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Abstract

Hardware/software (HW-SW) partitioning is a key problenthia codesign of embedded systems
and has been studied extensively in the past. With the wigiéahility of commercial platforms
such as the Virtex-1l Pro series from Xilinx that integrategessors with reconfigurable logic, one
major existing challenge is the lack of efficient algorithimst can generate very high-quality so-
lutions by exploring a huge HW/SW exploration space- thekssrion is to obtain such solutions
at a speed suitable for integration into a compiler-basediganer. In this report, we make two
contributions for HW-SW patrtitioning of applications sgiexl as procedural call-graphs:

1) We prove that during partitioning, the execution time mador moving a vertex needs to be
updated only for the immediate neighbours of the vertekemathan for all ancestors along paths
to the root vertex. This enables move-based partitionigg@ihms such as Simulated Annealing
(SA) to execute significantly faster, allowing call graplighwhousands of vertices to be processed
in less than half a second

2) Additionally, we devise a new cost function for SA thabéemsearching of spaces overlooked
by traditional SA cost functions for HW-SW partitionindpaling the discovery of additional par-
titioning solutions in a very efficient manner.

We present experimental evidence on a very large desigrespétover 12000 problem instances.
We generate the problem instances by varying the call-geds from 20 to 1000 vertices, inde-
gree/outdegree of vertices, communication-to-compantattios, and varying the area constraint
on the hardware partition. Thousands of problem instancesaplored in a matter of minutes as
compared to several hours or days using a traditional SA tdation. Aggregate data collected



over this large set of experiments demonstrates that wherpaced to a KLFM algorithm start-
ing with all vertices in software, our approach is 1) asyntjgally faster, with a run-time around
5 times faster for graphs with 1000 vertices, 2) is frequentlle to locate better design points
with over 10 % improvement in application execution timej &) the average improvement in
application execution time is around 5%. We confirmed thatsml quality of results generated
by our approach by additional comparisons with a) set of KLRMs starting from different ini-
tial configurations for the same problem instance, and beptiost-functions commonly used in
SA-based approaches for HW-SW partitioning. Overall, quuraach generates superior results
and executes much faster.
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1 Introduction

Partitioning is an important problem in all aspects of desigHW-SW (hardware-software)
partitioning, i.e the decision to partition an applicatiomto hardware (HW) and software (SW)
execution units, is possibly the most critical decision MA$W codesign. The effectiveness of
a HW-SW design in terms of system execution time, area, poaesumption, etc, are primarily
influenced by partitioning decisions.

The partitioning problem has a lot of related variationsedgbng on the objective function
being optimized. In this report, we consider the problem afimizing execution time of an
application for a system with hard area constraints. An etaiof a related problem is the problem
of minimizing aggregate energy consumption for a systerh fatrd constraints on execution time.

We consider an application specified as a DAG (directed acgcaph), extracted in the form
of a callgraph from a sequential application written in 'Our target system architecture has one
microprocessor (SW) and one area-constrained hardwatréHWWi) such as a reconfigurable logic
fabric. An example of such an architecture is the Xilinx ¥ill Pro Platform FPGA XC2VPX20
that integrates one PPC405 (PowerPC) processor with rgcoalkile logic. In this work, we as-
sume that the HW and SW units execute in mutual exclusios-glows us to focus exclusively
on the partitioning problem.

For a DAG representing a call graph, the execution time ofreexeneeds to be computed from
all descendants in the sub graph rooted at the vertex. In MYMg&rtitioning, when a vertex
is moved from SW to HW or vice-versa, the execution time of phegram changes due to the
different execution times of a HW versus a SW implementatbong with increased or decreased
communication cost across the cut. This change in exectitianis represented by threxecution
time changemetric.

In this report, we make two contributions to HW-SW partiiiiopn  First we prove that for a
callgraph representation, when a vertex is moved to a diftepartition, it is only necessary to
update theexecution time changmetric [8] for its immediate parents and immediate children
instead of all ancestors along the path to the root. This meg® allows for a more efficient
application of move-based algorithms like simulated ahng#SA).

Secondly, we present a cost function for simulated anngadirsearch regions of the solution
space often not thoroughly explored by traditional coscfioms. This enables us to frequently
generate more efficient design points.

Our two contributions result in a very fast simulated animgg{SA) implementation that gen-
erates partitionings such that the execution times areié&eily better by over 10% compared to a
KLFM (Kernighan-Lin/Fiduccia-Matheyes) algorithm for H8W partitioning for graphs ranging
from 20 vertices to 1000 vertices. Equally importantly,gra with a thousand vertices are pro-
cessed in much less than a second, with the algorithm rumdsymptotically faster than a KLFM
implementation by around 5 times for graphs with a 1000 vesti

Given the known propensity of a KLFM approach to get stucloeal minima, we additionally
conducted experiments where the KLFM algorithm was alloteestart from different configu-
rations. Our approach generates better quality resultpaced to this set of independent KLFM
runs on the same problem space. Additional comparisonsomitimonly used SA cost functions



in HW-SW partitioning establish the quality of results geated by our approach.

The rest of this report is organized as follows: in Sectiow@ review related research in HW-
SW partitioning. In Section 3 we review the problem desaript In Section 4, we prove that
the execution time changaetric needs to be updated only for immediate neighboursveftex.

In Section 5, we discuss the simulated annealing algorithchpesent our proposed approach
towards a more interesting cost function. In Section 6, ves@nt the experiments conducted. We
conclude with Section 7.

2 Related work

Hardware-software partitioning is an extensively studiedrd” problem with a plethora of
approaches- dynamic programming [13], genetic algorit@fgreedy heuristics [12], to name a
few. Most of the initial work on HW-SW partitioning, [13], f] focussed on the problem of meet-
ing timing constraints with a secondary goal of minimizihg amount of hardware. Subsequently
there has been a significant amount of work on optimizinggoerance under area constraints, [1],
[3], [8]. With the goal of searching a larger design spacehmégues such as simulated annealing
(SA) have been applied to HW-SW partitioning using fairlgnpie cost functions. While a lot of
initial work such as [14] was based exclusively on simulaadealing, recent approaches com-
monly measure their quality against a SA implementationm.dxample, [1] compares SA with a
knowledge-based approach, and [3] compares SA with talvatsea

It is well-known that SA requires careful attention in foriating a cost function that allows the
search to "hill-climb” over suboptimal solutions. Howeyeruch of the published work in HW-
SW partitioning have not studied in detail the SA cost fumesi that permit a wider exploration
of the search space. As an example, in [3], [9], the SA fortreconsiders only valid solutions
satisfying constraints, thus restricting the ability of A”hill-climb” over invalid solutions to
reach a valid better solution.

