
Cycle-accurate RTL Modeling
with Multi-Cycled and Pipelined Components

Rainer Dömer, Andreas Gerstlauer, Dongwan Shin

Technical Report CECS-04-19

July 22, 2004

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{doemer,gerstl,dongwans}@cecs.uci.edu

1

Cycle-accurate RTL Modeling
with Multi-Cycled and Pipelined Components

Rainer Dömer, Andreas Gerstlauer, Dongwan Shin

Technical Report CECS-04-19

July 22, 2004

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{doemer,gerstl,dongwans}@cecs.uci.edu

Abstract

Despite extensive research efforts for a number of years, modeling of RTL designs has still not reached a

satisfactory state. Behavioral RTL design models still lack cycle-accuracy when multi-cycle and/or pipelined

components are used. With such components, cycle-accuracy is only reached at the end of the RTL design flow

when a complex structural netlist is obtained. Observation, debugging and modification efforts, however, are

very tedius and difficult in such a model due its complexity.

This paper provides a simple yet powerful solution to this problem. An easy-to-understand RTL model is

proposed that supports clock-cycle accuracy in a behavioral description even in the presence of multi-cycled

and/or pipelined components. Experiments show the effectiveness of the approach for specification, simulation,

and synthesis.

2

Contents

1 Introduction 1

1.1 Modeling behavioral RTL . 2

1.2 Problem definition . 2

1.3 Related work . 3

2 Cycle-accurate Behavioral RTL 4

2.1 Delayed assignment statements . 4

2.2 Multi-cycle components . 4

2.3 Pipelined components . 5

3 Compilation and Synthesis 5

3.1 Automation of delayed assignments . 6

3.2 Conflicting delayed assignments . 7

4 Experiments and Results 7

4.1 Design example . 8

4.2 Experimental results . 8

5 Summary and Conclusion 8

6 References 9

i

List of Figures

1 RTL models during a typical behavioral synthesis flow . 3

2 Modeling multi-cycle components using after clauses . 5

3 Modeling pipelined components using piped clauses . 6

4 Algorithm for compilation of delayed assignments . 6

7 Experimental results for code-book search example using pipelined and multi-cycled ALUs . . . 8

5 Experimental results for code-book search example using multi-cycled ALUs 9

6 Experimental results for code-book search example using pipelined ALUs 10

ii

Cycle-accurate RTL Modeling

with Multi-Cycled and Pipelined Components

Rainer Dömer, Andreas Gerstlauer, Dongwan Shin

{doemer,gerstl,dongwans}@cecs.uci.edu

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract — Despite extensive research efforts for a

number of years, modeling of RTL designs has still

not reached a satisfactory state. Behavioral RTL de-

sign models still lack cycle-accuracy when multi-cycle

and/or pipelined components are used. With such com-

ponents, cycle-accuracy is only reached at the end of

the RTL design flow when a complex structural netlist

is obtained. Observation, debugging and modification

efforts, however, are very tedius and difficult in such a

model due its complexity.

This paper provides a simple yet powerful solution

to this problem. An easy-to-understand RTL model

is proposed that supports clock-cycle accuracy in a

behavioral description even in the presence of multi-

cycled and/or pipelined components. Experiments

show the effectiveness of the approach for specification,

simulation, and synthesis.

1 Introduction

While more and more research recently already fo-

cuses at levels of abstraction above the algorithm and

register-transfer level (RTL), it is still RTL where

most designs are specified today. While the bene-

fits of entering designs at higher abstraction levels are

clear and well-understood, designers still have trouble

accepting this and putting it to use for their real-world

designs.

The two main arguments used by designers are the

following: First, the performance of automatically

synthesized designs is typically lower than for hand-

optimized implementations, and second, designers

are loosing control over the decisions made during the

automated synthesis process.

