lower 
than the one currently selected. The aim is to arrive at the lowest value of bus speed for which all constraints are 
still met. The values of the other parameters are not changed and the reduction is performed for all busses in the 
bus architecture. We repeat this process for bus widths and OO buffer sizes. The end result is a low cost system 
with the lowest acceptable communication parameter values that still allow the design to meet all constraints.  
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Fig. 3. Automated Synthesis Flow 
 

 



 11 

 
 

Fig. 4. execute function 
 

IV. Case Study 
 

In order to demonstrate the usefulness of our approach, we consider a case study of a broadband 
communication subsystem shown in Fig. 5. The ASIC1 block is an encryption accelerator which performs 
standard encryption such as DES, 3DES, SHA-1 and AES in hardware. The ARM926 processor runs 
communication protocol stack software and also performs control operations at the system level. The DMA 
engine handles packet forwarding and routing. Additionally, the SDRAM interface supports OO transaction 
completion for improved memory access performance. There are two throughput constraints that must be satisfied 
in this system. The first involves the encryption engine, involving the ASIC1 block. The ASIC1 block needs to 
process data from RAM3 once triggered by the ARM processor, and send it to the external interface (EXT IF) 
component at a minimum rate of 100 Mbps. The second throughput constraint involves the USB subsystem. Data 
packets received at the USB must be routed to RAM1, from where the DMA engine transfers the data to an 
external memory interface (SDRAM IF), at a minimum rate of 480 Mbps. Table 1 gives the allowed values for the 
customizable parameters, set initially by the designer. Additionally, we assume that only single port memories are 
available.  
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Fig. 5. Broadband SoC Subsystem 
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Table 1. Customizable Parameter Set 
 

Set Values 
Pwd  16, 32, 64 
Psp 33, 66, 100, 133, 166 
Pdma 2, 4, 8, 16 
Parb static, RR, random 
Poo 1-8 

    
The target communication architecture for the automated synthesis is the AMBA3 AXI high performance bus 

[12] and a low bandwidth APB bus [11]. For the purposes of system simulation, we use the fast transaction based 
simulation models first proposed in [6], which allow simulation speeds well in excess of 100K cycles/sec while 
running embedded software on the processor ISS. The output of our automated synthesis engine is shown in Fig. 
6. The values for customizable parameters are given in Table 2. 
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Fig. 6. Synthesized Architecture 
 
 

Table 2. Communication Parameter Values 
 

Parameter Values 
 AXI 1 AXI 2 APB 
Bus width 32 32 32 
Bus speed 66 133 33 
arb scheme static ASIC1>DMA>USB>ARM 
DMA size 16 
OO buffer  4 

 
 

There are a few important observations here. Firstly, we see that the synthesis engine splits RAM3, creating a 
dedicated memory for the ARM926 processor (RAM3b) in the process, which reduces the load and conflict on the 
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main bus. The ROM is also made private to the processor. Secondly, we find that the main AXI bus has been 
split, so that components which are part of the USB throughput constraint path and the RAM2 component now 
have a dedicated bus. The rest of the components remain on the original AXI bus. The APB bus is not split 
because it is not directly involved in any constraint path. The appropriate communication parameter values allow 
us to merge the components in the ASIC1 throughput constraint path with other components that consume bus 
bandwidth, such as the ARM926. A manual refinement effort to obtain a bus architecture satisfying both 
constraints would be inclined to create an additional bus, separating the ARM926 processor from the components 
in the ASIC1 throughput constraint path. Our synthesis approach finds a lower cost solution, and this is made 
possible by integrating communication parameters in the synthesis flow.  

Our second case study involves a variant of the broadband communication subsystem from Fig. 5, shown in 
Fig. 7. Here, additional functionality in the form of a packet switch module (SWITCH) and memory (RAM4) 
have been added to the system. While the constraint paths and throughput requirements remain the same, note the 
dependence of the newly added SWITCH component on the external interface (EXT IF).  

 

ARM926ARM926

ASIC1ASIC1

ITCITC

UARTUART

ROMROM

USBUSB

DMADMA

SDRAM 
IF

SDRAM 
IF

RAM2RAM2

RTCRTC
TIMERTIMER

RAM1RAM1

RAM3RAM3
EXT 

IF
EXT 

IF

SWITCHSWITCH

RAM4RAM4

 
Fig. 7. A Variant Broadband SoC Subsystem  

 
Table 3. Customizable Parameter Set 

 
Set Values 
Pwd  16, 32 
Psp 66, 133 
Pdma 2, 4, 8, 16 
Parb static, RR, random 
Poo 1-8 

 
Table 3 gives the allowed values for the customizable parameters, set initially by the designer. Like in the 

previous case, the target communication architecture for the automated synthesis is the AMBA3 AXI high 
performance bus [12] and a low bandwidth APB bus [11]. The output of our automated synthesis engine is shown 
in Fig. 8. The values for synthesized communication parameters are given in Table 4. 
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Fig. 8. Synthesized Architecture 
 

Table 4. Communication Parameter Values 
 

Parameter Values 
 AXI 1 AXI 2 AXI 3 APB 
Bus width 32 32 32 32 
Bus speed 66 133 66 66 
arb scheme static ASIC1>DMA>USB>ARM>SWITCH 
DMA size 16 
OO buffer  4 

 
From the synthesized architecture, we observe that the ARM processor and the SWITCH components are 

assigned to a separate bus (AXI 3). With the increased activity of the ARM processor due to the addition of the 
SWITCH, the processor can no longer share the same bus as ASIC1. Likewise, the SWITCH interacts frequently 
with the memory RAM4 and the ARM processor, and therefore it is attached to the AXI 3 bus. Even though the 
EXT IF module is accessed frequently by the SWITCH component, it remains attached to AXI 1 since it is part of 
the ASIC1 constraint path. Due to the lower arbitration priority of the SWITCH (Table 4) as compared to ASIC1, 
the constraint path is not adversely affected by accesses to EXT IF from the SWITCH component. 

The entire automated synthesis process for each case study took a few hours to complete. It should be noted that 
manually exploring such a complex design space to generate a bus topology and values for communication 
parameters that satisfy all throughput constraints would take a designer several days or even weeks.   
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V. Conclusion and Future Work 
 

In this report we presented an automated approach for synthesizing bus-based communication architectures to 
meet throughput constraints in a design. Our approach synthesizes not only the bus topology, but also generates 
values for communication architecture parameters such as arbitration strategies, bus widths, speeds, DMA burst 
sizes and OO buffer sizes, while satisfying several throughput requirements and minimizing system cost. Results 
from the automated synthesis of a bus architecture for the broadband communication subsystem case studies show 
the usefulness of our approach. This report is part of ongoing research. Future work will focus on speeding up the 
simulation engine and developing heuristics to handle more complex systems having intersecting throughput 
constraint paths.  
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