
 1

Automated Synthesis of Bus Architectures for Systems
with Throughput Constraints ∗∗∗∗

Sudeep Pasricha†, Nikil Dutt† and Mohamed Ben-Romdhane‡

 †Center for Embedded Computer Systems ‡Conexant Systems Inc.
 University of California Irvine 4000 Mac Arthur Blvd
 Irvine, CA 92697-3425, USA Newport Beach, CA 92660 USA
 1 (949) 824-2248 1 (949) 483-4600
 {sudeep, dutt}@cecs.uci.edu m.benromdhane@conexant.com

CECS Technical Report #04-20
August, 2004

∗ This work was partially supported by grants from Conexant Systems Inc. and UC Micro (03-029)

 2

Automated Synthesis of Bus Architectures for Systems

with Throughput Constraints ∗∗∗∗

Sudeep Pasricha†, Nikil Dutt† and Mohamed Ben-Romdhane‡

 †Center for Embedded Computer Systems ‡Conexant Systems Inc.
 University of California Irvine 4000 Mac Arthur Blvd
 Irvine, CA 92697-3425, USA Newport Beach, CA 92660 USA
 1 (949) 824-2248 1 (949) 483-4600
 {sudeep, dutt}@cecs.uci.edu m.benromdhane@conexant.com

CECS Technical Report #04-20
August, 2004

Abstract

 As System-on-Chip (SoC) designs become more complex, it becomes increasingly harder to design
communication architectures which satisfy designer constraints. Manually traversing the vast communication
design space for constraint-driven synthesis is not feasible anymore. In this report we propose an approach that
automates the synthesis of bus-based communication architectures for systems characterized by (possibly several)
throughput constraints. Our approach accurately and effectively prunes the large communication design space to
synthesize a feasible low-cost bus architecture which satisfies all throughput constraints. We present a case study
of a broadband SoC subsystem, for which we were able to synthesize a bus architecture in a matter of hours,
instead of days or even weeks it would have taken for a manual effort.

∗ This work was partially supported by grants from Conexant Systems Inc. and UC Micro (03-029)

 3

I. Introduction

The performance of System-on-Chip (SoC) designs today is heavily dependent on the efficiency of their
communication architectures. Increasing SoC complexity, however, has made it harder to design communication
architectures which meet performance constraints. Bus-based communication architectures, which are widely
used in SoC designs today, have customizable topologies, arbitration protocols, pipeline depths, buffer sizes,
DMA burst modes, bus widths and speeds, all of which combine to create a vast exploration space. Changing just
one of these parameters requires a reevaluation of the others due to their highly interdependent nature. For
instance, increasing DMA burst size on a shared bus can improve performance for one part of the system, but it
can degrade the performance of another master on the same shared bus, requiring a change in arbitration strategy
or bus topology to preserve its performance. As a result of this complex interdependence, it becomes impossible
to manually evaluate all possible implementation alternatives. Therefore communication synthesis attempts to
automatically determine a cost efficient communication architecture implementation which meets all performance
constraints.

Typically, systems are characterized by performance constraints which are highly dependent on the nature of
the application. Throughput of communication connections is a good measure of the performance of a system. It
can be used to characterize the whole system (system throughput) or parts of the system (subsystem throughput).
Several modern application domains such as broadband, networking, tele-communication and image processing
have average throughput constraints which must be satisfied in order to avoid bottlenecks and to function
correctly [3].

In this report, we propose an approach for automated synthesis of low cost bus-based communication
architectures for systems characterized by (possibly several) throughput constraints. We chose bus-based
communication architectures like AMBA [11] because of their widespread use in SoC designs today. We assume
that hardware/software partitioning has already taken place, and appropriate functionality has been mapped onto
hardware IPs and software code. Our approach attempts to prune the vast communication design space and uses a
fast simulation engine [6] to quickly analyze interesting combinations of communication parameters. The novelty
of our approach is in the ability to automatically satisfy multiple throughput constraints while synthesizing a
feasible low-cost configuration of a standard bus-based communication architecture (such as [11]) which is
commonly used in SoC designs. We not only synthesize the bus topology, but also determine values for
communication architecture parameters such as arbitration strategies, bus widths, bus speed, Out-of-order (OO)
buffer sizes [12] and DMA burst sizes. Our approach is easily portable across different standard bus-based
communication architectures such as CoreConnect [13], Wishbone [14] and OCP [15], and can be extended to
automatically synthesize other communication architecture specific parameters as well. To demonstrate the
usefulness of our approach, we present an interesting case study of an AMBA based SoC subsystem from the
broadband communication application domain. Using our approach, we were able to synthesize a feasible low-
cost bus architecture which satisfied all throughput constraints for the SoC subsystem in a matter of a few hours.
Performing such an exploration manually would have taken a designer several days or even weeks.