The authors of this work believe that these two is-

sues are actually related to each other. More specifi-

cally, the loss of control over the implementation de-

cisions is actually the main reason for the lower per-

formance of an automatically generated design. In

other words, if the designers would be able to control

all the critical design decisions in the synthesis pro-

cess, then the resulting implementation would reach

the same quality level as a manually optimized de-

sign.

1

Hence, the controlability of the automated design

process is of critical importance, and, if achieved, this

will enable the move to higher levels of abstraction

with significantly higher productivity and efficiency.

1.1 Modeling behavioral RTL

This paper addresses the modeling of RTL designs at

the behavioral level. While many details of the design

implementation are intended to be abstracted away,

critical aspects that will significantly affect the per-

formance and quality of the result should be able to

be specified explicitly. In other words, as soon as a

design decision is made, it should be reflected in the

design model such that it can be evaluated, for exam-

ple, through simulation of the model.

The focus of this paper is timing information, in

particular, clock-cycle accuracy of the model. Clock-

cycle accuracy is important in many cases, especially,

for example, in the implementation of communication

protocols, which, without exact timing behavior, sim-

ply would not work.

Figure 1 illustrates the four major models encoun-

tered in a typical RTL design flow. The design flow

starts with a behavioral specification in form of code,

as shown in Figure 1(a), which specifies the function-

ality of the intended design. This model is written as

one process (a single thread of control) and usually

contains no timing information.

As a first step towards implementation, the control

flow in the design is then extracted and expressed in

form of explicit state transitions, leading to the sec-

ond model, a super-state finite state machine with data

(SFSMD), as shown in Figure 1(b). Each node in the

graph typically corresponds to one basic block in the

previous model. As before, this model is written as a

single un-timed process.

Next, the core tasks of behavioral synthesis are per-

formed, namely scheduling, allocation and binding.

During these tasks, a finite state machine with data

(FSMD) model is typically used to represent the de-

sign, as shown in Figure 1(c). The previous super-

states are now scheduled into actual clock-cycles and

represented by separate states. Thus, the model itself

is now clock-cycle accurate and will exhibit the ac-

tual timing of the design when simulated. However,

as we will see below, components that have a delay

longer than a single clock cycle or are pipelined, pose

a real problem as their behavior cannot be expressed

in any current hardware description language (HDL)

(see Section 1.2).

Finally, a netlist generator creates a structural

model of the design, as shown in Figure 1(d), where

the control unit and the datapath consisting of reg-

isters, busses and ALUs are connected by explicit

wires. Here, all units execute concurrently in sepa-

rate processes. Because of this concurrency and the

exposed connectivity, this structural model is usually

very complex and therefore extremely difficult to un-

derstand and debug.

1.2 Problem definition

From the above discussion, we can see that the third

model, shown in Figure 1(c), is of critical importance.

It is the first model in the design flow that is cycle-

accurate, and it is still described as a single process in

behavioral fashion and therefore easy to understand

and maintain. It is therefore the best candidate for

interaction with the designer as she/he can easily ob-

2

...

y = f(x);

i = 0;

do { s += g(y,i);

i++;

} while (i<10)

h(s);

...

(a)

B1

B2

B3

(b) (c) (d)

s1

s2

s3

s4

s5

s6

s7

s1

s2

s3

s4

s5

s6

s7

s8

Figure 1: RTL models during a typical behavioral synthesis flow: (a) behavioral code, (b) SFSMD, (c) FSMD,

(d) structural model.

serve the behavior of the design, as well as modify it

in order to apply manual design decisions.

Unfortunately, however, current HDLs including

VHDL [6], Verilog [7], and SystemC [5] provide no

capability to describe the use of complex RTL compo-

nents in this model. Complex components in this case

are functional units whose execution time is longer

than one clock cycle. Specifically, the use of multi-

cycle and pipelined units cannot accurately be de-

scribed.

The reason for this problem is simply that there

is no construct available in these languages that de-

scribes a function being executed over a duration of

multiple cycles.