The two previous pieces of work in HW-SW partitioning thag¢ anost directly related to our
work are [8], [5]. Our model for HW-SW patrtitioning is based [8], a well-known adaptation of
the KL paradigm for HW-SW partitioning; our efforts in impriag the quality of the cost function
are closely related to [5].

Our partitioning granularity is similar to [8], effectiwelthat of a loop-procedure call-graph;
each partitioning object represents a function and the DA@es are annotated with callcounts.
[8] introduced the notion of execution time change metricddDAG, and updating the metric
potentially by evaluation of ancestors along the path tortiwe. The linear cost function in [8]
ignores the effect of HW area as long as the area constrasatisfied.

[5] provides an in-depth discussion of cost functions amdbtion of improving the results ob-
tained from a simple linear cost function by dynamicallyregiag the weights of the variables. We
differ from [5] in the following ways: [5] addresses the pleim of choosing a suitable granularity
for HW-SW partitioning that minimizes area while meetinguitng constraints; since we consider
the problem of minimizing execution time while satisfying\Harea constraints, the proposed
cost function in [5] needs significant adaptation for ourljeon. In [5], the dynamic weighting
technique was applied towards the secondary objective mimiing HW area once the primary



objective, the timing constraint, was almost satisfied. \Wedver, apply a dynamic weighting
factor to our cost functions in various regions of the seadce to better guide the search. Last
but not the least, since their primary focus was on the geaitylselection problem, there was no
guantitative comparison of their approach with other atgars- we have compared our approach
to the KLFM approach with an extensive set of test cases anbdstrated the effectiveness of
our approach.

3 Problem description
3.1 Problem description
The application specification methodology and architedtassumptions in our problem def-

inition are similar to [8]. Here we provide a brief summarytbé key aspects of the problem
definition.

memory HW local memory

” ]

HW

SW

Figure 1. Target architecture

We consider an application specified as a DAG (directed acgcaph), extracted from a se-
guential program written in C, or, any other procedural laage. The target architecture for this
application is a system with a single SW processor and aesidg¥ unit connected by a system
bus, as shown in Figure 1. An example of such an architectutke widely available Xilinx
XC2VPX20 with a single PPC405 processor connected to regunatfble logic by a PLB (proces-
sor local bus). In this work, we assume mutually exclusiverapon of the two units, i.e the two
units may not be computing concurrently. We additionallyuase that the HW unit can be config-
ured only once before the application starts execution badH\W functionality does not change
once the application starts execution, i.e., we considarttte HW unit does not have dynamic
RTR (run-time reconfiguration) capability The problem considered in this report is to partition
the application such that the execution time of the appboat minimized while simultaneously
satisfying the hard area constraints of the HW unit.

1This is a relevant practical assumption in light of the digait reconfiguration penalties incurred in such com-
monly available single-context RTR architectures



Each partitioning object corresponding to a vertex in the@DA essentially a function that can
be mapped to HW or SW. Each directed edggy) in the DAG represents a call or an access
made by the caller functionto the callee functioy. The SW execution times and callcounts are
obtained from profiling the application on the SW proceskothis model, the HW execution time
and the HW area for the functions are estimated from syrglogghe functions on the given HW
unit2. Communication time estimates are made by simply dividimgvwolume of data transferred
by the bus speed. Since the execution time model is seqldnisacontention is assumed to play
an insignificant role.

Figure 2. Simple example

We next motivate the first part of our contribution with thenple example shown in Figure 2.
For the callgraph in the figure, the execution time of the paog(same as the execution time for
vertexvp) obviously depends on the execution time of its descendgartet us assume all vertices
were initially in SW. If we move the vertex, to HW, the execution time changes due to HW-SW
communication on the edgégs, v»), (v1,Vv2) and change in execution time for vertex It would
appear that any execution time related metric for the &stig, vs, v4, would need to be updated
when this move is made. In the next section, we show with alsi@ample that this is not true
for theexecution time change metand follow up with a proof.

Before proceeding further, we need to introduce a slighttyerformal set of notations required
in the rest of this report.

3.2 Notational details
The input to the partitioning algorithm is a directed acydraph (DAG) representing a call-

graph, CG = (V, E). V is the set of graph vertices where eactexer represents a function. E
is the set of graph edges where each eglgeepresents a function call to the child functionby

2With a large number of objects, fast, good quality estinsmtme of course more practical than detailed logic
synthesis



the parent function;. The application representation assumes that there amcnosive function
calls.

Each edge is associated with 2 weiglds;( ctjj). cGj represents the call count, i.e, the number
of times functionv;j is called by its pareny;. ctjj represents the HW-SW communication time, i.e,
if vi is mapped to SW and its chilj is mapped to HW (or vice-versagfj; represents the time
taken to transfer data between the SW and the HW unit for eaehAn important assumption is
made that vertices mapped onto the same computing unit legtgible communication latency,
i.e SW-SW or HW-HW communication time can be considered t0 fi practical purposes.

Each vertew; is associated with 3 Weight§(tih, hi). t° represents the software (SW) execution
time for a given vertex, i.e, the time required to executeftimetion corresponding tg; on the
processor.tih represents the hardware (HW) execution time, i.e, the tengeired to execute the
function on the HW unit. The hardware implementation of thection requires arel, on the
HW unit. Note that this definition works off a single Paretarie in this work, we do not consider
compiler (synthesis) optimizations leading to multiple Hivplementations with different area
and timing characteristics.

A partitioning of the vertices can be represented in theofaithg manner:P = {v§, Vi \5.....}.
This denotes that in partitionirig, vertexvg is mapped to SWy; is mapped to HWy» is mapped
to SW, etc. Two key attributes of a partitioning dfie”, HP). TP denotes the execution time of the
application under the partitionin®, H” denotes the aggregate area of all components mapped to
hardware under partitioning.