The rest of the report is organized as follows. Section II discusses related work in the area of bus-based
communication architecture synthesis. Section III formulates the problem and presents our approach for
automated throughput-driven bus architecture synthesis. Section IV describes a case study of a broadband
communication SoC subsystem where we used our approach to automatically synthesize the bus architecture.
Finally Section V concludes the report and gives directions for future work.

II. Related Work

There is already a significant body of research in the area of bus-based communication architecture synthesis.
Early work from Narayan et al [16] was aimed at determining a minimum bus width when mapping several
communication channels on one bus. Daveau et al [8] propose an algorithm for interface synthesis and simple
synchronization protocol (e.g. handshakes, FIFO) selection during communication synthesis. Gasteier et al [3]
describe the generation of a low cost communication topology after analyzing statically scheduled data transfers.
However their approach synthesizes only simple busses without arbitration, to minimize cost.

 4

Ryu et al [1] generate five different custom bus templates and compare throughput performance for
applications mapped on them. Here the designer is limited to selecting busses from these simple pre-designed
templates which lack the high performance features found in standard bus architectures such as in [12]. Pinto et al
[4] propose a general purpose algorithm for constraint-driven communication synthesis. The goal is to minimize a
communication cost function and assumes that relative positions of cores in a SoC are fixed, which is not possible
when performing exploration early in the design flow (which is usually the case). Lyonnard et al [2] propose a
synthesis design flow which supports two generic communication templates – shared bus and point to point
connections. These templates need to be parameterized manually, which makes it cumbersome and time-
consuming for the designer to select appropriate combinations of parameters to meet design requirements. Lahiri
et al [5] design communication architectures after exploring different solutions using fast performance simulation.
However, they assume the bus topology to be given. Thepayasuwan et al [7] and Drinic et al [10] propose
approaches which takes into consideration an estimate of the final layout of the design to generate a bus topology.
However, neither of these approaches considers the effect of different communication parameters on system
performance during synthesis.

Our approach is different from existing approaches because we focus on satisfying throughput constraints
while automatically synthesizing low cost bus architectures. And unlike existing approaches, we not only
synthesize the bus topology but also generate values for the complex interdependent communication architecture
parameters such as arbitration strategies, bus widths, bus speed, OO buffer sizes and DMA burst sizes.

III. Automated Bus Architecture Synthesis

We now describe our approach for automated throughput-driven bus architecture synthesis. First we

formulate the problem and present our assumptions. Next we give an overview of the strategies we use to meet
throughput constraints. Finally we present our automated bus architecture synthesis approach in detail.

A. Problem Formulation

We are given a SoC architecture with several components (IPs) that communicate with each other. The bus-
based communication architecture (e.g. OCP, CoreConnect, AMBA etc.), which determines the pins at the IP
interface and for which the bus topology and communication parameter values must be synthesized, is also
assumed to be specified. It is assumed that hardware software partitioning has taken place and that the appropriate
functionality has been mapped onto hardware IPs (either standard IPs or ASIC blocks) and software (scheduled to
run on a processor IP). The IPs are assumed to be standard “black box” components which cannot be modified
during the synthesis process, except for the memory blocks. We are also given one or more throughput constraints
for the system which must be met. These constraints can involve communication between two or more IPs. Fig. 1
shows a communication throughput graph (CTG) where the vertices represent cores and the edges connect cores
that communicate with each other. The figure shows a constraint path involving IPs MEM1, S1 and M2, for
which average throughput of data streaming out of the master M2 must not fall below 360 Mbps (Megabits per
second). A throughput constraint path, in general, has a single master, possibly a DMA and can have any number
of slaves and memories. The problem then is to generate a bus topology and determine communication parameter
values for the selected standard communication architecture, which enables all valid inter-IP communication and
satisfies every throughput constraint in the system. Additionally, the synthesized bus architecture which satisfies
all constraints must be as low cost as possible. This means that, for instance, if we have a choice between two bus
architectures that satisfy all constraints – one with a lower bus width than the other, then we will choose the
architecture with the lower bus width.

