
Very fast Simulated Annealing for HW-SW partitioning

Sudarshan Banerjee Nikil Dutt
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

banerjee@ics.uci.edu dutt@ics.uci.edu

CECS Technical Report #04-#18

June, 2004

Abstract
Hardware/software (HW-SW) partitioning is a key problem inthe codesign of embedded systems

and has been studied extensively in the past. With the wide availability of commercial platforms
such as the Virtex-II Pro series from Xilinx that integrate processors with reconfigurable logic, one
major existing challenge is the lack of efficient algorithmsthat can generate very high-quality so-
lutions by exploring a huge HW/SW exploration space- the keycriterion is to obtain such solutions
at a speed suitable for integration into a compiler-based partitioner. In this report, we make two
contributions for HW-SW partitioning of applications specified as procedural call-graphs:
1) We prove that during partitioning, the execution time metric for moving a vertex needs to be
updated only for the immediate neighbours of the vertex, rather than for all ancestors along paths
to the root vertex. This enables move-based partitioning algorithms such as Simulated Annealing
(SA) to execute significantly faster, allowing call graphs with thousands of vertices to be processed
in less than half a second
2) Additionally, we devise a new cost function for SA that enables searching of spaces overlooked
by traditional SA cost functions for HW-SW partitioning, allowing the discovery of additional par-
titioning solutions in a very efficient manner.
We present experimental evidence on a very large design space with over 12000 problem instances.
We generate the problem instances by varying the call-graphsizes from 20 to 1000 vertices, inde-
gree/outdegree of vertices, communication-to-computation ratios, and varying the area constraint
on the hardware partition. Thousands of problem instances are explored in a matter of minutes as
compared to several hours or days using a traditional SA formulation. Aggregate data collected

1



over this large set of experiments demonstrates that when compared to a KLFM algorithm start-
ing with all vertices in software, our approach is 1) asymptotically faster, with a run-time around
5 times faster for graphs with 1000 vertices, 2) is frequently able to locate better design points
with over 10 % improvement in application execution time, and 3) the average improvement in
application execution time is around 5%. We confirmed the solution quality of results generated
by our approach by additional comparisons with a) set of KLFMruns starting from different ini-
tial configurations for the same problem instance, and b) other cost-functions commonly used in
SA-based approaches for HW-SW partitioning. Overall, our approach generates superior results
and executes much faster.

2



Contents

1 Introduction 5

2 Related work 6

3 Problem description 7
3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 7
3.2 Notational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 8

4 Efficient computation of execution time change metric 9

5 Simulated annealing 12
5.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 12
5.2 Cost function for simulated annealing . . . . . . . . . . . . . . .. . . . . . . . . 13
5.3 Key parameters for Simulated Annealing . . . . . . . . . . . . . .. . . . . . . . . 18

6 Experiments 19
6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 19
6.2 Experimental results and key observations . . . . . . . . . . .. . . . . . . . . . . 20

6.2.1 Proposed SA (SA-new) Vs KLFM . . . . . . . . . . . . . . . . . . . . . .20
6.2.2 Proposed SA (SA-new) Vs other SA . . . . . . . . . . . . . . . . . . .. . 25

7 Conclusion 26

8 Acknowledgements 27

9 Appendix A: Aggregate data for KLFM Vs SA (proposed cost function) 29

List of Figures

1 Target architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 7
2 Simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 simple call graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
4 Solution space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Neighbourhood move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6 Cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Set of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
8 v50, CCR 0.1: Performance Vs constraint . . . . . . . . . . . . . . . .. . . . . . 21
9 v50, CCR 0.3: Performance Vs constraint . . . . . . . . . . . . . . . .. . . . . . 21
10 v50, CCR 0.5: Performance Vs constraint . . . . . . . . . . . . . . .. . . . . . . 22
11 v50, CCR 0.7: Performance Vs constraint . . . . . . . . . . . . . . .. . . . . . . 22

3



12 Run-time performance plot for algorithms . . . . . . . . . . . . .. . . . . . . . . 23
13 v20, CCR 0.1: Performance Vs constraint . . . . . . . . . . . . . . .. . . . . . . 29
14 v20, CCR 0.3: Performance Vs constraint . . . . . . . . . . . . . . .. . . . . . . 29
15 v20, CCR 0.5: Performance Vs constraint . . . . . . . . . . . . . . .. . . . . . . 29
16 v20, CCR 0.7: Performance Vs constraint . . . . . . . . . . . . . . .. . . . . . . 29
17 v100, CCR 0.1: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 30
18 v100, CCR 0.3: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 30
19 v100, CCR 0.5: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 30
20 v100, CCR 0.7: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 30
21 v200, CCR 0.1: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 31
22 v200, CCR 0.3: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 31
23 v200, CCR 0.5: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 31
24 v200, CCR 0.7: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 31
25 v500, CCR 0.1: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 31
26 v500, CCR 0.3: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 31
27 v500, CCR 0.5: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 32
28 v500, CCR 0.7: Performance Vs constraint . . . . . . . . . . . . . .. . . . . . . 32
29 v1000, CCR 0.1: Performance Vs constraint . . . . . . . . . . . . .. . . . . . . . 32
30 v1000, CCR 0.3: Performance Vs constraint . . . . . . . . . . . . .. . . . . . . . 32
31 v1000, CCR 0.5: Performance Vs constraint . . . . . . . . . . . . .. . . . . . . . 32
32 v1000, CCR 0.7: Performance Vs constraint . . . . . . . . . . . . .. . . . . . . . 32

4



1 Introduction

Partitioning is an important problem in all aspects of design. HW-SW (hardware-software)
partitioning, i.e the decision to partition an applicationonto hardware (HW) and software (SW)
execution units, is possibly the most critical decision in HW-SW codesign. The effectiveness of
a HW-SW design in terms of system execution time, area, powerconsumption, etc, are primarily
influenced by partitioning decisions.

The partitioning problem has a lot of related variations depending on the objective function
being optimized. In this report, we consider the problem of minimizing execution time of an
application for a system with hard area constraints. An example of a related problem is the problem
of minimizing aggregate energy consumption for a system with hard constraints on execution time.

We consider an application specified as a DAG (directed acyclic graph), extracted in the form
of a callgraph from a sequential application written in ’C’.Our target system architecture has one
microprocessor (SW) and one area-constrained hardware unit (HW) such as a reconfigurable logic
fabric. An example of such an architecture is the Xilinx Virtex-II Pro Platform FPGA XC2VPX20
that integrates one PPC405 (PowerPC) processor with reconfigurable logic. In this work, we as-
sume that the HW and SW units execute in mutual exclusion- this allows us to focus exclusively
on the partitioning problem.

For a DAG representing a call graph, the execution time of a vertex needs to be computed from
all descendants in the sub graph rooted at the vertex. In HW-SW partitioning, when a vertex
is moved from SW to HW or vice-versa, the execution time of theprogram changes due to the
different execution times of a HW versus a SW implementation, along with increased or decreased
communication cost across the cut. This change in executiontime is represented by theexecution
time changemetric.

In this report, we make two contributions to HW-SW partitioning. First we prove that for a
callgraph representation, when a vertex is moved to a different partition, it is only necessary to
update theexecution time changemetric [8] for its immediate parents and immediate children
instead of all ancestors along the path to the root. This in general allows for a more efficient
application of move-based algorithms like simulated annealing (SA).

Secondly, we present a cost function for simulated annealing to search regions of the solution
space often not thoroughly explored by traditional cost functions. This enables us to frequently
generate more efficient design points.

Our two contributions result in a very fast simulated annealing (SA) implementation that gen-
erates partitionings such that the execution times are frequently better by over 10% compared to a
KLFM (Kernighan-Lin/Fiduccia-Matheyes) algorithm for HW-SW partitioning for graphs ranging
from 20 vertices to 1000 vertices. Equally importantly, graphs with a thousand vertices are pro-
cessed in much less than a second, with the algorithm run-time asymptotically faster than a KLFM
implementation by around 5 times for graphs with a 1000 vertices.