4 Efficient computation of execution time change metric

Given a sequential execution paradigm and a call-graphfggion, the execution time of a
vertexv; is computed as the sum of its self-execution time and theutixgctime of its children.
The execution time foy; additionally includes HW-SW communication time for eachictlof v;
mapped to a different partition. Thus,Tif’ denotes the execution time for vertexunder a given
partitioningP o

I

_ G G
T =t + Z‘j:‘l(cqj +Tj)+) ;24 (caj*ctj)
wheret; is eithertih or t° depending on whethes is currently mapped to HW or SW in the

partitioning P. C; represents the set of all children of vertgx Cid'ff represents the set of all
children ofv; mapped to a different partition. Note thatf corresponds tmainin a'C’ program,
TOP eqguals the complete program execution time when partitgpRispecifies whether vertices are
mapped to HW or SW.

For a partitioningP, the execution time changeetric AP, for a vertexv, is defined as the
change in execution time when the vertgxs moved to a different partition. That iAF denotes
the change iﬁ'OP when vertex; is mapped to a different partition.

From the definition of th&xecution time chang®etric, it would appear that when a vertex is
moved to a different partition, the metric values for all aiscestors would need to be updated.
Indeed, in previous work, [8], the change equations assutwesk necessary to update ancestors

all the way to the root. This, however, is not the case: it ity orecessary to update the metric



values for immediate neighbours. In the following, we firstegan intuition for this through a
simple example, and follow up with a proof.
Consider the simple example in Figure 3.

Figure 3. simple call graph

For the graph shown in Figure 3, the program execution tilmeesponding to a partitioning
={V}, Vi, V3, V3} is given by
Tg = '[8 + CCpq * (tf + CCpo % tg) + CCp3 * (t§ + CC30 % tg)
If the vertexvo is moved to HW, i.e we have a new partitioniRg= {V],§,v5,5},
Ty =t + cCon * (£ + Clor + CC12 * t5) + CCog * (5 + Clog + CCa2 +t5)
Theexecution time changeetric for vertexvg is
AF = (T¢ - To) = (t§ —tS) + cCoy * Clog + CCo3 * Clog - Equation (A)
We can similarly computaf, A5, A.
Next, let us consider a partitioniri®y = {vg./vi./vg,vg} where the vertex) is mapped to HW.
For this partitioning, execution time for vertgy is given by
T0P2 = '[8—!— CCp1 * (tf—}— CCp2* (Ctio+ tg)) ~+ CCo3 * (tg—}— CG32* (Ctap+ '[2))
If the vertexvo is now moved to HW, i.e we have a new partitionitg = {V5,v§,V,V5},
TOon = tg + CCo1 * (1§ + Cloy + CC12 * (Ctyo+t3)) 4 CCoz* (154 Cloz + CC32 * ((Clazn+t5))
Thus,
A(F;Z = (TOon — TOPZ) = (tg —15) + CCo1 * Clog + CCp3 * Clp3 - Equation (B)
Equations (A) and (B) are identical. That is, when vexstgis moved to a different partition, the
metricAS remains unchanged for a non-immediate ancestor
In order to prove that the above result holds in the genese,cthe simple example gives us
the insight that we need to represent the expres§oin a form slightly differently from the
original definition. We define theggregate call counCG for a vertexy; in the following recursive
mannerCG = Z‘jpz"l(ccji «CC;j). R, represents the set of all parent vertices (all functiorssdsiled
from) for the vertewy;. CCy, i.e theaggregate call counfor the root vertex, is 1.
Armed with the above definition, we can proceed to prove tHeving lemma:

10



Lemma: For any two verticesvy and vy, if a vertex vy is moved to a different partition, Ay
needs to be updated only if there is an edgéx,y) or, (y,x). This update involves changing
exactly one term in4y, i.e this update can be done irD(1) time per edge.

Proof:

CG obviously represents the exact number of times the fundresponding to vertey is
called along all possible paths from the root. Now, if we reaely expandT, an unrolled
representation fof]’ is:

65 is theKronecker deltdunction defined for edgé, j) in the partitioningP - it takes a value
of 1 if the vertexv; and its child vertex/; are mapped to different partitions, O otherwise. The
first expression has exactly one term per vertex and the de@ression has exactly one term per
edge. If we now evaluan)PX, the new execution time when vertexis moved to generate the new
partitioningP,

To =3 Vo™ (CG#t) + P+ CCOt 5 DEEX) (& «CG xcty)+ 5 (1) € X(8F+CG xcty)
whereX is the set of all edges adjacent to ventgxincluding its immediate parents and imme-
diate children. Th&ronecker deltavalues can change only for edges adjacemtdVe can now
evaluate\! = TOF>X — TOP corresponding to the change in execution time when vegtéexmoved.
AR = CCex (tx —t,)+ Y M1 € X (&% — 8F) « CG + )
We can similarly computAf,’ for any other vertexy as
Ay =CGCy* (tﬁy —ty)+H () eY((zsi"jy —8f}) *CG ctj) Equation (C)
Next, we evaluate the execution tirili@ny corresponding to the new partitioning when venigx
is moved, followed by vertex, being moved.
T =3 10" W (CG#t) +15+CC 41y xCCy+
z(m)e(E—X—Y) (55 *CG * Ctj)+ z(hl)e(x—[X,Y]) (5i'°jx +CG *ctj)+
Z(i7j)8Y(65Xy *CC x Ct” )

where[x, y] denotes eithefx,y) or (y,X). Note that from our problem definition we can not have
both (x,y), and,(y,X).

Thus, we can computif = TOPXy ~Ts*as

AP =CCy (tgY —ty) — (=D (5iFj’x £CG # ctyj)— (YD) (8P + CG + oty +
Z(ivj) € Y(5::;XV*CQ * Ctij )
=CCy (t;)y — ty)+z(i’j)£(Y7[x’yD ((55’“’ - 65) *CG * Ctj )+
(1 D)=bey)) (&7 — 65-*) *CG * Ct;j) Equation (D)

1) . . oy L .
dij depends only on whether vertiogsaindv; are in the same partition, or in different partitions.