1.3 Related work

Issues in RTL modeling, RTL design and behavioral

synthesis, aka. High-Level Synthesis (HLS), have

been studied for more than a decade now [4, 10].

Countless research results have been published. Due

to space limitations, however, only a few approaches

can be mentioned here.

Many automatic synthesis tools (also known as

push-button synthesis) have been developed, includ-

ing Synopsys Behavioral Compiler [13], Cyber [14],

and OSCAR [11]. However, these tools provide no

means to access the intermediate design models that

are created during the synthesis process. The only

models accessable to the designer are the behavioral

input model and the structural output model.

On the other hand, interactive synthesis tools in-

cluding Amical [8] and ISE [9] allow the designer to

inspect and manipulate the design model at different

stages in the synthesis process, typically via a graphi-

cal user interface. However, a cycle-accurate simula-

tion model with complex components is not available

for the intermediate stages.

Recently, a new interactive high-level synthesis

system has been developed [12], that is based on the

Accellera RTL standard [1]. Accellera modeling se-

3

mantics define simulatable and synthesizable interme-

diate models at different stages in the synthesis pro-

cess. Description of partial design decisions is possi-

ble as well. However, multi-cycle and pipelined func-

tional units are not supported.

The rest of this paper is organized as follows: Sec-

tion 2 introduces the concept of delayed assignment

statements and how these can be used to simulate the

behavior of complex components in a cycle-accurate

manner. For compilation and synthesis, an algorithm

is given in Section 3 which automatically inserts de-

layed assignments into a model. Experimental results

are listed in Section 4, and Section 5 finally concludes

this paper.

2 Cycle-accurate Behavioral RTL

In this section, we will solve the problem of describ-

ing the use of multi-cycle and pipelined components

cycle-accurately in a behavioral RTL model. What

we need is basically a new construct that computes a

function (i.e. the behavior of the component) over a

period of time. Specifically, for multi-cycle compo-

nents, control and arguments need to be supplied over

a sequence of clock cycles, only then the result can

be read at the end. Pipelined components are sim-

ilar, except that control and arguments only need to

be supplied in the very first cycle since they will be

stored internally in the component over the execution

of the pipeline.

Essentially, we want to supply arguments as re-

quired by the component, compute the function (only

once!), and then obtain the result after the specified

period of time for the component. The idea is to use

delayed assignments for this purpose.

2.1 Delayed assignment statements

A delayed assignment statement is an assignment that

takes place only after a specified number of clock cy-

cles.

The specific semantics are defined as follows: The

right-hand side (RHS) of the assignment statement

(i.e. the function with its arguments) is evaluated in

the same clock cycle the delayed assignment is spec-

ified. However, the left-hand side (LHS), the target

of the assignment, is evaluated only after the speci-

fied number of cycles. At the same time, the actual

assignment of the result to the target then takes place.

Syntactically, a delayed assignment is specified by

use of a keyword (after or piped clause, see below),

and a positive integer indicating the delay in terms of

number of clock cycles.

2.2 Multi-cycle components

Figure 2(a) shows an example of modeling multi-

cycled components by use of after clauses. In state

s1, a multiplier starts computing the product of

RF[0] and RF[1]. Since the multiplier needs two

cycles for this computation, as specified by the after

clause, the result will only be available in the target

register RF[0] after two cycles, i.e. in state s3. It is

an error to read the result from register RF[0] earlier.

One possible way to implement this delayed as-

signment in a simulator is shown in Figure 2(b). The

result of the multiplication is simply stored in a tem-

porary variable RF 0 tmp in state s1, and then as-

signed to the target in state s3.

4

RF[0] = RF[0] * RF[1] after 2;

RF[1] = RF[2] << RF[3]after 2;

...

s1:

s2:

s3:

s4:

RF_0_tmp = RF[0] * RF[1];

RF_1_tmp = RF[2] << RF[3];

RF[0] = RF_0_tmp;

RF[1] = RF_1_tmp;
...

s1:

s2:

s3:

s4:

(a) (b)

Figure 2: Modeling multi-cycle components using after clauses: (a) specification, (b) simulation.