Given the known propensity of a KLFM approach to get stuck at local minima, we additionally
conducted experiments where the KLFM algorithm was allowedto start from different configu-
rations. Our approach generates better quality results compared to this set of independent KLFM
runs on the same problem space. Additional comparisons withcommonly used SA cost functions

5



in HW-SW partitioning establish the quality of results generated by our approach.
The rest of this report is organized as follows: in Section 2,we review related research in HW-

SW partitioning. In Section 3 we review the problem description. In Section 4, we prove that
theexecution time changemetric needs to be updated only for immediate neighbours of avertex.
In Section 5, we discuss the simulated annealing algorithm and present our proposed approach
towards a more interesting cost function. In Section 6, we present the experiments conducted. We
conclude with Section 7.

2 Related work

Hardware-software partitioning is an extensively studied”hard” problem with a plethora of
approaches- dynamic programming [13], genetic algorithms[4], greedy heuristics [12], to name a
few. Most of the initial work on HW-SW partitioning, [13], [14] focussed on the problem of meet-
ing timing constraints with a secondary goal of minimizing the amount of hardware. Subsequently
there has been a significant amount of work on optimizing performance under area constraints, [1],
[3], [8]. With the goal of searching a larger design space, techniques such as simulated annealing
(SA) have been applied to HW-SW partitioning using fairly simple cost functions. While a lot of
initial work such as [14] was based exclusively on simulatedannealing, recent approaches com-
monly measure their quality against a SA implementation. For example, [1] compares SA with a
knowledge-based approach, and [3] compares SA with tabu search.

It is well-known that SA requires careful attention in formulating a cost function that allows the
search to ”hill-climb” over suboptimal solutions. However, much of the published work in HW-
SW partitioning have not studied in detail the SA cost functions that permit a wider exploration
of the search space. As an example, in [3], [9], the SA formulation considers only valid solutions
satisfying constraints, thus restricting the ability of SAto ”hill-climb” over invalid solutions to
reach a valid better solution.

The two previous pieces of work in HW-SW partitioning that are most directly related to our
work are [8], [5]. Our model for HW-SW partitioning is based on [8], a well-known adaptation of
the KL paradigm for HW-SW partitioning; our efforts in improving the quality of the cost function
are closely related to [5].

Our partitioning granularity is similar to [8], effectively that of a loop-procedure call-graph;
each partitioning object represents a function and the DAG edges are annotated with callcounts.
[8] introduced the notion of execution time change metric for a DAG, and updating the metric
potentially by evaluation of ancestors along the path to theroot. The linear cost function in [8]
ignores the effect of HW area as long as the area constraint issatisfied.

[5] provides an in-depth discussion of cost functions and the notion of improving the results ob-
tained from a simple linear cost function by dynamically changing the weights of the variables. We
differ from [5] in the following ways: [5] addresses the problem of choosing a suitable granularity
for HW-SW partitioning that minimizes area while meeting timing constraints; since we consider
the problem of minimizing execution time while satisfying HW area constraints, the proposed
cost function in [5] needs significant adaptation for our problem. In [5], the dynamic weighting
technique was applied towards the secondary objective of minimizing HW area once the primary

6



objective, the timing constraint, was almost satisfied. We however, apply a dynamic weighting
factor to our cost functions in various regions of the searchspace to better guide the search. Last
but not the least, since their primary focus was on the granularity selection problem, there was no
quantitative comparison of their approach with other algorithms- we have compared our approach
to the KLFM approach with an extensive set of test cases and demonstrated the effectiveness of
our approach.

3 Problem description

3.1 Problem description

The application specification methodology and architectural assumptions in our problem def-
inition are similar to [8]. Here we provide a brief summary ofthe key aspects of the problem
definition.

  SW
HW

memory HW local memory

Figure 1. Target architecture

We consider an application specified as a DAG (directed acyclic graph), extracted from a se-
quential program written in C, or, any other procedural language. The target architecture for this
application is a system with a single SW processor and a single HW unit connected by a system
bus, as shown in Figure 1. An example of such an architecture is the widely available Xilinx
XC2VPX20 with a single PPC405 processor connected to reconfigurable logic by a PLB (proces-
sor local bus). In this work, we assume mutually exclusive operation of the two units, i.e the two
units may not be computing concurrently. We additionally assume that the HW unit can be config-
ured only once before the application starts execution and the HW functionality does not change
once the application starts execution, i.e., we consider that the HW unit does not have dynamic
RTR (run-time reconfiguration) capability1. The problem considered in this report is to partition
the application such that the execution time of the application is minimized while simultaneously
satisfying the hard area constraints of the HW unit.

1This is a relevant practical assumption in light of the significant reconfiguration penalties incurred in such com-
monly available single-context RTR architectures

7



Each partitioning object corresponding to a vertex in the DAG is essentially a function that can
be mapped to HW or SW. Each directed edge(x;y) in the DAG represents a call or an access
made by the caller functionx to the callee functiony. The SW execution times and callcounts are
obtained from profiling the application on the SW processor.In this model, the HW execution time
and the HW area for the functions are estimated from synthesis of the functions on the given HW
unit 2. Communication time estimates are made by simply dividing the volume of data transferred
by the bus speed. Since the execution time model is sequential, bus contention is assumed to play
an insignificant role.

HW

SW

v

vv

v
4v

6v

5v3
1

2

0

Figure 2. Simple example

We next motivate the first part of our contribution with the simple example shown in Figure 2.
For the callgraph in the figure, the execution time of the program (same as the execution time for
vertexv0) obviously depends on the execution time of its descendantv2. Let us assume all vertices
were initially in SW. If we move the vertexv2 to HW, the execution time changes due to HW-SW
communication on the edges(v3;v2), (v1;v2) and change in execution time for vertexv2. It would
appear that any execution time related metric for the verticesv0, v6, v4, would need to be updated
when this move is made. In the next section, we show with a simple example that this is not true
for theexecution time change metricand follow up with a proof.

Before proceeding further, we need to introduce a slightly more formal set of notations required
in the rest of this report.

3.2 Notational details

The input to the partitioning algorithm is a directed acyclic graph (DAG) representing a call-
graph, CG = (V, E). V is the set of graph vertices where each vertex vi represents a function. E
is the set of graph edges where each edgeei j represents a function call to the child functionv j by

2With a large number of objects, fast, good quality estimators are of course more practical than detailed logic
synthesis

8



the parent functionvi . The application representation assumes that there are no recursive function
calls.

Each edge is associated with 2 weights (cci j , cti j ). cci j represents the call count, i.e, the number
of times functionv j is called by its parentvi . cti j represents the HW-SW communication time, i.e,
if vi is mapped to SW and its childv j is mapped to HW (or vice-versa),cti j represents the time
taken to transfer data between the SW and the HW unit for each call. An important assumption is
made that vertices mapped onto the same computing unit have negligible communication latency,
i.e SW-SW or HW-HW communication time can be considered to be0 for practical purposes.

Each vertexvi is associated with 3 weights (ts
i , th

i , hi). ts
i represents the software (SW) execution

time for a given vertex, i.e, the time required to execute thefunction corresponding tovi on the
processor.th

i represents the hardware (HW) execution time, i.e, the time required to execute the
function on the HW unit. The hardware implementation of the function requires areahw on the
HW unit. Note that this definition works off a single Pareto point - in this work, we do not consider
compiler (synthesis) optimizations leading to multiple HWimplementations with different area
and timing characteristics.

A partitioning of the vertices can be represented in the following manner:P = fvs
0;vh

1;vs
2:::::g.

This denotes that in partitioningP, vertexv0 is mapped to SW,v1 is mapped to HW,v2 is mapped
to SW, etc. Two key attributes of a partitioning are(TP;HP). TP denotes the execution time of the
application under the partitioningP, HP denotes the aggregate area of all components mapped to
hardware under partitioningP.