That is,{)iF;XV = 5iFj’ if (i,]) # [xy]. So, comparing Equations (C) and (D), we have
i )= Px 3 R
AP — AP =((:)=bYD) (30 — 55. )~ (8] - 5)) «CGxctj
Thus we have proved that when vertgxs moved to a different partitiody, needs to be updated

only if there is an edgéx, y]. Also, the update involves changing exactly one terrfyin

11



5 Simulated annealing
5.1 Algorithm Description

The concept of simulated annealing originated in thecaepbysics where Monte-Carlo meth-
ods are employed to simulate phenomena in statistical mesha Essentially the simulation
method considers a system consisting of a huge number aflparat an initial temperature T:
providing a random displacement to a particle causes a eharlge system energy and a sufficient
number of such displacements causes the system to reastichequilibirium at T. In simulated
annealing, the physical process of cooling a liquid to ik®hing point to obtain an ordered struc-
ture is simulated at several such temperature steps biyddtte system reach equilibrium at each
temperature.

The physical process described above was associated wiihiicatorial optimization problems
in [20]. An objective function is associated with the enerjya physical system and system
dynamics are imitated by random local modifications of therenut solution- a feasible solution
corresponds to a system state and an optimal solution pames to a state of minimal energy.
Thus, key parameters in any formulation are the initial terafure T, the cooling (annealing)
schedule which mandates how the temperature is decrememddhe number of iterations at
each step.

Algorithm SA
while (NOT_EQUILIBRIUM)

Fori=1to It //iterations at current temperature
P’ = random perturbation of the current configuration, P
COST = COST(P’) - COST(P)
if (COST < 0)

P=P
else

generate random numbegx0,1]
if (x < e—COS'Iﬂ/T)

P=P

endfor

UPDATE T ()(from annealing schedule)

EVALUATEEQUILIBRIUM_.CONDITION()

endwhile

In HW-SW partitioning, perturbation is commonly defined asave of a single vertex from
HW to SW and vice versa, though experiments have been caglugth perturbations involving
multiple moves [9]. A typical cost function is a linear combtion of normalized metrics [1], [5],
[3]. For our problem, the two metrics we need to consider laeeeikecution time of a partitioning
and the hardware area.

For a simulated annealing approach to HW-SW partitionimggcation time is primarily driven
by the computation cost of the cost function. It is compotaaily expensive to traverse a graph
with 100’s to thousands of vertices for every new configoratiFor our given problem, we can

12



simply use thexecution time changeetric defined earlier to update the execution time for a new
partitioning. Let us consider a partitionifiywith attributes(TP,HP). A move of vertexy; from

HW to SW generates a new partitioniRg with attributes(TP + AP, HP — h;). Similarly, a move

of vertexv; from SW to HW generates a new partitioniBgwith attributes(TP + AP, HP + hy).

If we computed the execution time of a partitioning by a siephversal of the call-graph, each
move would have a computation cost@fE). The execution time changaetric enables us to
update the execution time simply by updating the immediaighbours of a vertex. Since the
average indegree and outdegree of a call graph is expecbedadow number, the average cost of
a move is very low and enables the simulated annealing #hgotio do a very rapid evaluation of
the search space.

5.2 Cost function for simulated annealing

It is well-known that simulated annealing is a good apprdactnigh quality solutions to prob-
lems with a single optimization criterion, but it doesn'thiage as well on problems with multiple
objectives. In HW-SW partitioning, a significant amount ain considers only valid configura-
tions that satisfy constraints, thus effectively redudimg ability of the algorithm to "hill-climb”.
Often, a statically weighted linear combination of metigsised in an attempt to overcome the
limitation of simulated annealing in handling a multioldjee problem.

In this section we provide the intuition for developing casitctions that explore points often
not considered in traditional cost functions. Simulatedesating inherently uses randomization to
overcome local minima- moves that do not improve the optatndn objective are accepted with
some probability. Our goal is to guide the algorithm towgpdgentially more interesting design
points by explicitly forcing the algorithm to accept appahg bad moves when we are far away
from the goal. Simultaneously, we force the algorithm tayadailistically reject some apparently
good moves that would always be accepted by most heurifgs®n example, when we are far
away from our optimization goal, we would prefer not to alwaccept a move that improves
execution time only slightly at the cost of a significant amioof hardware area.

Our first observation about cost functions is that rathen the absolute value of the cost func-
tion, the primary concern of the SA algorithm is to take a sieci after every perturbation whether
the cost function changed for the better or for the worse. aseche new configuration seems
undesirable , we additionally need a quantitative evabmati the degree of inferiority to a desired
solution. So, instead of defining a cost function, we attetoptefine a delta function on the key
parameters for the given problem- the two parameters, ablyjichange in execution time, area.

In Figure 4, we try to provide the intuition behind our appriealn this diagram, each possible
partitioning P is represented as a point in the two-dimensional plane wahdy co-ordinates.
The x-axis represents the execution time corresponding to trengpartitioning, while thg-axis
represents the aggregate hardware area for componentediapdW. The vertical line$y,, and
Tmax represent the execution times corresponding to an alweeland an all-software solution
respectively. The horizontal lin&: represents the area constraint. To solve our problem of min-
imizing execution time under a hard area constraint, wecg¥ely need to search for a point as
close as possible to the upper left corner of the boundedngatar regiormA. This is of course
based on the implicit assumption that all partitioning etgecannot possibly be accomodated in

13
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HW- and, mapping as many objects as possible to HW is likeljetnl the most improvement in
the execution time.
Effect of a move

Let us now consider the implication of moving a single comgranin the partitioning® to
generate a new partitioning, s&y, as shown in Figure 5P; corresponds to a partitioning with
improved (less) execution time, and more HW areaR4.s generated by some move which a SW
component is moved to HW. Similarly the poiat corresponds to a move with less hardware area,
i.e, a move from HW to SW. More generally, when a single congmbim partitioningP is moved
to generate the new partitionify the new poing lies in one of the four quadrants centredPaiA
partitioningP; with improved execution time and additional HW area liehi@quadrant—t, +h),
represented in Figure 5 &s-,+). Similarly, a partitioning® with improved execution time and
reduced HW area lies in the quadrénit, —h), represented as-, —) and so on for partitionings
Ps, Pj.

We next consider the evaluation of a cost functidi A1 + B« Ap) at the pointP. This cost
function corresponds to a random move generated by the SHithlon. At is the difference in
execution time, and is the same as #&xecution time changmetric for the vertex to be moved.
A is the change in area caused by the mdwgis positive for a SW-HW move and negative for
a HW-SW move A andB are weights that include the normalization factors reglicebe able to
combine the two cost function components which are in cotapl@lifferent units.