B. Strategies for Meeting Throughput Constraints

Fig. 1 shows a communication throughput graph of a system and a simple bus mapping for it. All the bus

masters and high performance slaves and memories are part of the main bus, while the high latency, low

 5

bandwidth slaves and memories are part of the peripheral bus. Most standard bus communication architectures
follow a similar bus classification scheme. AMBA [11] for instance calls the main bus an Advanced High
Performance Bus (AHB). The peripheral bus is called Advanced Peripheral Bus (APB).

M1M1

M2M2

M3M3

S1S1

S3S3

S2S2

MEM1MEM1

MEM2MEM2

MEM3MEM3

360 Mbps

BridgeBridge

M1M1 MEM1MEM1

M2M2

M3M3

S2S2 MEM2MEM2

MEM3MEM3 S3S3

S1S1

main bus

peripheral bus

Fig. 1. Example of Communication Throughput Graph (CTG) with corresponding simple bus mapping

The shared bus structure shown in Fig. 1 may or may not violate the throughput requirement of the system. In
the case that there is a violation, we need to transform and customize the bus architecture till the throughput
requirement is met. We classify the changes to be made to the bus architecture into two categories – Architecture
Transformations and Parameter Customizations. These are discussed below.

a. Architecture Transformations

These transformations change the memory architecture and transform the bus topology by adding or removing
busses to the existing bus architecture, and redistributing components on them. The aim of these transformations
is to improve system performance so that throughput constraints are satisfied. For the purpose of our synthesis
algorithm, we identified five such transformations. Note that this is not an exhaustive list, and can be extended to
include additional transformations.

(i) Splitting Memories: It is possible that different masters access non overlapping regions (in memory space)

of a memory block. If the access times for these masters overlap in time (i.e. simultaneous access), only
one of these masters can get access to the memory while the others must wait till the transfer is complete.
In such a case, it is beneficial to split the memory, to improve performance. Fig. 2(a) shows this
transformation for the system in Fig. 1. MEM1 is split into MEM1a and MEM1b, which now allows
masters to gain access to the separate regions in MEM1 without having to wait for the other master to
complete its operation. The splitting of memories is also beneficial for an efficient bus split
transformation, presented later.

(ii) Dedicated Slaves: Memories and other slaves which are only accessed by a single master can be removed

from the bus and made private to the accessing master. This prevents unnecessary traffic on the bus due to
transfers between the master and the slave. Fig. 2(b) shows how the MEM3 is made private to master M3

 6

which is the only master that accesses it. Any slave on the main bus or the peripheral bus can be made
private. This frees up bandwidth on the bus and improves performance.

BridgeBridge

M1M1 MEM1aMEM1a

M2M2 M3M3S2S2 MEM2MEM2

MEM3MEM3 S3S3

S1S1

main bus

peripheral bus

MEM1bMEM1b

MEM1

MEM1: 0x8000f000 - 0x8000ffff MEM1a: 0x8000f000 - 0x80006fff
MEM1b: 0x80007000 - 0x8000ffff