4 Efficient computation of execution time change metric

Given a sequential execution paradigm and a call-graph specification, the execution time of a
vertexvi is computed as the sum of its self-execution time and the execution time of its children.
The execution time forvi additionally includes HW-SW communication time for each child of vi

mapped to a different partition. Thus, ifTP
i denotes the execution time for vertexvi under a given

partitioningP

TP
i = ti + ∑jCi j

j=1(cci j �Tj)+∑jCdi f f
i j

j=1 (cci j �cti j )
whereti is eitherth

i or ts
i depending on whethervi is currently mapped to HW or SW in the

partitioningP. Ci represents the set of all children of vertexvi , Cdi f f
i represents the set of all

children ofvi mapped to a different partition. Note that ifv0 corresponds tomainin a ’C’ program,
TP

0 equals the complete program execution time when partitioningP specifies whether vertices are
mapped to HW or SW.

For a partitioningP, the execution time changemetric ∆P
i , for a vertexvi , is defined as the

change in execution time when the vertexvi is moved to a different partition. That is,∆P
i denotes

the change inTP
0 when vertexvi is mapped to a different partition.

From the definition of theexecution time changemetric, it would appear that when a vertex is
moved to a different partition, the metric values for all itsancestors would need to be updated.
Indeed, in previous work, [8], the change equations assumedit was necessary to update ancestors
all the way to the root. This, however, is not the case: it is only necessary to update the metric

9



values for immediate neighbours. In the following, we first give an intuition for this through a
simple example, and follow up with a proof.

Consider the simple example in Figure 3.

3

0

{t  , t }
sh

 

{t  , t }
sh

 sh
 

v2

  , t }{t 3
11

0{t  , t }0
sh

  

3

2 2

1v

, ct
01

cc{

1212 }, ctcc{cc
3232

}, ct{

01

v

v

1313 }, ctcc{ }

Figure 3. simple call graph

For the graph shown in Figure 3, the program execution time corresponding to a partitioningP
= fvs

0;vs
1;vs

2;vs
3g is given by

TP
0 = ts

0+cc01� (ts
1+cc12� ts

2)+cc03� (ts
3+cc32� ts

2)
If the vertexv0 is moved to HW, i.e we have a new partitioningP0 = fvh

0;vs
1;vs

2;vs
3g,

TP0
0 = th

0 +cc01� (ts
1+ct01+cc12� ts

2)+cc03� (ts
3+ct03+cc32� ts

2)
Theexecution time changemetric for vertexv0 is

∆P
0 = (T1

0 - T0) = (th
0 � ts

0)+cc01�ct01+cc03�ct03 - Equation (A)
We can similarly compute∆P

1 , ∆P
2 , ∆P

3 .
Next, let us consider a partitioningP2 = fvs

0;vs
1;vh

2;vs
3g where the vertexvh

2 is mapped to HW.
For this partitioning, execution time for vertexv0 is given by

TP2
0 = ts

0+cc01� (ts
1+cc12� (ct12+ th

2))+cc03� (ts
3+cc32� (ct32+ th

2))
If the vertexv0 is now moved to HW, i.e we have a new partitioningP20 = fvh

0;vs
1;vh

2;vs
3g,

TP20
0 = th

0 +cc01� (ts
1+ct01+cc12� (ct12+ ts

2))+cc03� (ts
3+ct03+cc32� ((ct32+ ts

2))
Thus,

∆P2
0 = (TP20

0 �TP2
0 ) = (th

0 � ts
0)+cc01�ct01+cc03�ct03 - Equation (B)

Equations (A) and (B) are identical. That is, when vertexv2 is moved to a different partition, the
metric∆P

0 remains unchanged for a non-immediate ancestorv0.
In order to prove that the above result holds in the generic case, the simple example gives us

the insight that we need to represent the expressionTP
0 in a form slightly differently from the

original definition. We define theaggregate call count,CCi for a vertexvi in the following recursive

manner:CCi = ∑jPij
j=1(ccji �CCj). Pi represents the set of all parent vertices (all functions it is called

from) for the vertexvi . CC0, i.e theaggregate call countfor the root vertex, is 1.
Armed with the above definition, we can proceed to prove the following lemma:

10



Lemma: For any two verticesvx and vy, if a vertex vx is moved to a different partition, ∆y

needs to be updated only if there is an edge(x;y) or, (y;x). This update involves changing
exactly one term in∆y, i.e this update can be done inO(1) time per edge.

Proof:
CCi obviously represents the exact number of times the functioncorresponding to vertexvi is

called along all possible paths from the root. Now, if we recursively expandTP
0 , an unrolled

representation forTP
0 is:

TP
0 = ∑jVj

i=0(CCi � ti)+∑(i; j) ε E(δP
i j �CCi �cti j ).

δP
i j is theKronecker deltafunction defined for edge(i; j) in the partitioningP - it takes a value

of 1 if the vertexvi and its child vertexv j are mapped to different partitions, 0 otherwise. The
first expression has exactly one term per vertex and the second expression has exactly one term per
edge. If we now evaluateTPx

0 , the new execution time when vertexvx is moved to generate the new
partitioningPx,

TPx
0 =∑(V�vx)

i=0 (CCi � ti)+ tPx
x �CCx+∑(i; j)ε(E�X)(δP

i j �CCi �cti j )+∑(i; j) ε X(δPx
i j �CCi �cti j )

whereX is the set of all edges adjacent to vertexvx, including its immediate parents and imme-
diate children. TheKronecker deltavalues can change only for edges adjacent tovx. We can now
evaluate∆P

x = TPx
0 �TP

0 corresponding to the change in execution time when vertexvx is moved.
∆P

x = CCx� (tPx
x � tx)+∑(i; j) ε X((δPx

i j �δP
i j )�CCi �cti j )

We can similarly compute∆P
y for any other vertexvy as

∆P
y = CCy� (tPy

y � ty)+∑(i; j) ε Y((δPy
i j �δP

i j )�CCi �cti j ) Equation (C)

Next, we evaluate the execution timeT
Pxy
0 corresponding to the new partitioning when vertexvx

is moved, followed by vertexvy being moved.

T
Pxy
0 = ∑(V�vx�vy)

i=0 (CCi � ti)+ tPx
x �CCx+ t

Py
y �CCy+

∑(i; j)ε(E�X�Y)(δP
i j �CCi �cti j )+ ∑(i; j)ε(X�[x;y℄)(δPx

i j �CCi �cti j )+
∑(i; j)εY(δPxy

i j �CCi �cti j )
where[x;y℄ denotes either(x;y) or (y;x). Note that from our problem definition we can not have

both(x;y), and,(y;x).
Thus, we can compute∆Px

y = T
Pxy
0 �TPx

0 as

∆Px
y = CCy� (tPy

y � ty)�((i; j)=[x;y℄) (δPx
i j �CCi �cti j )�∑(i; j)ε(Y�[x;y℄)(δP

i j �CCi �cti j )+
∑(i; j) ε Y(δPxy

i j �CCi �cti j )
= CCy� (tPy

y � ty)+∑(i; j)ε(Y�[x;y℄)((δPxy
i j �δP

i j )�CCi �cti j )+((i; j)=[x;y℄)((δPxy
i j �δPx

i j )�CCi �cti j ) Equation (D)
δi j depends only on whether verticesvi andv j are in the same partition, or in different partitions.

That is,δPxy
i j = δP

i j if (i; j) 6= [x;y℄. So, comparing Equations (C) and (D), we have

∆Px
y �∆P

y =((i; j)=[x;y℄) ((δPxy
i j �δPx

i j )� (δPy
i j �δP

i j ))�CCi �cti j
Thus we have proved that when vertexvx is moved to a different partition,∆y needs to be updated

only if there is an edge[x;y℄. Also, the update involves changing exactly one term in∆y.

11



5 Simulated annealing

5.1 Algorithm Description

The concept of simulated annealing originated in theoretical physics where Monte-Carlo meth-
ods are employed to simulate phenomena in statistical mechanics. Essentially the simulation
method considers a system consisting of a huge number of particles at an initial temperature T:
providing a random displacement to a particle causes a change in the system energy and a sufficient
number of such displacements causes the system to reach statistical equilibirium at T. In simulated
annealing, the physical process of cooling a liquid to its freezing point to obtain an ordered struc-
ture is simulated at several such temperature steps by letting the system reach equilibrium at each
temperature.