This cost function is a simple straight line throuBlsplitting the region aroun® into 2 equal
parts. In simulated annealing, a random number is genetatgtbose a possible neighbourhood
move. Based on the cost function, this move is either acddpiadly or, accepted with some
probability dependent on the temperature. In traditionat éunctions like [8], where the hardware
area component of the cost function is ignored as long asdhsti@int is satisfied, essentially
every random move that improves the execution time comparfehe cost function is accepted
with a probability of 1. In Figure 5, this corresponds to dicceptance of all moves represented
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by P1, P2, i.e all moves lying in quadran{s-t,+h), (—t,—h) represented in the figure &s+),
(——). The hardware area component of the cost function playsardy when a move leads to a
constraint violation- this component is effectively catesied irrelevant in a significant amount of
the search space.

Quadrant-based cost function

Now, let us consideP to specifically correspond to a partitioning in which few quonents
have been mapped to hardware and hence the execution timgested to be relatively close to
the software execution time. In terms of the bounded rectiangegionA in Figure 4,P is nearer
the lower right corner. For such a pofatwe would like to bias the move acceptance such that:

(a) we provide additional weightage to certain moves thasedhe execution time to deteriorate
slightly but in return free up a large amount of HW area. Thagerepresented B in Figure 6.

(b) we reduce the weightage on certain moves that improveutios time slightly but consume
an additional large amount of HW area. These are represegtgdin Figure 6.

(c) we reduce the weightage on certain moves that improvexeeution time slightly but free
up a large amount of HW area. These are represent&dibyFigure 6.

Providing additional bias to the set of movBgis a non-traditional approach but we expect
such moves to open up more combinatorial possibilities. @Weeae our objective of providing
additional bias to such moves by introducing a cost func{®r At + BxAa), A >> B in the
quadrant(+t, —h). In cost functions that ignore the HW area component far ftbenobjective,
all moves in this quadrant carry a penalty and are acceptddseime probability dependent on
temperature. By introducing a cost function in this quatréime set of move® are always
accepted.

A similar reasoning of enabling the cost function to expim@e combinatorial possibilities lies
behind our choice of reducing weightage on the set of mBy.eiSor these points, we are effectively
discouraging moves with a slight gain in execution time Mot significantly increased HW area.

Our reasoning behind reducing weightage for the set of mBy&s somewhat different. For
these moves, we are actually attempting to guide the searay faom making moves that do not
appear to be making progress towards our desired solutiacespintuitively, for a partitioning
where there are relatively few HW components, the HW-SW camination cost can potentially
play a dominant role. For moves lilgg, freeing up a large amount of HW could potentially result
in a slight improvement in execution time due to significaduction in HW-SW communication.
Blindly accepting such moves translates to attemptingdaee communication cost between some
vertexvy mapped to HW and its neighbours in SW by moving bagko SW. When we are far
from our desired solution space, we would instead prefemtmerage the algorithm to reduce
communication cost by adding more of its neighbours to HW.

Dynamic weighting

We next consider the notion of dynamically weighting the poments of the cost function as
suggested in [5]. Changing th® and B components dynamically affects the search region by
dynamically changing the slope of the line through This is a powerful technique that has a
big impact on the effectiveness of the search. In [5], thihtéque was applied only when the
current solution was somewhat close to the constraint. Tgerithm in [5] essentially focussed
on satisfying its primary objective, i.e the timing consgitaonce this constraint was satisfied,
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dynamic factors were used to increase weightage of its skacgrobjective, minimizing the HW
area. We however, apply a dynamic weighting factor to out ftoxctions in various regions in
an attempt to better guide the search. Conceptually we pttenguide our search more towards
the top left corner of the bounded region by dynamically wéitg the time component with the
distance from the boundary.

Among the other key issues we have considered in formulatimgost function are the impact
of boundary violations, i.e when a move leads us to a pamiiigpwith HW area greater than the
constraint. We penalize all such moves with a factor propoal to the extent of the boundary
violation. We can clearly achieve this with a high weightagehe area component, i.e a function
(Ax A1 + Bx (Areahew— Ac)), WhereB >>> A. Similarly when a move leads from an invalid
partitioning to a valid partitioning, we reward it with a tac proportional to the extent that it is
inside the boundary.

Another important aspect of our cost function is the notiba threshold. When we are very
close to the boundary, we need a cost function that has orllgta bias towards the component
representing execution time. In our cost function, the toomponent is dynamically weighted
by the distance from the boundary- we have observed expetaihethat close to the boundary,
desirable weights for the time component in this region aemdower than what our cost function
provides. Thus, we needed to add the notion of a threshoidiregry close to the boundary where
we explicitly assign a lower weightage to the time compormdthe cost function.

Based on the above discussion, our cost function is algorally described as:
if (current partititioning is a valid solution)

if (move causes boundary violation)
Significant penalty proportional to area violation 0]
else if (current partitioning is very near to boundary)
Slightly reduced weightage on time (as compared to (iii))
else
if (move in quadrant (—,—))
(A]_*AT—I—B]_*AA), where A >> B, (III)
else
(A2 x A1 +B2xAn), (V)
else // (current partititioning lies outside boundary)
a mirror image of the above set of rules.

In Equations (iii) and (iv), the term&; andA; are dynamically weighted by the distance from
the boundary.

An actual code snippet corresponding to (iv):

timeComponent = 2.4 * (timeChange/currentExecutionTime) (areaConstraint/currentArea)
areaComponent = areaChange/areaConstraint
penalty = timeComponent + areaComponent

The time change component of the cost function is normakwéathe current execution time
and dynamically weighted with a number representing thedce from the desired solution re-
gion. The HW area component of the cost function is normdlizéh respect to the areaCon-
straint.
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5.3 Key parameters for Simulated Annealing

A key aspect of any simulated annealing formulation is thdtitnde of parameters involved.
While theoretical analysis with Markov chains in work such[49] have shown that simulated
annealing approaches can generate the global optima pbwertain conditions are satisfied,
such analysis does not provide much information on actuaicehof the various parameters. We
next present the parameter settings in our implementation.