2.3 Pipelined components

Pipelined components can be handled in a very sim-

ilar way. Figure 3(a) shows the use of a 3-stage

pipelined multiplier for the two multiplications start-

ing in state s1 and s2. The multiplier is assumed to

have two internal registers as indicated by the piped

clauses. Thus, the multiplication results are available

only in states s3 and s4, respectively.

Note that for simulation of piped clauses an array

of temporary variables is required, as shown in Fig-

ure 3(b). Then, to mimic the pipeline behavior, the

contents of the array are shifted in pipeline fashion,

as shown.

It should be emphasized that the use of such tem-

porary variables is not only simple, it is also very ef-

ficient. In the presence of multiple delayed assign-

ments in the design model, the temporary variables

can be easily shared. It is the number of different tar-

gets that determines the number of temporary vari-

ables (not the number of delayed assignments!). In

other words, only one temporary variable is needed

for every target register.

3 Compilation and Synthesis

While the examples discussed in the previous sec-

tion seem to be straightforward, things become signif-

icantly more complex in real design models. For in-

stance, taking conditions and loops into account, the

control flow in a FSMD may be arbitrary. This re-

quires to insert temporary assignments on every pos-

sible path in the FSMD. As we will see in Section 3.2,

this not only can lead to duplication of temporary as-

signments, but also to conflicting assignments to the

same target.

Another fact ignored so far, is that delayed assign-

ments may be conditional. In this case, the delayed

statement must only be executed if the specified con-

dition is true. As a result, the same specified condition

must be applied also to all temporary assignments.

These and other problems need to be solved when

delayed assignments are processed by compilers (for

simulation), as well as by synthesis tools (for actual

implementation). The following section addresses

these issues by providing an efficient algorithm that

automates the handling of piped and after clauses.

5

RF[0] = RF[0] * RF[1] piped 2;

RF[0] = RF[1] * RF[2] piped 2;

...

s1:

s2:

s3:

s4:

RF_0_tmp[1] = RF[0] * RF[1];

RF_0_tmp[2] = RF_0_tmp[1];
RF_0_tmp[1] = RF[1] * RF[2];

RF[0] = RF_0_tmp[2];
RF_0_tmp[2] = RF_0_tmp[1];

RF[0] = RF_0_tmp[2];
...

s1:

s2:

s3:

s4:

(a) (b)

Figure 3: Modeling pipelined components using piped clauses: (a) specification, (b) simulation.

3.1 Automation of delayed assignments

Figure 4 shows the pseudo code for an algorithm that

can be used in a compiler to automatically insert tem-

porary variables and corresponding assignments for

delayed assignment statements in the model. With

minor modifications, the same algorithm can also be

used in synthesis tools to create the correct control

words in every state.

algorithm CompileDelayedAssignments(fsmd):

foreach s in States(fsmd) do
foreach d in DelayedAssignments(s) do

c = Condition(d)
n = Cycles(d)
if Type(d)='after' then

v = NewTmpVar(fsmd,lhs(d),1)
foreach ns in NextStates(s,n) do

AddTmpAssignment(ns,c,lhs(d),v,1)
else

v = NewTmpVar(fsmd,lhs(d),n)
for i=1 to n-1 do

foreach ns in NextStates(s,i) do
AddTmpShift(ns,c,v,i)

foreach ns in NextStates(s,n) do
AddTmpAssignment(ns,c,lhs(d),v,n)

Replace(d,v,rhs(d))

Figure 4: Algorithm for compilation of delayed as-

signments.

The algorithm essentially traverses all states of the

given FSMD and replaces any delayed assignment

statements with a set of temporary variable assign-

ments that are inserted into the following next states.