The physical process described above was associated with combinatorial optimization problems
in [20]. An objective function is associated with the energyof a physical system and system
dynamics are imitated by random local modifications of the current solution- a feasible solution
corresponds to a system state and an optimal solution corresponds to a state of minimal energy.
Thus, key parameters in any formulation are the initial temperature T, the cooling (annealing)
schedule which mandates how the temperature is decremented, and the number of iterations at
each step.

Algorithm SA
while (NOT EQUILIBRIUM)

For i = 1 to It // iterations at current temperature
P’ = random perturbation of the current configuration, P
COST∆ = COST(P’) - COST(P)
if (COST∆ < 0)

P = P’
else

generate random number xε [0,1]
if (x< e�COST∆=T )

P = P’
endfor
UPDATE T ()(from annealing schedule)
EVALUATEEQUILIBRIUM CONDITION()

endwhile
In HW-SW partitioning, perturbation is commonly defined as amove of a single vertex from

HW to SW and vice versa, though experiments have been conducted with perturbations involving
multiple moves [9]. A typical cost function is a linear combination of normalized metrics [1], [5],
[3]. For our problem, the two metrics we need to consider are the execution time of a partitioning
and the hardware area.

For a simulated annealing approach to HW-SW partitioning, execution time is primarily driven
by the computation cost of the cost function. It is computationally expensive to traverse a graph
with 100’s to thousands of vertices for every new configuration. For our given problem, we can

12



simply use theexecution time changemetric defined earlier to update the execution time for a new
partitioning. Let us consider a partitioningP with attributes(TP;HP). A move of vertexvi from
HW to SW generates a new partitioningP1 with attributes(TP+∆P

i ;HP�hi). Similarly, a move
of vertexvi from SW to HW generates a new partitioningP2 with attributes(TP+∆P

i ;HP+hi).
If we computed the execution time of a partitioning by a simple traversal of the call-graph, each

move would have a computation cost ofO(E). Theexecution time changemetric enables us to
update the execution time simply by updating the immediate neighbours of a vertex. Since the
average indegree and outdegree of a call graph is expected tobe a low number, the average cost of
a move is very low and enables the simulated annealing algorithm to do a very rapid evaluation of
the search space.

5.2 Cost function for simulated annealing

It is well-known that simulated annealing is a good approachfor high quality solutions to prob-
lems with a single optimization criterion, but it doesn’t behave as well on problems with multiple
objectives. In HW-SW partitioning, a significant amount of work considers only valid configura-
tions that satisfy constraints, thus effectively reducingthe ability of the algorithm to ”hill-climb”.
Often, a statically weighted linear combination of metricsis used in an attempt to overcome the
limitation of simulated annealing in handling a multiobjective problem.

In this section we provide the intuition for developing costfunctions that explore points often
not considered in traditional cost functions. Simulated annealing inherently uses randomization to
overcome local minima- moves that do not improve the optimization objective are accepted with
some probability. Our goal is to guide the algorithm towardspotentially more interesting design
points by explicitly forcing the algorithm to accept apparently bad moves when we are far away
from the goal. Simultaneously, we force the algorithm to probabilistically reject some apparently
good moves that would always be accepted by most heuristics.As an example, when we are far
away from our optimization goal, we would prefer not to always accept a move that improves
execution time only slightly at the cost of a significant amount of hardware area.

Our first observation about cost functions is that rather than the absolute value of the cost func-
tion, the primary concern of the SA algorithm is to take a decision after every perturbation whether
the cost function changed for the better or for the worse. In case the new configuration seems
undesirable , we additionally need a quantitative evaluation of the degree of inferiority to a desired
solution. So, instead of defining a cost function, we attemptto define a delta function on the key
parameters for the given problem- the two parameters, obviously change in execution time, area.

In Figure 4, we try to provide the intuition behind our approach. In this diagram, each possible
partitioningP is represented as a point in the two-dimensional plane withx andy co-ordinates.
Thex-axis represents the execution time corresponding to the given partitioning, while they-axis
represents the aggregate hardware area for components mapped to HW. The vertical linesTmin and
Tmax represent the execution times corresponding to an all-hardware and an all-software solution
respectively. The horizontal lineAc represents the area constraint. To solve our problem of min-
imizing execution time under a hard area constraint, we effectively need to search for a point as
close as possible to the upper left corner of the bounded rectangular regionA. This is of course
based on the implicit assumption that all partitioning objects cannot possibly be accomodated in

13



P

X

Y

T Tmin max

c

execution time -->

A

Region A

h
ar

d
w

ar
e 

ar
ea

 -
->

Figure 4. Solution space

4

3

2
P

PP HW

execution time

       better

1

P

P

SW

worse

-+

-- +-

++

more time,

more area

less area

less time,
less area 

more time,
more area

less time,
    , 

Figure 5. Neighbourhood move

14



A. yx -  B. 
1 1

P

A. +  B. yx

Px

Py

Pz

Figure 6. Cost functions

HW- and, mapping as many objects as possible to HW is likely toyield the most improvement in
the execution time.
Effect of a move

Let us now consider the implication of moving a single component in the partitioningP to
generate a new partitioning, sayP1, as shown in Figure 5.P1 corresponds to a partitioning with
improved (less) execution time, and more HW area, i.eP1 is generated by some move which a SW
component is moved to HW. Similarly the pointP2 corresponds to a move with less hardware area,
i.e, a move from HW to SW. More generally, when a single component in partitioningP is moved
to generate the new partitioningPi, the new pointPi lies in one of the four quadrants centred atP. A
partitioningP1 with improved execution time and additional HW area lies in the quadrant(�t;+h),
represented in Figure 5 as(�;+). Similarly, a partitioningP2 with improved execution time and
reduced HW area lies in the quadrant(�t;�h), represented as(�;�) and so on for partitionings
P3, P4.

We next consider the evaluation of a cost function (A�∆T +B�∆A) at the pointP. This cost
function corresponds to a random move generated by the SA algorithm. ∆T is the difference in
execution time, and is the same as theexecution time changemetric for the vertex to be moved.
∆A is the change in area caused by the move:∆A is positive for a SW-HW move and negative for
a HW-SW move.A andB are weights that include the normalization factors required to be able to
combine the two cost function components which are in completely different units.

This cost function is a simple straight line throughP splitting the region aroundP into 2 equal
parts. In simulated annealing, a random number is generatedto choose a possible neighbourhood
move. Based on the cost function, this move is either accepted blindly or, accepted with some
probability dependent on the temperature. In traditional cost functions like [8], where the hardware
area component of the cost function is ignored as long as the constraint is satisfied, essentially
every random move that improves the execution time component of the cost function is accepted
with a probability of 1. In Figure 5, this corresponds to blind acceptance of all moves represented

15



by P1, P2, i.e all moves lying in quadrants(�t;+h), (�t;�h) represented in the figure as(�+),(��). The hardware area component of the cost function plays a role only when a move leads to a
constraint violation- this component is effectively considered irrelevant in a significant amount of
the search space.
Quadrant-based cost function

Now, let us considerP to specifically correspond to a partitioning in which few components
have been mapped to hardware and hence the execution time is expected to be relatively close to
the software execution time. In terms of the bounded rectangular regionA in Figure 4,P is nearer
the lower right corner. For such a pointP, we would like to bias the move acceptance such that:

(a) we provide additional weightage to certain moves that cause the execution time to deteriorate
slightly but in return free up a large amount of HW area. Theseare represented byPx in Figure 6.

(b) we reduce the weightage on certain moves that improve execution time slightly but consume
an additional large amount of HW area. These are representedby Py in Figure 6.

(c) we reduce the weightage on certain moves that improve theexecution time slightly but free
up a large amount of HW area. These are represented byPz in Figure 6.

Providing additional bias to the set of movesPx is a non-traditional approach but we expect
such moves to open up more combinatorial possibilities. We achieve our objective of providing
additional bias to such moves by introducing a cost function(A�∆T +B�∆A), A >> B in the
quadrant(+t;�h). In cost functions that ignore the HW area component far fromthe objective,
all moves in this quadrant carry a penalty and are accepted with some probability dependent on
temperature. By introducing a cost function in this quadrant, the set of movesPx are always
accepted.