(a) Splitting Memory

BridgeBridge

M1M1 MEM1aMEM1a

M2M2 M3M3S2S2 MEM2MEM2

MEM3MEM3

S3S3

S1S1

main bus

peripheral bus

MEM1bMEM1b

MEM1

(b) Making Dedicated Memory/Slave

M1M1

MEM1aMEM1aM2M2

M3M3S2S2
MEM2MEM2

MEM3MEM3

S3S3

S1S1

peripheral bus

MEM1bMEM1b

main2 bus

main1 bus

main/
periph
bridge

main/
periph
bridge

main1/main2
bridge

main1/main2
bridge

(c) Splitting Main Bus

M1M1

MEM1aMEM1aM2M2

M3M3S2S2

MEM2MEM2

MEM3MEM3

S3S3

peripheral1 bus

MEM1bMEM1b

main2 bus

main1 bus

main/periph1
bridge

main/periph1
bridge

main1/main2
bridge

main1/main2
bridge

main/periph2
bridge

main/periph2
bridge

S1S1

peripheral2 bus

(d) Splitting Peripheral Bus and Extending Memory Ports

Fig. 2. Architectural Transformations

 7

(iii) Splitting Main Bus: If the accesses of multiple masters overlap frequently in time, performance can be
improved by assigning the masters to different busses. This has the effect of increasing bus bandwidth
available to the masters and reducing arbitration conflicts that degrade performance. Fig. 2(c) shows how
master M1 is assigned to a separate bus from the one which has masters M1 and M3 on it. Such a switch
requires that other IPs on the shared bus also be allocated to the appropriate bus. This decision depends on
how frequently a master interacts with these IPs. To improve performance it makes sense to transfer IPs
to the bus where they are accessed the most, because inter-bus accesses encounter the overhead of the
bridge, which can actually degrade performance. It is possible that an IP is accessed frequently by masters
on the two separate busses, and due to the bridge overhead the performance gets degraded. In such a case,
splitting busses is not the best option. However, if the set of IPs accessed by masters on separate busses is
mostly disjoint, then performance improves substantially with bus splitting. The major cost of splitting
the main bus is the addition of a bridge for inter-bus access.

(iv) Splitting Peripheral Bus: If slaves on the peripheral bus are accessed simultaneously by several masters,

only one master can gain access while the others must wait for the operation to finish. This can degrade
performance. To overcome this bottleneck, the peripheral bus can be split so that slaves which are
accessed simultaneously are on different peripheral busses. Fig. 2(d) shows the case when slave S1 is
separated from the rest of the peripherals on the peripheral bus, and attached to a newly created peripheral
bus. The major cost of splitting the peripheral bus is the addition of bridges, just like in the case of
splitting the main bus.

(v) Increasing Memory Ports: For memories for which requests from masters overlap both in space and time,

performance can be improved by adding additional ports. Fig. 2(d) shows how Memory MEM1a can be
simultaneously accessed by more than one master because it has multiple ports.

b. Parameter Customizations

Certain communication parameters can have a significant impact on system performance. We have identified
five such customizable parameters which we use in our synthesis approach. Just like the architecture
transformations, this list is not exhaustive and can be extended to include additional parameters.

(i) Data Bus Width: The width of the data bus can significantly impact the throughput of the system.

Changing the width from 32 to 64 bits for instance effectively doubles the theoretical bus bandwidth,
allowing more data to be transferred per unit time.

(ii) Arbitration Protocols: Shared busses require an arbitration protocol to determine which master gets

control of the bus when multiple masters request access to the bus simultaneously. There are several
arbitration protocols that can be used, such as static priority, round robin (RR), random and time division
multiplexed access (TDMA). The arbitration protocol can effectively control the frequency of allowed
accesses and performance for the masters on the bus.

(iii) DMA burst size: Changing DMA burst size can have varying effects on system performance [5].

Increasing burst size on a shared bus can improve throughput for certain masters while limiting it for
others.

(iv) OO Buffer Size: Out of order (OO) buffers are used by slaves that support out-of-order transaction

completion [12]. OO transaction completion allows a variable latency slave to signal the completion of a
read or write transaction regardless of the order in which the transaction was received. Normally, if OO
completion is not supported, a transaction cannot complete before other transactions issued before it have
completed. Thus OO completion improves performance. The buffer size determines how many out of
order requests can be simultaneously handled, and directly affects performance in systems that support

 8

OO completion.

(v) Bus Speed: Finally, increasing the bus speed can improve throughput performance. However, this
parameter is technology dependent and cannot be increased beyond a certain value. Also, increasing
speed has several costs associated with it such as the addition of buffer blocks to synchronize core speeds
with bus speeds, and the addition of register slices to meet timing closure, which actually increases
latency in the design.

C. Synthesis Approach

This section describes our synthesis approach. We start with a few definitions. A communication throughput
graph, CTG = G(V,A) is a directed graph, where each vertex v represents a component in the system, and an edge
aij connects components i and j that need to communicate with each other. Furthermore, each arc is associated
with an average throughput constraint �(aij) if it lies within a throughput constraint path. For simplicity, we
assume that an edge can only be part of one throughput constraint path, and have only one value for �(aij). Fig. 1
shows a communication throughput graph with arcs aMEM1|M2 and aS1|M2 between components MEM1 and M2, and
S1 and M2 respectively having a throughput constraint value of 360 Mbps, corresponding to the constraint path
they belong to.

