System-on-Chip Environment
SCE Version 2.2.0 Beta
Tutorial
CECS Technical Report # 03-41
July 23, 2003

Samar Abdi
Junyu Peng

Haobo Yu
Dongwan Shin

Andreas Gerstlauer
Rainer Doemer
Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425
+1 (949) 824-8919
http://www.cecs.uci.edu

System-on-Chip Environment: SCE Version 2.2.0 Beta; Tutorial; CECS
Technical Report # 03-41; July 23, 2003

by Samar Abdi, Junyu Peng, Haobo Yu, Dongwan Shin, Andreas Gerstlauer, Rainer
Doemer, and Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine

Irvine, CA 92697-3425

+1 (949) 824-8919
http://www.cecs.uci.edu

Published July 23, 2003

Copyright © 2003 by CECS, UC Irvine

Table of Contents

I | 11 oo (8 o{ o] o [T R PO PTPR SRR 1
1.1 MOTIVALION ...ttt b e e 1
1.2, SCE GOAIS.. .ttt et 2
1.3. Models fOr SYStemM DESIGN.......cciviiieierieeeeie et sae s 2
1.4. System-on-Chip ENVIFONMENT..........cccoiiieiieiicc e 4
1.5. Design EXample: GSM VOCOUETccveieriieierieiieriesie e e sie e 4
1.6. Organization of the TULOrIalccoecveiieiee s 5

2. System SpecCifiCation ANAIYSISccviviiiiieiece e 9
2.1, OVEIVIBW ...ttt bbb bbbttt 9
2.2. SPECITICAtION CAPLUIEeevieeeie et sre s 10

2.2. 1. SCE WINAOW ..ottt 11
2.2.2. OPEN PrOJECT...veivieieeiietie sttt sttt sb et e e sre s 12
2.2.3. Open specification MOdel...........cccoiiiiiiiniiiiii e 17
2.2.4. Browse specification model ... 23
2.2.5. View specification model source Code..........ccoovvrerirniiniennenenien e, 27
2.3. SIMUulation and ANAIYSIScoviiiiieieiie e 29
2.3.1. Simulate specification Model ... 30
2.3.2. Profile specification model............ccccooeiiiiiiicic e 37
2.3.3. Analyze profiling reSUItS..........ceoeiieieriieece e 40
2.4, SUMIMATY 1ottt ettt e et e et e e st e st e e bn e e bneennneas 47

3. SYStEM LEVEI DESIGN ..ottt snaesnenneas 49
3L OVEIVIBW ...t bbbt bbbt bbb b e 49
3.2. Architecture EXPlOration...........cccvoieiiiieiieii e 51

3.2.1. Try pure software implementation............c.cccceveverieniinieene e, 52
3.2.2. Estimate performancecccoveverieieneseee e 65
3.2.3. Try software/hardware implementationc.cccocvveieninnenesienenn 71
3.2.4. Estimate PerfOrmancCecccoovereieiieeneniee e 79
3.2.5. Generate architecture Mmodelccoovvriiiini e 84
3.2.6. Browse architecture model...........cocoveiiriiiinine 87
3.2.7. Simulate architecture model (optional)..........ccccooeiiiiiiiniiiiiee 92
3.3. Software Scheduling and RTOS Model InSertion...........cccevvvvvveiieiieeiieinens 95
3.3.1. Serialize DENAVIONScciiiiirieseie e 96
3.3.2. Generate serialized MOdel...........cooviiiiiiiiiee e 105
3.3.3. Simulate serialized model (optional)cceeeveriieriieeieseceeee 109
3.4. CommuUNICAtION SYNTNESISecvveieieeiieiese e 112
3.4.1. SeleCt BUS ProtOCOIScceieeie e 113
3.4.2. Map channels t0 DUSESc.uerueiirieieniee e 118
3.4.3. Generate communication model ..o, 120

3.4.4. Browse communication MOloooveiieeeeeeeeeee e 124

3.4.5. Simulate communication model (optional)..........cccccoveviieieiieniinniene. 128

3.5, SUMIMAIY <ottt 131

4. Custom Hardware DESIGINcccouiiiiieieiieiesie ettt see s nae s 133
A1, OVEIVIBW ...ttt ettt s et st e b besbeenbeeneeneenne s 133

4.2, RTL PreprOCESSING....c.eeiteeeeiesieeriesieeseestesteeeesiesteestessesseessessesseesseseessesseesaeas 135
4.2.1. View behavioral input modelccocovoeiieiiiiiieceeec e 136

4.2.2. Generate SFSMD MOdelcccooeiiiiiiiiiiiie e 139

4.2.3. Browse SFSMD MOlccoiiiiiiiiiiiisisciese e 142

4.2.4. View SFSMD model (0ptional)ccccevvveieiveiieie e 144

4.2.5. Simulate SFSMD model (optional)ccccceviveveiiviieiieir e, 147

4.2.6. Analyze SFSMD mMOdel ..o 150

4.3, RTL AHOCALION ..ottt s 157
4.3.1. Allocate functional UNItScccoeeeieiieieiccee e 158

4.3.2. Allocate StOrage UNITS.......ccvieeiiieiiesieeieie e 164

4.3.3. AlIOCALE DUSES ...t 170

4.4. RTL Scheduling and Binding..........ccoveiimiieieeiieie e se e sie e 179
4.4.1. Schedule and bind manually (optional)ccccccvvievieiiiieccee, 180

4.4.2. Schedule and bind automaticallyccccoevviiiiiiiieiece e 192

4.5, RTL REFINEMENT.....ciiiiiiiiie e 198
4.5.1. Generate RTL MOGEL........coooiiiiiiieeeee e 199

4.5.2. Browse RTL MOdelcooiiiiiiiii s 204

4.5.3. View RTL model (0ptional)cccooviiiiiiiiiieeee e 206

4.5.4. View Verilog RTL model (optional)ccocovveveiiiininiieence 209

4.5.5. Simulate RTL model (optional)cccoooviiiiiiiiiieeee 211

4.6, SUMMIBIY ..ttt sttt ettt sb e e b e sb e e e b e e st e et e e sbeenbe e srneanbesnneaneis 214

5. Embedded SOftware DESIGNccoieeiiieiieieseeie et 215
5.1, OVEIVIBW ...ttt sttt sttt bttt sttt b e bt e bt st sttt e aesne st e e e 215

5.2. SW COUR QENEIALION ...ttt 216
5.2.1. GeNerate C COUR.......oiuiiiiiiiieeie et 217

5.2.2. Browse and VIeW C COURcooiriieiineieieeeeeee e e 221

5.2.3. Simulate C model (optional).........cceveviiieieiecceec e, 222

5.3. Instruction Set SIMUIATION ..o 225
5.3.1. Import instruction set simulator modelcccccoeveviiiviieiieccieee, 226

5.3.2. Simulate cycle accurate Mmodel...........cccovveevieiiinienieee e 231

5.4, SUMIMAIY ...ttt ettt et e et et e e an e e be e reenneeanee s 236

B. CONCIUSION ..ottt bbbt e b et 237
A. Frequently ASKed QUESTIONScciuerierieiieniiieeieseerie e seeeesee e sre e sse e eeesseas 239
RETEIEINCES ... ettt sttt et e b e e nbe et e b sneenne s 245

Chapter 1. Introduction

The basic purpose of this tutorial is to guide a user through our System-on-Chip design
environment (SCE). SCE helps designers to take an abstract functional description of
the design and produce an implementation. We begin with a brief overview of our SoC
methodology by describing the design flow and various abstraction levels. The overview
also covers the user interfaces and the tools that support the design flow.

We then describe the example that we use throughout this tutorial. We selected the GSM
\Vocoder as an example for a variety of reasons. For one, the Vocoder is a fairly large
design and is an apt representative of a typical component of a System-on-Chip design.
Moreover, the functional specification of the Vocoder is well defined and publicly avail-
able from the European Telecommunication Standards Institute (ETSI).

The tutorial gives a step by step illustration of using the System-on-Chip Environment.
Screenshots of the GUI are presented to aid the user in using the various features of
SCE. (Please note that, depending on your specific version of the System-on-Chip Envi-
ronment SCE and your system settings, the screen shots shown in this document may be
slightly different from the actual display on your screen.) Over the course of this chap-
ter, the user is guided on synthesizing the Vocoder model from an abstract specification
to a clock cycle accurate implementation. The screenshots at each design step are sup-
plemented with brief observations and the rationale for making design decisions. This
would help the designer to gain an insight into the design process instead of merely fol-
lowing the steps. We wind up the tutorial with a conclusion and references. This tutorial
assumes that the readers of this tutorial have basic knowledge of system design tasks
and flow. In case the reader feels difficulty going following this tutorial, he can always
go to the Appendix A: FAQ (Frequently Asked Questions) at the end of the tutorial to
seek more explanation.

1.1. Motivation

System-on-Chip capability introduces new challenges in the design process. For one,
co-design becomes a crucial issue. Software and Hardware must be developed together.
However, both Software and Hardware designers have different views of the system and
they use different design and modeling techniques.

Secondly, the process of system design from specification to mask is long and elaborate.
The process must therefore be split into several steps. At each design step, models must
be written and relevant properties must be verified.

Chapter 1. Introduction

Thirdly, the system designers are not particularly fond of having to learn different lan-
guages. Moreover, writing different models and validating them for each step in the
design process is a huge overkill. Designers prefer to create solutions rather than write
several models to verify their designs.

It is with these aspects and challenges in mind that we have come up with a System-
on-Chip Environment that takes off the drudgery of manual repetitive work from the
designers by generating each successive model automatically according to the decisions
made by the designers.

1.2. SCE Goals

SCE represents a new technology that allows designers to capture system specification
as a composition of C-functions. These are automatically refined into different models
required at each step of the design process. Therefore designers can devote more effort
to the creative part of designing and the tools can create models for validation and syn-
thesis. The end result is that the designers do not need to learn new system level design
languages (SystemC, SpecC, Superlog, etc.) or even the existing Hardware Description
Languages (Verilog, VHDL).

Consequently, the designers have to enter only the golden specification of the design and
make design decisions interactively in SCE. The models for simulation, synthesis and
verification are generated automatically.

Chapter 1. Introduction

1.3. Models for System Design

Figure 1-1. System-on-Chip Environment

Refinement

Validation
User Interface (RUI) User Interface (VUI)
Alg. selection
Browsing Capture
Spec. optimization -~ Simulate
Profiling Profiling Specification model
weights Verify
Profiling data
s g
. Comp. /IP i
A Arch. synthesis
L Design decisions i
Beh. partitioning Arch. refinement
SW Scheduling / — Simulate
RTOS Comp. /1P Architecture model
models Verify
imation results
3
Protocol selection attributes G, SIS
- Design ¢ decisions 2
IChannel partitioning 3 = Comm. refinement
Arbitration > Simulate
Protocol Communication model
models Verify
imation results
|
RTL Units / i
Cycle scheduling HW/SW synthesis
. Design 4 decisions)
Protocol scheduling J HWI/SW refinement
SW assembly - > Simulate
4 Cycle -accurate model
I /1SS Verify
Estimation results

The System-on-Chip design environment is shown in figure 1-1. It consists of 4 lev-
els of model abstraction, namely specification, architecture, communication and cycle-
accurate models. Consequently, there are 3 refinement steps, namely architecture refine-
ment, communication refinement and HW/SW refinement. These refinement steps are
preformed in the top-down order as shown. As shown in figure 1-1, we begin with an
abstract specification model. The specification model is untimed and has only the func-
tional description of the design. Architecture refinement transforms this specification to
an architecture model. It involves partitioning the design and mapping the partitions onto
the selected components. The architecture model thus reflects the intended architecture
for the design. The next step, communication refinement, adds system busses to the de-
sign and maps the abstract communication between components onto the busses. The
resulted design is a timing accurate communication model (bus functional model). The
final step is HW/SW refinement which produces clock cycle accurate RTL model for

Chapter 1. Introduction

the hardware components and instruction set specific assembly code for the processors.
All models have well defined semantics, are executable and can be validated through
simulation.

1.4. System-on-Chip Environment

The SCE provides an environment for modeling, synthesis and validation. It includes a
graphical user interface (GUI) and a set of tools to facilitate the design flow and perform
the aforementioned refinement steps. The two major components of the GUI are the
Refinement User Interface (RUI) on the left and the Validation User Interface (VUI) on
the right as shown in figure 1-1. The RUI allows designers to make and input design
decisions, such as component allocation, specification mapping. With design decisions
made, refinement tools can be invoked inside RUI to refine models. The VUI allows the
simulation of all models to validate the design at each stage of the design flow.

Each of the boxes corresponds to a tool which performs a specific task automatically.
A profiling tool is used to obtain the characteristics of the initial specification, which
serves as the basis for architecture exploration. The refinement tool set automatically
transforms models based on relevant design decisions. The estimation tool set produces
quality metrics for each intermediate models, which can be evaluated by designers.

With the assistance of the GUI and tool set, it is relatively easy for designer to step
through the design process. With the editing, browsing and algorithm selection capa-
bility provided by RUI, a specification model can be efficiently captured by designers.
Based on the information profiled on the specification, designers input architectural de-
cisions and apply the architecture refinement tool to derive the architecture model. If the
estimated metrics are satisfactory, designers can focus on communication issues, such
as protocol selection and channel partitioning. With communication decisions made, the
communication refinement tool is used to generate the communication model. Finally,
the implementation model is produced in the similar fashion. The implementation model
is ready for RTL synthesis.

We are currently in the process of developing tools for automating the synthesis tasks
for system level design shown in the exploration engine. The tutorial presents automatic
RTL synthesis. The next challenge is to automatically perform architecture and commu-
nication synthesis.

Chapter 1. Introduction

1.5. Design Example: GSM Vocoder

Figure 1-2. GSM Vocoder

_| Long-Term
Pitch Filter x
Delay / Adaptive codebook + Short-term
- - — Speech
Q Synthesis Filter P
Residual / 10th-order LP filter

Pulses

Fixed codebook

The example design used throughout this tutorial is the GSM Vocoder system , which is
employed worldwide for cellular phone networks. Figure 1-2 shows the GSM Vocoder
speech synthesis model. A sequence of pulses is combined with the output of a long
term pitch filter. Together they model the buzz produced by the glottis and they build the
excitation for the final speech synthesis filter, which in turn models the throat and the
mouth as a system of lossless tubes.

The example used in this tutorial encodes speech data comprised of frames. Each frame
in turn comprises of 4 sub-frames. Overall, each sub-frame has 40 samples which trans-
late to 5 ms of speech. Thus each frame has 20 ms of speech and 160 samples. Each
frame uses 244 bits. The transcoding constraint (ie. back to back encoder/decoder) is
less than 10 ms for the first sub-frame and less than 20 ms for the whole frame (consist-
ing of 4 sub-frames).

The vocoder standard, published by the European Telecommunication Standards Insti-
tute (ETSI), contains a bit-exact reference implementation of the standard in ANSI C.
This reference code was taken as the the basis for developing the specification model.
At the lowest level, the algorithms in C could be directly reused in the leaf behaviors
without modification. Then the C function hierarchy was converted into a clean and
efficient hierarchical specification by analyzing dependencies, exposing available par-
allelism, etc. The final specification model is composed of 9139 lines of SpecC code,
which contains 73 leaf behaviors.

Chapter 1. Introduction

1.6. Organization of the Tutorial

Figure 1-3. Task flow for system design with SCE

Specification

el untimed

System level
Design

Architecture
Exploration

timed

SW Scheduling/
RTOS
L]

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

The tasks in system design with SCE are organized as shown in figure 1-3. Each of the
tasks is explained in a separate chapter in this tutorial. We will start with a specification
model and show how to get started with SCE. At this level, we will be working with
untimed functional models. Following that, we will look at system level exploration and
refinements, where the involved models will have a quantitative notion of time. Once
we get a system model with well defined HW and SW components and the interfaces
between them, we will proceed to generate custom hardware and processor specific soft-
ware. These final steps will produce cycle accurate models.

Each design task is composed of several steps like model analysis, browsing, generation
of new models and simulation. Not all these steps are crucial for the demo to proceed
smoothly. Some steps are marked as optional and may be avoided during the course of
this tutorial. If the designer is sufficiently comfortable with the tool’s result, he or she
can avoid the typically optional steps of simulation and code viewing.

If the designer is booting from the CD-ROM, the setup is already prepared.
Otherwise, the designer may follow the following steps to set up the demo. Start

Chapter 1. Introduction

with a new shell of your choice. If you are working with a c-shell, run "source
$SCE_INSTALLATION_PATH/bin/setup.csh”. If you are working with bourne shell,
run "$SCE_INSTALLATION_PATH/bin/setup.sh”. Now run "setup_demo" to setup the
demonstration in the current directory. This will add some new files to be used during
the demo.

Acknowledgment:

The authors would like to thank Tsuneo Kinoshita of NASDA, Japan for his patience in
going through the tutorial and helping us make it more understandable and comprehen-
sive. We would also like to thank Yoshihisa Kojima of the University of Tokyo for his
help in uncovering several mistakes in the tutorial’s text.

Chapter 1. Introduction

Chapter 2. System Specification Analysis

2.1. Overview

Figure 2-1. Specification analysis using SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

timed

SW Scheduling/
RTOS
L]

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

The system design process starts with the specification model written by the user to
specify the desired system functionality. It forms the input to the series of exploration
and refinement steps in the SoC design methodology. Moreover, the specification model
defines the granularity for exploration through the size of the leaf behaviors. It exposes
all available parallelism and uses hierarchy to group related functionality and manage
complexity.

In this chapter, we go through the steps of creating a project in SCE and initiating the
system design process as highlighted in figure 2-1. The various aspects of the speci-
fication are observed through simulation and profiling. Also, the model is graphically
viewed with the help of SCE tools.

Chapter 2. System Specification Analysis

2.2. Specification Capture

The system design process starts with the specification model written by the user to
specify the desired system functionality. It forms the input to the series of exploration
and refinement steps in the SoC design methodology. Moreover, the specification model
defines the granularity for exploration through the size of the leaf behaviors. It exposes
all available parallelism and uses hierarchy to group related functionality and manage
complexity.

In this section, we go through the steps of creating a project in SCE and initiating the
system design process. The various aspects of the specification are observed through
simulation and profiling. Also, the model is graphically viewed with the help of SCE
tools.

The models that we will deal with in this phase of system design are untimed functional
models. The tasks of the system specification, referred to as behaviors in our parlance,
follow a causal order of execution. The main idea in this section is to introduce the user
to the SCE GUI and to demonstrate the capability of graphically viewing the behaviors
and their organization in the specification model.

10

Chapter 2. System Specification Analysis

N
N
[EEN
92,
O
m
2
>
Q
Q
2

Eile Edit Miew Project Synthesis Yalidation Windows Help

Design IDescription I

X Compie | Sinulate | Analyzs | Refine | Shell |

[Ready A

To launch the SCE GUI, simply run "sce" from the shell prompt. On launching the
System-on-Chip Environment (SCE), we see the above GUI. The GUI is divided broadly
into three parts. First is the "project management" window on the top left part of the GUI,
which maintains the set of models in the open projects. This window becomes active
once a project is opened and a design is added to it. Secondly, we have the "design
management™ window on the top right where the currently active design is maintained.
It shows the hierarchy tree for the design and maintains various statistics associated with
it. Finally, we have the "logging" window at the bottom of the GUI, which keeps the log
of various tools that are run during the course of the demo. We keep logs of compilation,
simulation, analysis and refinement of models.

The GUI also consists of a tool bar and shortcuts for menu items. The File menu handles
file related services like opening designs, importing models etc. The Edit menu is for
editing purposes. The View menu allows various methods of graphically viewing the
design. The Project menu manages various projects. The Synthesis menu provides for
launching the various refinement tools and making synthesis decisions. The Validation
menu is primarily for compiling or simulating models.

11

Chapter 2. System Specification Analysis

N
N
N
@)
°
0]
-
©
=
Qo
D
9]
—

Eile Edit View Emjectlgynthesis Walidation Windows

Design | Descripti @ Close
Save

Save A5

Add Design
Becent Projects —

Settings...

X Compie | Sinulate | Analyzs | Refine | Shell |

Open Project

)

The first step in working with SCE is opening a project. A project is associated with
every design process since each design might impose a different set of databases or
dependencies. The project is hence used by the designer to customize the environment

for a particular design process. We begin by selecting Project—Open from the menu
bar.

12

N
N
N
=
®]
e}
(9]
>
©
=
Ke)
@D
(@]
~+
—~
(@]
o
=)
~+
o
=

Eile Edit Miew Project Synthesis Yalidation Windows

Chapter 2. System Specification Analysis

Help

D up &woe [X Q]]

Laok in: |aa’h0mefspeccfdemn.-’

@.

=]

& SCE_Tutarial
=i

B vocodersce

File name: |vocoder.sce

Models File type: SCE Project Files (*.sce)

=l

I Open |

Cancel |

|

X compile |

Select project to open...

)

A Open file window pops up. For the purpose of the demo, a project is pre-created. We
simply open it by selecting the project "vocoder.sce” and left click on Open button on

the right corner of the the pop-up window.

13

Chapter 2. System Specification Analysis

N
N
N
N
O
S
)
S
o
-
Q
)
Q
~+
o)
?)
o)
=}
~+
a
N—r

Eile Edit View Emjectlgynthesis Walidation Windows

Help

Design | Descripti

Save As..
Add Design
Becent Projects —

Settings...

X Compie | Sinulate | Analyzs | Refine | Shell |

Project Settings

)

Since we need to ensure that the paths to dependencies are correctly set, we now check

the settings for this precreated "vocoder.sce™ project by selecting Project— Settings...
from the top menu bar.

14

Chapter 2. System Specification Analysis

2.2.2.3. Open project (cont’d)

vocoder.sce - So0C Environment
Eile Edit Wiew Project Synthesis Validation Windows Help

N mlsoca xR Xllae | ®

Design |Descripti0n F_
Compiler |_

Include path: |srcfcnmm0n

Import path: I_Ioop:srcfclnsed_luop:srcfcudebnuk:srcfupdate:srcfprocessing

Liktary path: |

Libraries: I
Defines: |
Undefines: |
Options: I—\.-'
|
H Compile |!
ﬂl OK | Cancel
3 A

Ready A

We now see the compiler settings showing the import path for the model’s libraries and
the ’-v’ (verbose) option. The Include path setting gives the path which is searched
for header files. The Import path is searched for files imported into the model. The
Library path is used for looking up the libraries used during compilation. There are
also settings provided for specifying which libraries to link against, which macros to
define and which to undefine. These settings basically form the compilation command.
To check the simulator settings, left click on the Simulator tab.

15

Chapter 2. System Specification Analysis

2.2.2.4. Open project (cont’d)
= Wocaderscs - So€ Bmwronment EEE
Eile Edit Miew Project Synthesis Yalidation Windows Help

D Bl & [0a]xem] X[]

Design

_ Simulator |

Output

~ Mo terminal | Enahle logging to file

~ Terminal window

External console: |xterm -title %e -e

Simulation command:

ﬁ |ch_unx.inp nodt<.bit nodt< && diff -5 srofspeechfiles/nodi_good. hit nodt< hit
Madels

H Compile | I
Help | ok | cancel
4

[Ready

)

We now see the simulator settings showing the simulation command for the
"vocoder.sce” project. There are settings available to direct the output of the model
simulation. As can be seen, the simulation output may be directed to a terminal, logged
to a file or dumped to an external console. For the demo, we direct the output of the
simulation to an xterm. Also note that the simulation command may be specified in the
settings. This command is invoked when the model is validated after compilation. The
vocoder simulation processes 163 frames of speech and the output is matched against a
golden file. Press OK to proceed.

16

Chapter 2. System Specification Analysis

2.2.3. Open specification model

Eile | Edit Miew Project Synthesis Yalidation Windows Help
[ew.. Cre iy @ | NI L I
. = Dpen... Crl+0 freees
@ Close cuw [!
Reload Cirl+R
Reload &l

W cave Crl+5
Save Ag.

Il zave a1
Itpart...
Export..

& Erint Ctrl+P
Froperties...
Recent Files -
Exit Cirl+ G

X Compile | sinulate | Analyze | Refne | shell |

Open design (Ctrl+0)

)

We start with the specification that was already captured as a model. We open this model
to see if it meets the desired behavior. Once the model is validated to be "golden”, we
will start refining it and adding implementation details to it. We open the specification
model for the Vocoder example by selecting File—Open from the menu bar.