A similar reasoning of enabling the cost function to exploremore combinatorial possibilities lies
behind our choice of reducing weightage on the set of movesPy. For these points, we are effectively
discouraging moves with a slight gain in execution time, butwith significantly increased HW area.

Our reasoning behind reducing weightage for the set of movesPz is somewhat different. For
these moves, we are actually attempting to guide the search away from making moves that do not
appear to be making progress towards our desired solution space. Intuitively, for a partitioning
where there are relatively few HW components, the HW-SW communication cost can potentially
play a dominant role. For moves likePz, freeing up a large amount of HW could potentially result
in a slight improvement in execution time due to significant reduction in HW-SW communication.
Blindly accepting such moves translates to attempting to reduce communication cost between some
vertexvx mapped to HW and its neighbours in SW by moving backvx to SW. When we are far
from our desired solution space, we would instead prefer to encourage the algorithm to reduce
communication cost by adding more of its neighbours to HW.
Dynamic weighting

We next consider the notion of dynamically weighting the components of the cost function as
suggested in [5]. Changing theA andB components dynamically affects the search region by
dynamically changing the slope of the line throughP. This is a powerful technique that has a
big impact on the effectiveness of the search. In [5], this technique was applied only when the
current solution was somewhat close to the constraint. The algorithm in [5] essentially focussed
on satisfying its primary objective, i.e the timing constraint- once this constraint was satisfied,

16



dynamic factors were used to increase weightage of its secondary objective, minimizing the HW
area. We however, apply a dynamic weighting factor to our cost functions in various regions in
an attempt to better guide the search. Conceptually we attempt to guide our search more towards
the top left corner of the bounded region by dynamically weighting the time component with the
distance from the boundary.

Among the other key issues we have considered in formulatingour cost function are the impact
of boundary violations, i.e when a move leads us to a partitioning with HW area greater than the
constraint. We penalize all such moves with a factor proportional to the extent of the boundary
violation. We can clearly achieve this with a high weightageon the area component , i.e a function
(A�∆T + B� (Areanew�Ac)), whereB >>> A. Similarly when a move leads from an invalid
partitioning to a valid partitioning, we reward it with a factor proportional to the extent that it is
inside the boundary.

Another important aspect of our cost function is the notion of a threshold. When we are very
close to the boundary, we need a cost function that has only a slight bias towards the component
representing execution time. In our cost function, the timecomponent is dynamically weighted
by the distance from the boundary- we have observed experimentally that close to the boundary,
desirable weights for the time component in this region are even lower than what our cost function
provides. Thus, we needed to add the notion of a threshold region very close to the boundary where
we explicitly assign a lower weightage to the time componentof the cost function.

Based on the above discussion, our cost function is algorithmically described as:
if (current partititioning is a valid solution)

if (move causes boundary violation)
Significant penalty proportional to area violation (i)

else if (current partitioning is very near to boundary)
Slightly reduced weightage on time (as compared to (iii))

else
if (move in quadrant (–,–))

(A1�∆T +B1�∆A), where A1 >> B1 (iii)
else

(A2�∆T +B2�∆A), (iv)
else // (current partititioning lies outside boundary)

a mirror image of the above set of rules.
In Equations (iii) and (iv), the termsA1 andA2 are dynamically weighted by the distance from

the boundary.
An actual code snippet corresponding to (iv):

timeComponent = 2.4 * (timeChange/currentExecutionTime)* (areaConstraint/currentArea)
areaComponent = areaChange/areaConstraint
penalty = timeComponent + areaComponent

The time change component of the cost function is normalizedwith the current execution time
and dynamically weighted with a number representing the distance from the desired solution re-
gion. The HW area component of the cost function is normalized with respect to the areaCon-
straint.

17



5.3 Key parameters for Simulated Annealing

A key aspect of any simulated annealing formulation is the multitude of parameters involved.
While theoretical analysis with Markov chains in work such as [19] have shown that simulated
annealing approaches can generate the global optima provided certain conditions are satisfied,
such analysis does not provide much information on actual choice of the various parameters. We
next present the parameter settings in our implementation.
Initial temperature T
This is commonly chosen as a large value to ensure that most moves are accepted when execution
starts. Our experiments confirmed that above a certain threshold, the correlation between the
starting temperature and other problem dimensions (such asnumber of partitioning entities) is
relatively low. So, we kept the initial temperature T fixed at5000 for our entire set of experiments.
All results presented in the following experimental section correspond to T = 5000.
Cooling schedule
This dictates how the temperature parameter is decrementedat each step. While different cooling
schedules have been proposed in the literature such as the Lundy-Mees schedule [16], we chose
the widely-usedgeometricschedule. In this schedule, the new temperature is given byTnew= α�T
whereα is a constant that typically varies between 0.9 - 0.99. Afterinitially conducting a wide
range of experiments, we fixedα at 0.96. All our presented experimental results correspondto α
= 0.96.
Number of Iterations at current temperature It
This is a key aspect that specifies the number of moves at the current temperature before the cool-
ing schedule is applied to decrement the temperature. Recent work in HW-SW partitioning often
seem to either eliminate the inner loop completely [3], onlyrelying on a global termination con-
dition, or, do not explicitly mention their choice [1]. Our observations indicate that this criterion
plays a significant role in determining solution quality. This parameter is frequently set to be a
function of the number of partitioning objects, such as a simple constant multiple in [17], a poly-
nomial (approximately quadratic) in [9]. Based on our extensive set of experiments, we propose
It = i iterations in thei0th temperature step. This is in keeping with our overall rationale behind
developing our cost function- our aggregate strategy is to initially make relatively quick strides
towards the desired solution space, and subsequently spendmore computational effort searching
for a very high quality solution.
Global Equilibrium
The algorithm termination criterion is again a very key issue. In existing work this is often for-
mulated as a small number of constant temperature iterations without any improvement in solution
quality– this constant is frequently chosen as 3 in work suchas [9], [17]. However with our ”more
global” approach to the problem, we choose the stopping criterion as the number of cumulative
moves that do not produce any improvement. This naturally has a strong correlation with the prob-
lem size in terms of partitioning objects– so, we scale this global stopping criterion from 5000
moves without improvement for graphs with fifty vertices, to15000 moves without improvement
for graphs with a thousand vertices.

18



6 Experiments

As shown in Figure 7, we explored a very large space of possible designs by generating graphs
which varied the following set of parameters: (1) varying indegree and outdegree (2) varying
number of vertices (3) varying CCRs (computation-to-communication ratio). (4) varying area
constraints.

6.1 Experimental setup

0.3

CCR=0.1

50

20

200

1000

500

100

50
20

0.5

TGFF

0.3

CCR=0.1

outdeg=10

 size=50

indeg=4

indeg=5

indeg=2
0.5

1000

outdeg=7

outdeg=5

outdeg=4

indeg=4

  = 0.12

A  =  0.25

  = 0.002c

cA

c

A

0.7

500

0.5

0.7

0.7

A  =  0.6

  = 0.3

  = 0.05c

cA

c

A

Figure 7. Set of experiments

We used the graph generator TGFF [15] to generate the graphs used in our experiments. TGFF
is a parameterizable generator that can accept user specifications like maximum indegree, outde-
gree of the vertices. We additionally augmented TGFF for ourexperiments- an example of an
augmentation was one that enabled TGFF to generate HW execution times for vertices such that
the HW execution time of a vertex was faster than the SW execution time by a number between 3
and 8 times.