Standard communication architectures [11-15] classify IPs as high performance, low latency components
which must be added to the high performance (main) bus, or as low performance, high latency peripherals which
must be added to the slower peripheral bus. We take this classification into account and define �(v) which
indicates whether a component belongs to the main bus or the peripheral bus. This allows us to determine valid
moves for the component in our automated synthesis approach.

We classify the architectural transformations discussed earlier into two categories. The first category consists
of all the transformations which improve performance of the entire system and not just for the throughput
constraint paths. We call these the Throughput Path Independent (TPI) transforms. The set of these transforms is
defined as STPI = {Tsm,Tds} where Tsm is the split memory and Tds is the dedicated slave transformation described
earlier. The second category consists of all the transformations which improve performance for the throughput
constraint paths. These are the Throughput Path Dependent (TPD) transforms. The set of these transforms is
defined as STPD = {Tsmb,Tspb,Timp} where Tsmb is the split main bus, Tspb is the split peripheral bus and Timp is the
increase memory port transformation.

Next we define �k as the kth throughput constraint set, which contains all the vertices (components) that are
part of a throughput constraint path. Then set � is a superset of all n throughput constraints in the system, and is
defined as

�
n

1k

k

=

= ΓΩ

Let � = {Asm, Ads, Asmb, Aspb, Aimp} be a superset of sets corresponding to all the architecture transformations,
where each set element contains a list of components which are eligible for the particular transformation. For
instance, Aimp will hold the list of all memory blocks for which the number of ports can be increased. This ensures
that the transformation occurs only on those memory blocks.

Similarly, let � = {Pwd, Psp, Pdma, Parb, Poo} be a superset of sets corresponding to all the parameter
customizations, where each set element contains a list of valid values for the corresponding customizable
parameter. For instance, Pwd can contain the values 16, 32 and 64 which represent the allowed data bus widths that
can be selected during synthesis.

We will now explain our automated synthesis flow. The inputs to the flow (from the designer) include a CTG
graph, constraint superset �, architecture transformation superset � and parameter customization superset �. The
general idea is to map all the components from the CTG to a simple bus topology and then systematically
performing architectural transformations on it till all constraints are satisfied. We first perform all Throughput
Path Independent transforms in order to improve performance of the entire system. Next we select a throughput
constraint path and focus on it, performing different Throughput Path Dependent transforms till the constraint is
satisfied. The latter process is repeated for every constraint, until all constraints are satisfied.

 9

Fig. 3 depicts the flow. In the first step, all components from the CTG are mapped to a simple topology
having a single main bus and a single peripheral bus. We then call the execute function which simulates the
simple design for the various combinations of customizable parameters. The function takes a parameter which
indicates the constraints that it needs to check for, during simulation. The value all_constr which is passed to the
function in this case, indicates to the function that we want to check for all constraints in the system. The function
then returns a true value if all throughput constraints are satisfied for some combination of communication
parameters, and false otherwise. If all constraints are satisfied, we proceed directly to Step 8 and call the minimize
function which attempts to reduce the cost of the system. If all constraints are not satisfied then we proceed to
Step 2 and apply all the transformations in the set STPI. We call execute again to check if all constraints are met for
some combination of communication parameters, after the transformations. If the constraints are still not met, we
select a throughput constraint from set � (Step 3), and then randomly select and apply a transformation from the
set STPD (Step 4). Next, we call execute again, this time to check if the selected constraint was satisfied after the
transformation. If the constraint is not satisfied, we check to see how the best result (defined as the largest
throughput for a combination of communication parameter values, which is still lesser than the desired
throughput) after the current transformation compares with the best result from before the transformation. If the
result is worse, we undo the effect of the transformation (Step 5) before returning to Step 4 to try another
transformation from STPD. If the constraint is not satisfied even after all the transformations in STPD have been
applied, we return the best result for the unsatisfied constraint path to the designer and exit (Step 7). If the
constraint is satisfied, we remove the satisfied constraint from set CS (Step 6) and return to Step 3 to select the
next constraint to be satisfied. We repeat the sequence of steps, till all constraints are satisfied or we encounter a
constraint which cannot be satisfied.