17

Chapter 2. System Specification Analysis

2.2.3.1. Open specification model (cont’d)

Eile Edit Miew Project Synthesis Yalidation Windows Help

Design

Laok in: |aa’h0mefspeccfdemn.-’

@.
=]
& SCE_Tutarial

=i
[testhench.sc

Filenamezl I Open |

SpecC files (".sc) =l Cancel |
SIR files (".5ir) 4

SpecC files (*.5c)

Freprocessed SpecC files (".si)

File type:

Select design to open... 4

A file Open window pops up showing the SpecC internal representation (SIR) files. The
internal representation files are a collection of data structures used by the tools in the
environment. They uniquely identify a SpecC model. At this time however, the design
is available only in its source form. We therefore need to start with the sources. Select
"SpecC files (*.sc)" to view the source files.

18

Chapter 2. System Specification Analysis

2.2.3.2. Open specification model (cont’d)

Eile Edit Miew Project Synthesis Yalidation Windows Help
{0 Er"'[| N | [‘||") Q| K SNEHE
--- &
Design
Laok in: |aa’h0mefspeccfdemn.-’
@..
e
& SCE_Tutarial
=i
P& testbench.sc
File name: |testbench.sc Il Open
~I.
Models File type: SpecC filas {*.sc) _l| Cancel |
7|
_ﬂ Compile |
Select design to open... 4

The Open is updated to show the available source files of the GSM Vocoder design
specification. Select the file containing the top hierarchy of the model. In this case, the
file is "testbench.sc”. The testbench instantiates the design-under-test (DUT) and the
corresponding modules for triggering the test vectors and for observing the outputs. To
open this file Left click on Open.

19

Chapter 2. System Specification Analysis

2.2.3.3. Open specification model (cont’d)

vocoder.sce - S0C Environment

Eile Edit Wiew Project Synthesis Validation Windows Help

|D&[Eﬁ[§| B XEm X EE

B tain - testhench -

testbench.sir [read-only]

Design | Description

| Mame 5
@ local_dts_m
O dlts_made
I setial_hits
hspeech_san
O bdt=_cirl

& coder
&rmonitor
B stimulus

=
Hierarchy

M conpile | simuate | nalyze | Refne | Synthesie | shel |

Input: ‘"testhench.zi"
Output: <internal representation’
Tumping., . .
Input: <internal representation?
Output ; "testbench,sir"
Tore.,

Ready A

Note that a new window pops up in the design management area. It has two
sub-windows. The sub-window on the left shows the Vocoder design hierarchy. The
leaf behaviors are shown with a leaf icon next to them. For instance, we see two
leaf behaviors: "stimulus”, which is used to feed the test vectors to the design, and
"monitor"”, which validates the response. "coder"” is the top behavior of the Vocoder
model. It can be seen from the icon besides the "coder” behavior that it is an FSM
composition. This means the Vocoder specification is captured as a finite state
machine. Also note in the logging window that the SoC design has been compiled
into an intermediate format. Upon opening a source file into the design window, it is
automatically compiled into its unique internal representation files (SIR) which in turn
is used by the tools that work on the model.

20

Chapter 2. System Specification Analysis

2.2.3.4. Open specification model (cont’d)

vocoder.sce - So0C Environment

Eile Edit Wiew Project Synthesis Validation Windows Help

Design | Description | [Nline |Ty [J Mame IType i
-4 Main 7 pIch TP Broal
- coder Ca o re ir short int [4
B B pre_process Pre # reset_flag in boal
[& coder_12k2 Co 7 r_h in short int [1
¥ seq Co 71 in short int [1
- & Ip_a.m.alysis LP] e scal_fac in short int
(G ecitx_ctrl inout short i
& VaD_flag hool
&nodix_setflags Modtx_Setfla
&nop Mop
Brt_dtx TH_Dbe
o vard rnmputatinn VAD Cormel
o ——]
Hierarchy J

% Complle | sinuite | Analyze | Refne | Synthesize | shel |

Input: "testhench,si"
Output: <internal representation’
Tumping., . .
Input: <internal representation?
Output ; "testbench,sir"
Tore.,

Ready A

The model may be browsed using the design hierarchy window. Parallel composition is
shown with || shaped icons and sequential composition with *:” shaped icons. On select-
ing a behavior in the design hierarchy window, we can see the behavior’s characteristics
in the right sub-window. For instance, the behavior "vad_Ip" has ports shown with yel-
low icons, variables with gray icons and sub-behaviors with blue icons.

21

Chapter 2. System Specification Analysis

2.2.3.5. Open specification model (cont’d)

=1
Eile Edit Wiew Project Synthesis Validation Windows Help

’ — 1
Design |Descr|pt|0n | A [rame |Ty [Neme IType
-4 Main 7 dt¢_mode i_receiver
E}E_' o serial i_sender
- | pre_prat ERTDE-- P speech_samples i_receiver
o-= C;’:;al Hierarchy... 7 tite_ctrl i_sender
o B lp_al Connectivity... @ local_dt<_mode bool
&Fir |s0late @ prm shart int [57]
I: @ reset_flag_1 hool
Y EI Wrap @reset flag_2 bool
¥ 5 Delete Del | gspeech_frame short int [160
e L & 5yn short int [160
@y otedb_ctr_val shortint
o1 0l s Change Type P P
e et ps Top-Level 1]
Hierarchy I_—J
Graphs

% Complle | sinuite | Analyze | Refne | Synthesize | shel |

Input: "testhench,si"
Output: <internal representation’
Tumping., . .
Input: <internal representation?
Output ; "testbench,sir"
Tore.,

Ready A

Before making any synthesis decisions, it is important to understand the composition of
the specification model. It is useful because the composition really tells us which fea-
tures of the model may be exploited to gain maximum productivity. Naturally, the most
intuitive way to understand a model’s structure is through a graphical representation.
Since system models are typically very complex, it is more convenient to have a hier-
archical view which may be easily traversed. SCE provides for such a mechanism. To
graphically view the hierarchy, from the design hierarchy window, select “coder”. Right
click and select Hierarchy. Notice that the menu provides for a variety of services on
individual behaviors. We shall be using one or more of these in due course.

22

2.2.4. Browse specification model

Chapter 2. System Specification Analysis

[=I[Ex]
dation Windows Help
§ @ & EEE B e @
—| Window View B X | |a
ol I
D | Mame % |Type
ain 7 db¢_mode i_receiver
seria i_sender
o o serial i_send
[= Pre_process P speech_samples i_receiver
. C:.’:;a?kz 9 tedte_ctrl i_sender
- = Ip_analysis @ local_dt<_mode bool .
&Finit @ prm shart int [57]
I seq1 g reset_flag_1 hool
A az_lsp_1 @reset_flag_2 hoal
W az_lsp_z ¢ speech_frame short int [160]
M copy? @ 5yn short int [160]
@ vad_lp otbct_val shortint
- 1 seq? P e amn
=
(=la
Tore.,
Ready 7

A new window pops up showing the Vocoder model in graphical form. As noted earlier,
the specification is an FSM at the top level with three states of pre-processing, the bulk

of the coder functionality itself and finally post-processing.

23

Chapter 2. System Specification Analysis

2.2.4.1. Browse specification model (cont’d)

[=I[Bl}]
dation Windows Help
: o] X EEE| |G e ®
—| Window Miew
_D Connectivity i
| Zoam in Cirl++ _ /| Mame
ain 7 dt¢_mode
Zoom out Cirl+- -
P o serial
Add level Cirl+A F- 8 pre_process o+ speech_samples i_raceiver
| r- B coder_12ke " .
Bemove level Cirl+R 4+ tete_ctrl
@ local_di<_mode
@ prm
@ reset_flag_1
@ reset_flag_2
& speech_frame
@ EYn
& todt<_ctrl_val
e el A A
X
Tore.,
[Ready A

At this stage, we would like to delve into greater detail of the specification. To view
the model graphically with higher detail, select View—Add level. Perform this action
twice to get a more detailed view. As can be seen, the View menu provides features like
displaying connectivity of behaviors, modifying detail level and zooming in and out to
get a better view.

24

Chapter 2. System Specification Analysis

2.2.4.2. Browse specification model (cont’d)

= [=IEix
Fi i i i i dation Windows Help
liw _ K EEE] B e ®
—1| Window }ﬂewl
B o [(B4
_D Connectivity]
B
| Zoom in Ctrl++ - ke 7 |Type
ain 7 db¢_mode i_receiver
Zoom out Cirl+- -)
P o serial _sender
Add level Cirl+4 H E prZ—praczekszs o+ speech_samples i_raceiver
coger)
Remove level Chrl+R i -—'se?ﬂ o bt _ctr i_sender
o B Ip_analysis @ local_dt<_mode bool
&Finit @ prm shart int [57]
- I seql g reset_flag_1 hool
A az_lsp_1 @reset_flag_2 hoal
W az_lsp_z ¢ speech_frame short int [160]
M copy & 5yn short int [160]
@ vad_lp otbct_val shortint
- 1 seq? G dmn Ao 4
=

Tore.,

Ready

|35

Zoom out to get a better view by selecting View—sZoom out

25

Chapter 2. System Specification Analysis

2.2.4.3. Browse specification model (cont’d)

[=IEix
E| Window View dows Help
|5 | Mame 5 |Type
7 dt¢_mode i_receiver
I 7 serial i_sender
HCess o+ speech_samples i_raceiver
‘11 eke 4+ tete_ctrl i_sender
analysis @ local_dt<_mode bool .
Finit @ prm short int [57]
seql @ reset_flag_1 hool
Faz_lsp_1 @ reset flag_2 bool
Faz_lsp_2 ¢ speech_frame short int [160]
f copy & 5yn shart int [160]

vad_lp

& todt<_ctrl_val short int
[.

_

el = =)

Scroll down the window to see the FSM and sequential composition of the Vocoder
model. Note that the specification model of the GSM Vocoder does not contain much
parallelism. Instead, many behaviors are sequentially executed. This is due to the several
data dependencies in the code. For our implementation, this is an important observation.
Since there is not much parallelism in the code to exploit, speedup can be achieved only
by use of faster components. One way to speed up is to use dedicated hardware units.

Exit the hierarchy browser by selecting Window—;Close

26

Chapter 2. System Specification Analysis

2.2.5. View specification model source code

Eile Edit Wiew Project Synthesis Validation Windows

Help

10

Change Type

(-3
o |

& todt<_ctrl_val
[

Design | Desctiption | [IJ Name IType
7 dt¢_mode i_receiver
o sarial i_sender
- - o speech_samples i_receivar
t- & code Higrarchi... 2 tedte_ctrl i_sender
[]__ = |sp‘ Connectivity... @local_dt<_mode bool
4 lsolate @ prm shart int [57]
|ﬂrap @ reset_flag_1 hool
A @ reset_flag_2 hool
4 Delete Del @speech_frame short int [16C
A Rename & 5yn short int [160

short int

-

N Set As Top-Level

Hierarchy Graphs

_

% Complle | sinuite | Analyze | Refne | Synthesize | shel |

Input: "testhench,si"
Output: <internal representation’
Tumping., . .
Input: <internal representation?
Output ; "testbench,sir"
Tore.,

Ready

24

We can also view the source of the models conveniently in SCE. For example, to check
the source for behavior "coder", just click on the row in the hierarchy to select it. Then

right click to bring up a menu and click on Source.

27

Chapter 2. System Specification Analysis

2.

N

.5.1. View specification model source code(cont’d)

Il
< |

acodersce - SoC Environment

SEIET

|_cnder.sc - specC Editor

EEE

File Edit Search Wiew

: 3

void main(void)

=
#ifdef PIPED_CODER
pipe
=] i
it Filter + downscaling *i
| pre_process.main();

{ St Find speech parameters 2
i coder_12k2.main() ;

S rnsert comfort noise and converd parameters fo serisl bits
i post_process.main();

felse
fsm
=] i
b filter + downscaling i
| pre_process:

{ St Find speech parameters 2
i ocoder_12k2:

{ % Insert comfort nolse snd converd parameters fo serial Bits 4/
{ post_process: §

= i
goto pre_process;
i3

H
fendif

B

/

S

-

[Line: 60 Col: T4

2

The SpecC Editor pops up containing the source code for the selected behavior.
Changes to the source code can be made using the editor. After reviewing the source

code, close the editor by selecting File—Close from its menu bar.

28

Chapter 2. System Specification Analysis

2.3. Simulation and Analysis

Once we have captured the specification as a model and browsed through its behavioral
hierarchy and connectivity, we need to ensure that our specification is correct. We also
need to analyze our specification model to derive interesting observations about the na-
ture of the computation. The check for correctness is done by simulating the model.
Note that the model is purely functional, so the simulation runs very quickly. This is
also a good time to debug the model for functional errors that might have crept in while
writing it.

After the model is verified to be functionally correct, we proceed to the analysis phase.
For this, we need to profile the model using the profiling tool available in SCE. The
profile gives us useful information like the about of computation, its distribution over
the various behaviors in the model and its nature. This information is need to make
crucial architectural choices as we will see as the demo proceeds.

29

Chapter 2. System Specification Analysis

2.3.1. Simulate specification model

E=TES

File Edit Yiew Emjectlﬁynthesis Walidation Windows

Help

Open...

Design | Descripti € Close i [Namen IType
Save ain 7 db<_mode i_recaiver
Save As.. P o serial i_sender
add Design E]_ . E;Z;F:riczekzs Er; o speech_samples i_receivar
; i - 7 tite_ctrl i_sender
Recent Projects - |- seqi Co local db mode baol
o || m Elp_analysis LP, @local_dix_moge ool
Settings... & init | @ prm short int [37]
Il seql LP, @ reset_flag_1 hool

A az_lsp_1 Az @reset_flag_2 haol

W az_lsp_z
¥ copyt
& vad_lp
=3 | BT - arn P

= - .

Hierarchy J

& speech_frame shortint [16C
& 5N short int [16C
& todt<_ctrl_val short int
[.

% Complle | sinuite | Analyze | Refne | Synthesize | shel |

Input: "testhench,si"
Output: <internal representation’
Tumping., . .
Input: <internal representation?
Output ; "testbench,sir"
Tore.,

Add Design to Project

24

We must now proceed to validate the specification model. Remember that we have a
"golden” output for encoding of the 163 frames of speech. The specification model
would meet its requirements if we can simulate it to produce an exact match with the
golden output. In practice, a more rigorous validation process is involved. However, for
the purpose of the tutorial, we will limit ourselves to one simulation only. Start with
adding the current design to our Vocoder project by selecting Project—Add Design

from the menu bar.

30

Chapter 2. System Specification Analysis

2.3.1.1. Simulate specification model (cont’d)

Design IDescription' [Nline |Ty [J Mame IType
Lregmeﬁm'gy Ii'l—," kdain g db_mode i_receiver
U‘P 7 serial i_sender
. E pre_process Pre P speech_samples i_receiver
o-= C;[.j:;—lzkz Eg 2 tedte_ctrl i_sender
o Ipfanalysis LP) @ local_dt<_mode hool .
&Finit | @ prm shart int [57]
I seq1 LF, @ reset_flag_1 hool
A az_lsp_1 Az @reset_flag_2 haol
W az_lsp_z ¢ speech_frame short int [160
M copy & 5yn short int [160
@ vad_lp otedb_ctr_val shortint
=3 | BT P e an
U ——] I =

Hierarchy J

Input: "testhench,si"
Output: <internal representation’

Tumping., . .
Input: <internal representation?
Output ; "testbench,sir"

Tore.,

Ready A

The project is now added as seen in the project management workspace on the left in the
GUL.

31

Chapter 2. System Specification Analysis

2.3.1.2. Simulate specification model (cont’d)

==

Eile Edit Wiew Project Synthesis Validation Windows Help

[Name IType
Open 7 dt¢_mode i_receiver
o7 serial i_sender
Delete Del} & pre_process Pre o speech_samples i_receiver
- _ _
Rename... |- C;q:;alz'(z Eg G tectte_ctrl i_sender
Change Desctiption... - B Ip_analysis LF, @ local_dts_mode br?Drlt' -
i rm short in
Statistics... & init | oF (57)
Il seql LP, @ reset_flag_1 hool
A az_lsp_1 Az @reset_flag_2 haol
W az_lsp_z ¢ speech_frame short int [160
M copy & 5yn short int [160
@ vad_lp om ot val - shortint
- 1 seq? o P
U —— T
Hierarchy J

3 comps | Sinuste | anslze | Remne | synvesiz | she |

Input: ‘"testhench.zi"
Output: <internal representation’
Tumping., . .
Input: <internal representation?
Output ; "testbench,sir"
Tore.,

Ready A

We must now rename the project to have a suitable name. Remember that our method-
ology involved 4 models at different levels of abstraction. As these new models are
produced, we need to keep track of them. Right click on "testbench.sir" and select Re-
name to rename the design to "VocoderSpec”. This indicates that the current model
corresponds to the topmost level of abstraction, namely the specification level. Note that
the extension ".sir" would be automatically appended. Also note that a model may be
made activated, deleted, renamed and and its description modified by right click on its
name in the project management window.

32

Chapter 2. System Specification Analysis

2.3.1.3. Simulate specification model (cont’d)

Sl s Ewromen B
Eile Edit Wiew Project Synthesis Validation | Windows Help
D i[= ﬁ I = O ¢ | % - Enable Instrumentation |a @O

E Compile -

— Simulate

Mar — _ | Mame % IType

LS e MeAiliEl 7 dt¢_mode i_receiver
Kill simulation P serial i_sender
Wiew Log... o speech_samples i_receivar
Profile 2 tedte_ctrl i_sender
ol @ local_dt<_mode hool
Aanalyze & prm shart int [57]
Evaluate @ reset_flag_1 boal
hetrics... @ reset_flag_2 boal
Show Estimates @ speech_frame shor int [160
Estimat & 5N short int [16C
SIS b ctr_val short it
Analyze RTL s o et o

= . T

Hie @ Stop |

X conpile | simuate | nalyze | Refne | Synthesia | shel |

sir_rename -i Jhomefpeng jfdemostesthench,sir -0 Jhome/peng jfdeno/VocoderSpec..sir testhench VocoderSeec

Compile A

After the project is renamed to "VocoderSpec.sir”, we need to compile it to produce an
executable. This may be done by selecting Validation— Compile from the menu bar.
Note that the validation menu also provides for code instrumentation which is used for
profiling. Moreover, we have choices for simulating the model, opening a simulation
terminal, killing a running simulation, viewing the log, profiling, analyzing simulation
results, model evaluation, displaying metrics and estimates etc. All these features will
be used in due course of our system design process.

33

Chapter 2. System Specification Analysis

2.3.1.4. Simulate specification model (cont’d)

Eile Edit Wiew Project Synthesis Validation Windows Help

B Coder - Yocoders peC -
| rame |T$" H Mame IType
-4 Main 7 dt¢_mode i_receiver
E}P o serial i_sender
a E PIE_Process Pre o speech_samples i_receiver
il C;‘:;—lz"‘z Eg 2 tedte_ctrl i_sender
o= Ipfanalysis LP) @ local_dt<_mode hool .
&Finit | @ prm short int [37]
I seq1 LF, g reset_flag_1 hoaol
¥ =z_lsp_1 sz g reset flag_2 bool
W az_lsp_z

& speech_frame shortint [16C
& 5N short int [16C
gtxdtx cirl_val short int

¥ copyt
% vad_lp
=3 | BT

U —— T

Hierarchy J

X conpil | simuate | nalyze | Refne | Synthesia | shel |

Input: "VocoderSpec. cc

Output s "VocoderSpec,o"
Linking., ..

Input: "VocoderSpec.o!

Output ; "VocoderSpec”
Tore.,

Ready A

Note that in the logging window we see the compilation messages and an output exe-
cutable "VocoderSpec" is created.

34

Chapter 2. System Specification Analysis

2.3.1.5. Simulate specification model (cont’d)

E [=I[Ex]
Eile Edit Wiew Project Synthesis Validation | Windows Help
| N qu'[(=l I &S| & | % r Enable Instrumentation |a @O
E Compile =
i — Simulate [
(Dl hla) —— - | Mame % IType
B LS e MeAiliEl 7 dt¢_mode i_receiver
Kill simulation P serial i_sender
Wiew Log... 7 speech_samples i_receiver
Profile 2 tedte_ctrl i_sender
ol @ local_dt<_mode hool
Aanalyze & prm shart int [57]
Evaluate @ reset_flag_1 boal
hetrics... @ reset_flag_2 boal
Show Estimates @ speech_frame shor int [160
Estimat & 5N short int [16C
Etimate otedb_ctr_val shortint
Analyze RTL [TN e 4
= S i s
Hie @ Stop |
X conple | sinute | Analze | Retns | synvesze | sl |
H—
: Input: "VocoderSpec.cc!
i Output: "VocoderSpec,o"
Linking., ..
Input: "VocoderSpec.o!
Output ; "VocoderSpec”
Tore.,
Simulate A

The next step is to simulate the model to verify whether it meets our requirements or

not. This may be done by selecting Validation— Simulate from the menu bar.

35

Chapter 2. System Specification Analysis

2.3.1.6. Simulate specification model (cont’d)

Elvocodersce-SoCEnvironment 0000000000000 [EEE

B)) i) .) Help

EJ_ frame=147 encoding delay = 0,00 mz

222 frame=148 encoding delay = 0,00 mz

— frame=149 encoding delay = 0,00 ms

Ly frame=150 encoding delay = 0,00 mz IT .

m frame=1h1 encoding delay = 0,00 mz ye
frame=152 encoding delay = 0,00 me e i_receiver
frame=153 encoding delay = 0,00 ms i sendet
frame=154 encoding delay = 0,00 mz -
frame=155 encoding delay = 0,00 ms |samples i_receiver
grame=1g$ encoﬂing geiau = g,gg s | i_sender

rane= encoding delay = 0,00 mg

frame=158 encoding delay = 0,00 mz _mode boal

frame=153 encoding delay = 0,00 ms shart int [57]

frame=160 encod@ng delay = 0,00 mz g1 boal

frame=161 encoding delay = 0,00 ms

framz=162 encoding delay = 0,00 ms g2 boo

frame=163 encoding delay = 0,00 ms | frame short int [16C

done, 163 frames encoded short int [160

I_val short int

iles =src/speechfiles/nodtx_good,bit and nodtx,bit are identical " St 4o
nulation exited with status 0 I
ezz return to continue ..,

X conple | smusts | nsze | Remne | sy | she |

4 xterm -title VocoderSpec -e fhindsh o . AVocoderSpec srodspeechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
t -z src/speechf iles/nodbx_good,bit nodtx.bit: echo "Simulation exited with status #$7" fecho "Press return
to continue .,." :read conficm

Ready A

Note that an xterm pops up showing the simulation of the Vocoder specification model
on a 163 frame speech sample. The simulation should finish correctly which is indicated
by the exit status being ’0’. It can be seen that 163 speech frames were correctly simu-
lated and the resulting bit file matches the one given with the vocoder standard. It may be
noted that each frame has an encoding delay of 0 ms. This is a because our specification
model has no notion of timing. As explained in the methodology, the specification is a
purely functional representation of the design and is devoid of timing. For this reason,
all behaviors in the model execute in 0 time thereby giving an encoding delay of 0 for
each frame. Press RETURN to close this window and proceed to the next step.

36

Chapter 2. System Specification Analysis

2.3.2. Profile specification model

£ |Vocodersce - soC Envirormert [EIETE]
Eile Edit Wiew Project Synthesis Validation | Windows Help
| N qu'[(=l I é“b ¢ | % - Enable Instrumentation |a @O
E Compile a

— Simulate [

Mar — _ | Mame |Type

LS e MeAiliEl - 7 dt¢_mode i_receiver
Eill simulatian = o serial i_sender
Wiew Log... 7 speech_samples i_receiver
Profile 9 tedte_ctrl i_sender
il @ local_dt<_mode bool
Aanalyze & prm short int [57]
Evaluate @ reset_flag_1 baal
hetrics... @ reset_flag_2 hoal
Show Estimates @ speech_frame short int [160]
Estimat & 5N short int [160]
Etimate obedb_ctr_val shortint
analyze RTL B St aoun

= R =

Hie @ Stop |

X conple | smusts | nsze | Remne | sy | she |

4 xterm -title testbench -e /bindsh -c ,/testhench src/speschfiles/spch_unx, inp nodbx,bit nodbx 2a diff -=
zro/speechf iles nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return to o
ontinue ,.." read confirm

Simulation exited. exit status: O

Profile A

In order to select the right architecture for implementing the model, we must begin by
profiling the specification model. Profiling provides us with useful data needed for com-
parative analysis of various modules in the design. It also counts the various metrics like
number of operations, class and type of operation, data exchanged between behaviors
etc. These statistics are collected during simulation. Profiling may be done by selecting
Validation—Profile from the menu bar.