Initial temperature T

This is commonly chosen as a large value to ensure that mostswawe accepted when execution
starts. Our experiments confirmed that above a certainhblgsthe correlation between the
starting temperature and other problem dimensions (suctuadber of partitioning entities) is
relatively low. So, we kept the initial temperature T fixedb@0O0 for our entire set of experiments.
All results presented in the following experimental sectorrespond to T = 5000.

Cooling schedule

This dictates how the temperature parameter is decremahgath step. While different cooling
schedules have been proposed in the literature such as tiiyiMees schedule [16], we chose
the widely-usedjeometricschedule. In this schedule, the new temperature is givapday= o« T
wherea is a constant that typically varies between 0.9 - 0.99. Aftéially conducting a wide
range of experiments, we fixedat 0.96. All our presented experimental results correspord
=0.96.

Number of Iterations at current temperature |

This is a key aspect that specifies the number of moves at thentiemperature before the cool-
ing schedule is applied to decrement the temperature. Rewrk in HW-SW partitioning often
seem to either eliminate the inner loop completely [3], arllying on a global termination con-
dition, or, do not explicitly mention their choice [1]. Oubservations indicate that this criterion
plays a significant role in determining solution quality. i parameter is frequently set to be a
function of the number of partitioning objects, such as gpinconstant multiple in [17], a poly-
nomial (approximately quadratic) in [9]. Based on our estea set of experiments, we propose
ly =i iterations in tha’th temperature step. This is in keeping with our overall ralerbehind
developing our cost function- our aggregate strategy isittally make relatively quick strides
towards the desired solution space, and subsequently sperelcomputational effort searching
for a very high quality solution.

Global Equilibrium

The algorithm termination criterion is again a very key &ssin existing work this is often for-
mulated as a small number of constant temperature itesavghout any improvement in solution
guality— this constant is frequently chosen as 3 in work a&f9], [17]. However with our "more
global” approach to the problem, we choose the stoppingrasit as the number of cumulative
moves that do not produce any improvement. This naturallyah&trong correlation with the prob-
lem size in terms of partitioning objects— so, we scale thabag stopping criterion from 5000
moves without improvement for graphs with fifty vertices,1&000 moves without improvement
for graphs with a thousand vertices.
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6 Experiments

As shown in Figure 7, we explored a very large space of passiésigns by generating graphs
which varied the following set of parameters: (1) varyingegree and outdegree (2) varying
number of vertices (3) varying CCRs (computation-to-comioation ratio). (4) varying area
constraints.

6.1 Experimental setup

A.=0.05
2
/ 507 kize=5 A.=03
_ 100
indeg=4 200 -
—— 500
outdeg=4 A= 0.6
TGFF | \| /
indeg=4 50
utdeg=10 Ac=0.002
K 500
CCR=01 |——
1000 0.3
5 A.=0.12
indeg=2 0.7
outdeg=>5% —
A= 0.25

indeg=5|
outdeg='§

Figure 7. Set of experiments

We used the graph generator TGFF [15] to generate the graelasini our experiments. TGFF
is a parameterizable generator that can accept user sp#otfi€ like maximum indegree, outde-
gree of the vertices. We additionally augmented TGFF foreyreriments- an example of an
augmentation was one that enabled TGFF to generate HW éxedumes for vertices such that
the HW execution time of a vertex was faster than the SW ei@ttime by a number between 3
and 8 times.

Let S ={20,50,100,200 500, 1000} denote the range of graph sizes generated where size cor-
responds approximately to the number of vertices in thelgr@s an example, for a graph size
50, TGFF generates a graph with between 48 to 52 vertices hd&ecS to observe how our algo-
rithm worked on a large range of graph sizes. Let Cf04,0.3,0.5,0.7} denote the set of CCR’s
(communication-to-computation ratio). The notion of CGRvery important in partitioning and
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scheduling algorithms that consider communication betvtagks/functions. A CCR of 0.1 means
that on an average, communication between functions/tas&scall-graph/task graph requires
1/10'th the execution times of the functions/tasks in thegptr As CCR increases, communication
starts playing a more important role in coarse-grain parnihg and scheduling algorithms.

Step 1The maximum indegree and outdegree of a vertex were set toh4 waich are reasonably
representative of realistic call-graphs. Correspondmthése fixed parameters, we generated a
set of graphs with the following characteristics. Each ri§A chose a graph size from S =
{20,50,100,200,500,1000}; for each graph size we chose CCR from CRG-1,0.3,0.5,0.7}
Thus, we effectively generated a set of grapfisX |CR. Note that in the tables that follow,
graphs with size 50 are denotedv&®, graphs with size 100 are denoted/a80, etc.

Step 2For each of the graphs generated in Step 1, we varied the @nsta@intA; as a percentage
of the aggregate area needed to map all the vertices to HWn@®mxireme, we s&. such that
very few partitioning objects would fit into HW, while at théher extreme, a significant proportion
of the objects would fit into HW.

Step 3We repeated the above two steps with a maximum indegree addgrae of (i) 4 and 10
(i) 2and 5 (i) 5and 7.

As a consequence of our experimental setup, the experihdattapresented represents infor-
mation collected from over 12000 experiments.

To measure the quality of results, we simply record the @magexecution times computed
by the SA algorithm with our new cost function, and the KLFMy@iithm as in [8]. In prior
work, however, experiments to measure the quality of a tp@nthg algorithm have often been
formulated by forcing constraint violations and attemgtio integrate the degree of violations
into some unitless number, as in [8], [1].

For a given design configuration, T is the execution time of the partitioned application com-
puted by the KLFM algorithm, andlis, is the execution time of the partitioned application com-
puted by the SA algorithm, our quality measure is the peréorce difference given by:

(Tki — Tsa) / Tkt * 100
Thus, a positive number, say, 5%, implies that the KLFM athor computed an execution time
better than SA by 5%, while a negative number, say -10%, gsphat the SA algorithm computed
an execution time better than the KLFM algorithm by 10%.

6.2 Experimental results and key observations

The experimental results are classified under two categjofiee first category of experimental
results confirm the benefits of our approach over the KLFM a@gh by demonstrating that our
approach generates superior quality restiND is asymptotically faster. The second category of
results quantifies the effect of our dynamic SA cost functiod parameter settings by comparing
with other SA-based approaches.