Ideally, every time we call the execute function to explore the effect of customizable parameters on the bus
architecture we would like to test every possible combination of the parameters specified by the designer.
However, this makes the exploration space prohibitively large and too time consuming to traverse while searching
for a solution to satisfy the throughput constraints in the system. Therefore we must prune the design space to
achieve realistic run times. The execute function incorporates design pruning for customizable parameters, and is
shown in Fig. 4. For every combination of customizable parameter values for which the system must be
simulated, we assume a single value for the bus speed, bus width and OO buffer size, which is the maximum
allowed value for these parameters specified in Pwd, Psp and Poo. These values give us the best performance and a
greater likelihood that the throughput constraint will be met. This leaves us with a design space requiring
combinations of (i) arbitration protocol and (ii) DMA burst size. We can reduce the exploration space further by
intelligently pruning values from their parameter sets Parb and Pdma. For instance, consider the case of a throughput
constraint path with a single master which is given the maximum static arbitration priority on a bus with other
masters. If the constraint is not satisfied for any combination of communication parameters, we can ignore all
other static priority combinations for which this master has the maximum priority, because they will always
produce inferior results. This is one way in which the arbitration protocol space can be pruned. Similarly, the
DMA burst size exploration space can also be restricted. Once a DMA burst size is found to satisfy a constraint
(which is part of a combination of communication parameter values satisfying the constraint), we can effectively
eliminate all burst size values lower than the selected value, when we proceed to satisfy other constraints. Thus
the customizable parameter space is greatly restricted, speeding up the synthesis process.

Once a bus topology and a set of communication parameter values are found which satisfy all throughput
constraints, we call the minimize function. This is a simple function that attempts to minimize the ‘optimistic’
values we selected for the bus widths, speeds and OO buffer sizes, to reduce the cost of the final system. In the
function, we first select the bus speed set Psp, and repeatedly simulate the design for values of bus speed lower
than the one currently selected. The aim is to arrive at the lowest value of bus speed for which all constraints are
still met. The values of the other parameters are not changed and the reduction is performed for all busses in the
bus architecture. We repeat this process for bus widths and OO buffer sizes. The end result is a low cost system
with the lowest acceptable communication parameter values that still allow the design to meet all constraints.

 10

all_constr
met?

all_constr
met? minimize()minimize()

EndEnd

apply all transforms
in set STPI

apply all transforms
in set STPI

execute
(all_constr)

execute
(all_constr)

all_constr
met?

all_constr
met?

select unsatisfied
constraint from set �

select unsatisfied
constraint from set �

apply new transform
from set STPD

apply new transform
from set STPD

execute
(constraint)

execute
(constraint)

constraint
met?

constraint
met?

remove constraint
from set �

remove constraint
from set �

set �
empty?
set �

empty?

set STPD
empty?

set STPD
empty?

is
old config.

better?

is
old config.

better?

undo changes
by transform

undo changes
by transform

report error &
return best system

configuration

report error &
return best system

configuration

customizable
parameters

customizable
parameters

map all IPs to single
main, periph bus

execute
(all_constr)

truefalse

yes

no

true

false

true

false

yes

no

yes

no

1

2

3

4
5

6

7

8

Fig. 3. Automated Synthesis Flow

 11

Fig. 4. execute function

IV. Case Study

In order to demonstrate the usefulness of our approach, we consider a case study of a broadband
communication subsystem shown in Fig. 5. The ASIC1 block is an encryption accelerator which performs
standard encryption such as DES, 3DES, SHA-1 and AES in hardware. The ARM926 processor runs
communication protocol stack software and also performs control operations at the system level. The DMA
engine handles packet forwarding and routing. Additionally, the SDRAM interface supports OO transaction
completion for improved memory access performance. There are two throughput constraints that must be satisfied
in this system. The first involves the encryption engine, involving the ASIC1 block. The ASIC1 block needs to
process data from RAM3 once triggered by the ARM processor, and send it to the external interface (EXT IF)
component at a minimum rate of 100 Mbps. The second throughput constraint involves the USB subsystem. Data
packets received at the USB must be routed to RAM1, from where the DMA engine transfers the data to an
external memory interface (SDRAM IF), at a minimum rate of 480 Mbps. Table 1 gives the allowed values for the
customizable parameters, set initially by the designer. Additionally, we assume that only single port memories are
available.