• States(fsmd) returns a list of the states in the

fsmd

• DelayedAssignments(s) returns a list of the

delayed assignment statements in a state s

• Condition(d) computes the condition under

which a statement d is executed

• Cycles(d) returns the number of cycles a state-

ment d is to be delayed

• Type(d) returns the type of a delayed assign-

ment d, i.e. piped or after

• NewTmpV ar(fsmd, lhs, s) creates a new

temporary variable in the fsmd corresponding

to the target lhs with array size s; note that s = 1

in the case of after; if the variable for lhs already

exists, its size is set to max(size, s); this en-

ables the sharing of temporary variables as dis-

cussed earlier

6

• NextStates(s, n) returns the list of next states

reachable from state s within n transitions

• AddTmpAssignments(s, c, lhs, v, i) adds an

assignment to state s under condition c; lhs is

the target of the assignment; v[i] is the source

• AddTmpShift(s, c, v, i) adds a shift statement

to state s where v[i + 1] is set to v[i]

• Replace(d, v, rhs) replaces the delayed assign-

ment d with an assignment v[1] = rhs

It should be noted that the function

NextStates(s, n) is usually part of the static

reachability analysis that every compiler or synthe-

sizer performs in order to detect non-reachable states

and to optimize the state transitions in the FSMD. As

such, it is not further outlined in this paper.

Since the algorithm visits every state and from

there possibly all next states, the complexity grows

linear with the number of state transitions, or

quadratic in terms of the number of states. Thus, the

complexity is O(n2) where n is the number of states.

3.2 Conflicting delayed assignments

As mentioned earlier, there exists a possibility that

conflicting assignments are being created by the al-

gorithm. A conflict occurs if and only if multiple as-

signments to the same target variable exist in the same

state under the same condition. This, of course, indi-

cates a real problem since no register can be loaded

with values from multiple sources at the same time.

Careful analysis of the situations, which can lead

to such a condition, shows that in all cases an actual

resource conflict has been specified in the model. For

example, a multi-cycle component is used for differ-

ent operations in the same cycle, or a pipelined com-

ponent writes to the same target register as another

component.

Fortunately, such resource conflicts can be easily

detected by the compiler and synthesizer, and can

then be reported to the designer as an error condition.

In fact, this checking can be implemented

in the functions AddTmpAssignments() and

AddTmpShift() in the algorithm shown in Figure 4.

Before adding the requested assignment statement,

the two functions check if an assignment to the same

target already exists (in the same state, under the same

condition). If not, the functions can go ahead and do

their work.

If an assignment to the same target variable is al-

ready present, the functions will check if the source

is the same as given in their arguments. This case

happens naturally if multi-cycle and pipelined com-

ponents are used within loops, and, of course, is per-

fectly ok. If the sources are different, however, then

an actual resource conflict exists and needs to be re-

ported to the designer as an error message.

4 Experiments and Results

The technique and the algorithm described in this pa-

per have been implemented in a compiler and a syn-

thesizer [12] as an extension to the SpecC language

[3]. The compiler is freely available on the web

[2].

7

4.1 Design example

In order to demonstrate the effectiveness of this ap-

proach, the code-book search algorithm specified in

the voice encoder of the GSM standard for telecom-

munication has been chosen as design example. The

code-book search algorithm consists of six filter func-

tions which operate on sub-frames of speech data,

each of which consists of 40 samples. While the com-

plexity of these filter functions varies widely, all of

them use saturated arithmetic operations with 16 and

32 bit results.

4.2 Experimental results

For our experiments, we have chosen different allo-

cations of ALUs, varying in delay and number of

pipeline stages. Figure 5, Figure 6 and Figure 7

list the experimental results for different multi-cycle

ALUs, different pipelined ALUs, and different com-

binations of multi-cycle and pipelined ALUs, respec-

tively.