Let S =f20;50;100;200;500;1000g denote the range of graph sizes generated where size cor-
responds approximately to the number of vertices in the graph. As an example, for a graph size
50, TGFF generates a graph with between 48 to 52 vertices. We chose S to observe how our algo-
rithm worked on a large range of graph sizes. Let CR =f0:1;0:3;0:5;0:7g denote the set of CCR’s
(communication-to-computation ratio). The notion of CCR is very important in partitioning and

19



scheduling algorithms that consider communication between tasks/functions. A CCR of 0.1 means
that on an average, communication between functions/tasksin a call-graph/task graph requires
1/10’th the execution times of the functions/tasks in the graph. As CCR increases, communication
starts playing a more important role in coarse-grain partitioning and scheduling algorithms.
Step 1The maximum indegree and outdegree of a vertex were set to 4 each, which are reasonably
representative of realistic call-graphs. Corresponding to these fixed parameters, we generated a
set of graphs with the following characteristics. Each run of SA chose a graph size from S =f20;50;100;200;500;1000g; for each graph size we chose CCR from CR =f0:1;0:3;0:5;0:7g
Thus, we effectively generated a set of graphsjSj X jCRj. Note that in the tables that follow,
graphs with size 50 are denoted asv50, graphs with size 100 are denoted asv100, etc.
Step 2For each of the graphs generated in Step 1, we varied the area constraintAc as a percentage
of the aggregate area needed to map all the vertices to HW. On one extreme, we setAc such that
very few partitioning objects would fit into HW, while at the other extreme, a significant proportion
of the objects would fit into HW.
Step 3We repeated the above two steps with a maximum indegree and outdegree of (i) 4 and 10
(ii) 2 and 5 (iii) 5 and 7.

As a consequence of our experimental setup, the experimental data presented represents infor-
mation collected from over 12000 experiments.

To measure the quality of results, we simply record the program execution times computed
by the SA algorithm with our new cost function, and the KLFM algorithm as in [8]. In prior
work, however, experiments to measure the quality of a partitioning algorithm have often been
formulated by forcing constraint violations and attempting to integrate the degree of violations
into some unitless number, as in [8], [1].

For a given design configuration, ifTkl is the execution time of the partitioned application com-
puted by the KLFM algorithm, andTsa is the execution time of the partitioned application com-
puted by the SA algorithm, our quality measure is the performance difference given by:(Tkl �Tsa)=Tkl �100
Thus, a positive number, say, 5%, implies that the KLFM algorithm computed an execution time
better than SA by 5%, while a negative number, say -10%, implies that the SA algorithm computed
an execution time better than the KLFM algorithm by 10%.

6.2 Experimental results and key observations

The experimental results are classified under two categories. The first category of experimental
results confirm the benefits of our approach over the KLFM approach by demonstrating that our
approach generates superior quality resultsAND is asymptotically faster. The second category of
results quantifies the effect of our dynamic SA cost functionand parameter settings by comparing
with other SA-based approaches.

6.2.1 Proposed SA (SA-new) Vs KLFM

Figures 8 through 11 represent the complete data for all graphs with 50 vertices. Appendix A
contains the rest of the data for graphs of other sizes: Figures 13 through 16 in Appendix A

20



BEST KLFM

BEST SA-new

SA-new better

KLFM better
5

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

Area Constraint (% of aggregate area)

0.60.50.40.2 0.30.10

10

0

-5

-10

-15

-20

Figure 8. v50, CCR 0.1: Performance Vs
constraint

SA-new better

KLFM better

-15

Area Constraint (% of aggregate area)

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.60.50.40.30.2

5

0.10

0

-5

-10

-20

-25

Figure 9. v50, CCR 0.3: Performance Vs
constraint

Graph
category BEST WORST AVG BETTER% BETTER-5% WORSE-5%
v20 -24.9% 12.3 % -4.17 % 72% 36.5% 0.7%
v50 -22.9% 6.7 % -5.75 % 93% 45.4% 0.1%
v100 -18.2% 5.7% -5.47% 96% 48% 0.05%
v200 -13.9% 4.3% -3.74% 90% 33% 0%
v500 -16 % 6.8 % -4.53 % 87% 47.3% 0.9%
v1000 -13.7% 6.4% -4.17% 81% 43.5% 0.7%

Table 1. Solution quality: KLFM (all Software) Vs SA-new

represent the complete data for all graphs with 20 vertices,Figures 17 through 20 for all graphs
with 100 vertices, etc.

Let us consider Figure 8– this represents data collected forgraphs with 50 vertices, and a fixed
CCR of 0.1 for various area constraints. Thex-axis corresponds to the various area constraints
and they-axis corresponds to the performance difference. In this figure, a significant majority of
points show negative performance difference (below 0)– this indicates that our SA formulation
mostly generates better results than the KLFM approach. Thepoint BEST SA� new represents
the best performance improvement by our SA formulation overthe KLFM approach, while point
BEST KLFMrepresents the best solution computed by the KLFM algorithm. Similarly, Figure 9,
Figure 10, Figure 11 represent the data for graphs with 50 vertices and a CCR of 0.3, 0.5, 0.7
respectively.

In Table 1, we summarize the aggregate results from all experiments comparing the SA with
our new cost function (SA-new) against the KLFM algorithm starting with an initial configuration
of all vertices mapped to SW. The column headerBEST represents the best improvement in ex-
ecution time computed by the SA-new approach compared to theKLFM approach for the set of

21



SA-new better

KLFM better 

0.2 0.3 0.4 0.5

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.6

Area Constraint (% of aggregate area)

-5

10

0.10

5

0

-10

-15

-20

-25

Figure 10. v50, CCR 0.5: Performance
Vs constraint

KLFM better 

SA-new better

BEST SA-new 

BEST KLFM 

0

Area Constraint (% of aggregate area)

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.60.50.40.2 0.30.10

5

-5

-10

-15

-20

-25

Figure 11. v50, CCR 0.7: Performance
Vs constraint

experiments represented by a row likev50. Entries that are more negative indicate that SA-new
is better- for example, an entry of -16% means the execution time computed by SA-new is bet-
ter than KLFM by 16%. The column headerWORSTrepresents the best results produced by the
KLFM algorithm. The column headerAVG represents the average deviation between the two al-
gorithms. The column headerBETTER% represents the overall percentage of test cases for which
our approach generates better results, i.e lower executiontime for the corresponding test case. The
column headersBETTER� 5 andWORSE� 5 indicate the overall percentage of test cases for
which the results generated are better and worse respectively by 5%.

As can be observed from column 4 (BETTER), in an overwhelming majority of test cases,
SA-new produces results that are better than KLFM– column 3 (AVG) shows that the average
improvement over KLFM for all graph sizes is close to 5%. Thisis confirmed by columns 5
(BETTER�5) and column 6 (WORSE�5) where we clearly see that the solution quality is better
by over 5 % in a significant number of experiments while the number of experiments where KLFM
is better by over 5% is negligible. Additionally, for non-trivial graph sizes of 50 vertices or more,
column 2 (WORST) shows that the best results for KLFM are at most 7% better than the results
computed by our new cost function.

Table 2 shows the run-times required by KLFM and SA-new to generate the results in Table
1. Again, the run-time is averaged over the experimental set– as an example, in Table 2 the data
corresponding to (rowv500, column KLFM) was obtained as the average runtime over the set of
a couple of thousand experiments with KLFM on graphs with 500vertices. As can be clearly
seen from Table 2 and Figure 12, the run-time of our SA formulation is asymptotically better than
the run-time of the KLFM formulation- for graphs with around1000 vertices, the run-time of our
algorithm is almost 5 times faster.
Observations

Overall, Figures Figure 8 through Figure 11 (and Figure 13 through Figure 32 in the Appendix)

22



Graph SA-new runtime(s) KLFM runtime(s)
category
v20 .07 .05
v50 .08 .05
v100 .1 .07
v200 .19 .11
v500 .25 .48
v1000 .36 1.6

Table 2. Run-time performance comparison

0.5

1.0

1.5

. . .
.

.
.

. . . .

.

.