37

Chapter 2. System Specification Analysis

2.3.2.1. Profile specification model (cont’d)

vocoder.sce - So0C Environment

Eile Edit Wiew Project Synthesis Validation Windows Help

| Mame |Ty
-4 Main

il Mame Type

> BT | (%o
M- B pre_process Pre |- dtx_mode i_receive
[B coder_12kZ Co | serial i_sender

—!59[11 . co -5 speech_samples i_receive
- & lp_analysis LP o bertte_ctrl i_sender
ﬂ;n;tm | - ¢ local_db<_mode hool

& az_lsn_1 Az, = g prm short int [

- @reset flag_1 bool
A copyl - @reset flag_2 haool
& vad_lp - @speech_frame shorint [
- 1 seq? L nun shart int T
S i)
Hierarchy

W az_lsp_z

| O O | Refie | synthesize | st |

Comput.ing statistics for operations

Computing statistics for traffic

Comput.ing =tatistics for storage

Annotating statistics to SIR file
Erd 1 Behavior profiling

Ready A

The logging window now shows the results of the profiling command. Note that there
is a series of steps for computing statistics for individual metrics like operations, traffic,
storage etc. Once these statistics are computed, they are annotated to the model and
displayed in the design window.

38

Chapter 2. System Specification Analysis

2.3.2.2. Profile specification model (cont’d)

[=I[Bl}]
File Edit Miew Project Synthesis Validation Windows Help =|=| =
Eile Edit ¥i Broject Synthesis Walidati Wind Help
D B0 s ve xbE | EEE G2 0
- 3l Cade Camputation
Type N))
-4 Main [expressions] | [operations]
LE [1 16674 1312353169
B+ B pre_process ode i_receiver
&+ & coder_12k2 | i_sender
A sen ch_samples i_receiver
-8 I%analysis ctrl i_sender
init B -
seql | dt<_mode hoal _
&z isp_T shart int [57]
Waz_lsp_z | flag_1 hool
A copyl | flag_2 bool
& vad_lp ch_frame shortint [160]
Il seq2 shart int [160]
A no_speech = | ctil_wal shortint
@Dg;]”ﬁ’;fp r_12kz Coder_12k2 163 16004 11564811
Gatmanes || proces mopwes o 3w cowfg
] | - [~ | -
todals | Imports | Sources Hierarchy | Behaviors I C: | 1 Raw |
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
55 Comput.ing statistics for operations A
Computing statistics for traffic
Comput.ing =tatistics for storage
Annotating statistics to SIR file
Erd 1 Behavior profiling
Ready A

It may also be noted that the design management window now has new column entries
that contain the profile data. Maximize this window and scroll to the right to see vari-
ous metrics for behaviors selected in the design hierarchy. The current screen shot shows
Computation, Data, Connections and Traffic for the top level behavior "coder”. Com-
putation essentially means the number of operations in each of the behaviors. Data
refers to the amount of memory required by the behaviors. Connections indicate the
presence of inter-behavior channels or connection through variables. Traffic refers to the
actual amount of data exchanged between behaviors. The metrics may also be obtained
for other behaviors in the design besides "coder".

39

Chapter 2. System Specification Analysis

2.3.3. Analyze profiling results

= vocoder.sce - S0C Enviranment - [Shifl_Signals - YacoderSpec - VocoderSpec sir'] [EEE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=| %]
N B8 &8 |oa| X BEiaEEEEE
X [l
0 Mame |Type = Miame Type M Code
A - wain [expre
% coder Code & shifn_Signals 163
B+ B pre_process Pre_F o old_ewc inout short int [314]
B & coder_12k2 Code & ald_speech inout short int [320]
& old_wsp inout shart int [303]
P ixdbe_ctl out short int
& txalbe_ctri_cur in short int
[_
F)=] T =
Madels | Imparts || Sources ||| Hierarchy [Behaviars | Channels | Raw |
__ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: Computing statistics for operations A
Computing statistics for traffic
Comput ing statistics for storage
Annotating statistics to SIE file
End: Behavior profiling
[Ready A

Once we have the profiling results, we need a comparative analysis of the various be-
haviors to enable suitable partitioning. Here we analyze the six most computationally
intensive behaviors namely "Ip_analysis", "open_loop", "closed_loop", "codebook_cn™,
"update” and "shift_signals." They may be multi-selected in the design hierarchy by
pressing CNTRL key and left clicking on them. These particular behaviors were selected
because these are the major blocks in the behavior "coder_12k2", which in turn is the
central block of the entire coder. Thus the selected behaviors show essentially the major
part of the activity in the coder. We ignore the pre-processing and the post-processing

blocks, because they are of relatively lower importance.

40

Chapter 2. System Specification Analysis

2.3.3.1. Analyze profiling results (cont’d)

= vocoder.sce - S0C Enviranment - [Open_Loop - YocoderSpec - VocoderSpec.sir’] [EEE
[Eile Edit ¥iew Project Synthesis Validation Windows Help == x|
N 1@ &8 |va| X K| EEE| B e ®
X Tl
] | |t |Type Marme Type il
A & wain
- % coder Code & Open_Loap 11
B+ B pre_process Pra_F o At in shart int [4][11]
- = coder_12k2 Code T max_1 out short int
o TO_maw_2 out short int
. 7 T0 min_1 out short int
" Source... n_2 out shart int
¢ Hierarchy... nde in hoal
: Connectivity... sch in short int *
(out boaol
¢ lsolate flag in bool
{ Wrap It in shaort int
Delete Del ihout shart int *
: short int [11]
i Fename
! (I short int [11]
= Change Type et it 1441 £
N =~ ' St s Top-Level F— =
Madels | Imports | Sources Hierarchy | Behaviors | Channels |—E 9 [ofALEME
Graphs " Code.. —
ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell | Computation...
: Comput ing statistice for operations Data... R
Computing statistics for traffic Hea
Comput ing statistics for storage -
Annotating statistics to 5IR file Connection...
End: Behavior profiling Tiraiiiie

)

Computation graph

4

In order to select a suitable architecture for implementing the system, we must per-
form not only an absolute but also a comparative study of the computation require-
ments of the selected behaviors. SCE provides for graphical view of profiling statistics
which may be used for this purpose. After the multi-selection, we right click and select
Graphs— Computation from the menu bar.

41

Chapter 2. System Specification Analysis

2.3.3.2. Analyze profiling results (cont’d)

= vocoder.sce - S0C Enviranment - [Open_Loap - testhench - testhench.sir* [read-anly]] [EEE
1 E||Ie Edit ‘iew Project Svnthesis ‘alidafion ‘Window: Help =|=| %]
— = | testhench - Operation Graph |[=1[m=[]
] B | @
—| Window Miew Arrange [
B [
ol Operation Profile [| Mame Tupe
mi Rel. operations SPOpen Loop
b Woervveton | of at in shart int [4][11]
- ¢ db_mode in hool
M - — oo -7 p_speech in shart int *
¢+ ptch aut bool
e reset_flag in hool
ZH— - — - — - — ¢ TO_max_1 out shart int
- TO_max_2 out short int
@ TO_min_1 out short int
THT T L T0_min_z2 aut short int
0P barite_ctr in unsigned kit[5:
o =G wsp inout short int ©
L o apT shart int [11]
G £ }dy L gap? hort int
J;gt B, | @ap short int [11]
e 3}&*) :
@ f & . ot i 144 £
- ~] -
Raw I
ﬂ Compile | Simulate | Analyze | Refine | Shell |
i Compuing stalisics 1or operaiions _\
Computing statistics for traffic
Caomputing statistics for starage
Annotating statistics to SIR file
End: Behavior profiling J‘
[Ready A

We now see a bar graph showing the relative computational intensity of the various
behaviors in the selected behaviors. Essentially, the graph shows the number of opera-
tions on the Y-axis for the individual behaviors on the X-axis. Double click on the bar
for codebook_cn to view the distribution of its various operations. Note that we select
"codebook_cn" because it is the behavior with the most computational complexity.

Note that the bars representing the computation for "codebook_cn™ and “closed_loop™
have two sections. The lower section is filled with red color and the upper section is par-
tially shaded. Each speech frame consists of four sub-frames and the behaviors "code-
book cn" and "closed_loop™ are executed for each subframe in contrast to other behav-
iors in the graph, which are executed once. Hence the filled section of the bar represents
computation for each execution of behavior and the complete bar (including the shaded
section) represents computation for the entire frame.

42

Chapter 2. System Specification Analysis

2.3.3.3. Analyze profiling results (cont’d)

§|m VocoderSpec - Vocoderspec.sir] [EEE
_| i Help =(~|x|
e e
5| @]
—| Window Miew .ﬂ.rrange
— | codebook_cn - Operation Chart |:||E|I7J Mame Type M e
D [st
|| Rel- opevations Window Customize SPUpdate G52
T Computation o ana. aut shart int
[operations] o Ag - in shortint [11]
M- - — - o CM_excitation_gain in short int
Raw: - code in short int [40]
[l contron o exc_ inout short int [40]
2 - — - o Il Access ¢ gain_code in short int
ALU e ain_pit in short int
gain_p
l Other P i_subfr in int
MW -7 mem_err out shart int [10]
- mem_wo aut short int [10]
o 7 reset_flag in kool
. 7 speech_i in shor int [40]
ﬁ“ - synth_i out shortint [40]
|| & o AT bbb e s, - £
.] | =
Models | Imports Raw
I . codehook_cn —,
X | compile | Simuems T
P T 1] T
sé anpuung stahshcs Tor operanons Y
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling J‘
[Ready A

A new window pops up showing a pie chart. This pie chart shows the distribution of
various operations like ALU, Control, Memory Access etc. We are interested in seeing

the types of ALU operation for this design. To do this double click on the ALU (green)
sector of the pie chart.

43

Chapter 2. System Specification Analysis

2.3.3.4. Analyze profiling results (cont’d)

= vocoder.sce - S0C Enviranment - [Update - VocoderSpec - VocoderSpec.sir’] [EEE
o = L ; ; o ; Help v|~] %]
— |mgc - Operation Graph mlﬁlmb I .l
—| Window Miew Arrange I
o =|\codeboak_cn - Operafion Chart (== | riame Type n ;tc
|| Rel- opevations Window Customize SDUpdate G52
T Computation b ana aut shart int
|W0peration Chart {[==i] in short int [11]
sl - — -)) _gain in short int
Window Customize in shart int [40]
ALU inout short int [40]
operatons o
Raw: in int
M 1 [l 1t aLu aut short int [10]
aut short int [10]
ol in baal
R in short int [40]
ﬁ“ out shart int [40]
|
| & o i s ce el LI YT 4
~l - =
Models [Imports
c
__ﬂ Compile | S Uirare—y—r T
E Compuing stansics 1 =
i Computing statistics fi
Computing statistics f codebook_cn
Annotating statistics t
End: Behavior profiling J‘
[Ready

4

A new window pops up showing another pie chart. This pie chart shows the distribution
of ALU operations. It can be seen that all the operations are integer operations, which
is typical for signal processing application like the Vocoder. Since all the operations are
integral, it does not make sense to have any floating point units in the design. Instead,
we need a component with fast integer arithmetic like a DSP. To see the distribution of
these integer operations, again double click on the pie chart.

44

Chapter 2. System Specification Analysis

2.3.3.5. Analyze profiling results (cont’d)

= vocoder.sce - S0C Enviranment - [Update - VocoderSpec - VocoderSpec.sir’] [EEE
o = L ; ; o ; Help v|~] %]
— | - Operation Graph (=[x
lE pl®
—| Window View Arrange I
— = | codebook_cn - Operation Chart [[=I[=iR]H e
= _| — P Mame Type ¥l [st
|| Rel- opevations Window Customize SDUpdate G52
A - — - - - .
Computation b ana aut shart int
| cadehook_cn - Operation Chart {[==i] in short int [11]
sl - — -)) _gain in short int
Window Customize in cioct int L47)
= lcodeboak_cn - Operafion Chart ||Q|E|Et ©o]
ZHI— - — - Window Customize
Int ALU
1 - - [operations] 10]
10]
Raw:
o [l 1ot Avith .
5* . Int Comp 4]D
& o [wtshire ([| /
|| @ e
-1 [ot Logie =
Models [Imports
C
X | compile | Simumm——rme =
r]]
i COMPLTNG Staisics 1] Y
Computing statistics fi
Cotputing statistics f
Annotating statistics t
End: Behavior profiling codebook ch J‘
[Ready A

A new window pops up showing another pie chart. This pie chart shows the distribution
of the type of integer operations. We can see that the majority of the operations is integer

arithmetic. To view the distribution of the arithmetic operation types, again double click
on the sector for "Int Arith".

45

Chapter 2. System Specification Analysis

2.3.3.6. Analyze profiling results (cont’d)

g sce - nvironment - [Update - VacoderSpec - VocoderSpec.sir] [EEE
— ; ; ; o ; Help]3| x|
— =| Vocaderspec - Operatian Graph =1 I .l
b
—{| window Wiew Arange I
— = | codebook_cn - Operation Chart [[=I[=iR]H Ct
= _| — P Mame Type ¥l [st
|| Rel- opevations Window Customize SDUpdate G52
M - — - - .
Computation b ana aut shart int
|MDDF_CH - Operation Chart {[==i] in short int [11]
sl - — -)) _gain in short int
Window Custamize e et it 7]
= lcodeboak_cn - Operafion Chart ||Q|E|E|‘ ©o]
1
Rl Window QUSTq:|m}n - Cperation Chart [=I[=1[=]
Window Customize
[T - - -
Int Arith
[operations]
o
" Raw:
& 0nt .
= E & g int
Wodels | Imports [-=nt B
C I Along
_,-m .
X Compile | SimLems—g o T D ! .
i 1 | |:| pint L
i CompUang stansics 1q g ot _\
Computing statistics fi P !
Caomputing statistics f B it
annotating statistics t [l others
End: Behavior profiling
codehook_cn
[Ready]

We can now observe the distribution of arithmetic operations like "multiplication”, "ad-
dition", "increment"”, "decrement”, etc. on a new pie chart. Note that 3 quarters of the

operations are additions or multiplications, thus it would be a good idea to have these
two operations directly supported by a specific hardware unit.

The combination of visual aids like bar graphs and pie charts gives a good idea of the

nature of intended system. Please close all the pop-up windows to conclude the specifi-
cation analysis phase.

46

Chapter 2. System Specification Analysis

2.4. Summary

In this chapter we looked at how to start with the system specification and analyze its
characteristics. We were familiarized with the SCE graphical user interface and the pro-
filing, analysis and simulation tools. By means of graphical tools, we were able to tra-
verse the hierarchy of the system specification model. Graphical representations also
provided us with information on connectivity between behaviors in the design. The user
friendliness of these representations allows us to analyze our design better which would
otherwise be very cumbersome.

Profiling and statistical data about the specification model also gives us interesting hints.
For instance, the nature of computation in the model shows us the appropriate compo-
nents to consider for the system architecture. Similarly, pie charts and bar graphs for the
distribution of computation show us the critical behaviors and their nature. As we move
forward in the system design process, we will have to make design decisions at various
stages and such statistical analysis will be of great value. In future implementations on
the tool, these analysis results may even be fed to automatic tools to generate optimal
system architectures.

47

Chapter 2. System Specification Analysis

48

Chapter 3. System Level Design

3.1. Overview

Figure 3-1. System level design phase using SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

timed

SW Scheduling/
RTOS
L]

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

System design is increasingly being performed at higher levels of abstraction to deal
with a variety of issues. In this chapter, we look at system level design tasks with SCE
as highlighted in figure 3-1. Firstly, we need to deal with both HW and SW in a sin-
gle model. Secondly, and more importantly, complexity becomes unmanageable. In this
chapter we will look at the system level design phase as shown in the above figure. This
phase comprises of architecture exploration, serialization/RTOS insertion and commu-
nication synthesis. Architecture exploration deals with coming up with a suitable system
architecture and distributing the system tasks in the specification onto those components.
Since each component has a single control, we need to serialize the tasks in each com-
ponent. Tasks that are mapped to SW can be dynamically scheduled on the processor
by inserting an RTOS model. Finally, we perform communication synthesis to come up
with a communication architecture and refine the data transfer and interfaces to use the

49

Chapter 3. System Level Design

communication architecture. The goal of this phase is to come up with a model that can
serve as an input to RTL synthesis for HW components and SW generation for proces-
sors.

50

Chapter 3. System Level Design

3.2. Architecture Exploration

Architecture exploration is the design step to find the system level architecture and map
different parts of the specification to the allocated system components under design con-
straints. It consists of the tasks of selecting the target set of components, mapping behav-
iors to the selected components and implementing correct synchronization between the
components. Note that the components themselves are independent entities that execute
in a parallel composition. In order to maintain the original semantics of the specifica-
tion, the components need to be synchronized as necessary. Architecture exploration is
usually an iterative process, where different candidate architectures and mappings are
experimented to search for a satisfactory solution.

As indicated earlier, the timing constraint for the Vocoder design is the real time re-
sponse requirement, i.e., the time to encode and decode the speech should be less than
the speech time. The test speech has a 3.26 seconds duration. Therefore, the final im-
plementation must meet this time constraint. In this chapter we see how we arrive at
a suitable architecture with keeping this requirement in mind and using the refinement
tool.

51

Chapter 3. System Level Design

3.2.1. Try pure software implementation

The goal of our exploration process is to implement the given functionality on a minimal
cost architecture and still meet the timing constraint. The first approach is to implement
everything in software so that we do not have the overhead of adding extra hardware and
associated interfaces. To accomplish this, we first select a processor out of our compo-
nent database. Thereafter, we map the entire specification on to this processor. Once the
mapping is done, we invoke the analysis tool to see if the processor alone is sufficient to
implement the system.

52

Chapter 3. System Level Design

3.2.1.1. Try pure software implementation (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 8d g va % B aaEEEIE]
<X
i Mame IType & Eme
A - 4 Main
B & Coder
k- B pre_process SOurce... ESS ¢ dtx_mode
gl c‘;ﬂer_‘IZkZ Hierarchy... ke - serial
& seq! - k2_Seqt ¢ speech_sampl
B+ B Ip_analysis (EIRREETY... sis ’ 58P
b+ open_loop [solat p = belx_ctr
_ Isolate |
0@ subframes @ local_dte_mod
Fror nit |20 Init — @ prm
AF for_body1 Delete Del k_Body1 I @reset_flag_1
] l‘&lclosed_lnp Rename nop I @reset_flag_2
A for_body? _Body2 - @ speech_frame
- & codebook Change Type CH L o syn
!”UE) Set &s Top-Level I @ tedte_ctrl_val
g codeh—————"—1
& coder_1zke
¥ builg_ Graphs ~ | Code g -
B update Update / —mpos _Process /
] I | -
Madels | Imports | Sources Hierarchy | Behaviors | Channels | Raw I
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Computing statistics for operations A
Computing statisztics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling
[Ready A

Before we move on, the top level behavior of the design needs to be specified. This is
necessary because the specification model may have some test bench behaviors, which
are not going to be included in the final design. It may be recalled that the project we
are working with involves not only the design-under-test (DUT) but also the behaviors
that drive it. For example, the behaviors "Monitor" and "Stimilus” are just testbench
behaviors while the behavior "Coder" represents the real design. To specify "Coder" as
the top level behavior, right click on "Coder" to bring up a drop box menu then left click
on Set As Top-Level.

53

Chapter 3. System Level Design

3.2.1.2. Try pure software implementation (cont’d)

[=I[Bl[]
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
10&] o xXbE| K EFE 8 e 0
. i Mame IType & Eme
Desig A - A rain b
B B ™ & Coder
B+ B e process Fre_Frocess ¢ dtx_mode
o B coder 1ER2 Coger TERE | serial
|-l seg7 Coger TZRZ_Seq? |- speech_sampl
b+ B fp_analsis LP_Anaiists
— - - teadte_ctrd
b8 open_loop Cperr_ Lo local dix Mo
-8 subiames Subiranes - o/ ocal_tke mo
A o it Supfames_init - @prm
W or pogyt Supfames_BoayT — @reset flag_1
b & ciosed ooy Cigsed_Loow I~ @reset_flag_2
M o pody s Subitaines_Bodvl - @ speech_frame
[&2 coabook_or Codatock_CN @ syn
'!mﬁb ' gﬁb ' @ bedibe_ctrl_val
B codebosy (Zelele]
o coder_12k2
MW buiie_cr_code Bty O Coae g o
B update Lipgiate —mpos _Process /
] I ~1_] -
Madels | Imports | Sources Hierarchy | Behaviors | Channels | Raw I
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Computing statistics for operations A
Computing statisztics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling
[Ready A

As shown in the figure, when the top level behavior "Coder" is specified, the names of
all its child behaviors are italicized to distinguish them from the test bench behaviors. In
general, any behavior which needs to be tested can be set as top level. So, in a generic
sense, the design under test can be identified by the italicized font.

54

Chapter 3. System Level Design

3.2.1.3. Try pure software implementation (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
N [EQ [éHO allocate PEs... =X I .|
= G} Show Mariables I
: : IType Al Mame
Descrif Architecture Pluging -
B0 Architecture Refinement... & Coder
Fre_Frocess i
Schedule hehaviars.. or 1o gszi—;we
Scheduling Plugins - Caa‘erz TERE Segl? el spaech_sampl
=2 Scheduling Refinement... LE_Analysis L8 bertte_ctr
open_Loop L o local_dx_mod
allocate BUsses... Sebiames G latal_HA
; — @ prm
5 Show Channels Subpames v op
Supfames_BoayT — @reset flag_1
Communication Pluging - Ciosed_Laop oreset_flag_2
2|2 Communicatian Refinement... Sutiaimes_Gogy 2 — @ speech_frame
— - [Codlebook_CN = - @ syn
RTL Preprocessing... Mg | o ttbe_ctrl_val
Allocate RTL Units... o Codebook | & coder_12kz
; i7_code Buite O Codle -
Schedule & Bind RTL... Y —Sipost_process
: (i £ N £
RTL Plugins = s F | I=]
Models | Imports | Sources B ETL Refinement... Brnels | Raw I
C Code Generatian...]
X | Compile | Simulate | Ans R ca el |
4 Import Decisions... _\
& Comput.:
Comput.: @ S10p
Comput. 17 Totl=rLIc: for =Loraze
Annotating statistics to SIR file
End: Behavior profiling
Frocessing element allocation A

We begin by exploring the available set of components in the database. This is required
to select a suitable processor. To view all available components and select the desired
processor, select Synthesis—Allocate PEs... from the menu bar.

55

Chapter 3. System Level Design

3.2.1.4. Try pure software implementation (cont’d)

§| vocodersce - S0C Environment - [Coder - WocoderSpec - WocoderSpec.sir] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
| FE Allocation
Desig Mame % IType |Clock |Pr0gram |Data |Instructi0n IData |Char |Cost |Desc
. [Add.
nde
Capy |
h_sampl
Femove | i
dts_tmael
Parameters...l flag_1
flag_2
Tahles... I h_frame
ctrl_val
| 12K2
rocess
nnnnnn £
-
Madels I
X | compil
i iy
-~ | =
Help | K, I Cancel
:)
[Ready A

Now a PE Allocation window pops up. This window includes a table to display impor-
tant characteristics of components selected for the design. In addition, it also provides
a number of buttons (on the right side) for user actions, such as adding a component,
removing a component, and so on. Since we have not allocated any component at this
point, the table has no entry.

To view the component database and select the desired component, press the Add...
button.

56

Chapter 3. System Level Design

3.2.1.5. Try pure software implementation (cont’d)

[=I[Bl[x]
E Selection
[CREREMEE | Component | Max. clock MIFS | Program Data Instruction | Data
DsP FamD_Ke 466.0 Mz 200.0 640 kB B4.0 kB 2 hits a3z
Processor —arD_ky FO0G WAz 3500 64.0 kB 64.0 kB 32 hits d2h
hemaory —ARMI0DZD 3258 MHZ 1500 64.0 kB 64.0 kB 32 hits d2 b
Custom Hardw -a&RMTED TR Mz a0.0 64.0 kB G4.0 kB 32 hits 32k
Contraller —&RME20 250.0 MHz 125.0 64.0 kB G4.0 KB 32 hits 32 h
HIDT_3z2300 TOO.G MAZ 50.0 64.0 kB 64.0 kB 32 hits d2h
—Intel _P1 GG MHZ 100.0 64.0 kB 64.0 kB 32 hits d2 b
—Intel_P2 S50.0 MHz 200.0 64.0 kB G4.0 kB 32 hits 32 b
—Intel_P3 BEG.0 MHz 450.0 64.0 kB G4.0 KB 32 hits 32 h
HhAIPEEE TOO.G MAZ 50.0 64.0 kB 64.0 kB 32 hits d2h
—hIPSE4 3588 MHzZ 200.0 64.0 kB 64.0 kB 64 hits B4 b
—Matorola_B5000 208 MHz 20.0 64.0 kB G4.0 kB 32 hits 32 b
—haotarola_B5010 FoOG MHZ 100.0 64.0 kB G4.0 KB 32 hits 32 h
—hdotarola_Coldfire TGO MAZ 100.0 B4.0kE 1250 kB 32 hits d2h
—Ultrasparcll 4888 MHz 250.0 64.0 kB 64.0 kB 64 hits B4 b
O 1 I =
Help | Ok I Cancel
A
Ready 4

Now a PE Selection window is brought up. The left side of the window (Categories)
lists five categories of components stored in the database. The right side of the window
displays all components within a specific category along with their characteristics. As
shown in the above figure, since the Processor category is selected on the left side, 15
commonly used processor components are displayed in detail on the right side.