ARM926ARM926

ASIC1ASIC1

ITCITC

UARTUART

ROMROM

USBUSB

DMADMA

SDRAM
IF

SDRAM
IF

RAM2RAM2

RTCRTC
TIMERTIMER

RAM1RAM1

RAM3RAM3

EXT
IF

EXT
IF

Fig. 5. Broadband SoC Subsystem

end
; 4 Stepto go :7 Step

; } true return met, is constraint specifiedif {
else

; } true return met, are sconstraint all if {
)all_constr _check(constr_to if :6 Step

; design simulate:5 Step
; false return then exists none if

 space; sizeburst DMA pruned (ii) and spaceprotocol
 narbitratio pruned (i) of ncombinatio new select:4 Step

; (Poo) max sizeOO_buffer_ :3 Step
; (Psp) max bus_speed :2 Step
; (Pwd) max bus_width :1 Step

begin
_check)(constr_to execute function

==

⇐
⇐

⇐

 12

Table 1. Customizable Parameter Set

Set Values
Pwd 16, 32, 64
Psp 33, 66, 100, 133, 166
Pdma 2, 4, 8, 16
Parb static, RR, random
Poo 1-8

The target communication architecture for the automated synthesis is the AMBA3 AXI high performance bus

[12] and a low bandwidth APB bus [11]. For the purposes of system simulation, we use the fast transaction based
simulation models first proposed in [6], which allow simulation speeds well in excess of 100K cycles/sec while
running embedded software on the processor ISS. The output of our automated synthesis engine is shown in Fig.
6. The values for customizable parameters are given in Table 2.

bridge

ASIC1

RAM3a

USB RAM1 DMASDRAM
IF

ITC

EXT
IF ARM926

RAM3b

UART RTC

TIMER

AXI 2

AXI 1

APB 1RAM2

ROM

Fig. 6. Synthesized Architecture

Table 2. Communication Parameter Values

Parameter Values
 AXI 1 AXI 2 APB
Bus width 32 32 32
Bus speed 66 133 33
arb scheme static ASIC1>DMA>USB>ARM
DMA size 16
OO buffer 4

There are a few important observations here. Firstly, we see that the synthesis engine splits RAM3, creating a
dedicated memory for the ARM926 processor (RAM3b) in the process, which reduces the load and conflict on the

 13

main bus. The ROM is also made private to the processor. Secondly, we find that the main AXI bus has been
split, so that components which are part of the USB throughput constraint path and the RAM2 component now
have a dedicated bus. The rest of the components remain on the original AXI bus. The APB bus is not split
because it is not directly involved in any constraint path. The appropriate communication parameter values allow
us to merge the components in the ASIC1 throughput constraint path with other components that consume bus
bandwidth, such as the ARM926. A manual refinement effort to obtain a bus architecture satisfying both
constraints would be inclined to create an additional bus, separating the ARM926 processor from the components
in the ASIC1 throughput constraint path. Our synthesis approach finds a lower cost solution, and this is made
possible by integrating communication parameters in the synthesis flow.

Our second case study involves a variant of the broadband communication subsystem from Fig. 5, shown in
Fig. 7. Here, additional functionality in the form of a packet switch module (SWITCH) and memory (RAM4)
have been added to the system. While the constraint paths and throughput requirements remain the same, note the
dependence of the newly added SWITCH component on the external interface (EXT IF).

ARM926ARM926

ASIC1ASIC1

ITCITC

UARTUART

ROMROM

USBUSB

DMADMA

SDRAM
IF

SDRAM
IF

RAM2RAM2

RTCRTC
TIMERTIMER

RAM1RAM1

RAM3RAM3
EXT

IF
EXT

IF

SWITCHSWITCH

RAM4RAM4

Fig. 7. A Variant Broadband SoC Subsystem

Table 3. Customizable Parameter Set

Set Values
Pwd 16, 32
Psp 66, 133
Pdma 2, 4, 8, 16
Parb static, RR, random
Poo 1-8

Table 3 gives the allowed values for the customizable parameters, set initially by the designer. Like in the

previous case, the target communication architecture for the automated synthesis is the AMBA3 AXI high
performance bus [12] and a low bandwidth APB bus [11]. The output of our automated synthesis engine is shown
in Fig. 8. The values for synthesized communication parameters are given in Table 4.