For each experiment, synthesis and simulation

have successfully been performed. The resulting

number of states and executed clock-cycles are listed

for each filter function. The tables also list the num-

ber of after and piped clauses used in the model, as

well as the number of temporary variables and tempo-

rary assignments in the simulation model. Note that

the latter two are large numbers in many cases, which

emphasizes the benefit of automatic insertion.

The simulation times in the tables are measured

over a total of 652 sub-frames each and include

a number of other functions around the code-book

search. Nevertheless, the times increase linear with

ALU 16 2 stages 3 stages 4 stages

ALU 32 2 cycles 3 cycles 4 cycles

States / cycles:

cor h x 36 / 4835 46 / 5833 56 / 6831

set sign 70 / 1246 88 / 1591 107 / 1976

cor h 69 / 12099 84 / 13126 101 / 15713

search 10i40 386 / 27105 448 / 29689 536 / 36689

build code 130 / 1985 149 / 2245 168 / 2505

q p 10 / 59 10 / 59 10 / 59

code 10i40 701 / 47329 825 / 52543 978 / 63773

piped clauses 175 175 175

after clauses 104 104 104

Tmp. variables 71 70 80

Tmp. assignments 558 654 717

Simulation time (s) 132.87 136.10 159.88

Figure 7: Experimental results for code-book search

example using pipelined and multi-cycled ALUs.

the increased number of cycles, indicating a minimal

overhead introduced by the delayed assignments.

5 Summary and Conclusion

In this paper, we have shown that there is an impor-

tant need to describe intermediate models in the RTL

design flow, so that design decisions can be easily ob-

served, validated and modified by the designer.

Push-button synthesis is not accepted by most de-

signers because of the lack of control. Interactive

synthesis using graphical user interfaces goes into the

right direction. However, it is still desirable to provide

an actual HDL description to the designer that can be

simulated and freely manipulated. Furthermore, this

description should be a behavioral model, since struc-

8

ALU 16 1 cycle 1 cycle 1 cycle 1 cycle 2 cycles 3 cycles 4 cycles

ALU 32 1 cycle 2 cycles 3 cycles 4 cycles 2 cycles 3 cycles 4 cycles

States / cycles:

cor h x 27 / 3843 33 / 4793 40 / 5749 47 / 6705 37 / 4876 47 / 5873 57 / 6871

set sign 53 / 902 59 / 1103 66 / 1305 73 / 1507 73 / 1334 93 / 1684 113 / 2036

cor h 56 / 11152 58 / 9674 65 / 10616 72 / 11558 70 / 12140 89 / 16286 108 / 20433

search 10i40 312 / 18577 355 / 23425 416 / 28821 479 / 34293 434 / 27577 591 / 38409 750 / 49305

build code 111 / 1725 123 / 1940 135 / 2155 147 / 2370 131 / 1987 151 / 2249 171 / 2511

q p 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59

code 10i40 569 / 36258 638 / 40994 732 / 48705 828 / 56492 755 / 47973 981 / 64560 1209 / 81215

after clauses 0 104 104 104 279 279 279

Tmp. variables 0 39 39 37 61 58 61

Tmp. assignments 0 208 208 208 558 558 558

Simulation time (s) 106.96 111.40 129.38 144.06 131.48 166.47 201.84

Figure 5: Experimental results for code-book search example using multi-cycled ALUs.

tural models are simply too complex.

This paper provides an easy and straightforward

modeling solution that allows behavioral RTL models

to be cycle-accurate, even in the presence of multi-

cycle and pipelined components. This approach uses

delayed assignment statements that are specified by

use of simple after and piped clauses, modeling

multi-cycling and pipelining, respectively.

The main contribution of this work is that a sig-

nificant gap in RTL modeling has been closed. The

proposed approach and the algorithm are simple and

efficient for RTL specification, modeling and imple-

mentation.

Finally, the listed experimental results demonstrate

that the approach is not only feasable, but also appli-

cable and practical towards simulation and synthesis

of real-world designs.