The Component description includes features like maximum clock speed, measure of
the number of instructions per second, a cost metric, cache sizes, instruction and data
widths and so on. These metrics are used for selecting the right component. Remember
that the profiling data has given us an idea of what kind of component would be suitable
for the application at hand.

57

Chapter 3. System Level Design
3.2.1.6. Try pure software implementation (cont’d)
S0C Environment - [Coder - Yocoder. Voo Q@

Component % Max. clock Data Instruction
EDRHMJZB 126.0 kB 32 hits

DRAM_B4 G4.0 kB 16 hits

SDRAM_128 TO0.0 MHzZ 126.0 kB 32 hits

SDRAM_B4 FO8.0 MHz G4.0 kB 16 hits
Caontroller

o

Now if we go to the Mem category, a number of memory components will be displayed
in detail on the right side of the window. If the memory in the processor is insufficient
for the application, we can add external memory components from this table.

58

Chapter 3. System Level Design

3.2.1.7. Try pure software implementation (cont’d)

3IE6.8 MHZ . 16 bits

38 Mz . & bits

S8 Mz . 16 bits

58 Mz . i hits

Cantroller i _C_ . 16 bits

Now if we go to the Controller category, a number of widely used micro-controller
components will be displayed in detail on the right side of the window.

59

Chapter 3. System Level Design

3.2.1.8. Try pure software implementation (cont’d)

oder.sce - SoC Environment - [Cader - YocoderSpec - YocoderSpec.sir® (==l

=|PE Selection '
% Component % I Max. clock MIPS | Program Diata Instruction | Diata
AD_Sharc_DSP 50,0 MHzZ G0.0 16.0 kB 320 kB 16 hits 3
Processor totorola_DESPS6EDD G50 WMHZ G0.0 1
hemory TI_C54x S0 MH, a0.0 64.0 kB 64.0 kB 16 hits 1
Custam Hardw TI_C55x% F44.0 Wiz 244.0 G4.0kB B4.0 kB 16 hits 1
Cantraller TI_CE2x T6E.8 MHZ 1200.0 64.0kB B40KE 16 hits 1
TI_CE4x 300.6 MH2 2400.0 64.0 kB B4.0 kB 16 hits 1
TI_CET= TORG MHzZ G000.0 64.0 kB 64.0 kB 16 hits 1
SR 1 | |

Help | Ok I Cancel
A
Ready 4

Through earlier profiling and analyzing, we found out that integer multiplication is the
most significant operations in the original specification. Therefore, a fixed-point DSP
would be desirable for this design.

Under the DSP category, a number of commercially available DSPs are displayed. These
DSP components are maintained as part of the component library and may be imported
into the design upon requirement. Since the Vocoder design project was supported by
Motorola, our first choice is DSP56600 from Motorola.

Left click the "Motorola_DSP56600" row to select it. Then click OK button to confirm
the selection.

60

Chapter 3. System Level Design

3.2.1.9. Try pure software implementation (cont’d)

= | wocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsi’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
|F'E Sllocation
Design Mame % |Type Program Data Instruction
" AT, Jz.0 kB 64.0 kB Add.. I
ode
Capy |
h_sampl
Remove | i
dts_tmael
Parameters...l flag_1
flag_2
Tahles... I h_frame
ctrl_val
| 12k2
rocess
nnnnnn £
-
Madels I
X | compil
H A
-~ T =
Help | ok | cancel
i 24
[Ready A

Now the PE Selection window goes away and the PE Allocation table has one row
that corresponds to our selected component, which has a type of "Motorola_DSP56600".
This new component was named as "PEQ" by default. To make it more descriptive for
later reference, it is desirable to rename it.

To rename it, just left click in the Name column of the row. The cursor will be blinking
to indicated that the text field is ready for editing.

61

Chapter 3. System Level Design

3.2.1.10. Try pure software implementation (cont’d)

§| vocodersce - S0C Environment - [Coder - WocoderSpec - WocoderSpec.sir] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
=] PE Allocation
Design Mame % |Type Progral Data Instruction
" hotarala_DSPSEEOD g Add.. I
nde
Copy |
h_sampl
Remove | i
dt<_modd
Parameters...l flag_1
flag_2
Tahles... I h_frame
ctrl_val
| 12K2
rocess
nnnnnn £
-
Madels I
X | compil
i _\
~] T
Help | I QK Cancel |
A
[Ready A

We will simply name the component as "DSP" since it is the only component used in
the design at this instance. Proceed by typing "DSP" in the text field and press return to
complete the editing. Then press the OK to finish component allocation.

62

Chapter 3. System Level Design

3.2.1.11. Try pure software implementation (cont’d)

§| vocodersce - S0C Environment - [Coder - WocoderSpec - WocoderSpec.sir] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
wo XbB X EFE| B3 0
[T
i Marme |Type |PE I 31 Eme
A = rain
orHE & Coder
- B pe_process Fre_frocess ¢ dtx_mode
B B coder 7S4S Coger TEE Lo serial
|- sog 7 Codder T2h2 Seg? | speech_sampl
b+ B fp_analsis LP_Anaiisis & teds
= = — . cirl
b8 open_loop Coerr_ Loy local dix Mo
-8 suptames Suptames - @Atk mn
A o it Subfames_init - @prm
W or pogyt Subfames_Body T — @reset flag_1
b & ciosed ooy Cigsed_Loaw I~ @reset_flag_2
M o pody s Subiraines_ Bodpl - @ speech_frame
[&2 coabook_or Codedock N @ syn
! ”Oﬁ ook g"ﬁ ook | o teote_ctri_val
B cogeban oo
- der_1zk2
W by cn code Buitd CN Code gw te -
HE Lipdiate —mpos _Process /
W ior ena Supfames_Ehd A E >
Madels | Imports I Sources Hierarchy | Behawviors | Channels | Raw I

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Computing statistics for operations A
Computing statisztics for traffic
Computing statistics for storage
Annotating statistics to SIR file J‘

End: Behavior profiling

|I:?;eady A

As mentioned earlier, we will map the whole design to the selected processor. This is
done by assign the top level behavior "Coder" to "DSP". Left click in the PE column in
the row for the "Coder" behavior. A drop box containing allocated components comes
up. Left click on "DSP" to map behavior "Coder" to "DSP".

It should be noted that any kind of mapping is allowed. However, since we are inves-
tigating a purely software implementation, everything in the design gets mapped to the
"DSP".

63

Chapter 3. System Level Design

3.2.1.12. Try pure software implementation (cont’d)

Models | Imparts I Sources

Hierarchy

Eehaviors | Channels |

~1_] =

Raw I

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

[=[Elf]
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Do XbE X BEE| 83 0
. i Mame |Type |PE I 3 Eme
Design 1
& Coder
B+ B e process Fre_frocess ¢ dtx_mode
o B coger T2kE Coder 122 | serial
|- sog 7 Coter T2hE Seg? | speech_sampl
b+ B fp_analsis LP_Anaiisis & teds
= = — . cirl
b8 open_loop Coerr_ Lo local dix Mo
-8 suptames Subtames - o/ ocal_tke mo
A o it Supiames_init - @prm
W or pogyt Subfames_Body T — @reset flag_1
b & ciosed ooy Cigsed_Loaw I~ @reset_flag_2
M o pody s Subiraines_ Bodpd - @ speech_frame
[&2 coabook_or Codedock N @ syn
! ”Oﬁ ook g"ﬁ ook ||| @ baibe_ctr_val
B codebio e
- der_1zk2
W by cn code Build ON Code gw te -
HE Lipdiate —mpos _Process /
W ior ena Suprames_End WllETTT

Computing statistics for operations
Computing statisztics for traffic
Computing statistics for storage
Annotating statistics to SIR file

End: Behavior profiling

A

[Ready

%

As we can see now, the descendant behaviors are all highlighted in red to indicated that

they are mapped to the "DSP" component.

64

3.2.2. Estimate performance

Chapter 3. System Level Design

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit View Project Synthesis Walidation | Windows Help == x|
7 o I 74 [: = Enahle Instrumentation %) I .l
Compile
!} Mame - Type |PE I 3 Eme
Descrip|[|| &g Simulate
o Open Terminal & Coder
Kill simulation | frefrocess -0 dib<_mode
;. L Coder TZRE - serial
jew Lag..
= Coger T2hE_Seq? - speech_sampl
Profile LF Anaissis Lo teditx_ctr
Swerr_Loog -
Analyze Sutiames — ¢ local_db_mod
Evaluate Sebitames_init [~ @ prm
Metrics... Sbirames_Bogyt - oreseliag 1
. Cimsed Loop — @reset_flag_2
Show Estimates Subifames_Body 2 — @ speech_frame
Estimate Codlaboof_CN - @ syn
flin)
Analyze RTL Coﬁmm | - @ teddt<_ctr_val
& coder_1zke
@ stop Bt G Code g ost_process
T_ Cmoro Linaahe ‘}‘Em :Fj ﬂﬂﬂﬂﬂ /
| W ior end Subitames_End v Wl e =
Madels | Imports I Sources Hierarchy | Behawviors | Channels | Raw I
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Computing statistics for operations A
Computing statisztics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling
Evaluate A

The next step is to analyze the performance of this architecture. Recall that we have a
timing constraint to meet. We must therefore check if a purely software implementation
would still suffice. If not, we will try some other architecture. Now we can estimate the
performance of this pure software mapping by selecting Validation—sEvaluate from
the menu bar.

65

Chapter 3. System Level Design

3.2.2.1. Estimate performance (cont’d)

[=I[Bl[]
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B0 s v xbl [EEE|Gs| 0]
!} Mame 3 [J MEmE Type M (;Dde . Computation | Da
A - @ ain [instructions] |[cycles] [ch
LE Ll : coder || IMETSEEES 1 3713 240978763
- B o |- dib<_mode i_receiver
B & oo - serial i_sender
_! Lo speech_samples i_receiver
b= - berit_ctrl i_sender
-
& - @ local_dt<_made haal
- @ prm shart int [37]
— @reset_flag_1 hool
- - @reset_flag_2 hool
- @speech_frame shortint [160]
T = I~ @syn short int [160]
[¢ tedt<_ctrl_wval short int
—8300der_‘|2k2 Coder_12kZ 163 3611 1457865
L —Sipust_process Fost_Process 163 63 324z
£ T e Menooes 1ea ac 4aec
-1 = -1 T I=
Models | Imparts I Sources Hierarchy [LIAI Raw | DsP I
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i leriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling J‘
[Ready A

As we can see in the logging window, a re-targeted profiling is being performed. Notice
in the log information that raw statistic generated during profiling are used here. The raw
statistics are take as an input to the analysis tool that generates statistics for the current
architecture. Since, we know the parameters of the DSP, the analysis tool can provide a
more accurate measure of actual timing. When that is done, the profiled data is displayed
in the design window with the "DSP" tab. Notice that this tab has appeared at the bottom
of the design data. The total computation time is shown in terms of number of DSP clock
cycles.

66

3.2.2.2. Estimate performance (cont’d)

Chapter 3. System Level Design

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
& I 74 [: = Enahle Instrumentation %) I .l
Compile
Mame - Tune M Code Computation | Da
e Simulate ¥p [instructions] | [cycles] [ch
[]-I Open Terminal - 1 ir19 240978763
Kill simulation - fie I_receiver
View Log... ?_send.er
| samples i_receiver
Profile il i_zender
Analyze It_mode bool
Evaluate shart int [57]
Metrics. . RG] boal
- Rg_2 hool
Shaw Estimates frame short int [160]
Estimate short int [160]
&nalyze RTL tl_wal short int
12kE Coder_12ké 163 3611 14573565
@ stop ocess Post_Process 163 fi3 3242
I] I) = Fien Mecnoos A ac P
[~) =1 T I=]
Models | Imparts I Sources Hierarchy |: Raw | DsP I
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i leriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling J
Show estimated values A

The number of computation cycles is a relevant metric for observation. However, it must
be converted to an absolute measure of time so that we may directly verify if this archi-
tecture meets the demands. To find out the real execution time in terms of seconds, we
turn on the option for estimation by selecting Validation— Show Estimates from the

menu bar.

67

Chapter 3. System Level Design

3.2.2.3. Estimate performance (cont’d)

Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling

¢ [=I[Bl[]
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B@ 8 ve % X[EEEE] B @ | 0]
!} Mame 3 [J Mame IType IN ICode |C0mputati0n |Data IHez
| e rain & Cader 1 11.2 kB 40163131 us 19312 B
[m |- dix_mode i_receiver
i : o1E - serial i_sender
- = C; o speech_samples i_receiver
= - berdte_ctrl i_sender
M =
- - ¢local_di<_mode hool B
- = @ prm short int [37] 114 B
— ¢ reset_flag_1 hool ZB
- @reset flag_2 hool 2B
3 - @speech_frame shortint [160] 320 B
- @syn shart int [160] Jz0 B
ST @tat<_ctr_val shortint 2B
& coder_12k2 Coder_12kZ 163 108 kB 242978 us 16270 B
—prust_process Post_Process 163 0.2 kB S40us 1310B
=l —prre_prucess Pre_Process 164 01 kB zGE4 us 370E
[~) -1 | =]
Models | Imparts I Sources Hierarchy [: | 1 Raw | DsP I
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i leriving raw statistics from SIR file A

|

[Ready

%

As seen in the design window, the computation time is in unit of "us". As we can see in
the row of behavior "Coder", the estimated execution time (~ 4.00 seconds) exceeds the

timing constraint of 3.26 seconds.

68

Chapter 3. System Level Design

3.2.2.4. Estimate performance (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit ¥iew | Project Synthesis WValidation Windows Help == x|
Source... 3 [. |f@) I .l
Hierarchy... 0
. pme [1 vame |Type IN ICode IComputation |Data |Hez
Connectivity... -
- @ Main & Cader 1 11.2kE 40163131 us 19312 B
Graphs ~ | e |- dtx_mode i_receiver
Trace... iy E B, & serial i_sender
Guality Metrics... & ._cg - speech_samples i_receiver
= o becdbe_ctrl i_sender
&= Show Testhench E;; L o local_dtx_mode bool zE
k2= Shaw Children B - @prm short int [57] 114 B
T customize. | L - @reset_flag_1 bool ZB
3 — @ reset flag_2 hool 2B
B - @speech_frame shortint [180] 30e
I - @syn shart int [160] Jz0 B
= | otxdbe_ctr_val shortint zE
& coder_12k2 Coder_12kZ 163 1085 kB 242975 us 16270 B
—Sipost_prucess Post_Process 163 02 kB S40us 13108
/ —Sipre_process Pre_Process 164 01 kB ZE6d us 370 B
~I I = = = I -
Models | Imparts | Sources Hierarchy [LIAI Raw | DsP |

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

leriving raw statistics from SIR file A

Computing weighted statistics

Annotating weighted statistics to SIR file
End: retargetable profiling

Views design guality metrics A

We can also view the design quality metrics such as the execution time by selecting
View—Quality Metrics from the menu bar.

69

Chapter 3. System Level Design

3.2.2.5. Estimate performance (cont’d)

= FEE
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|

Dz B0 s v xbl [EEE|Gs| 0]
!} Mame [Mame |Type IN ICode IComputation |Data |Hez

1 11.2 kB 40163131 us 19312 B
LE i_receiver

i_sender

Utilization
1000 % 4025 11kB{0.0%) 13kB 00 %)

TERG B 4828 TTRE THRE

M mmmmmmmm o

Mod

X conple [smulate | Analyze [Refine | Synnesize | shel |

leriving raw statistics from SIR file

Computing weighted statistics

Annotating weighted statistics to SIR file
End: retargetable profiling

[Ready

A Design Quality Metrics table pops up, showing that the estimated execution time
to be 4.02 seconds, which exceeds the timing constraint of 3.26 seconds. Therefore,
the pure software solution with a single "Motorola_DSP56600" does not work. We,
therefore, need to experiment with other architectures. To proceed, click OK to close the
Design Quality Metrics table.

70

Chapter 3. System Level Design

3.2.3. Try software/hardware implementation

From what we observed while studying the vocoder specification, the design is mostly
sequential. There is not much parallelism to exploit. What we need to reduce the execu-
tion time is a much faster component than the DSP we used. Some of the critical time
consuming tasks may be mapped to a fast hardware. In this iteration, we will try to add
one hardware component along with the DSP to implement the design. As we found out
earlier, one of the computationally intensive and critical part in the Vocoder is the Code-
book behavior. We hope to speed it up by mapping it to a custom hardware component
and execute the remaining behaviors on the DSP.

71

Chapter 3. System Level Design

3.2.3.1. Try software/hardware implementation (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
10 iﬁ-[EQ [é':;) allocate PEs... =X I .|
© ofy Show Yariahbles
_ _ IType IN ICode |C0mputati0n |Data IHez
Design Descrip Architgcture Flugins - 1112 KkB 40165131 us 19312 B
B0 Architecture Refinement... . mode i_receiver
Schedule hehaviars... rial i_sender
; ; eech_samples i_receiver
Scheduling Pluging - -
auing 8 - t_ctrl i_sender
oioi Scheduling Refinement... al di< mode bool 2B
&llocate Busses... lul shart int [37] 114 B
(@ Show Channels set_flag_1 hool B
o _ et _flag_2 bool 2B
Communication PIUGINS 400 fame shartint [160] 3208
3/ Communication Refinement.. tn shott int [160] 320 E
RIL Preprocessing... ts_ctrl_val shart int 2B
aliEERe ERL Wi der_12k2 Coder_12k2 183 10.8 kB 242378 us 16270 B
prate Rk nis... st_process PostProcess 163 0.2 kB 54.0us 1910 B
Schedule & Bind RTL... e_process Pre_Process 164 0.1 kB rG64 us ITOE
RTL Plugins = | =]
Models | Imports | Sources B ETL Refinement... DEP |
C Code Genetation...]
X | Compile | Simulate | Ans R ca el |
H Import Decisions... ™
Derivir le

Comput.: @ S10p

End: retargetable profiling

Annotat IR WeEIghted starlstics o Slk file

Frocessing element allocation

As we did earlier, while selecting the processor, go to Synthesis—Allocate PEs...

the menu bar.

72

on

Chapter 3. System Level Design

3.2.3.2. Try software/hardware implementation (cont’d)

§| vocodersce - S0C Environment - [Coder - WocoderSpec - WocoderSpec.sir]

==
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
| D e I |F'E Allocation
1t Hesz
Mame IType Clock Program Data Instruction :‘3?2 BI £
DSP Motorola_DSPSEE00 658 Mz 320 KB 64.0 kB 24 b | Add...
Copy |
Remove | s B
114 B
zB
Parameters...l B
320 B
Tahles... I 320 B
2B
270 B
310 B
370 B
-~
Models I
X | Compil
m p
i iy
| T =
Help | QK I Cancel
2
[Ready A

This time, the PE Allocation table pops up. As we can see, the previously allocated

"DSP" component is displayed. To insert the hardware component, press Add... button
to go to component database.

73

Chapter 3. System Level Design

3.2.3.3. Try software/hardware implementation (cont’d)

Component % Max. clock MAIPS Frogram Data Instruction Data
DsP Hiwi_Harvard T26.6 MHz 240.0 6.6 RE GEGAE 133 bits 3¢ it
Processar Hb ard 100.0 {3
remary
Custom Hardwa
Caontroller

[Ready .

In the Custom Hardware category, two general types of hardware components are
displayed. Here we will use the standard hardware design with a datapath and a control
unit. Select the "HW_Standard" and press OK to confirm the selection.

74

Chapter 3. System Level Design

3.2.3.4. Try software/hardware implementation (cont’d)

= | wocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsi’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
=] PE Allocation
1t Hesz
Mame IType Clock Frogram [ata Instruction B I £
totorola_DSPEEEDD & Add.. | i1z B
PE0 I HY_Standard ?)
Capy |
Remove | s B
114 B
zB
Parameters...l B
0B
Tahles... I 320 B
2B
70 B
910 B
370 B
-
Madels I
X | compil
i iy
-~ T =
Help | ok | cancel
)
[Ready A

Now the "HW_Standard" component is added to the PE Allocation table. In the same
way we did for the "DSP" component, we simply rename it to "HW" to distinguish it.
Notice that for the hardware component, some metrics are flexible. For instance, the
clock period may be changed. However, we stay with the current speed of 100 Mhz for

demo purpose.

75

Chapter 3. System Level Design

3.2.3.5. Try software/hardware implementation (cont’d)

§| vocodersce - S0C Environment - [Coder - WocoderSpec - WocoderSpec.sir] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
=] PE Allocation
it Hez
Mame IType Clock Frogram [ata Instruction B I £
B31z B
Add... |
Copy |
Remave | s B
114 B
ZB
Parameters...l B
320E
Tables... I 320 B
2B
270 B
310E
370B
-
Madels I
orpi
X | compil
i _\
~] T =
_ Hep | [oK _ Cancel |
A
[Ready

After we renamed it, press OK button to complete component allocation.

76

Chapter 3. System Level Design

3.2.3.6. Try software/hardware implementation (cont’d)

= | wocoder.sce - 50C Environment - [Codebook - YocoderSpec - VocoderSpec sir'] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
[0 % B iaEEEEE
X Mame |Type |PE I .[Mame
- coder Coder osP & Codebook
B B e process Fre_Frocess - T0
W B coder TS Coder TEkE 5 ana
W seq? Coder TEkE Seq ¥ o code
- B o analeis LE_Anaivsis | e
b+ & open_foop Opeir_Loog L4 gain_code
- @ subiames Subfames e gain_pit
|- i it Sebirames_ i oo -
- o bogy T Swbirames Bogy T B
- & cimsed_loop Ciosed {aop ¢ res2
| @ o poaye Supfames_Body? —cH
- & coqebook_ci Codabaok G =y
e
il - @oodeh
4_Seq - ghih
Ciodle TOiE0 Fobids | Greszh
Coebook_Segd £
M it o onde Al O Cooe ‘=-.I_| -
Madeals | Imparts I Sources Hierarchy | Behaviors | Channels | Raw I DsP I
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i leriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling J‘
[Ready A

Remember we have already specified the top level behavior and mapped all behaviors to
"DSP" in the first iteration. That information is still there and we do not have to specify it
again. We only need to map behavior "Codebook™ to the "HW" component, as suggested

earlier.

Browse the hierarchy tree to locate behavior "Codebook". Click on "Codebook" in the
PE column. Click on "HW" in the drop box to map "Codebook" to "HW". This would
map the entire subtree of behaviors under "Codebook™ to custom hardware.

77

Chapter 3. System Level Design

3.2.3.7. Try software/hardware implementation (cont’d)

[=I[Bl[]
Hep x| x|
Oz Hd 8/ ve xXbB X FE|Be] 0
- T
Desig IR E [ee [Mame
- - & coer Coer D5F
& B- B pre_process Fre_Frocess & Codebook
B B coger 7ok Coder 1248 Rl
szt Coder 18h2_ Seq? o ana
v B o anaisis LP Analvsis - code
b8 oper_loop Open_{oop Lo exc
O+ B subiames SeobiirEmnes o gain_code
|- i it Sebirames_ i |8 gain_pit
- o bogy T Swbirames Bogy T e -
b & civsed ioop Cigsed Loop o res?
A o poay? Sutiames_Body s [res
- 8 cogebook_cr Codehoat_ G e
Mg = P y1
& i vz
Cogehook_Seg T - @ rcodeb
B code FHAG Code ROAAQ_SSbits - @hib
W 5297 Codebook_Seqs s mnh £
Ml fitid o code Bl O Coda A I = | ~
Madeals | Imports I Sources Hierarchy EBehaviors | Channels | Raw | DSP
__E Compile | Sitmulate | Analyze | Refine | Synthesize | Shell |
i leriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
[Ready A

After the mapping, we will see the subtree rooted at "Codebook" is highlighted in blue
in contrast to the rest behaviors in red that are mapped to "DSP".