 14

bridge

ASIC1

RAM3a

USB RAM1 DMASDRAM
IF

ITCEXT
IF

ARM926

RAM3b

UART RTC

TIMER

AXI 2

AXI 1

APB 1RAM2

ROM
RAM4SWITCH

AXI 3

Fig. 8. Synthesized Architecture

Table 4. Communication Parameter Values

Parameter Values
 AXI 1 AXI 2 AXI 3 APB
Bus width 32 32 32 32
Bus speed 66 133 66 66
arb scheme static ASIC1>DMA>USB>ARM>SWITCH
DMA size 16
OO buffer 4

From the synthesized architecture, we observe that the ARM processor and the SWITCH components are

assigned to a separate bus (AXI 3). With the increased activity of the ARM processor due to the addition of the
SWITCH, the processor can no longer share the same bus as ASIC1. Likewise, the SWITCH interacts frequently
with the memory RAM4 and the ARM processor, and therefore it is attached to the AXI 3 bus. Even though the
EXT IF module is accessed frequently by the SWITCH component, it remains attached to AXI 1 since it is part of
the ASIC1 constraint path. Due to the lower arbitration priority of the SWITCH (Table 4) as compared to ASIC1,
the constraint path is not adversely affected by accesses to EXT IF from the SWITCH component.

The entire automated synthesis process for each case study took a few hours to complete. It should be noted that
manually exploring such a complex design space to generate a bus topology and values for communication
parameters that satisfy all throughput constraints would take a designer several days or even weeks.

 15

V. Conclusion and Future Work

In this report we presented an automated approach for synthesizing bus-based communication architectures to
meet throughput constraints in a design. Our approach synthesizes not only the bus topology, but also generates
values for communication architecture parameters such as arbitration strategies, bus widths, speeds, DMA burst
sizes and OO buffer sizes, while satisfying several throughput requirements and minimizing system cost. Results
from the automated synthesis of a bus architecture for the broadband communication subsystem case studies show
the usefulness of our approach. This report is part of ongoing research. Future work will focus on speeding up the
simulation engine and developing heuristics to handle more complex systems having intersecting throughput
constraint paths.

References

[1] K. K. Ryu, Vincent J. Mooney III “Automated Bus Generation for Multiprocessor SoC Design”, In
Proceedings of DATE 2003

[2] D. Lyonnard, S. Yoo, A. Baghdadi, A. A. Jerraya “Automatic generation of application-specific architectures
for heterogeneous multiprocessor system-on-chip”, In Proceedings of DAC 2001

[3] M. Gasteier, M. Glesner “Bus-based communication synthesis on system level”, In ACM TODAES, January
1999

[4] A. Pinto, L. Carloni, A. L. Sangiovanni-Vincentelli “Constraint-driven communication synthesis”, In
Proceedings of DAC 2002

[5] K. Lahiri et al, “Efficient exploration of the SoC communication architecture design space”, In Proceedings of
ICCAD 2000

[6] Sudeep Pasricha, Nikil Dutt, Mohamed Ben-Romdhane, “Extending the Transaction Level Modeling
Approach for Fast Communication Architecture Exploration", In Proceedings of DAC 2004

[7] N. Thepayasuwan, A. Doboli “Layout Conscious Bus Architecture Synthesis for Deep Submicron Systems on
Chip”, In Proceedings of DATE 2004

[8] J. Daveau, G. F. Marchioro, T. Ben-Ismail, A. A Jerraya, “Protocol selection and interface generation for HW-
SW codesign”, In IEEE Trans. on VLSI Systems, Vol. 5, No. 1, March 1997

[9] R. B. Ortega and G. Borriello, “Communication synthesis for distributed embedded systems”, In Proceedings
of ICCAD 1998

[10] M. Drinic et al. “Latency-guided on-chip bus network design”, In Proceedings of ICCAD 2000

[11] D. Flynn. “AMBA: enabling reusable on-chip designs”. In IEEE Micro, 17(4):20--27, July-Aug 1997

[12] AMBA AXI Specification www.arm.com/armtech/AXI

[13] IBM Coreconnect www.chips.ibm.com/products/powerpc/cores

[14] Wishbone Specification www.silicore.net/wishbone.htm

[15] Open Core Protocol International Partnership (OCP-IP). OCP datasheet, http://www.ocpip.org

 16

[16] S. Narayan and D. Gajski, “Synthesis of system level bus interfaces”, In Proceedings of DATE 1994