SA

KLFM

0.1

Graph size (number of vertices)

E
xe

cu
tio

n 
tim

e 
(s

)

1000500200100

Figure 12. Run-time performance plot for algorithms

23



Graph
category BEST WORST AVG BETTER% BETTER-5% WORSE-5%
v20 -23.8% 12.3 % -1.89% 52% 15.4% 0.9%
v50 -19.6% 6.7% -4.1% 88% 27.9% 0.1%
v100 -14% 9.3% -3.1% 87% 20.7% 0.6%
v200 -10.1%% 6.8 % -2.51% 81% 15.6% 0.3%
v500 -12.7% 7.1% -2.84 % 82% 20.7% 0.1%
v1000 -13.3% 6.4% -2.81 % 77% 26.5% 0.1%

Table 3. Solution quality: KLFM (best) Vs SA-new

show that our approach generates better quality results than the KLFM approach when the design
space is larger. We next take a brief look at how key aspects ofthe design space affect the solution
quality.
Effect of area constraint

At lower area constraints where a small percentage of nodes can fit into HW, the exploration
space is relatively limited. In such scenarios the KLFM approach generates reasonably good re-
sults. This shows up in graphs with 500 and 1000 vertices where the KLFM frequently generates
slightly better results at an area constraint of 0.05 (at most 5% of vertices can be mapped to HW).
However, as area constraint grows, increasing the scope forexploration, our approach starts gen-
erating superior solutions. Also, as Table 1 showed, the best results generated by the KLFM are
slightly better, while SA-new often generates much better results.
Effect of CCR

Comparing Figure 8 with Figure 11, we see the effect of communication in the design space.
The number of experiments that show an improvement of over 15% is many more in Figure 11
with a higher CCR of 0.7. As CCR increases, the scope of communication-computation tradeoff
increases. Our approach, SA-new, is able to do a much better job of exploring this space.
Proposed SA (SA-new) Vs KLFM (best)

KLFM based partitioning approaches are known to be sensitive to the initial partitioning. So,
we let the KLFM start from some different initial configurations and obtained the best result for
each experiment from this set of independent KLFM runs. In Table 3, we compare the quality of
results obtained from SA-new with thisbest of KLFMheuristic. As the results in Table 3 confirm,
the quality of results obtained from this set of KLFM runs is superior to that obtained from a
KLFM with all vertices initially in software. However, the quality of results generated by SA-new
is still superior with a significant percentage of cases showing imporovement by over 5% while the
number of test cases where SA-new performs worse by over 5% isstill negligible.

Thus, Tables 1, 2, and 3 confirm that our approach indeed generates superior results in general
and asymptotically executes much faster than the KLFM-based approach.

24



Graph
category BEST WORST AVG BETTER% BETTER-5% WORSE-5%
v20 -15.2% 13.5 % 0.21% 8% 0.7% 2%
v50 -28.8% 9.4 % -1.86% 75% 8% 1%
v100 -30% 7.7% -4.4% 83% 36.3% 0.2%
v200 -18.6 % 3.1 -7.3% 93% 75% 0%
v500 -22.6% 7.9% -10.1 % 92% 82.6% 0.4%
v1000 -24.8% 7.2% -10.5 % 89% 77.1% 0.9%

Table 4. Solution quality: SA (time+δ(area) Vs SA-new

Graph
category BEST WORST AVG BETTER%
v20 -32.8% 9.8 % -15.5% 99%
v50 -56.6% -8 % -32.2% 100%
v100 -58.8% -7.1% -34.7% 100%
v200 –57.8%% -3.6 % -36% 100%
v500 -54.8% -1.2% -35.5 % 100%
v1000 -54.5% -0.2% -31.6 % 100%

Table 5. Solution quality: SA-previous Vs SA-new

6.2.2 Proposed SA (SA-new) Vs other SA

We next present results of experiments where we compared ourSA with dynamic cost function
(SA-new) with other SA-based approaches.
Static Vs dynamic cost function

In Table 4, we quantify the effect of using our dynamic cost function. For this set of experiments,
we compare SA-new with a SA cost function (time+ δ(area)) as in [8]. The rest of the param-
eter settings were identical– initial temperature, cooling schedule (α), local and global stopping
criterion were same.

From this table we observe that under the given parameter settings, the static SA cost function
does well for small graphs with 20 vertices, but as the graph size increases, the dynamic cost
function does significantly better.
Effect of parameter settings

In Table 5, we quantify the effect of changing some key parameter settings. We compare SA-
new with a SA based approach, SA-previous, with cost function (time+δ(area)). The parameters
initial temperature and cooling schedule (α) are same for SA-new and SA-previous. However,
for SA-previous,the global equilibrium criterion and local inner loop stopping criterion were set
similar to work such as [9], [17]. The global stopping criterion was set to 3 temperature iterations
with no improvement, and the number of iterations of the inner loop was set as a polynomial
function (approximately quadratic) similar to [9].

The data shows a very significant difference in quality of results between SA-new and SA-

25



previous– the average quality improvement from using SA-new is over 30% with almost all test
cases generating better results with SA-new. We acknowledge that SA-previous would have ben-
efited from a significant parameter tuning effort (differentstarting temperature, and/or different
cooling schedule, etc). However, we believe it is still interesting to confirm that the presence
of a hard area constraint in the SA objective makes the problem hard enough such that a simple
adaptation of parameter settings from existing work is likely to lead to very low-quality results.
Additionally, we hope that our extensive quantitative datawill spur future researchers to continue
work on similar detailed analysis of the effects of such parameter settings in the context of HW-SW
partitioning.

7 Conclusion

In this work, we made two contributions. We first proved that for HW-SW partitioning of an
application represented as a callgraph, when a vertex is moved between partitions, it is necessary to
update the execution time metric only for the immediate neighbours of the vertex. We additionally
developed a new cost function for SA that attempts to exploreregions of the search space often
not considered in other cost functions. Our two contributions result in a SA implementation that
generates partitionings such that the execution times are frequently better by 10 % over a KLFM
algorithm starting with all vertices in software for graphsranging from 20 vertices to 1000 vertices,
and the average improvement is close to 5% for a set of almost 12000 experiments. Equally
importantly, the algorithm execution times are very fast- graphs with 1000 vertices are processed
in less than half a second, and the algorithm is asymptotically faster than a KLFM implementation,
with execution times faster by 5 times for graphs with a 1000 vertices.

Comparisons with a set of KLFM implementations starting from different initial configurations
indicate that the average solution quality of results generated by our approach is still superior to
the best results generated by this set of independent KLFM runs. This leads us to believe that
such a fast SA formulation makes it feasible to fine-tune the function further in a real design
environment to generate partitioning solutions with a quality significantly better than that obtained
from a KLFM approach.

One key limitation of our current implementation is that we use a simple additive HW area esti-
mation model that does not consider resource sharing. This limitation can potentially be overcome
in a more comprehensive implementation with an approach like [10]. Another important aspect
currently missing from our implementation is that it does not consider the existence of multiple
area-time Pareto points obtained from different compiler (synthesis) optimizations– however, note
that it is very simple to extend our SA-based approach to consider this issue. A move selection
instead of being from HW to SW could potentially be simply from any implementation point to
another- our neighbourhood update mechanism is still validand the run-time of our approach in
this scenario is exepected to be very similar to run-times with a single implementation point.

In the future, we plan to extend these concepts to systems where HW and SW execute con-
currently, i.e, consider scheduling issues as part of the problem formulation. Another interesting
direction would be to extend the cost function concepts developed here to algorithms with fewer
tunable parameters. While Simulated Annealing is a very powerful vehicle, our learning expe-

26



rience of individually tuning a lot of different parametersin SA confirms a need for heuristics
in HW-SW partitioning that aremore deterministic, yet capable of rapidly generating solutions
of a similar high quality as our approach by exploiting the power of random moves in a similar
controlled manner. One possible starting point for such explorations could possibly be an investi-
gation of the WalkSAT SAT solver for hypergraph partitioning [2] that essentially does a KLFM
with probabilistic move selection.

8 Acknowledgements

This work was partially supported by NSF Grants CCR-0203813and CCR-0205712.

References

[1] M L Vallejo, J C Lopez, ”On the hardware-software partitioning problem: System Modeling and partitioning
techniques”, ACM TODAES, V-8, 2003

[2] A Ramani, I Markov, ”Combining two local search approaches to hypergraph partitioning”, International Joint
Conference on Artificial Intelligence, AAAI, 2003.