78

3.2.4. Estimate performance

Chapter 3. System Level Design

Endls

retargetable profiling

= | wocoder.sce - 50C Environment - [Codebook - YocoderSpec - VocoderSpec sir'] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
& I 74 [: = Enahle Instrumentation %) I .l
Compile | I 1
Mame Type FE B
= Simulate 4 2
- Open Terminal e gje;mcess ose & Codebook
Kill simulation | Coder 122 e To
Vil Coder._12k8_Seq? o ana
LP Analvsis - code
Erofile Open_{oop Lo exc
Analyze SubFames |-+ gain_code
Subiraines_ it o gain_pit
Evaluate Subtames BodyT _(p% _p
Metrics. . Ciimsed Loog o ras?
= Show Estimates Subizmes_Bodys el
Codehoat_ G #n
Estimate o -y
Analyze RTL L5 o y2
Cogehook_Seg T - @ rcodeb
@ stop A Code 764G IFils L ghib
| | || =T Codebook_Seqs s mnh £
M it o onde Al O Cooe -1 -
Maodels | Imports I Sources Hierarchy | Behaviors | Channels | Raw | DEP
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i leriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file

|

Evaluate

%

It may be recalled that we abandoned the pure software implementation because it failed
on meeting the timing constraint. It is now time for us to verify if the timing is met by
using the combined software/hardware design. To evaluate this software and hardware
implementation, go to Validation— Evaluate on the menu bar.

79

Chapter 3. System Level Design

3.2.4.1. Estimate performance (cont’d)

Help »|~| x|

[=[Elf]

i Mame A.L Mame |Type |Ii_JCode |CnmpumN0n ID
Design T HE & Coder 1 8472 B 2679702.2 ug 1¢
. | B B pre_proc - di_mode i_receiver
W B coder 7, 5 serial i_sender
W seq? e speech_samples i_receiver
el o bectbe_ctrl i_sender
B 282 e - @ local_db<_mode boal
- sutd L o prm shart int [57]
::2 - ¢ reset_flag_1 hool
B2 — @ reset flag_2 hool
&= - @speech_frame shortint [160]
m-&e = @yn shart int [160]
4 — @t<dt<_ctrl_val shortint
& coder_12k2 Coder_12k2 163 G146 8 160977 us 17
—Sipost_prucess FPost_Process 165 185 B d0us
/ —Sipre_prucess Pre_Process 164 135 B 2f.4 us
T = = | -
Models |Impoﬂs| Sources Hierarchy | Eleha\kL:| Raw | DsP | HW |
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i &

Computing weighted statistics

End: retargetable profiling

leriving raw statistics from SIR file

Annotating weighted statistics to SIR file

J\

[Ready

%

As we can see in the logging window, a profiling re-targeted at the DSP and HW archi-
tecture is being performed. When it finishes, the profiled data is presented in the design
window. In order to find out the execution time of the Coder, select Coder behavior in
the hierarchy tree. By clicking on the DSP tab of the view-pane, information of the DSP
part of "Coder" behavior is displayed. For example, the execution time of the software

part on DSP is around 2.68 seconds.

80

Chapter 3. System Level Design

3.2.4.2. Estimate performance (cont’d)

| vocodersce - 50C Environment - [Coder - YocoderSpec - Yocoders [I[=1[3]
Eile Edit Miew PFroject Synthesis ‘alidation MWindows Help =|=| x
| i p
Dz B@ 8 ve % X[EEEE] B @ | 0]
- X 2 [J Mame |Type | M | Code | Computation I D
: & Cader 45kB 54368 ms ¢
. | B B pre_proc - di_mode i_receiver
W B coder 7, 5 serial i_sender
W seq? e speech_samples i_receiver
el o bectbe_ctrl i_sender
B 282 e - @ local_db<_mode boal
[3'@_3“'"’5': L o prm shart int [57]
- - ¢ reset_flag_1 hool
B2 — @ reset flag_2 hool
&= — @speech_frame shortint [160]
W Sef - @syn short int [160]
] - g teots_ctrl_val short int
—Sﬁcoder_‘IZKZ Coder_12ke 445 kB 334 ms &
—Sipost_prucess FPost_Process
/ —Sipre_prucess Pre_Process
[=] I =
Madels | Imports I Sources Hierarchy | Beha. | q| LRaw | Dsp | Hw |
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i leriving raw statistics from SIR file A
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling J‘
[Ready A

To find out the information on hardware side, click the HW tab. The view-pane shows
that the execution of hardware part, behavior "Codebook", takes 0.54 seconds. Since
"Codebook™" was executed in sequential composition with the rest of the design, the
latency of the design is the sum of DSP and HW execution time, which is 3.22 (2.68 +
0.54) seconds. Recall that the timing requirement is to be less than 3.26 seconds for the
given speech data. Therefore, the current architecture and mapping are acceptable.

81

Chapter 3. System Level Design

3.2.4.3. Estimate performance (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit ¥iew | Project Synthesis WValidation Windows Help == x|
souce. (BB X FEE] B8 | O
Hierarchy..
E t'y it pme & [J Mame |Type | M | Code | Computation I D
) onnectivity...
Design Bl S . & Cater 45KB 54368 m3 ¢
' Graphs - B B pre_proc - di_mode i_receiver
Trace... & B cozer 7. & serial i_sender
Quality Matrics... M seq 7 - speech_samples i_receiver
= el o bectbe_ctrl i_sender
EShnw Testhench B 282 e - @ local_db<_mode boal
k2= Show Children [3'@3“""5': L & prm short int [57]
Customize... - - ¢ reset_flag_1 hool
B2 — @ reset flag_2 hool
&= - @speech_frame shortint [160]
W Sef - @syn short int [160]
4 — @t<dt<_ctrl_val shortint
—Sﬁcoder_‘IZKZ Coder_12ke 445 kB 334 ms &
—Sipost_prucess FPost_Process
/ —Sipre_prucess Pre_Process
[I=]] T]
Madels | Imports I Sources Hierarchy | Beha. | q| LRaw | Dsp | Hw |

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

leriving raw statistics from SIR file A

Computing weighted statistics

Annotating weighted statistics to SIR file
End: retargetable profiling

Views design guality metrics A

Like we did earlier, we can also view the execution time in the Design Quality Metrics
table. To do so, select View—sQuality Metrics from the menu bar.

82

Chapter 3. System Level Design

3.2.4.4. Estimate performance (cont’d)

[=[Elf]

Help »|~| x|

|Type |N_| Code | Computation I o
4.5 kB 4368 ms ¢

LE i_receiver

i_sender

Utilization

2B0s 6.5 KB (0.0 %)
0.54 5 4.5 kB (0.0 %)

T4 kB (0.0 %)
10 kB (0.0 %)

3EEs T30 RE 24 k&

Mod

X conple [smulate | Analyze [Refine | Synnesize | shell |

leriving raw statistics from SIR file
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling

[Ready

As shown in the figure, the Design Quality Metrics table including a number of design
quality metrics is displayed. It confirms that the total execution time is 3.22 seconds,
same as what we figured out earlier. After reviewing the quality metrics, click on OK to
close the table.

83

Chapter 3. System Level Design

3.2.5. Generate architecture model

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
0 iﬁ-[EQ [é') allocate PEs... =X I .|
3 Show Variables
@ T _ me |Type | M | Code | Computation I o
Design Descrip ArERIECIure Flugins s b= ey 45kB 54368 ms ©
8o Architecture Refinement... o dt<_mode i_receiver
Schedule hehaviars... gserial i_sender
)) speech_samples i_receiver
Scheduling Pluging
E - G tedte_ctrl i_sender
oioi Scheduling Refinement... @ local_db_mode bool
allocate Busses.. @prm shart int [37]
(@ Show Channels g reset_flag_1 boal
o _ g raset flag_2 bool
Communication PIUGINS 1 . cheech frame short int [180]
=/ Communication Refinement.. | g syn shortt int [160]
RIL Preprocessing... o t=dt<_ctrl_val shart int
_ Sﬁcoder_‘IZKZ Coder_12ke 445 kB 334 ms &
Allocate RTL Units...
Sipost_prucess FPost_Process
Schedule & Bind RTL... B pre_process Pre_Process
RTL Plugins = T]
Madels | Imports I Sources [E@ RTL Refinement... w | Dsp | Hw |
C Code Genetation...]
X | Compile | Simulate | Ans R ca el |
4 Import Decisions... _\
: Derivir le
Comput.: @ S10p
AnnotatIMg Welghted =Sarlzrics o olk file
End: retargetable profiling J‘
Architecture Refinement A

Now we can refine the specification model into an architecture model, which will exactly
reflect the this architecture and mapping decisions. This can be done either manually or
automatically. As we mentioned earlier, an architecture refinement tool is integrated
in SCE. To invoke the tool, go to Synthesis—Architecture Refinement.... The tool
changes the model to reflect the partition we created and also introduces synchronization
between the parallely executing components. Note that we have not decided to map
variables explicitly to components. For demo purposes, we will leave this decision to be
made automatically by the refinement tool. However, it needs to be mentioned that the
designer may choose to map variables in the design as deemed suitable.

84

Chapter 3. System Level Design

3.2.5.1. Generate architecture model (cont’d)

[=1ES]
Help =[] x|
[IEEIEEEEE
!} Mame -"[Mame |Type |N |Code |Cnmputati0n ID
1 EE = & Coder 45kE 54368 ms ¢
B B pre_proc o db_mode i_receiver
W B coder 7, ¢ serial i_sender
W seq? o speech_samples i_receiver
LR G tedte_ctrl i_sender
e et s I
§| Architecture Refinement “E‘t int [57]
Tasks
[Behaviar refinement _
It int [160]
I Insert avg. delays t int [160]
I Variahle refinement It int
er_1zkz 4.5 kB 334 ms £
. Process
I Start | Cancel | | Process
] I) | =
Madels | Imports I Sources Hierarchy | Beha. | :” Raw | DSP | Hw |
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
Freparing refinement... 4

A dialog box pops up for selecting specific refinement tasks of architecture refinement.
By default, all tasks will be performed in one go. Now press the Start button to start the
refinement. It must be noted that the user has an option to do the architecture refinements
one step at a time. For instance, a designer may want to stop at behavior refinement if
he is not primarily concerned about observing the memory requirements or the schedule
on each component. Nevertheless, in our demo we perform all steps to generate the final
architecture model.

85

Chapter 3. System Level Design

3.2.5.2. Generate architecture model (cont’d)

[=[Elf]
Help »|~| x|

ch.sir [read-only]]

[MName

Coder & rain

A manitar kdonitar @ local_dt
A stimulus Stimulus o oit<_mod
mserial_bi
wspeech_
Chedt=_ctr
Scader
& manitor

& stimulus

| (= | =] | -

~I
Madeals | Imports | Sources Hierarchy | Behaviors | Channels | Raw I IZ: | 1

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

% End of Varishle Ref inement =%

7
[Ready A

As displayed in the logging window, the architecture refinement is being performed.
After the refinement, the newly generated architecture model "VocoderSpec.arch.sir" is
displayed to the design window. It is also added to the current project window, under the
specification model "VocoderSpec.sir” to indicate that it was derived from "Vocoder-
Spec.sir". Please note that, while the architecture refinement only took a few seconds to
generate, a whole new model has been created.

86

3.2.6. Browse architecture model

Chapter 3. System Level Design

In this section we will look at the architecture model to see some of its characteristics.

=|vocoder.sce - S0C Enviranment - [Coder - VocaderSpec - YaocoderSpec.arch.sir [read-only]] |Q|E|E
[] Eile Edit ¥iew | Project Synthesis WValidation Windows Help == x|
sowce.. - W En B Q[| B @ | O
Hierarchy... | I | 1
Bme Type FE ||
Connectivity... & hian Ll Name
Graphs = Coger & Coder
Trace. . Motorola_DSPSE6GE o dix_mode
- _ HW Standan | serial
Quality Metrics... 'mpmtor Mpnitur | spesch_sar
2|z Show Testhench A stimulus Stimulus L o5 bectt_ctr
ta:z Show Children par_cc_ T0_
: — war_co__ch_
Customize... | par cc ch
-Cwar_cc__coc
-cwar_cc__coc
war_cc__exc
—Car_coc_gail
—ar_co__gail
irar_cc__hl_
~l I -] = H,:
Madels | Imports | Sources Hierarchy | Behaviors | Channels | Raw I DsP |: |]
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
3 A
% End of Varishle Ref inement =%

Viewy graphical hierarchy

%

Since the top level behavior is "Coder", the test bench behaviors are not changed during
architecture refinement. Therefore let’s select "Coder" by clicking in the corresponding
row in the design window. We would like to see how the design looks when it is mapped
to the selected architecture. To view the hierarchy of the new "Coder" behavior, go to

View—Hierarchy....

87

Chapter 3. System Level Design

3.2.6.1. Browse architecture model (cont’d)

§| vocodersce - S0C Environment - [Coder - VocoderSpec - YocoderSpec.arch.sir [read-only]] ||Q|E|E

[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
HIEEIE
|Type IPE |_J MiEE

& Coder
iotorola_DSPSEEGE o dix_mode
HW Standa MUl - serial
fonitor
Stimulus

-+ speech_sar
|-+ bectts_ctrl
Coder - VocoderSpec - Specc Hieral|—|[@][x mar_cc_ TO_

Window Wiew —war_co__ch_
rar_cc_ ch_
Coder Fbar_cc__coc
-bar_cc__coc
-har_cc__exc
—Car_coc_gail
—ar_co__gail
Fapar_cc__hl

P 7 4

<] | =
M3 iors | Channels | Raw I DsP |: |]

__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

A

% End of Varishle Ref inement =%

i
[Ready A

A window pops up, showing all sub-behaviors of the "Coder" behavior. As we can see,
this new top level behavior Coder in the architecture model is composed of two new
behaviors, "DSP" and "HW", which were constructed and inserted during architecture
refinement. These behaviors at the top level indicate the presence of two components se-
lected in the architecture. Note that they are also composed in parallel, which represents
the actual semantics of the architecture model.

88

Chapter 3. System Level Design

3.2.6.2. Browse architecture model (cont’d)

§| vocodersce - S0C Environment - [Coder - VocoderSpec - YocoderSpec.arch.sir [read-only]] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
ERIES B aaEEEIE]
| I
i Marme |Type IPE | = MiEE
- Main
& Coder
B8 vocoderspec.arch sir Motoroia_O5PSE68 |- t<_mode
B 8 Al HW Standard AW | cerial
'mpnitor Mpnitur | speech_sar
_ A stimulus Stimulus L o5 bectt_ctr
= | Coder - VocoderSpec - SpecC Hieraf| _|[B]x] | opar cc_To.

Window View | —war_co__ch_

o Fibar_cc_ ch_
Connectivity

I Coder l-war_cc__coc
Zoom in Cirl++ lomar_ec__coc
Zoom out Ctrl+- H —ihar_Co_ esc

—Car_coc_gail

—ar_co__gail

Bemove level Ctrl+R imar_co__hl_ ;
7 1 .

Aoy e wmn
1

Add level Ctrl+a

|

i] -
| pviars | Channels | Ranys I DsP |: | 1

__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

A

% End of Varishle Ref inement =%

7
[Ready A

We would now like to see how the "DSP" and "HW" behaviors are communicating.
This will wverify if the refinement process was correctly executed. Go to
View—Connectivity to see the connectivity between the "DSP" and the "HW"
components.

89

Chapter 3. System Level Design

3.2.6.3. Browse architecture model (cont’d)

B 1| Window Miew

[=[Elf]
Help »|~| x|

acc TODSP__HW
ar_ci__ch_ana__DSP__HW
ar_cc__ch_ana_ Hw_D5F
ar_ce__code__DSP__HW
ar_cc__code__HW_DSP
ar_to__ene__DSP_HW
pr_cc__gain_code__HW._D 5P
ar_co__gain_pit_DSP__HW
w_c__h1_DSP__Hw

ar_cc__resZ__DSF__HW

-_|I ar_ce__sn__DOSP__HW

ko ar_cc__y1__DSF__HW

ar_cc__WE__DSP__HW

ar_o__v2__HW_DSP

x

IPE |'J Marme

& Coder

B0 DSP |- dib<_mode
HIW - serial

-+ speech_sar
- berite_ctrl
Hpar_cc_ TO_
—par_cc__ch_
rar_cc_ ch_
{bar_cc__coc
-bar_cc__coc
-har_cc__exc
—Car_coc_gail
—ar_co__gail
irar_cc__hl_

P

|
LERIEENE

[Read

Enlarge the new window and scroll down to view the connectivity of the two com-
ponents. We can see that "DSP" and "HW" components are connected through global
variable channels, which were inserted during the architecture refinement. This is dif-
ferent from the original specification model, where only global variables were used for

communication.

After checking the new architecture model, we can close the pop up window and go
back to the design window by selecting Window—;Close from the menu bar.

90

3.2.6.4. Rename architecture model

Chapter 3. System Level Design

[=[Elf]

=] [-

Help || x|
[
: 1| Mame |T$"F39 IPE |'J Marme
Design I A -4 rain e —
o 2] Vocogerspes. sir cogier e & Coder
2E iMotorola_DSPSEE0T - dit<_mode
& HI HW Standa MUl - serial

'mpnitor Mpnitur -+ speech_sar

A stimulus Stimulus L5 basibe_ctr
par_cc_ T0_
par_cc_ch_

rar_cc_ ch_
{bar_cc__coc
-bar_cc__coc
-har_cc__exc
—Car_coc_gail
—ar_co__gail
irar_cc__hl_

Aoy e wmn

Models | Imparts | Sources

Hierarchy | Behaviors | Channels |

| =
Raw I DSP |:| 1

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

iy
% End of Varishle Ref inement =%
[Ready A

Like what we did for the specification model, we also change the name of the new model
to be "VocoderArch.sir" in the project window. The renaming is just for the purpose of
maintaining a nomenclature schema and to correctly identify the individual models.

91

Chapter 3. System Level Design

3.2.7. Simulate architecture model (optional)

= vocoder.sce - 30C Enviranment - [Cader - Yaocoderérch - YocoderArch sir'] ||Q|E|E
[5] Eile Edit ¥iew Emject Synthesis Walidation | Windows Help == x|
| = [[[é“o] I ¢ B » Enable Instrumentation h o, I .l
Compile | I | I
Marme Type FE ||/
P Mame
| ﬁ Simulate
o 2] Vocogerspes. sir Open Terminal e Codar & Coder
r e Yocoderarch.sir Eill simulation - itorls_DSFIE668 ose - diix_made
;_ L HW_ Standara Ml |5 serial
iew Log... i
/ =04 ranitor |- speech_sar
J Profile Stimulus L o8 peibe_ctrl
fAnalyze Fpar_cc_ TO_
Evaluate —war_co__ch_
Metrics... mTpar_ce_ch_
-Ibar_cc__coc
= Show Estimates | par oo coc
Estimate -har_cc_ exc
analyze RTL —Cbar_cc__gail
—ar_co__gail
. Sim irar_cc__hl_ /

I -
Models | Imparts | Sources

Hierarchy | Behaviors | Channels |

| =
Raw I DSP |:| 1

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

¥ sir_rename -i /home/specc/demo/NocoderSpec,arch.sir -0 fhone/specc/deno/VocoderArch,sir YocoderSpec Yocod
erArch

Compile 4

This section shows the simulation of the generated architecture model. If the reader is
not interested, she or he can skip this section and go directly to Section 3.3 Software
Scheduling and RTOS Model Insertion (page 95).

So far we have graphically visualized the automatically generated architecture. We
have seen that in terms of its structural composition, the model meets the semantics
of an architecture level model in our SoC methodology. However, we also need to
confirm that the model has not lost any of its functionality in the refinement process. In
other words the new model must be functionally equivalent to the specification. We
will validate the architecture model through simulation. But first we need to compile
the model into an executable. To compile the architecture model to executable, select
Validation—Compile from the menu bar.

92

Chapter 3. System Level Design

3.2.7.1. Simulate architecture model (optional) (cont’d)

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
| D Erq'I (=] ﬁ I =) |° e I 74 [: = Enable Instrumentation % ¢fy I .l
Compile 1
!} Mame - |T$"F39 IPE |'J Marme
Design I A &g, __Simulate
o 2] Vocogerspes. sir Open Terminal e o & Coder
= YOCoderarch.sir Kill simulation - iotoroia_D5P56607 o8 ¢ dbe_mode
_ HW Standany HW | e serial
Wiew Log.. ranitar
/ ‘ -+ speech_sar
J Profile Stimulus L o8 peibe_ctrl
Analyze par_cc_ T0_
Evaluate —war_co__ch_
Metrics. . mChar_cc__ch_
bar_cc__coc
= Show Estimates | «par cc coc
Estimate -har_cc_ exc
Analyze RTL —Cpar_cc__gail
—ar_co__gail
@ stop awar_cc__hi_ .
~I I -] — H,:'
Madels | Imports | Sources Hierarchy | Behaviors | Channels | Raw I DsP |: |]

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Input: "Vocoderfrch,cc" A

Output ? "VocoderArch,o"
Linking, ..

Input: "Vocoderfrch,o!

Output ; "VocoderArch"”

Done. JI
4

Simulate

The messages in the logging window show that the architecture model is compiled
successfully without any syntax error. Now in order to verify that it is functionally
equivalent to the specification model, we will simulate the compiled architecture
model on the same set of speech data used in the specification validation by selecting
Validation— Simulate from the menu bar.

93

Chapter 3. System Level Design

. . . ,

3.2.7.2. Simulate architecture model (optional) (cont’d)

=18

3= | vaocaderarch ||g||:|||XI |Q@®
frame=147 encoding delay = 16,35 ms Help lelil
frame=143 encoding delay = 16,35 ms
frame=149 encoding delay = 16,35 ms
frame=150 encoding delay = 16,35 ms T
frame=151 encoding delay = 16,35 ms I FE | B
frame=152 encoding delay = 16,35 ms Name
frame=153 encoding delay = 16,35 ms D ————
frame=154 ehcoding delay = 16,35 ms & Coder
frame=155 encoding delay = 16,35 ms EEEET DEF |5 dtx_mode
frame=156 encoding delay = 16,35 ms HW & =
frame=157 encoding delay = 16,35 ms [senal
frame=153 encoding delay = 16,35 ms -—(5)speech_sar
frame=159 encoding delay = 16,35 ms |
frame=160 encoding delay = 16,35 ms o betbe_ctl
frame=161 encoding delay = 16,35 ms Fpar_cc__T0_
frame=162 encoding delay = 16,35 ms Lqmar oo ch
frame=163 encoding delay = 16,35 ms o

done, 163 frames encoded

ilez src/zpeschfiles/nodtx_good.bit and nodtx,bit are identical
imulation exited with status O
ress return to continue ...

-

Models | Imparts | Sources

rar_cc_ ch_
{bar_cc__coc
-bar_cc__coc
-har_cc__exc
—Car_coc_gail
—ar_co__gail
Fapar_cc__hl

Aoy e wmn

Hierarchy | Behaviors | Channels |

| =
Raw I DSP |:| 1

£

xterm -title NocoderArch -e fbindsh —o | AocoderArch srodspeechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
sread confirm

to continue L.."

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Rea

dy

)

The simulation run is displayed in a new terminal window. As we can see, the architec-
ture model was simulated successfully for all 163 frames speech data. The result bit file
is also compared with the expected golden output given with the Vocoder standard. We
have thus verified that the generated architecture model is functionally correct. In addi-
tion, the simulation of the architecture model shows that the processing time for each
frame is 16.35 ms, which was not available when simulating the specification model.

It must be noted as before that the testing process requires fairly intensive execution, but
for the demo purposes we will omit multiple simulations and just show the concept. This
concludes the step of architecture exploration.

94

Chapter 3. System Level Design

3.3. Software Scheduling and RTOS Model Insertion

The next step in the system level design process is the serialization of behavior execution
on the processing elements. Processing elements (PEs) have a single thread of control
only. Therefore, behaviors mapped to the same PE can only execute sequentially and
have to be scheduled. Software scheduling and RTOS model insertion is the design step
to schedule the behaviors inside each PE.

Depending on the nature of the PE and the data inter-dependencies, behaviors are sched-
uled statically or dynamically. In a static scheduling approach, behaviors are executed in
a fixed and predetermined order, possibly flattening parts of the behavioral hierarchy. In
a dynamic scheduling approach on the other hand, the order of execution is determined
dynamically during runtime. Behaviors are arranged into potentially concurrent tasks.
Inside each task, behaviors are executed sequentially. A RTOS model is inserted into the
design. The RTOS model maintains a pool of task behaviors and dynamically selects
a task to execute according to its scheduling algorithm. In this chapter we see how we
make scheduling decisions using SCE.