6.2.1 Proposed SA (SA-new) Vs KLFM

Figures 8 through 11 represent the complete data for allhgrapth 50 vertices. Appendix A
contains the rest of the data for graphs of other sizes: Egy@B through 16 in Appendix A
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Figure 8. v50, CCR 0.1: Performance Vs Figure 9. v50, CCR 0.3: Performance Vs

constraint constraint

Graph

category| BEST | WORST| AVG BETTER% | BETTER-5%| WORSE-5%
v20 -24.9% | 12.3% | -4.17 % 2% 36.5% 0.7%
v50 -22.9%| 6.7% | -5.75% 93% 45.4% 0.1%
v100 -18.2%| 5.7% | -5.47% 96% 48% 0.05%
v200 -13.9%| 4.3% | -3.74% 90% 33% 0%
v500 -16 % 6.8% |-453% 87% 47.3% 0.9%
v1000 -13.7% | 6.4% | -4.17% 81% 43.5% 0.7%

Table 1. Solution quality: KLFM (all Software) Vs SA-new

represent the complete data for all graphs with 20 vertieegjres 17 through 20 for all graphs
with 100 vertices, etc.

Let us consider Figure 8- this represents data collectedréghs with 50 vertices, and a fixed
CCR of 0.1 for various area constraints. Thaxis corresponds to the various area constraints
and they-axis corresponds to the performance difference. In thigdiga significant majority of
points show negative performance difference (below 0)s ithdicates that our SA formulation
mostly generates better results than the KLFM approach. pbie BEST SA- newrepresents
the best performance improvement by our SA formulation tiverKLFM approach, while point
BEST KLFMrepresents the best solution computed by the KLFM algoritBmilarly, Figure 9,
Figure 10, Figure 11 represent the data for graphs with 5ficesrand a CCR of 0.3, 0.5, 0.7
respectively.

In Table 1, we summarize the aggregate results from all @xjeets comparing the SA with
our new cost function (SA-new) against the KLFM algorithmrshg with an initial configuration
of all vertices mapped to SW. The column heaB&ST represents the best improvement in ex-
ecution time computed by the SA-new approach compared t&ltké/ approach for the set of
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Figure 10. v50, CCR 0.5: Performance Figure 11. v50, CCR 0.7: Performance
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experiments represented by a row IN&). Entries that are more negative indicate that SA-new
is better- for example, an entry of -16% means the executina tomputed by SA-new is bet-
ter than KLFM by 16%. The column head&ORSTrepresents the best results produced by the
KLFM algorithm. The column heade&V G represents the average deviation between the two al-
gorithms. The column headBET T ERb represents the overall percentage of test cases for which
our approach generates better results, i.e lower exedim@for the corresponding test case. The
column header8ETTER- 5 andWORSE- 5 indicate the overall percentage of test cases for
which the results generated are better and worse respgdiiywé%.

As can be observed from column BETTER, in an overwhelming majority of test cases,
SA-new produces results that are better than KLFM—- columA\33 shows that the average
improvement over KLFM for all graph sizes is close to 5%. Tisiconfirmed by columns 5
(BETTER-5) and column 6 ORSE- 5) where we clearly see that the solution quality is better
by over 5 % in a significant number of experiments while the benof experiments where KLFM
is better by over 5% is negligible. Additionally, for nonvial graph sizes of 50 vertices or more,
column 2 WORST shows that the best results for KLFM are at most 7% better tha results
computed by our new cost function.

Table 2 shows the run-times required by KLFM and SA-new toegate the results in Table
1. Again, the run-time is averaged over the experimental agtan example, in Table 2 the data
corresponding to (row500, column KLFM) was obtained as the average runtime oweséh of
a couple of thousand experiments with KLFM on graphs with 88fices. As can be clearly
seen from Table 2 and Figure 12, the run-time of our SA fortmutas asymptotically better than
the run-time of the KLFM formulation- for graphs with aroufh@00 vertices, the run-time of our
algorithm is almost 5 times faster.

Observations
Overall, Figures Figure 8 through Figure 11 (and Figure 18ugh Figure 32 in the Appendix)
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Execution time (s)

Graph | SA-new runtime(s) KLFM runtime(s)
category

v20 .07 .05

v50 .08 .05

v100 A .07

v200 19 A1

v500 .25 48

v1000 .36 1.6

Table 2. Run-time performance comparison

1.5
" KLFM
1.0 ’
0.5 .
u\'\\u\u‘tﬂ‘l‘u'n‘n‘l ---------------------------------------------------- SA
0.1, muiiiees”
- b > 1000

Graph size (number of vertices)

Figure 12. Run-time performance plot for algorithms
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Graph

category] BEST | WORST| AVG | BETTER% | BETTER-5%| WORSE-5%
v20 -23.8% | 12.3% | -1.89% 52% 15.4% 0.9%
v50 -19.6% | 6.7% | -4.1% 88% 27.9% 0.1%
v100 -14% 9.3% | -3.1% 87% 20.7% 0.6%
v200 -10.1%%| 6.8% | -2.51% 81% 15.6% 0.3%
v500 -12.7% | 7.1% | -2.84% 82% 20.7% 0.1%
v1000 -13.3% | 6.4% | -2.81% 77% 26.5% 0.1%

Table 3. Solution quality: KLFM (best) Vs SA-new

show that our approach generates better quality resultstbieaKLFM approach when the design
space is larger. We next take a brief look at how key aspedteadesign space affect the solution
quality.

Effect of area constraint

At lower area constraints where a small percentage of naglegitcinto HW, the exploration
space is relatively limited. In such scenarios the KLFM @&ggh generates reasonably good re-
sults. This shows up in graphs with 500 and 1000 vertices evtiexr KLFM frequently generates
slightly better results at an area constraint of 0.05 (attfd#sof vertices can be mapped to HW).
However, as area constraint grows, increasing the scopexforation, our approach starts gen-
erating superior solutions. Also, as Table 1 showed, théresslts generated by the KLFM are
slightly better, while SA-new often generates much betsults.

Effect of CCR

Comparing Figure 8 with Figure 11, we see the effect of compation in the design space.
The number of experiments that show an improvement of ové lE5many more in Figure 11
with a higher CCR of 0.7. As CCR increases, the scope of conration-computation tradeoff
increases. Our approach, SA-new, is able to do a much beki@f exploring this space.
Proposed SA (SA-new) Vs KLFM (best)

KLFM based partitioning approaches are known to be seeditivthe initial partitioning. So,
we let the KLFM start from some different initial configurais and obtained the best result for
each experiment from this set of independent KLFM runs. Iold8, we compare the quality of
results obtained from SA-new with thiest of KLFMheuristic. As the results in Table 3 confirm,
the quality of results obtained from this set of KLFM runs igserior to that obtained from a
KLFM with all vertices initially in software. However, theuglity of results generated by SA-new
is still superior with a significant percentage of cases shgwnporovement by over 5% while the
number of test cases where SA-new performs worse by over 5% isegligible.