[3] T Wiangtong, P Cheung, W Luk, ”Comparing three heuristicsearch methods for functional partitioning in
hardware-software codesign”, Jrnl Design Automation for Embedded Systems, V-6, 2002

[4] K Ben Chehida, M Auguin, ”HW/SW partitioning approach for reconfigurable system design”, CASES 2002

[5] J Henkel, R Ernst, ”An approach to automated hardware/software partitioning using a flexible granularity that is
driven by high-level estimation Techniques”, IEEE Trans.on VLSI, V-9, 2001

[6] K S Chatha, R Vemuri, ”Magellan: Multiway hardware-software partitioning and scheduling for latency mini-
mization of hierarchical control-dataflow task graphs”, CODES 2001

[7] J Henkel, R Ernst, ”A hardware/software partitioner using a dynamically determined granularity”, DAC 1997

[8] F Vahid, T D Le, ”Extending the Kernighan-Lin heuristic for Hardware and Software functional partitioning”,
Jrnl Design Automation for Embedded Systems, V-2, 1997

[9] P Eles, Z Peng, K Kuchinski, Doboli, ”System Level Hardware/Software Partitioning based on simulated an-
nealing and Tabu Search”, Jrnl Design Automation for Embedded Systems, V-2, 1997

[10] F Vahid, D Gajski, ”Incremental hardware estimation during hardware/software functional partitioning”, IEEE
Trans. VLSI, V-3, 1995

[11] F Vahid, J Gong, D Gajski, ”A binary-constraint search algorithm for minimizing hardware during hardware-
software partitioning”, EDAC 1994

[12] A Kalavade, E Lee, ”A global criticality/Local Phase Driven algorithm for the Constrained Hardware/Software
partitioning problem”, CODES 1994

[13] R Ernst, J Henkel, T Benner, ”Hardware-software cosynthesis for microcontrollers”, IEEE Design and Test,V-10,
Dec 1993

[14] R Gupta, De Micheli, ”System-level synthesis using re-programmable components”, EDAC 92

[15] R P Dick, D L Rhodes, W Wolf, ”TGFF: task graphs for free”,CODES 1998

[16] M Lundy, A Mees, ”Convergence of an annealing algorithm”, Mathematical Programming, V-34, 1986

27



[17] C Sechen, A Sangiovanni-Vincentelli, ”The TimberwolfPlacement and Routing Package”, IEEE Jrnl Solid-State
Circuits, V-20, 1985

[18] D G Luenberger, ”Linear and non-Linear programming”, Addison-Wesley, 1984.

[19] F Romeo, A Sangiovanni-Vincentelli, ”Probabilistic hill-climbing algorithms: properties and applications”,
ERL, College of Engineering, UC Berkeley, 1984

[20] S Kirkpatrick, C D Gelatt, M P Vechi, ”Optimization by simulated annealing”, Science, V-220, 1983

[21] C M Fiduccia, R M Mattheyes, ”A Linear-time heuristic for improving network partitions”, DAC, 1982

[22] B Kernighan, S Lin, ”An efficient heuristic procedure for partitioning graphs”, The Bell System Technical Jour-
nal, V-29, 1970

28



9 Appendix A: Aggregate data for KLFM Vs SA (proposed cost function)

0.6

-20

-15

-10

Area Constraint (% of aggregate area)

-5

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

KLFM better

SA-new better

0 0.50.40.30.20.1

15

10

5

0

Figure 13. v20, CCR 0.1: Performance
Vs constraint

0.1 0.2 0.3 0.4

KLFM better

0.5 0.6

SA-new better

Area Constraint (% of aggregate area)

0

10

5

0

-5

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

-10

-15

Figure 14. v20, CCR 0.3: Performance
Vs constraint

0.4 0.5 0.6

0

KLFM better

-10

-15

-20

SA-new better-5

0.30.20.10

10

5

Area Constraint (% of aggregate area)

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

Figure 15. v20, CCR 0.5: Performance
Vs constraint

0.1 0.2 0.3 0.4P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.5 0.6

Area Constraint (% of aggregate area)

-15

0

10

5

0

-5

-10

-20

-25

Figure 16. v20, CCR 0.7: Performance
Vs constraint

29



KLFM better

SA-new better

0.25 0.3 0.35 0.4

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.45 0.5

Area Constraint- %

0

0.05 0.20.150.10

10

5

-5

-10

-15

-20

Figure 17. v100, CCR 0.1: Performance
Vs constraint

0.2 0.25 0.3 0.35

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.4 0.45 0.5

Area Constraint- %

-10

0.150.10.050

5

0

-5

-15

-20

Figure 18. v100, CCR 0.3: Performance
Vs constraint

0.2 0.25 0.3 0.35

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.4 0.45 0.5

Area Constraint (% of aggregate area)

-10

0.150.10.050

5

0

-5

-15

-20

Figure 19. v100, CCR 0.5: Performance
Vs constraint

0.2 0.25 0.3 0.35

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.4 0.45 0.5

Area Constraint (% of aggregate area)

-10

0.150.10.050

5

0

-5

-15

-20

Figure 20. v100, CCR 0.7: Performance
Vs constraint

30



SA-new better

KLFM better

0.15 0.2 0.25 0.3 0.35 0.50.4 0.45

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

Area Constraint: %

-2

6

0.10.050

4

2

0

-4

-6

-8

-10

-12

-14

Figure 21. v200, CCR 0.1: Performance
Vs constraint

0.1 0.15 0.2 0.25 0.3
P

er
fo

rm
an

ce
 d

if
fe

re
n

ce
 K

L
F

M
/S

A
0.35 0.4 0.45 0.5

Area Constraint (% of aggregate area)

-6

0.050

4

2

0

-2

-4

-8

-10

-12

Figure 22. v200, CCR 0.3: Performance
Vs constraint

0.1 0.15 0.2 0.25 0.3

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.35 0.4 0.45 0.5

Area Constraint (% of aggregate area)

-6

0.050

6

4

2

0

-2

-4

-8

-10

-12

Figure 23. v200, CCR 0.5: Performance
Vs constraint

0.1 0.15 0.2 0.25 0.3

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.35 0.4 0.45 0.5

Area Constraint (% of aggregate area)

-8

0.050

4

2

0

-2

-4

-6

-10

-12

-14

Figure 24. v200, CCR 0.7: Performance
Vs constraint

SA-new better

KLFM better

0.1 0.15 0.2 0.25 0.3P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.35 0.4

Area Constraint: %

-4

4

0.050

6

2

0

-2

-6

-8

-10

-12

Figure 25. v500, CCR 0.1: Performance
Vs constraint

0 0.05 0.1 0.15 0.2P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.25 0.3 0.35 0.4

Area Constraint (% of aggregate area)

-10

6

4

2

0

-2

-4

-6

-8

-12

-14

Figure 26. v500, CCR 0.3: Performance
Vs constraint

31



0.15 0.2 0.25 0.3

Area Constraint (% of aggregate area)

0.35 0.4

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

-20
0.10.050

5

0

-5

-10

-15

Figure 27. v500, CCR 0.5: Performance
Vs constraint

0.15 0.2 0.25 0.3

Area Constraint (% of aggregate area)

0.35 0.4P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

-15
0.10.050

10

5

0

-5

-10

Figure 28. v500, CCR 0.7: Performance
Vs constraint

Area Constraint: %

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.250.20.150.10.050

-6

4
2
0

-2
-4

-8
-10
-12

Figure 29. v1000, CCR 0.1: Perfor-
mance Vs constraint

6

0 0.05 0.1 0.250.15 0.2

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

Area Constraint (% of aggregate area)

-4

4
2
0

-2

-6
-8

-10
-12

Figure 30. v1000, CCR 0.3: Perfor-
mance Vs constraint

8

0 0.05 0.1 0.250.15 0.2

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

Area Constraint (% of aggregate area)

-4

6
4
2
0

-2

-6
-8

-10
-12

Figure 31. v1000, CCR 0.5: Perfor-
mance Vs constraint

SA-new better

KLFM better

0 0.05 0.1 0.15

P
er

fo
rm

an
ce

 d
if

fe
re

n
ce

 K
L

F
M

/S
A

0.2 0.25

Area Constraint (% of aggregate area)

-12

-2

6
4
2
0

-4
-6
-8

-10

-14

Figure 32. v1000, CCR 0.7: Perfor-
mance Vs constraint

32