95

Chapter 3. System Level Design

3.3.1. Serialize behaviors

Allocate Busses...
5 Show Channels
Communication Pluging -

3|g Communication Refinemant...

RTL Preprocessing...
&llocate RTL Units...
Schedule & Bind RTL...

RTL Plugins =

Maodels | Imports I Sources [RTL Refinement...

—ar_cc_ TO__DSP_
—ar_coc__ch_ana_ [
—drar_cc_ ch_ana_ k
—arar_cc_ code_ DSl
—i@mar_cc_ code_ HW
—imar_cc_ exc_i_ DS
—rar_cc__gain_code,
—rar_cc__gain_pit__[
—amar_cc__h1_ D3P_

AR e e

o)

~__] =

‘wocodersce - 500 Enviranment - [Coder - Yocoderarch - Yocoderarch sif |Q|E|E
28 File Edit Miew Project §ynthesis| Yalidation Windows Help == x|
N [EQ [éH") allocate PEs... B @ I .|

: B © ofy Show Yariahbles
: : |T$"P9 IPE | ! name
Design IDes Architecture Plugins -
m- 12 Uocoserspec.siv 92 architecture Refinement.. & Coder
u Schedule hehayi Motorola_DSFPSE6GE 858 e db_mode
chedule behaviors... W Stardard) |6 sormal
Scheduling Plugins ~ | Monitar | speech_samples
=% Scheduling Refinement... Stimulus L5 pdltx_ctr

Bhnels |

C Code Generation...
X compile | Simulate | F«nn% =

Raw | DSP | HW

el |

Import Decisions...

@ Stop

Static and dynamic behavior scheduling

)

To start behavior scheduling, select Synthesis— Schedule behaviors from the menu

bar.

96

Chapter 3. System Level Design

3.3.1.1. Schedule software

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif ||Q|E|E
95 Eile Edit Mjew Eroject Synthesis Validation Windows Help == x|
Dz 8d g va % B aaEEEIE]
--- | = =
Design iling
o 2] Viocosersper. 4 -
i i oe | e I b<_made
. ; ial
—Dynamic Scheduling era
ame peech_samples
&% Motorola_DSP5EE00 N~
b B pre_process —
8 coder_12k2 . r_cc_TO__DSP_
B post_process (i tco_ch_ana_ [
r_cec__ch_ana__k
. r_cc__code_ Dl
~ Round-rohin t ce_code HW
rcc__exsc_i_ DS
~ Priority based r_cc__gain_code,
r_cc__gain_pit__[
r_cc__hl__ DSP_
=
Models | Imports DEP | HW
] T > E——
_ﬂ Compile | St
:: &I oK I Cancel |
24
[Ready)

A Scheduling window will pop up. This window includes scheduling options for two
PEs (DSP and HW). We begin by selecting the scheduling algorithm for the software.
We can do either static scheduling or dynamic scheduling for the software. In case of
dynamic scheduling, a RTOS model corresponding to the selected scheduling strategy
is imported from the library and instantiated in the PE. The RTOS model provides an
abstraction of the key features that define a dynamic scheduling behavior independent
of any specific RTOS implementation. SCE provides two RTOS models with different
dynamic scheduling algorithms: round-robin and priority based.

97

Chapter 3. System Level Design

3.3.1.2. Schedule software (cont’d)

§| vocodersce - S0C Environment - [Coder - Yocoderarch - Yocoder&rch sir] |Q@|E
S5 File Edit Miew Project Synthesis Walidation Windows e
Dz ed g/ve XxbB X EFE]®S[0]

: | [— — T

Design §|Scheduling “z

o 2] Viocosersper. 4 R

v b A DSP | bl I o
Name & —Dynamic Scheduling arial

peech_samples

% hotorola_DSPS6E00

dt=_ctrl
B B pre_process _
- 8 coder_12k2 rcc_TO__DSP_
P # Mone rco_ choana_ [
o+ B [p_analysis r_cc__ch_ana__k

r_cc__code_ Dl
r_cc__code_ HW
rcc__exsc_i_ DS

~ Round-rohin

B+ & ind Seralize Tree

oz lsp ——— ~ Priority based r_cc_gain_cpde_
'az_lsp_ Flatten r_cc__gain_pit__[
A copyl Flatien Tree ftamibengiabe v
b 38 wad_lp 7}4 | =
estore
radels | HWsegz =
Imports Mrn sne Restore Tree £ DR TR
1 S = —_—
_ﬂ Compile | Sitmu
. Help | Ok | Cancel |
24
[Ready 4

Behavior scheduling is done by converting all concurrent SpecC "par" or "pipe" state-
ments into sequential statements. This conversion is achieved by performing the "seri-
alize" operations on the intended behaviors. For example, assume that behavior "A" is a
"par" composition of behavior "B" and "C". With a "serialize" operation, behavior "A"
will be changed to a sequential execution of "B" and "C" by default. Another kind of
operations, "flatten™ are often performed during behavior scheduling to change the be-
havior hierarchy. Continuing with our example, if behavior "B" itself is composed of "D"
and "E" in parallel, a "flatten™ operation on "B" removes "B" from "A" while promoting
its sub-behaviors, "D" and "E" one level up. As the result, behavior "A" becomes a "par”
composition of "D", "E" and "C". Note that the hierarchy relation among behaviors is
most conveniently represented as a tree, operations “serialize tree™ and "flatten tree™ are
also provided by SCE to serialize or flatten behaviors of a subtree recursively.

In our design, for example, to serialize the sub-behaviors of behavior "seql”, in the
design hierarchy tree, select behavior "seql”. Right click to bring up a menu window
and select Serialize Tree from the menu.

98

3.3.1.3. Schedule software (cont’d)

Chapter 3. System Level Design

Models | Imports

- B coder 12k2

|- seq

o+ B [p_analysis
A init

- Frzeql
B & find_az_1

find_az_z2

A az_lsp_1
Faz_lzp 2
A capyt

b 38 wad_lp

I seq2
M sneech unrd

_ﬂ Compile | Sitmu

= | wocoder.sce - 50C Environment - [Coder - Yocoderérch - YVocoderérch.sif ||Q|E|E
88 FEile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
Dz dd s/ ve (Xl X FE| B8e 0
Design heduling
o 2] Viocosersper. 4 il
v r Mocoderan DSP | A I t<_maode
;) ial
& —Dynamic Scheduling era
NI peech_samples
- %2 Motorola_DSPS6600
B B pre_process dbs_cir
i rco_ TO_ DSP_

MNaone

~ Round-rohin

~ Priority hased

r_oc__ch_ana_ [
r_cc__ch_ana_ F
r_cc__code_ Dl
r_cc__code_ HW
rcc__exsc_i_ DS
r_cc__gain_code,
r_cc__gain_pit__[
r_cc__hl__ DSP_
oo won D £
=

DSP | HW

Help |

Ok | Cancel |

|

[Ready

)

Now that the two parallel child behaviors of behavior "seql™: behavior "find_az_1" and
behavior "find_az_2" are converted into two sequential behaviors. We can see that be-
havior "find_az_1" is executed before behavior "find_az_2". This execution order is cre-
ated by the tool. The designer can modify the execution order.

99

Chapter 3. System Level Design

3.3.1.4. Schedule software (cont’d)

- B coder 12k2

|- seq

o+ B [p_analysis

A init

- Frzeql
find_az_z

B B find_az_1

A az_lsp_1

MNaone

~ Round-rohin

~ Priority hased

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif ||Q|E|E
88 FEile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
Dz dd s/ ve (Xl X FE| B8e 0
Design heduling
o 2] Viocosersper. 4 i
v r Mocoderan DSP | A I t<_maode
;) ial
& —Dynamic Scheduling era
NI peech_samples
- %2 Motorola_DSPS6600
B B pre_process dbs_cir
i rco_ TO_ DSP_

t_coc__ch_ana_ [
r_cc__ch_ana_ F
r_cc__code_ Dl
r_cc__code_ HW
rcc__exsc_i_ DS
r_cc__gain_code,

r_cc__gain_pit__[

Faz_lzp 2
A copy1 ftamibengiabe v
b 38 wad_lp 5
Models [Import Il seq2
(ECTE M sneech und £ DI || (A
] T = Em——

_ﬂ Compile | Sitmu
. Help | (o]:8 | Cancel |

|

[Ready 4

Select behavior "find_az_2". Left click and move behavior "find_az_2" before behav-
ior "find_az_1". Now behavior "find_az_2" is executed before "find_az_1". In general,
the designer can specify any "par" or "pipe" statements to be scheduled and manually
specify the execution order of any parallel behaviors in the same level. The remaining
parallel behaviors can either be dynamically scheduled by the RTOS model or statically
serialized by the tool.

Since we want the tool to schedule all the behaviors automatically, we restore the execu-
tion order created by the tool. Select behavior "find_az_1". Left click and move behavior
"find_az_1" before behavior "find_az_2".

100

Chapter 3. System Level Design

3.3.1.5. Schedule software (cont’d)

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif ||Q|E|E
95 Eile Edit Mjew Eroject Synthesis Validation Windows Help == x|
Dz dd s/ ve (Xl X FE| B8e 0
[E v]

[x
o 2] Viocosersper. 4 »
v r Mocoderan DSP | A I t<_maode
—Dynamic Scheduling erial
il peech_samples
B pre_process Seralize dtx_ctrl
a coder_1zk2 Sgrialize Tree r_ce_TO__DSP_
H # Naone r_cc_ch_ana_ [
B post_process _EC__Ch_ana__
IR r_cec__ch_ana__k
Flatten Tree EO— r_cc__code_ DSl
Eestore v Rounerenin r_cc__code_ HW
; e T rcc__exsc_i_ DS
estare Tree -
_ + Priority based r_cc__gain_code,
r_cc__gain_pit__[
r_cc__hl__DEP_
oo vonn _merhl
-
Models | Imports == [om
| T =] EEE——
_ﬂ Compile | Sty
:: &I QE, | Cancel |
24
[Ready)

For our example, since there are not many parallel behaviors in DSP, we statically sched-
ule the behaviors in DSP. In the dynamic scheduling box, click and select None.

Also, we will leave the decision of behavior execution order to be made automatically
by the tool. In the design hierarchy tree, select behavior "Motorola_DSP56600". Right
click and select Serialize Tree.

101

Chapter 3. System Level Design

3.3.1.6. Schedule software (cont’d)

= | wocoder.sce - 50C Environment - [Coder - Yocoderérch - YVocoderérch.sif ||Q|E|E
88 FEile Edit ¥iew Project Synthesis Validation Windows Help =|=| x|
Dz 8d g va % B aaEEEIE]
Y =
Design heduling
o 2] Viocosersper. 4 il
v r Mocoderan DSP | A I t<_maode
—Dynamic Scheduling erial
Name peech_samples
B B pre_process dx_ctr
- —
- 8 coder_12k2 ree_T0_DSP_
™ P # Mone rco_ choana_ [
M- B Ip_analysis r_cc__ch_ana__H
|4 init : r_cc__code_ DSl
- Fiserl & HEMAEHEI r_cc__code_ HW
A az_lsp_1 rcc__exc_i_ DS
- lsn 2 .
:iz SE]_ ~ Priority based r_cc__gain_code,
Y Eyl r_cc__gain_pit__[
wad_lp
- Fiseq2 bt
Fint_lpcz S
Models [Imports = @ fiplst_and_inflpc g ozr | Hw
] T > —
_ﬂ Compile | Sitmu
: Help | 0K | Cancel |
24

[Ready 4

As shown in the figure, all the child behaviors of behavior "Motorola_DSP56600" are
serialized. Behaviors that are modified as a result of serialization are marked with a "*"
symbol next to them.

102

Chapter 3. System Level Design

3.3.1.7. Serialize behaviors in HW

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif ||Q|E|E
95 Eile Edit Mjew Eroject Synthesis Validation Windows Help == x|
e 0@ 8 ve [xbB X EFE|Bs 0
[E v]
[x
o 2] Viocosersper. 4 -
- m| (DSP | HW | N
—Dynamic Scheduling erial
peech_samples
Setialize ttx_cirl
. r_cc_ TO_ DSP_
Serialize Tree & MNone t oo chana [
Elatten r_cc__ch_ana_ F
Flatten Tree _ r_cc__code_ DSl
~w Round-robin ' oo cade HW
Restare -
o rcc__exsc_i_ DS
Restore Tree i
- + Priority based r_cc__gain_code,
r_cc__gain_pit__[
r_cc__hl__ DSP_
=

Models | Imports DEP | HW

_ﬂ Compile | Sitmu

Help | (o]:8 | Cancel |

|

[Ready

)

The next step is to serialize behaviors in HW. Since custom hardware can only be stati-
cally scheduled, the dynamic scheduling box is disabled for HW. Click and select HW in
the Scheduling window. In the design hierarchy tree, select behavior "HW_Standard".
Right click and select Serialize Tree.

103

Chapter 3. System Level Design

3.3.1.8. Serialize behaviors in HW (cont’d)

= | wocoder.sce - 50C Environment - [Coder - Yocoderérch - YVocoderérch.sif ||Q|E|E
95 Eile Edit Mjew Eroject Synthesis Validation Windows Help == x|
D2 Hd 8 vwax X[[FFE] B e 0]
A
Design lling
o 2] Viocosersper. 4 -
A D5P | I8 | t<_mode
] —Dynamic Schedulin erial
Mame 2 ¥ 4
. A peech_samples
ar_wr_codebook & ttx_cirl
- Efar_init_codebook - r_ce_TO__DSP_
@ ar_ch__T0__DSP__Hw & # Naone r_cc_ch ana_ [
M ar_ch__ch_ana_ DSP__HY £ r_cc__ch_ana_ F
- Far_ch__code_ DSP_ HW £ r cc__code_ DS
@ ar_ch__exc_i_ DSP__HW £ w Round-robin ¢ oo code HW
A ar_ch__gain_pit__DSP__HW ¢ b oo ewc i DS
A ar_ch__hl1_ DSP__HW £ . d
| ar cb__resz_ DSP__HW 2 ~ Frinrity hased f_Cr__gain_code,
L ar_ch__xn__DSP__HW 2 r_cc__gain_pit_L
A ar_ch__yl_ DSP__HW £ r_cc__hl_ DEP_ ;
L ar_ch_ vz DSP__Hw £ s oo cons m:
- & codeboak C
Models | Imports Eiceq cls DEP | HW
| | = —]
_ﬂ Compile | Sitmu
. Help | Ok | Cancel |
24
[Ready 4

As shown in the figure, all the child behaviors of behavior "HW_Standard" are serialized.
Click OK button to confirm the scheduling decision.

104

3.3.2. Generate serialized model

Chapter 3. System Level Design

Models | Impors | Sources

3|g Communication Refinemant...

= vocoder.sce - 30C Enviranment - [Cader - Yaocoderérch - YocoderArch sir'] ||Q|E|E
98 Eile Edit ¥jew Eroject §ynthesis| Validation Windows Help =|=| x|
0= [[=F=] [él Y allocate PEs... B @ I .l
o GF) Show Wariahles [
: : |T$"P9 IPE | 7| Name
Design IDes Architecture Plugins -
9a architecture Refinement... Coger & Coder
) Motorola_DSFPSE6GE 858 e db_mode
Schedule behaviors... HW Starmtand W | o sornal
Scheduling Plugins ~ | Monitar el speech_samples
=% Scheduling Refinement... Stimulus L5 pdltx_ctr
&llocate Busses... _Dar—CC—TE—DSP—[
—ikar_cc__ch_ana
‘@ Show Channels —Dar_cc_cb_ana_l-
Communication Pluging - —{ar_cc__code_ DEI

RTL Preprocessing...
Allacate RTL Units...
Schedule & Bind RTL...
RTL Plugins

E8 BTL Refinement...

—i@mar_cc_ code_ HW
—imar_cc_ exc_i_ DS
—rar_cc__gain_code,
—rar_cc__gain_pit__[
—amar_cc__h1_ D3P_

AR e

~__]

e
=

o)

Bhnels |

B C Caode Generation...

Raw | DSP | HW

X compile | Simulate | &ha

Import Decisions...

el |

@ Stop

Scheduling Refinement

)

Once the scheduling decisions have been made, we can refine the architecture model to
reflect the changes. A software scheduling and RTOS model insertion tool is integrated
in SCE. The tool will generate the model to reflect the scheduling algorithm we selected.
In case of dynamic scheduling, a RTOS model is inserted into the design and behaviors
are converted into tasks with assigned priorities. To invoke the tool, go to Synthesis
menu and select Scheduling Refinement.

105

Chapter 3. System Level Design

3.3.2.1. Refine after serialization

Models | Imparts I Sources

Hierarch

|

Top level:

Cader

Tasks
[Static scheduling
' RTOS refinement

AR e

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif ||Q|E|E
98 File Edit Miew Project Synthesis Validation Windows Help == x|
Oz B0 3/ ve xbd X FE| B 0
X I
. i Mame |Type IF'E | (= HEwE

Design IDesﬂ. - A Main
ﬁr_‘|— Q Viocodarspec. sy cogar Coger & Coder

e Matarmis_DSPSE60T - dbc_mode

HW Standard - serial
) Mpitur ¢ speech_samples
-heduling Refinment -6 tetts_ctrl

—ar_cc_ TO__DSP_
—ar_coc__ch_ana_ [
—drar_cc_ ch_ana_ k
—arar_cc_ code_ DSl
—i@mar_cc_ code_ HW
—imar_cc_ exc_i_ DS
—rar_cc__gain_code,
—rar_cc__gain_pit__[
—amar_cc__h1_ D3P_

PO T Y

~__]

=

Raw

DsP

HW

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Freparing refinement...

)

A dialog box pops up for selecting specific refinement tasks. By default, all tasks will be

performed in one go. Press the Start button to start the refinement.

It must be noted that the user has an option to do the refinement tasks one step at a time.
For instance, a designer may select only static scheduling if he or she is not concerned
about observing the dynamic scheduling behavior on the component.

106

Chapter 3. System Level Design

3.3.2.2. Refine after serialization (cont’d)

- [=I[Bl[]
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
[
[it MName
Coder & rain
A manitar kdonitar @ local_dt
A stimulus Stimulus o dbx_mod
mserial_bi
wspeech_
Chxct_ctr
Scader
& manitor
& stimulus
| -] I = -
Madeals | Imports | Sources Hierarchy | Behaviors | Channels | Raw I IZ: | 1
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
iy
= End of RTOS Refinement *%
Writing output SIR file "/homesspecc/demo/VocoderArch,sched,zir", ., done,
o |RTOS refinemsnt successfully comoleted, -,’I
[Ready A

The logging window shows the refinement process. After the refinement, the newly gen-
erated serialized model "VocoderArch.sched.sir” is displayed to the design window. It

is also added to the current project window, under the architecture model "Vocoder-
Arch.sir to indicate that it was derived from "\VocoderArch.sir".

107

Chapter 3. System Level Design

3.3.2.3. Refine after serialization (cont’d)

[=[Elf]

[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|

MName

Coder & rain

A manitar kdonitar @ local_dt
A stimulus Stimulus o oit<_mod
mserial_bi
wspeech_
Chedt=_ctr
Scader
& manitor
& stimulus

" [
ian |
2| Vocodersper.sir

22y ocoderarch.sir

I =] I =

~ | -
Models | Imports | Sources Hierarchy | Eehaviaors | Channels | :I HW ILlA]

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

A

=% End of RTOS Refinement *%

Writing output SIR file "/homesspecc/demo/VocoderArch,sched,zir", ., done,
RTOS refinenent successfully completed,

7
[Ready A

As we did for previous models, we change the name of the serialized architecture model
to "VocoderSched.sir" in the project window.

108

Chapter 3. System Level Design

3.3.3. Simulate serialized model (optional)

= vocoder.sce - 50C Enviranment - [Main - VocoderSched - Yocoder5ched.sir’] ||Q|E|E
[C] Eile Edit ¥iew Emject 3Synthesis Vglidationlﬂindows Help == x|
| = [[[é“o] I ¢ B » Enable Instrumentation h o, I .l
Compile I
Type B
o 2] Vocogerspes. sir Open Terminal e Coder Brnain
B-38 Vocoderré sir I Kill simulation [Monitor @local_dt
J _ Stimulus ot mod
Wiew Log... =
mserial_bi
Erofile Thspeach
Analyze Chbxdt<_ctr
Evaluate &ocader
Metrics... &mpmtor
& stimulus
Show Estimates
Estimate
Analyze RTL
@ :iop
| — 1 I = -
Models | Imports | Sources Hierarchy | Behawiors | Channels | R Iztlld
ornpile imulate nalyze efine ynthesize e
__H C | Simulat Anal Refi Synth Shell
: ¥ sir_rename -i HhomeHSpeccHdemoNDcﬂ:ﬂerﬂrch¢Sc:hed,Sir -o /homesspecc/deno/NocoderSched ,,=ir Vocoderfrch Yoo
oderSched
Compile A

This section shows the simulation of the generated model. If the reader is not interested,
she or he can skip this section and go directly to Section 3.4 Communication Synthesis

(page 112).

Serialization refinement is now complete with the generation of a new model. However,
we also need to confirm that the model has not lost any of its functionality in the re-
finement process. In other words the new model must be functionally equivalent to the

architecture model.

We will validate the serialized architecture model through simulation. But first we need
to compile the model into an executable. To compile the serialized architecture model to
executable, go to Validation menu and select Compile.

109

Chapter 3. System Level Design

3.3.3.1. Simulate serialized model (optional) (cont’d)

=|vocoder.sce - 30C Enviranment - [Main - YocoderSched - Yocoder3ched.sir] ||Q|E|E
23 FEile Edit Miew Project Synthesis Vglidationlﬂindows Help == x|
| 0= I [I =) |° e I 3¢ E ~ Enable Instrumentation b ¢ I .l
Compile 1
!} REL =] - Type PE | name
Design | Ay Simulate —
o 2] Vocogerspes. sir Open Terminal - Coder Brnain
B-38 Vocogerarei.sir I Kill simulation [Monitar @ local_dt
: 4) Stimulus Chdt< mad
Wiew Log... =1
mserial_bi
Erofile awspeech
Analyze T beelts_ctr
Evaluate &rcoder
Metrics. . &mpmtor
& stimulus
Show Estimates
Estimate
Analyze RTL
@ :iop
-l | -~] =
Models | Imports_| Sources Hierarchy | Behaviors | Channels | Ry I L. |]

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Input: "VocoderSched,cc" 4

Output s "VocoderSched,o"
Linking, ..

Input: "VocoderSched,o"

Output ; "VocoderSched"

Done. JI
4

Simulate

The messages in the logging window shows that the refined model is compiled success-
fully without any errors. Now in order to verify that it is functionally equivalent to the
architecture model, we will simulate the compiled model on the same set of speech data
used in the specification validation. Go to Validation menu and select Simulate.

110

Chapter 3. System Level Design

3.3.3.2. Simulate serialized model (optional) (cont’d)

=|vocoder.sce - 30C Enviranment - [Main - YocoderSched - Yocoder3ched.sir] |Q|E|E
)))) .) Help || x]

4] |frame=147 encoding delay = 19,77 ms

sl [frame=148 encoding delay = 19,77 ms I

—| |Framz=143 encoding delay = 19,77 ms Type - MName

D frame=150 encoding delay = 19,77 ms
frama=101 encoding delay = 19,77 ms ;

E frame=152 encoding delay = 19,77 ms Camsl'r $Mam
frame=153 encoding delay = 19,77 ms hﬂpnﬂur @local_dt
frame=154 encoding delay = 19,77 ms Stimulus o dt<_mod
frame=155 encoding delay = 19,77 ms R 1
frame=156 encoding delay = 19,77 ms ©serial_b
frame=157 encoding delay = 19,77 ms wspeech_
frame=158 encoding delay = 19,77 ms ot ctr
frame=153 encoding delay = 19,77 ms —
frama=160 encoding delay = 19,77 ms &Coder
frame=161 encoding delay = 19,77 ms sﬁmunitor
frame=162 encoding delay = 19,77 ms sﬁstimulus
frame=163 encoding delay = 19,77 m=
done, 163 frames encoded

iles srocispeechfilesdnodtx_good,bit and nodtx,bit are identical
imulation exited with status 0
resz return to conkinue L, .,

) T =TT I = RO =

Madeals | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I IZ: | 1

__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

: # xterm -title NocoderSched -e /fhindsh -c | AocoderSched src/speschf’iles/spch_unx, inp nodbx.bit nodbx 22 d

iff -= srocdspeechfiles/hodtx_good.bit nodbx,bit: echo "Simulation exited with status $7" techo "Press retur
n to contimue L,." fread conficm
[Ready A

The simulation run is displayed in a new terminal window. As we can see, the serialized
architecture model was simulated successfully for all 163 frames of speech data. The
result bit file is also compared with the expected golden output given with the Vocoder
standard. We have thus verified that the generated refined model is functionally correct.
Note that the execution time for each frame now becomes 19.77 ms. Recall that the ex-
ecution time was 16.35 ms for each frame before the software scheduling is performed.
The increase of execution time is reasonable since the concurrency in the previous model
is removed by the software scheduling.