6 References

[1] Accellera C/C++ Working Group of the Architectural Lan-

guage Committee. RTL Semantics, Draft Specification. Ac-

cellera, February, 2001.

http://www.eda.org/alc-cwg/cwg-open.pdf.

[2] R. D ömer. SpecC Reference Compiler and Simulator,

available at

http://www.cecs.uci.edu/∼specc/reference/.

[3] R. D ömer, A. Gerstlauer, D. Gajski. The SpecC Language

Reference Manual, Version 2.0. SpecC Technology Open

Consortium, Japan, Dec. 2002.

[4] D. Gajski, N. Dutt, C. Wu, Y. Lin. High-Level Synthesis:

Introduction to Chip and System Design. Kluwer Academic

Publishers, 1991.

[5] T. Gr ötker, S. Liao, G. Martin, S. Swan. System Design with

SystemC. Kluwer Academic Publishers, 2002.

[6] IEEE. IEEE Standard VHDL Language Reference Manual,

Revision 1993. IEEE Std. 1076-1993, IEEE, 1993.

9

ALU 16 1 stage 1 stage 1 stage 1 stage 2 stages 3 stages 4 stages

ALU 32 1 stage 2 stages 3 stages 4 stages 2 stages 3 stages 4 stages

States / cycles:

cor h x 27 / 3843 33 / 4793 39 / 5743 45 / 6693 36 / 4835 45 / 5827 54 / 6819

set sign 53 / 902 59 / 1103 66 / 1305 73 / 1507 70 / 1246 88 / 1591 107 / 1976

cor h 56 / 11152 58 / 9674 65 / 10616 72 / 11558 69 / 12099 84 / 13126 101 / 15713

search 10i40 312 / 18577 335 / 21021 392 / 25421 467 / 32105 365 / 24669 440 / 29897 519 / 36121

build code 111 / 1725 123 / 1940 135 / 2155 156 / 2527 130 / 1985 149 / 2245 177 / 2662

q p 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59 10 / 59

code 10i40 569 / 36258 618 / 38590 707 / 45299 823 / 54449 680 / 44893 816 / 52745 968 / 63350

piped clauses 0 104 104 104 279 279 279

Tmp. variables 0 36 36 39 57 67 78

Tmp. assignments 0 208 309 408 558 738 902

Simulation time (s) 106.96 105.45 120.49 139.63 120.81 143.34 159.93

Figure 6: Experimental results for code-book search example using pipelined ALUs.

[7] IEEE. Hardware Description Language Based on the Ver-

ilog Hardware Description Language. IEEE Std. 1364-

1996, IEEE, 1996.

[8] A. Jerraya, I. Park, K. O Brien. “AMICAL: An Interactive

High Level Synthesis Environment”. In Proceedings of the

European Design Automation Conference, 1993.

[9] H. Juan, D. Gajski, V. Chaiyakul. “Clock-driven perfor-

mance optimization in interactive behavioral synthesis”.

In Proceedings of International Conference on Computer

Aided Design, Nov. 1996.

[10] D. Ku, G. De Micheli. High-level Synthesis of ASICs under

Timing and Synchronization Constraints. Kluwer Academic

Publishers, 1992.

[11] B. Landwehr, P. Marwedel, R. D ömer. “OSCAR: Optimum

Simultaneous Scheduling, Allocation and Resource Binding

Based on Integer Programming”. In Proceedings of the Eu-

ropean Design Automation Conference, 1994.

[12] D. Shin, A. Gerstlauer, R. Doemer, D. Gajski. C-based In-

teractive RTL Design Methodology. Center for Embedded

Computer Systems, Technical Report 03-42, Dec. 2003.

[13] Synopsys, Inc. Behavioral Compiler, available at

http://www.synopsys.com/.

[14] K. Wakabayashi, T. Okamoto. “C-based SoC Design Flow

and EDA tools: An ASIC and System Vendor Perspective”.

In IEEE Transactions on CAD, Dec. 2000.

10