Thus, Tables 1, 2, and 3 confirm that our approach indeed g&sesuperior results in general
and asymptotically executes much faster than the KLFM-apgroach.
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Graph

category| BEST | WORST| AVG | BETTER% | BETTER-5%| WORSE-5%
v20 -15.2% | 13.5% | 0.21% 8% 0.7% 2%

v50 -28.8% | 9.4% | -1.86% 75% 8% 1%
v100 -30% 7.7% -4.4% 83% 36.3% 0.2%
v200 -18.6 % 3.1 -7.3% 93% 75% 0%
v500 -22.6% | 7.9% |-10.1% 92% 82.6% 0.4%
v1000 | -24.8% | 7.2% |-10.5% 89% 77.1% 0.9%

Table 4. Solution quality: SA (time+ d(area) Vs SA-new

Graph

category] BEST | WORST| AVG | BETTER%
v20 -32.8% 9.8% | -15.5% 99%
v50 -56.6% -8% | -32.2% 100%
v100 -58.8% | -7.1% | -34.7% 100%
v200 -57.8%%| -3.6% | -36% 100%
v500 -54.8% | -1.2% | -35.5% 100%
v1000 -54.5% | -0.2% | -31.6% 100%

Table 5. Solution quality: SA-previous Vs SA-new

6.2.2 Proposed SA (SA-new) Vs other SA

We next present results of experiments where we compare@Awith dynamic cost function
(SA-new) with other SA-based approaches.
Static Vs dynamic cost function

In Table 4, we quantify the effect of using our dynamic costfiion. For this set of experiments,
we compare SA-new with a SA cost functiaiinfje+ d(area)) as in [8]. The rest of the param-
eter settings were identical— initial temperature, capehedule ), local and global stopping
criterion were same.

From this table we observe that under the given paramet@mg®tthe static SA cost function
does well for small graphs with 20 vertices, but as the grapé imcreases, the dynamic cost
function does significantly better.

Effect of parameter settings

In Table 5, we quantify the effect of changing some key patamsettings. We compare SA-
new with a SA based approach, SA-previous, with cost fundtione+ &(area)). The parameters
initial temperature and cooling schedute) @re same for SA-new and SA-previous. However,
for SA-previous,the global equilibrium criterion and lbaaner loop stopping criterion were set
similar to work such as [9], [17]. The global stopping criberwas set to 3 temperature iterations
with no improvement, and the number of iterations of the inbep was set as a polynomial
function (approximately quadratic) similar to [9].

The data shows a very significant difference in quality olulssbetween SA-new and SA-
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previous— the average quality improvement from using S#-rseover 30% with almost all test
cases generating better results with SA-new. We acknowlduig SA-previous would have ben-
efited from a significant parameter tuning effort (differstdrting temperature, and/or different
cooling schedule, etc). However, we believe it is still reting to confirm that the presence
of a hard area constraint in the SA objective makes the pnolblard enough such that a simple
adaptation of parameter settings from existing work islyike lead to very low-quality results.
Additionally, we hope that our extensive quantitative daiihspur future researchers to continue
work on similar detailed analysis of the effects of such paeter settings in the context of HW-SW
partitioning.

7 Conclusion

In this work, we made two contributions. We first proved that HW-SW partitioning of an
application represented as a callgraph, when a vertex iedloetween partitions, it is necessary to
update the execution time metric only for the immediate Inletgirs of the vertex. We additionally
developed a new cost function for SA that attempts to explegeons of the search space often
not considered in other cost functions. Our two contritngioesult in a SA implementation that
generates partitionings such that the execution timesragaiéntly better by 10 % over a KLFM
algorithm starting with all vertices in software for graphaging from 20 vertices to 1000 vertices,
and the average improvement is close to 5% for a set of alnZ3d0 experiments. Equally
importantly, the algorithm execution times are very fasgpips with 1000 vertices are processed
in less than half a second, and the algorithm is asymptbtifzter than a KLFM implementation,
with execution times faster by 5 times for graphs with a 108qiges.

Comparisons with a set of KLFM implementations startingrfrdifferent initial configurations
indicate that the average solution quality of results gateer by our approach is still superior to
the best results generated by this set of independent KLFM. riThis leads us to believe that
such a fast SA formulation makes it feasible to fine-tune thection further in a real design
environment to generate partitioning solutions with a guaignificantly better than that obtained
from a KLFM approach.

One key limitation of our current implementation is that vee @ simple additive HW area esti-
mation model that does not consider resource sharing. inhitgtion can potentially be overcome
in a more comprehensive implementation with an approa@h[lik]. Another important aspect
currently missing from our implementation is that it does consider the existence of multiple
area-time Pareto points obtained from different compggnthesis) optimizations— however, note
that it is very simple to extend our SA-based approach toidenshis issue. A move selection
instead of being from HW to SW could potentially be simplyrfrany implementation point to
another- our neighbourhood update mechanism is still \aidi the run-time of our approach in
this scenario is exepected to be very similar to run-timeb wisingle implementation point.

In the future, we plan to extend these concepts to systemsewd/ and SW execute con-
currently, i.e, consider scheduling issues as part of tbhblpm formulation. Another interesting
direction would be to extend the cost function concepts ld@esl here to algorithms with fewer
tunable parameters. While Simulated Annealing is a verygsw vehicle, our learning expe-
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rience of individually tuning a lot of different parameters SA confirms a need for heuristics
in HW-SW partitioning that arenore deterministicyet capable of rapidly generating solutions
of a similar high quality as our approach by exploiting thevpo of random moves in a similar
controlled manner. One possible starting point for suchaggtions could possibly be an investi-
gation of the WalkSAT SAT solver for hypergraph partitiogif2] that essentially does a KLFM
with probabilistic move selection.
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9 Appendix A: Aggregate data for KLFM Vs SA (proposed cost furction)
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