111

Chapter 3. System Level Design

3.4. Communication Synthesis

Communication synthesis is the second part of the system level synthesis process. It re-
fines the abstract communication between components in the architecture model. Specif-
ically, the communication with variable channels is refined into an actual implementa-
tion over wires of the system bus. The steps involved in this process are as follows.

We begin with allocation of system buses and selection of bus protocols. A set of system
buses is selected out of the bus library and the connectivity of the components with
system buses is defined. In other words, we determine a bus architecture for our design.

This is followed by grouping of abstract variable channels. The communication between
system components has to be implemented with busses instead of variable channels.
Thus these channels are grouped and assigned to the chosen system busses. Once this
is done, the automatic refinement tool produces the required bus drivers for each com-
ponent. It also divides variables into slices whose size is the same as width of the data
bus. Therefore that each slice can be sent or received using the bus protocol. The entire
variable is sent or received using multiple transfers of these slices.

112

3.4.1. Select bus protocols

Chapter 3. System Level Design

Maodels | Imports | Sources [RTL Refinement...

=| vocodersce - S0C Environment - [Coder - YocoderSched - YocoderSched sir®] |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
N [EQ [= allocate PEs... =X I .|
Show Yariahles I
® | Type [Pe [Bus ||,
Design Architecture Pluging - ame
o 2] Vocogerspes. sir 88 architecture Refinement.. r & cCoder
=29 vacaderarch sir , Motorols_ DSPSEEHT D5F Lo dibe_m
Schedule behaviors... W Stardard oy | 6 sorial
Scheduling Plugins - kAonitor | speec
=% Scheduling Refinement... Stimulus |5 bt
&llocate Busses... [-Cpar_co
—Thar_cc
5 Show Channels | opar oo
Communication Pluging - - Trar_cc
3/ Communication Refinement... Char_cc
— - amar_cc
TL Preprocessing... | opar_ce
allocate RTL Units... | par oo
Schedule & Bind RTL... —har_cc /
| RTL Plugins = AW

annels I

B C Caode Generation...

Ran I Ellf

__E Compile | Simulate | ana

Import Decisions...
% whterm -title Yocoder! e

el |

iff -= src/speechfiles. @) Si0p

n to continue ,,." :redoconTIrm
Simulation exited. exit status: O

Sched src/speschf’iles/spch_unx, inp nodbx.bit nodbx 28 d
ho "Simulation exited with status $%" recho "Press retur

Bus allocation

)

As explained earlier, we begin by selecting a suitable bus for our system. Note that in
the presence of only two components, one bus would suffice. However, in general the
user may select multiple buses if the need arises. Bus allocation is done by selecting
Synthesis—sAllocate Busses from the menu bar.

113

Chapter 3. System Level Design

3.4.1.1. Select bus protocols (cont’d)
[C] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
D 8@ 8 vae X X[EEE] B @ | 0]

Bus Allocation

|¢_-|_ Mame |Type |Masters | Cost | Description

Help

Addd...

Remove

Tables...

Mode

x

End: Profiling and retargetable profiling

[Ready

A Bus Allocation window pops up showing the bus allocation table. Since there are no
busses selected at the time, this table is empty. We now click on Add to add bus(es) from
the protocol database.

114

Chapter 3. System Level Design

3.4.1.2. Select bus protocols (cont’d)

IEM PowetPC 750CKe inte
Motorola DSPSEE extarn
Motorola PowerPC interface
Maotarola PowerPC

MIPS interface

[Ready 4

A Bus Selection window pops up showing the contents of the protocol database. The
column on the left shows the three categories of protocols. During component selection
for architecture exploration, we had a classification of components. Likewise, the clas-
sification here shows us the available types of busses. On selecting a particular category
with left click, the busses under that category are displayed. For our demo purposes, we
select the Processor bus "Motorola_DSP56600 PortA™ and click OK.

Note that the architecture chosen for the design has an impact on the selection of busses.
More often that not, the primary component in the design dictates the bus selection
process. In this case, we have a DSP with an associated bus. It makes sense for the
designer to select that bus to avoid going through the overhead of generating a custom
bus adapter.

115

Chapter 3. System Level Design

3.4.1.3. Select bus protocols (cont’d)

= vocoder.sce - 30C Enviranment - [Behavior_DSP - YocoderArch - Vocoderérch.sir] |Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz 8gd g va % B aaEEEIE]
=Bus Allocation |_|z
Desig I
E-g Marme |Type IMasters |Cost |Descripti0n o
BusD Motorola_DEPSEEO0_Porta 1.0 rotorola DEP3EE00 external memory interfac QK |]
ho_
Cancel |
Help | Ho_
ho_
Add... | fo_
fo_
Remove | ho_
ho_
Tahles... |
|
e =
Maode
X ¢y
i g
] | =)
2
End: Profling and retargetable profiling Jl
[Ready A

The selection is now displayed in the bus allocation table as shown in the screen shot.
A default name of "Bus0" is given to identify this system bus. In order to include this
bus in the design, we need to specify which component is going to be the master on
the bus. This is done by Left click under Masters column. Since this bus is for the
Motorola 56600 processor that we have chosen, the master is the processor. Recall that
the name given to the processor component was "DSP." We thus enter the name "DSP"
under Masters column and press RETURN.

116

3.4.1.4. Select bus protocols (cont’d)

Chapter 3. System Level Design

§| vocodersce - S0C Environment - [Eehavior_DSF - Yocoderdrch - Yocoderarch sir] ||Q|E|E
[C] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
NI IEIEEES K| EEE] B e | o
=] Bus Allocation [
Desiyg |
|| [MName |Type Masters 0_
Bus0 Motorola_DSPSEE00_Ports DSP rotorola DEPSEEDD external memaory interfar I Ok ho_
ho_
Cancel |
Help | Ho_
ho_
Add... | fo_
fo_
Remove | ho_
ho_
Tahles... |
|
~ =
Maode
X oy
i £
] | =)
2
End: Profling and retargetable profiling Jl
[Ready A

The bus selection is now complete and we can finish off with the allocation phase by left

clicking on OK.

117

Chapter 3. System Level Design

3.4.2. Map channels to buses

50 C Environment - [lZl:“iFl-'-'— Q@@
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 8@ 8 vwa % K EEBs [0
—5'[Mame [Type TPE [Bue || Narme Typs
Design A - 4 ain
B 2] ViocoserSpec. sit & Coder
@29 vocaderars Motorola_DSPSE6GT D5F - dbc_mode i_receivel
B Al HW_Stanaand Hil - serial i_sender
AF monitor - Maonitar - speech_samples i_receivel
AF stimulus Stimulus Lo tuctte_ctr i_sender
—Ipar_cc_ TO__DSP__HW _CH_shoi
—Ipar_cc__ch_ana_ DSP__HW _CH_shal
—Irar_cc_ ch_ana_ HW__DSP _CH_sho
—Irar_cc_ code_ DSP_ HW _CH_shoi
—@mar_cc_ code_ HW_ D3P _CH_shoi
—Imar cc__exc_i_ DSP__HW _CH_shoi
rar_cc__gain_code_ HW__ D3P _CH_shol
T ar_cc__gain_pit__DSP__HW _CH_shol
—Tmar_cc__hl_ DSP__HW _CH_shoi /
=] = TR .
Models Impnrslé Hierarchy | Eehaviaors | Channels | Raw | D3P | HW

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderSched -e /fhindsh -c | AocoderSched src/speschf’iles/spch_unx, inp nodbx.bit nodbx 22 d
iff -= srocdspeechfiles/hodtx_good.bit nodbx,bit: echo "Simulation exited with status $7" techo "Press retur
n to contimue L,." fread conficm
Simulation exited. exit status: O

[Ready A

Once the bus allocation has been done, we need to group the channels of the architecture
model and assign them to the system buses. Recall that in the architecture model, we had
communication between components with abstract variable channels. We now have to
assign those variable channels to the system bus.

Expand the design hierarchy window and scroll to the right to find a new column entry
Bus.

118

3.4.2.1. Map channels to buses (cont’d)

Chapter 3. System Level Design

=|vocoder.sce - 50C Enviranment - [Cader - YocaderSched - YocoderSched sir'] |Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz 8g g va % K EEE B e ®
. &[Mame |Type |PE IElus | [J Eme Type
Design A - 4 ain
B 2] ViocoserSpec. sit & Coder
®-38 yocoderare iiolomla_DSPS6666 O5P[| - dbc_mode i_teceivel
HW_Stanaand Hit - serial i_sender
AF monitor - Maonitar - speech_samples i_receivel
AF stimulus Stimulus Lo tuctte_ctr i_sender
HIpar_cc_ TO__DSP__HW _CH_shaoi
—Ipar_cc__ch_ana_ DSP__HW _CH_shal
—Irar_cc_ ch_ana_ HW__DSP _CH_sho
—Irar_cc_ code_ DSP_ HW _CH_shoi
—@mar_cc_ code_ HW_ D3P _CH_shoi
—Imar cc__exc_i_ DSP__HW _CH_shoi
rar_cc__gain_code_ HW__ D3P _CH_shol
T ar_cc__gain_pit__DSP__HW _CH_shol
—Tmar_cc__hl_ DSP__HW _CH_shoi /
=] = TR .
Models Impnrslé Hierarchy | Behaviors | Channels | Raw | DSF | HW

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

n to contimue L,." fread conficm
Simulation exited. exit status: O

xterm -title NocoderSched -e /fhindsh -c | AocoderSched src/speschf’iles/spch_unx, inp nodbx.bit nodbx 22 d
iff -= srocdspeechfiles/hodtx_good.bit nodbx,bit: echo "Simulation exited with status $7" techo "Press retur

[Ready

)

Like component mapping, bus mapping may be done by assigning variable channels to
buses. However, to speed things, we may assign the top level component to our system
bus. Since we have only one system bus, all the channels will be mapped to it. This is
done by left clicking in the row for the “Coder" behavior under the bus column. Select

the default "Bus0" and press RETURN.

119

Chapter 3. System Level Design

3.4.3. Generate communication model

=|vocoder.sce - 30C Enviranment - [Cader - YacoderSched - YocoderSched sif |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
N [EQ [é') allocate PEs... =X I .|
Show Yariahles I
@ vpe IPE |Elus | | Y
Design Architecture Pluging - ame
E-g Viocodarspes sl B0 Architecture Refinement... e sl & Coder
E_SEVQCUderP,rch_sir) whorpla_DSPIGEGT DSF |- dt<_mode
Schedule behaviors... W Standan U | seral
Scheduling Plugins - pnltnr -l speech_samples
=% Scheduling Refinement... timuius L7 bedibe_ctl
&llocate Busses... —opar_cc_TO__DSP__HW
Fpar_cc__ch_ana_ DSP_
‘@ show Channels dpar_cc_ ch_ana_ HW__
Communication Pluging - l-par_co__code_ DSP__H
2|2 Communication Refinement... Cvar_cc__code_ HW_ DE
RTL P N imar_coc__exc_i_ DSP__F
- TTERIMCESsINg. . —rpar_cc_gain_code_ HW
Allocate RTL Units... | mar cc gain pit DsP
Schedule & Bind RTL... Firar_cc__h1_ DSP__HW /
) R R et S =R AT
] RTL Plugins -] T I=]
Madels | Imports | Sources [BTL Refinement... | Channels I Raw | DEP | HW
C Code Generatian...]
X compile | Simulate | e 3 © <2 el |
4 Import Decisions... _\
| |Cleaning up variable ct
@ Stop
Writing SIR file "/honerspEccroEnor voCoOeT Sered, conin, =ir ", ,
Communicat ion ref inement successfully performed,
Communication refinement A

Now that we have completed bus allocation and mapping, we may proceed with commu-
nication refinement. Like architecture refinement, this process automatically generates
a new model that reflects our desired bus architecture. To invoke the communication
refinement tool, select Synthesis— Communication Refinement from the menu bar.

120

Chapter 3. System Level Design

3.4.3.1. Generate communication model (cont’d)

[=[Elf]
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
IES ElsEEEEIE)
b I
. i Mame |Type IPE |Elus I B HEmE
Diesign A - A rain
- [Vocoderspec sir Tl || |8 Coder
#-39vocoderarch.sir atarola_ OSFPI66E0 O5F° e dt<_made
& AW HIW_Standand HIW L sarial

JF manitor konitar

- speech_samples
A stimulus Stimulus P 3P

il i bedt_ctrl
§|C0mmunicati0n Refinement ||E l-omar cc TO DSP HW
Tesls ~Crar_cc__ch_ana_ DSP_|

—drar_cc_ ch_ana_ HW__

= Channel refinement | Char_cc_code DSP__H

I Protocal insertion —i@mrar_cc_ code_ HW_ D&
= Inlining —dmar_co__exc_i_ DSP__F
rar_cc__gain_code_ HW
—rar_cc__gain_pit__D5P_
I Stat | Cancel |_@var_cc__h1_ DSP__HW
P SR .|
1 I = | F | =
Madels | Imports | Sources Hierarchy | Behaviors | Channels | Raw | DSP_| HW
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
Freparing refinement... 4

A new window pops up giving the user the option to perform various stages of the
refinement. The user may choose to partially refine the model without actually inserting
the bus, and only selecting the channel refinement phase. This way, he can play around
with different channel partitions. Likewise, the user might want to play around with
different bus protocols while avoiding "Inlining” them into components. This way he
can plug and play with different protocols before generating the final inlined model.
By default all the stages are performed to produce the final communication refinement.
Since we have only one bus, and hence a default mapping, we opt for all three stages
and left click on Start to proceed.

121

Chapter 3. System Level Design

3.4.3.2. Generate communication model (cont’d)

| vocoder.sce - 50C Environment - [Main - Voc

sched.comm.sir [read-only]]

[=[Elf]

kriting SIR file "/homesspeccddemosVocoderSched.,.comm,=ir", ..

Communicat ion ref inement successfully performed,

[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz 0d 8ve [xbB X[FE| G| 0]
|Type IPE |Elus [J Name
Design - Main
o 2] Vocogerspes. sir b+ Dl coer Coder Bl & rain
#-39vocoderarch.sir A manitor honitar @local_dt
kig. . YocoderSched.sir 'stimulus Stimulus O dt<_mod
S|gVocoderSched.comm.s I Moatorala_DSPSBEDN_BF oserial_bi
wspeech_
b Ext<_ctr
Scader
& manitor
& stimulus
| 1] -
Models | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I IZ: | 1
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Cleaning up wariable channels from the design ... 5

i

[Ready

%

During communication refinement, note the various tasks being performed by the tool
in the logging window. The tool reads in channel partitions, groups them together, im-
ports selected busses and their protocols, implements variable channel communication
on busses and finally inlines the bus drivers into respective components. Once commu-
nication refinement has finished, a new model is added in the project manager window.
It is named "VocoderArch.comm.sir". Also note that we have a new design management

window on the right side in the GUL.

122

Chapter 3. System Level Design

3.4.3.3. Generate communication model (cont’d)

_|_vocoder.sce - 50C Environment - [Main - YocoderSched - YocoderSched.camm.sir [read-only]]

==
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 8gd g ve X B aaEEEIE]
- |1 _[T | Mame
Design
o 2] Vocogerspes. sir Cogar &omain
IJL'I—EEVDCUUEI’P'I’CH.SW JF monitor tonitar @ local_dt
M-E8vVocoderSched.sir A stimulus Stimulus T dt<_mad
Il Motorola_DSPSEE00_BF Coserial_hi
wspeech_
Delete Del Chxct_ctr
cader
Cpen Input 8;
S & manitor
(EDEEEE & stimulus
Bename...
Change Description...
Statistics..
|] -
Models | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I IZ: | 1
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Cleaning up wariable channels from the design ... 2
Writing SIR file "/honedspecc/denoVocoderSched,.comm,=ir" ., .
Communicat ion ref inement successfully performed,
[Ready A

We now need to give our newly created communication model a reasonable name. To do
this, right click on "VocoderArch.comm.sir" in the project manager window and select
Rename from the pop-up menu. Now rename the model to "VocoderComm.sir".

123

Chapter 3. System Level Design

3.4.4. Browse communication model

§| vocodersce - S0C Environment - [Coder - YocoderSched - YocoderSched.comm.sir [read-only]] ||Q|E|E
[C] Eile Edit ¥iew | Eroject Synthesis Validation Windows Help == x|
sowce.. - By B Q[| B @ | O
Hierarchy... B | I | | I
il Mame Type FE |Bus B
Design Connectivity .. I & i i MName
Eiamcaden Graphs N e E & coder
m-38voce Trace.. - honitar - dits_mod
F-Ey _) stimulus Stimulus | serial
Lg Quality Metrics... 1l Matorala_DSPSEEO0_BF | speech.
E Show Testhench - bedt=_ctr
ta:z Show Children I @Busi_a
—c o I @Busd_D
ustomize... L & Bus_M
— ¢ Busl_nk
= @ Busi_ny
— @ Inir_Bus
—&DsP
LB Hw
~] =] -
Models | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I IZ: | 1

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Cleaning up wariable channels from the design ... 2
kriting SIR file "/homesspeccddemosVocoderSched.,.comm,=ir", ..

Communicat ion ref inement successfully performed,

Viewy graphical hierarchy

|
4

Like we did after architecture refinement, we browse through the communication model
generated by the refinement tool. We have to first check whether it is semantically and
structurally representing a model as described in our SoC methodology. To observe the
model transformations produced by communication refinement, we need a graphical
view of the model. This is done by left clicking to choose the "Coder™ behavior in the
design hierarchy window and selecting View—sHierarchy from the menu bar.

124

Chapter 3. System Level Design

3.4.4.1. Browse communication model (cont’d)

3=|Coder - VocoderCamm - SpecC Hierd| _|[B1]/x] il EEIH
Window M ion Windows Help =|=] x|
Connectivity g; ||E|E tS::H%) I .l
—————— | Coder 1
Zoam jn Cirl++ IType IPE |Elus | name
Zoom aut Cirl+-
Add level Ctrl+a | Q= (3 Cocer
bodlevel LM+ or hanitor - dt<_mode
Remove level Ctr+R us Stimulus P serial
7 N~
i | DSPSEEO0_BF - speech_sample:
1 ¢ tat_ctrl
I @ Busi_a
I @ Busi_D
= @Busl_MCE
I~ @ BusO_nRD
= @ Busl_n¥R
— @ Intr_Busd_HW
& D3P
L8 Hw
| 0 M [N =
Models | Imports | Sources Hierarchy | Behaviors | Channels | Raw | DSP | Hw

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

¥ sir_rename -i /home/specc/demoNocoderArch,camnm,z=ir -0 fhone/specc/denoNocoderConn,=ir YocoderArch Yocod
erComn

[Ready A

A new window pops up showing the model with DSP and HW components. We have
to observe the bus controllers generated during refinement and the added details to the
model. Hence, we select View—Add level from the menu bar to view the model with
greater detail.

125

Chapter 3. System Level Design

3.4.4.2. Browse communication model (cont’d)

[=[Elf]
Help »|~| x|

Window View | i

Connectivity n Mame Type

Zoom jn Cttl++ _ $Cuder

Zoom out Cirl+- |- db<_mode in bool

e new_frame in event
¢ serial out unsig
e serialhits_ready out even
o speech_samples in bit]1 2:
P tedibe_ctrl out unsig

ol ==

Add level Ctrl+a

Eemove level Cirl+R

- @Bus0_A hit[15:0]

- @Bus0_D hit[23:0]

— @Busi_MCS event

— ¢ BusO_nRD hool

— ¢ Busl_n¥R boal

= @ ntr_BusO_HwW event

& DsP Behaviol
@ oot

|

Writing IR file "home/sahdidemo/YocoderArch.commsir... Done.
| | Communication refinement successfully performed.

[Ready

In the next level of detail, we can now see the interrupt handler "sO_HW_handler" be-
havior added in the master to serve interrupts from the HW slave. To view the actual
wire connections of the system bus, enlarge window and select View—; Connectivity
from the menu bar.

126

Chapter 3. System Level Design

w
SN
IS
w
w
=
o
=
[%2)
D
(@)
o
3
3
c
=
(@)
QD
=,
o
>
3
o
o
ol
—~
(@)
o
=)
~+
o
~

[=[Elf]

Window Miew

=lol |]

|

Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed.

[Ready

The wire level detail of the connection between components can now be seen in the
window. Note that the system bus wires are distinguished by green boxes. Hence we see
that the bus is introduced in the design and the individual components are connected
with the bus instead of the abstract variable channels. On observing the hierarchical
view further, we can see the drivers in each components. These drivers take the original
variables and implement the high-level send/receive methods using the bus protocol.

We have thus seen that the structure of communication model follows the semantics of
the model explained in our methodology. We may complete the browsing session by
selecting Window—;Close from the menu bar.

127

Chapter 3. System Level Design

3.4.5. Simulate communication model (optional)

§| vocodersce - S0C Environment - [Coder - YocoderComm - YocoderComm.sir'] ||Q|E|E
[5] Eile Edit ¥iew Emject Synthesis Walidation | Windows Help == x|
| = [[[é“o] I ¢ B » Enable Instrumentation h o, I .l
B Compile I
Type PE |Bus B
Design ! Simulate | I | | MName
o 2] Vocogerspes. sir Open Terminal & coder
=29 vacaderarch sir Kill simulation ; e db<_mod
FHEE Y ocoderSched.sir I Stimulus o serial
Ty —— Log.. BF | e h
.|« WocaderComm.sir speech_
[Efiliz L bectt_ctr
Analyze — @ Busi_a
Evaluate — @Busl_D
Metrics... ~ @ Busll_M
— ¢ Busl_nk
Show Estimates | & BusO_nt
Estimate — @ Inir_Bus
analyze RTL _gDSP
LB Hw
@ :iop
~ | Ll -] -
Models | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I IZ: | 1

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

¥ sir_rename -i /home/specc/demoNocoderSched ,comm,zir -o Ahomedspecc/denoNocoderConm,=ir YocoderSched Yoo
oderComnn

Compile 4

This section shows the simulation of the generated communication model. If the reader
is not interested, she or he can skip this section and go directly to Section 3.5 Summary
(page 131).

As a direct analogy to the validation of the architecture model, we have a step for val-
idating the communication model. The newly generated model has already been ver-
ified to adhere to our notion of a typical communication model. We must now verify
that the communication model generated after the refinement process is functionally
correct or not. Toward this end, the model is first compiled. This is done by selecting
Validation—Compile from the menu bar.

128

Chapter 3. System Level Design

3.4.5.1. Simulate communication model (optional) (cont’d)

=|vocoder.sce - 30C Enviranment - [Cader - YacoderComm - YocoderComm.si] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
| = [[[=) |l)] I ¢ B » Enable Instrumentation f of, I .l
= Compile 1
Type FE |Bus | |-
Design ! Simulate | Jre | ! LEE
o 2] Vocogerspes. sir Open Terminal & coder
#-29vocoderarch.sir Kill simulation gl_ﬁnitlm - dits_mod
aio; ; T L]
FFESy ocodersched.sir View Log.. L o serial
.|« WocoderComm.sir ¢ speech_
Prafile o bed_ctr
Analyze — @Busd_a&
Evaluate — @Busl_D
Metrics. . @ Busl_M
. — ¢ Busl_nk
Show Estimates L o Bus0_nt
Estimate — @ Inir_Bus
Analyze RTL _8;DSP
LB Hw
@ :iop
|] -
Models | Imports | Sources | Hierarchy | Behaviors | Channels | Raw I IZ: | 1
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Input: "VocoderComm,cc" A
Output ? "VocoderComm,o"
Linking, ..
Input: "VocoderComm,o!
Output ; "VocoderComnm"
Done, JI
Simulate A

The model should compile without errors and this may be observed in the logging win-
dow. Once the model has successfully compiled, we must proceed to simulate it. This is
done by selecting Validation—; Simulate from the menu bar.

129

Chapter 3. System Level Design

3.4.5.2. Simulate communication model (optional) (cont’d)

== - - -
3= | vacoderComm ||g||:|||XI |Q@®

frame=147 encoding delay = 19,89 ms Help lelil
frame=148 encoding delay = 19,89 m=
frame=149 encoding delay = 19,83 ms
frame=150 encoding delay = 19,89 ms T
frame=151 encoding delay = 19,83 ms PE |BUs ||
frame=152 encoding delay = 19,89 ms MName
frame=153 encoding delay = 19,83 ms -
frame=154 encoding delay = 19,89 ms Birsld &Maln
frame=155 encoding delay = 19,89 ms 655 wrap D5 @ local_tbs_mode
frame=156 encoding delay = 19,89 ms - - =
frame=157 encoding delay = 19,89 ms Ed Hi v dt<_mode
frame=153 encoding delay = 19,83 ms I serial_hits
frame=159 encoding delay = 19,89 ms
frame=160 encoding delay = 19,89 m= Trspesch_sample
frame=161 encoding delay = 19,89 ms it _ctrl
frame=162 encoding delay = 19,89 ms S;nger
frame=163 encoding delay = 19,89 ms &monitor
done, 163 frames encoded &Stimulus
ilez src/zpeschfiles/nodtx_good.bit and nodtx,bit are identical
imulation exited with status O
ress return to continue ...

I -~ -] -

Models | Imports | Sources Hierarchy | Behaviors | Channels | Raw | DSP | Hw

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderComm -e /bindsh —o |, AocoderComm sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

[Ready A

An xterm now pops up showing the simulation in progress. Note that simulation is con-
siderably slower for the communication model than for the architecture and communi-
cation model. This is because of the greater detail and structure added during the refine-
ment process. Also, it may be noted that the execution time for encoding each frame
goes up to 19.89 ms from 19.77 ms, which we had for the model before communication
synthesis. This is because communication synthesis replaced the abstract untimed trans-
actions with detailed, timed bus protocols, which introduces non-zero communication
delay. However, the execution time is still well within the 20 ms constraint for encoding
each frame.

With the completion of correct model simulation, we are done with the phase of com-
munication synthesis. Our new model now has two components connected by a system
bus. The model is now ready for implementation synthesis.

130

Chapter 3. System Level Design

3.5. Summary

In this chapter, we covered the system level design phase of our methodology. With the
rise in level of abstraction in system specification, it is no longer feasible to start designs
at cycle accurate level. Instead, the specification should be gradually refined to derive a
cycle accurate model. We saw three major steps in the system level design and synthesis
process.

Architecture refinement took in the system specification model as input. Based on the
profile of the specification, we chose the appropriate components to implement the de-
sired system. We also delved into design space exploration by seeking a purely software
solution. When the software solution turned out to be infeasible, we added a HW com-
ponent to meet the real-time constraint of the design. We also demonstrated the power of
automatic refinement to quickly come up with models and evaluate them, thereby greatly
enhancing design space exploration. In the future, we will look at how to automate the
decision making process, so that the tool can propose an optimal system architecture
based on system constraints and available components.

Architecture refinement was followed by software scheduling and the RTOS insertion
step. Although, for this demo, we did not need to insert any RTOS, it is a feature avail-
able in SCE. It allows for inclusion of useful task scheduling algorithms for dynamic
scheduling. We also provide for static scheduling of tasks on both HW and SW.

The final major step of system level design is communication synthesis. We showed how
the designer can use the database of a variety of bus models to construct a communica-
tion architecture for the design. Once the communication architecture is complete, the
designers can assign abstract data transfers to a communication route in the architecture.
Using automatic refinement in SCE, we showed how the designer could quickly produce
a bus functional communication model and see if it fits the system requirements. This
bus functional model serves as an input to the tasks of custom HW generation and SW
code generation, which are described in the next two chapter. In the future, we would
like to enhance the capabilities of our tool to perform automatic communication syn-
thesis, whereby the tool can generate a good communication architecture and still meet
system specification constraints.

131

Chapter 3. System Level Design

132

Chapter 4. Custom Hardware Design

4.1. Overview

Figure 4-1. Custom hardware generation using SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

timed

SW Scheduling/
RTOS
L]

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

In this chapter, we look at custom HW generation step as highlighted in figure 4-1. The
bus functional model derived from the system level design phase must now be used to
generate custom hardware for HW components. In this phase of RTL synthesis, our goal
is to generate an RTL model that can be fed into industry standard synthesis tools. In this
chapter, we will deal exclusively with behaviors mapped to HW components and show
how a cycle accurate model is derived from a bus functional one.

First, super finite state machine with data(SFSMD) will be generated from the commu-
nication model. Each super state in SFSMD corresponds to a basic block in communica-
tion model and will have only data flow information. The control flow information will
be described among super states of the behavior. Super states in SFSMD will be split
into multiple states during RTL synthesis.

133

Chapter 4. Custom Hardware Design

Second, the RTL units for the custom hardware are allocated. To get some informa-
tion like number of operations, number of variables and number of data transfers in the
SFSMD for the RTL allocation, the designer has to run RTL analysis tool.

Third, scheduling and binding is done by designer or by tools. The scheduling and bind-
ing information will be inserted into the SFSMD model.

Finally, the SFSMD model with scheduling and binding information is refined into a
cycle-accurate FSMD model by RTL refinement tool. The refinement tool will also ger-
erate a cycle accurate model in hardware description languages like Verilog and Handel-
C. The cycle accurate model in Verilog HDL can be used as input to commercial logic
synthesis tools like Synopsys Design Compiler. We also generate the cycle-accurate
model in Handel-C which can be fed into Celoxica Design Kit.

134

Chapter 4. Custom Hardware Design

4.2. RTL Preprocessing

In our design methodology, RTL design is modeled by Finite State Machine with Data
(FSMD) which finite state machine model with assignment statements added to each
states. The FSMD can completely specify the behavior of an arbitrary RTL design.

In this tutorial, we use an intermediate representation, super finite state machine with
data (SFSMD), where each state may take more than one cycle to execute. The SF-
SMD will be automatically refined into cycle-accurate FSMD after RTL scheduling and
binding.

135

Chapter 4. Custom Hardware Design

4.2.1. View behavioral input model

=|wvocodersce - 50C Environment - [Build_Code - YocoderComm - VocoderComm.sif |[=I[ml[>
£2 File Edit View | Project Synthesis Validation Windows Help =|=] x|
| | __Sewee. | EaEEIEEIE
Hierarchy... I
- prme |T5.'pe |F'E |Elus &l Mafie
Design Connectivity. .. C @ i
B [Vocoder, Graphs — | m W eoger Coder Bus & Build_Code
28 1oco Trace.. 125:: N ﬁﬁj@gﬁa}ﬂgﬁﬁﬁ_ gﬁ;o gcod
S |)) - L SIERAENT_WrE codvec
Gluality Metrics... B Al HW_Stanaand HW &h
2= Show Testbench B B 2w codebook AA_WA_Comebook i
= __ b+ B v it codetock AR INIT_Codebook e
tz:2 Show Children m- B cogesook Codeback s1n
T —. B seq7 Cogebook_Seq T &y
— B coge 1ES Code THAR 3obits
Car fr &
Sl Sige
Car i
&
Cotebosk_Seqé /
= | L 1 I~ | -
Models | Imports | Sources Hierarchy | Behaviars | Channels | :I HW I}l -]
..E Campile | Simulate | Analyze | Refine | Synthesize | Shell |
View source 4

Before we show how to generate SFSMD, we take a look at how input model of custom
hardware design. Select the behavior "Build_Code" by left clicking on it. We can take a
look at the behavioral input model by selecting View— Source from the menu bar.

136

Chapter 4. Custom Hardware Design

4.2.1.1. View behavioral input model (cont’d)

|
Mad

[Read

§|ﬁcuﬂer.sce - 30C Environment - [Build_Code - YocoderComm - VocoderComm.sir] |[=I[ml[>
} — o
- Editar
File Edit Search Miew —
=
behavior Build_Code (in Word16 codvec[mMl, bde
fin Wordlg sign[L_SUBFR],
fout WordlE cod[L_SUBFRI,
in Word16 h[L_SUBFR], BC
iout Word16 y[L_SUBFRI,
Jout Wordls indx[101)
Bi
void main(woid)
=[]
Int i, k;
Word16 j, track, index, _sign[NE_PULSE], code[L_SUBFRI, indices[10]1;
Int p0, p1, p2, p3, p4, p3,. p6, p7, pe, po;
Word3z s;
for (i =0; i < L_CODE; i++)
=) i
i codelil =0y
for (i =0; 1 « NE_TRACK; 1++) —
=] i -~
indices[il = -1; JA
for (k = 0; k € NE_PULSE; k++)
= i B
! /% read pulse position */
i = codvec[kl;
St read sign *
j = sianlil;
H - | 1+ oo fal=d =} . /
"-I—' =
[Line: 21 Col: 1 A=
24

The SpecC Editor window pops up showing the source code for behavior
"Build_Code".

137

Chapter 4. Custom Hardware Design

4.2.1.2. View behavioral input model (cont’d)

§|ﬁcuﬂer.sce - S0C Environment - [Build_Code - WocoderComm - VocoderComm.sif] |[=I[ml[>
File Edit Search Miew —
for (k = 0; k € NE_PULSE; k++) &
Desi =l 1 |
-1 St read pulse position */ pde
E i = codvec[k];
At read sign *
i = sionlil; ec
index = mult (i, 6554); £* Index = possSs i
St otrack = poskS tS
track = sub (i, extract_1 (L_shr (L1t (index, 5), 1)));
if (3 > 0)
= i
codeli]l = add (codeli], 4096);
_signlk] = &132;
3
else
S|
codeli] = sub (codelil, 4096);
_signlk] = -8192; —
=~ index = add (index, 8); il
Mod H JA
A c if (indices[track] < 0)
4 = ; -
indices[track] = indesx;
else
=] {
H i S E s P e L+ L% o % fuh] /
"-I—' =
= ILine: 56 Col: 10 =i
[Read 2 A

Scrolling down the window, we can see that the behavior code has loops and conditional
branch constructs. Therefore, our RTL synthesis tool has to handle these constructs.
Close the SpecC Editor window by selecting File—Close from its menu bar.

138

4.2.2. Generate SFSMD model

Chapter 4. Custom Hardware Design

§| vocodersce - S0C Environment - [Code_10i40_35bits - VocoderComm - YocoderComm.sif] |[=I[ml[>
£2 File Edit Wiew Project §ynthesis| Yalidation Windows Help =|=] x|
[B@ S| @ Aocaterss. Be 0
Show Yariables I
@ |T5.'pe IPE |EIL-’_J M
Design Architecture Pluging - el
- 12 Vocogkrspes st B2 architecture Refinement... Coger Bu & cCode_10
oo ; Motornia_ DSPSG6GE_ Wwiag O5F —
DD Vocoderarsi.sir Schedule behaviors.. HI Standand - pHW @ en
S;S; Vocoderscried sir Scheduling Pluging HW_&aﬁdam_mp A & eod
L8|2 Lscodertoms. = - _ARRaA 5 h
sg scheduling Refinement.. 2054 AA_WE Corebook Lo prm
= | codelook AR_INIT_Codebonk e
Allocate Busses... o Codebook _d)x
f5 Show Channels ’, a‘ebooﬁ_.s‘eq? L oﬁgde\
Communication Pluging -~ er & ,v B ox - @dn
8|2 Communication Refinement., |S6_sigw Set_ St — @dnZ
— - cor i Lot fi - gind=
RTL Freprocessing.. searnly_ 10/48 Search 104 Cl | b gipos
Allocats RTL Units... buid_code Buiid_ Code | e pos_r
i qrn o B
Schedule & Bind RTL.. z Codebooh_Seq? / - grr_ /
o T E RTL Plugins - s < P
Models | Imports | Sources [EE BTL Refinement... Bnnels | :I H¥ |:| /
C Caode Generatian...]
X compile | Simulate | &na f c Ca el |
4 Import Decisions...
@ Stop
RTL preprocessing A

Now, we will show how to generate super finite state machine with data (SFSMD).
To demonstrate the features of the our custom hardware synthesis tool, we will use
a particular behavior called "Code_10i40_35bits". Browse the hierarchy in the design
hierarchy window and select behavior "Code_10i40_35bits". We will be demonstrating
RTL design exploration with this behavior in the rest of the chapter.

In the SCE, the step of generating the SFSMD from the behavioral input model is called
RTL preprocessing, which is necessary for RTL synthesis. RTL preprocessing can be
invoked by selecting Synthesis—RTL Preprocessing from the menu bar.

139

Chapter 4. Custom Hardware Design

4.2.2.1. Generate SFSMD model (cont’d)

=|wvocoder.sce - 50C Environment - [Code_10i40_35hits - VocoderComm - YocoderComm.si] |[=I[ml[>
£2 File Edit Wiew Project Synthesis Validation Windows Help =|=] x|
N @ 8| vae X EaEEIEEIE
... [il
. i Mame |T5.'pe IPE |EIL - Mafie
Design & Main
E—Q Vocogerspec s o M coaer Codar f=% SFCUde_‘ID
BH-B2 Uocoderar sir LZ.SP Matorala DSFPIGEGE Wiap OSF - en
B35 VocoaerSahed sir '-_H W HW_ Standam_wisg W & cod
(TR — 9 AW HW Standard W L eh
|5 VocoderComn. B B ar wr codebook AR WR_ Codebook L prm
B B & i codebook AR_INIT_Codebonk e
| RTL Prepr Ly
- d
Behavior: | Cade_10i40_35hits (H) | OEE Bl
@
Clock period: - g@udnz
- gind<
I Keep original behavior — 0.
- @ipos
I Start | Cancel | [~ @pos_r
- et
. £ R
-l | = | | | _-.IJ =
Models | Imports | Sources Hierarchy | Behaviars | Channels | :I HW I}lé

5 Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Frepafing preprocessing... 4

An RTL Preprocessing dialog box pops up for selecting the behavior and its clock
period. Select "Code_10i40_35bits™ as the behavior to be preprocessed and leave the
default clock period of the behavior as 10 ns. Note that the clock period here is used
only for generating a simulatable FSMD construct in SpecC. It does not mean that each
state in the SFSMD model will eventually take 10 ns to execute.

In the dialog box, the option Keep original behavior means that the original behav-
ior definitions for "Code_10i40_35bits™ and its sub-behaviors will be preserved in the
model. Their instances will, however, be replaced by the generated SFSMD behavior
instances in the hierarchy.

Now click Start to begin preprocessing.

140

Chapter 4. Custom Hardware Design

4.2.2.2. Generate SFSMD model (cont’d)

=|vocoder.sce - 50C Environment - [Main - WocoderComm - YocoderComm fmd sir [read-only]] |[=I[ml[>
W File Edit Miew Project Synthesis Validation Windows Help =|=] x|
N H@ 3 oe [X K| EFE] 8¢ o
’ I 7| e
Design
- 12 Vocogkrspes st & ain
B B2 Uscogerams s @ local_dt
B335 VcogerSohed sir O dt+_mod
H-5|8 ViscoderComm sir v serial_hi
v ocoderComm, hspeech_
Open Chbacibe_ctr
SPSEEOO_BF —
Delete Del Sicader
Open Input i40 & monitor
& stimulus
Becreate
Bename...
Change Descriptian...
Statistics. ..
|
=l I = (= I = =
Models | Imports | Sources | Hierarchy | Eehaviars | Channels | Rawr I E: | /
._ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
| e behavior{channel}: Set_Sign_FSMD Al
MWriting SIRE file "shamesspecc/deno/NocoderComm, fendl, sir", ., .,
Tore,
[Ready 4

Note that RTL preprocessing step generates new SFSMDs for 6 sub-behaviors in the
behavior "Code_10i40_35bits", as seen on the logging window. Also note that a new
model "VocoderComm.fsmd.sir" is added in the project manager window. This new
model contains SFSMD behaviors mapped to HW component, which can be seen in
the design hierarchy tree.

Again, we must give our new model a suitable name. We can do this by right clicking on
"VocoderComm.fsmd.sir" and selecting Rename from the pop up menu. Rename the
model to "VocoderFsmd.sir".

141

Chapter 4. Custom Hardware Design

4.2.3. Browse SFSMD model

=|wvocoder.sce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF smosir’] |[=I[ml[>
W File Edit Miew Project §ynthesis| validation Windows Help =|=] x|
N @@ S| Alocate pEs.. Ba 0
B . Gf Show Mariahles I
. . | Type S warme
Desigh architectura Pluging -
- 12 Vocogkrspes st B2 architecture Refinement... Coder & Build_Code,
[e]e] ; Motorois DSFSEEGE W
o83 Lf.or_:oa‘er.ﬁlrra‘?.sxr Schedule behaviors... HW Stardand - o cod
B35 VocoaarSehed sir = cheduling Flus _ABRAST_WEE0 & codvec
518 Vocodertomn. eheduling Flugins - oboon :fg_ﬁngfb) &
PP oo Scheduling Refinement.. |2 WK E08860 LWH _Loaeboo, & indx
s - B ar i cogebook AR IMIT_ Cogeook i
Allocate Busses... - B codebook Codehook d)mgn
[]
@ Show Channals Beg? Coqenook_Seqt Y
B code 1GiAT Ciocte TOMER 35bis
Communication Pluging -~ W cor B x Cor B ok FSMD —
2|8 Communication Refinement... MW set_sigr Set Sign £SME
— : W cor & Cor B FSMD
RTL Preprocessing... MW search THAR Search 1HAR FSMOD
allocate RTL Units... - 5 3
; gp @ FSMD
Schedule & Bind RTL... B seqo Codebooh_Seq? /
] T RTL Plugins - T =]] =]
Models | Imports | Sources R RTL Refinement... iors | Channels I :I HW I}l -
C Code Generation...]
X compile | Simulate | &na F © Co el |
3 Import Decisions...
¥ =ir_rename -i Jhomes: port 2 =zir -o shomedspecc/demo/NVocoderFend, =ir VocoderComm Yocoo
derFznd @ Giop

RTL scheduling and variable & operator binding 4

Select the behavior "Build_Code_FSMD" from the hierarchy by left clicking on it. The
generated SFSMD leaf behaviors may be viewed by selecting Synthesis— Schedule
& Bind RTL from the menu bar.

142

Chapter 4. Custom Hardware Design

4.2.3.1. Browse SFSMD model (cont’d)

=|wvocoder.sce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF smosir’] |[=I[ml[>
AL R scheduling & Binging [ERdRIE

State "'_J Cycle Dest inat.ion Operat ion |Sour‘ce 1 |Source 2 |

Oso Lsa o |- i = codueclk]

Desi

= @s1 L1 [J

E_QV{M Osz L5392 |d

=23 (@33 =L

@s4 L59_3 |d
|
|
|
|

-]

J = =ignl[i]
uild_Code
index = nult (i, 65543 N 1
cod
_tmp_5 = L_mult tindex. D codver
_tmp_d = L_shr (_tmp_ 5, 13 h
_tmp_3 = | extract_1 (_tmp_d) ind
sign
b)

@ss L 594
Oza L_59.5
@s7 L 596

58
- L_s9_7

O S10 | if _status_

Qs £

@s1z goto 510
@513 3

D=1 else
@s15 <

= O S16 goto 511z -

Models I O=17 P ML'A

@515 -
A Compil ©s=19

@sa0
4 =ir @sa bmm Yoco

derFz OSZE
M523 £

Help | 0K, | | Cancel

[Ready A

track = =ub {i. _tmp_37

e b e e L Lo L -

status = > J Q

24

The RTL Scheduling & Binding window pops up showing all the states in the behavior
"Build_Code_FSMD". It also shows all statements for the selected state in the right-
most column. We can go inside each state by clicking on the corresponding circle in the
left-most column. In this screen shot, state S9 is selected. We can see all assignments
with operations and state transitions derived from "if" statements.

Left click on Cancel to close RTL Scheduling & Binding window.

143

Chapter 4. Custom Hardware Design

4.2.4. View SFSMD model (optional)

=|wvocoder.sce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF smosir’] |[=I[ml[>
W File Edit View | Project Synthesis Validation Windows Help =|=] x|
_ Sowee. ¢ EaEEIEEIE
Hierarchy... B I
- Caonnectivity iffLiame |T5.'pe | Mame
Design = T -4 M ain
B 13 Vocoger, Graphs - L | Coger & Build_Code,
BFES oo Trace.. DSP Motorols_DSPIE6ET_ & cod
B . . 1 Al HW_Standamn_ weap o7 codvec
g Gluality Metrics... B @ Sl HW_ Standard &h
. 2= Show Testbench B B ar wr codebook AR_WA_Cogebook P indx
= - b+ B o i codebook AR_INET_Codebook i
tz:: Show Children B 8 codebaok Codetooh sign
T —. B seq7 Codebook_Seq T &y
— B code 1GiAT Coge TG 35bits
Cor 1 % FSMO
Sel_Sign_FSMO
Cor f_ FSMD
Saarly THAG FEMD
Bufid_ Code_FSMD
& 5 FEMD
Codebook_Seqs /
] I == I = | =
Models | Imports | Sources | Hierarchy | Eehaviors | Channels | :I H I: |]
..E Campile | Simulate | Analyze | Refine | Synthesize | Shell |
: ¥ =ir_rename -i Shomesspecc/demosVocoderComm,femdl,=ir -0 Jhomesspecc/demo/NocoderFend,zir VocoderLComm Yoco
derFamnd
Wiew source 4

We browsed through the newly created model in the RTL Scheduling & Binding win-
dow. In addition, we can also view the source code of the model. Note that if reader
is not interested, she or he can skip this section to go directly Section 4.2.5 Simulate
SFSMD model (optional) (page 147).

Select behavior "Build_Code_FSMD" by left clicking on it. We now take a look at the
source code to see if the RTL preprocessing tool has correctly generated the SFSMD
model. Do this by selecting View—;Source from the menu bar.

144

Chapter 4. Custom Hardware Design

4.2.4.1. View SFSMD model (optional) (cont’d)

File Edit Search Yiew

|Mr.sce - S0C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderFsmd sir’] ([=I[=l[><]

behavior Build_Code_F5MD(
in short int codvec[10],
in short int signl401,
out short int cod[40]1,
in short int h[401,
out short int v[401,
out short int indx[101)

=

void main(void)

short int _sign[101;
unsigned bit[0:0] _status_;
short int _tmp_11;
short int _tmp_12;
int _tmp_14;

short int _tmp_15;
int _tmp_17;

int _tmp_18;

short int _tmp_19;
int _tmp_2;

=] short int _tmp_20;
short int _tmp_21;
int _tmp_23;

int _tmp_25;

short int _tmp_26;
short int _tmp_28;
int _tmp_29;

short int _tmp_3;
short int _tmp_30;
int _tmp_31;

int _tmp_33;

=

£

<|;'|?|:1; int tmn 34:
=]

=

[Line: 4408 Col: 1 A

Reay

The SpecC Editor window pops up

"Build_Code_FSMD".

showing the source code for behavior

145

Chapter 4. Custom Hardware Design

4.2.4.2. View SFSMD model (optional) (cont’d)

| vocader.sce - SaC Environment - [Build_Corde_FSMD - YVocoderFsmd - YocoderF smd.sir’] ([=I[=l[><]

| VocoderFsmd.si - SpecC Editor

File Edit Search Yiew

int =
short int track;

miol |||

Fsmd(10u)
H

m

L_52_0: _status_ =1 « 40;
if (_status_)
H

goto 53;

else

Z]

goto 54;

H

3
53:
H
L_53_0: codeli]l = 0;
L_S3_1: i+ ;

=

£

F—

=

[Line: 4418 Cal: 25 A

Reay

The behavioral input model is changed to the SFSMD model with clock period 10 ns.
Scroll down the window to find loops and conditional branch constructs in the behavioral
input model are changed to state transitions. Still, each state has a lot of assignments and
operations, which have to be scheduled and bound.

Close the SpecC Editor window by selecting File—Close from the menu bar.

146

Chapter 4. Custom Hardware Design

4.2.5. Simulate SFSMD model (optional)

=|wvocoder.sce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF smosir’] |[=I[ml[>
W File Edit Wiew Project Synthesis Vglidationlﬂindnws Help =|=] x|
N BHE@| S| o & 3B - Enable nstunentation | ¢ | .l
3 Compile I I
= Type =
Design Simulate | Marie
- 12 Vocogkrspes st Open Terminal - Codear & Build_Code,
B B2 Uscogerams.sir Kill simulatian [Matorta_ OSPSEEGE_M & cod
B35 VocoaerSahed sir ey lLag HW_SHanaan_wisg & codvec
BF2|2 VocoderComm sir = HW Standand &h
PP — Brofile - codebook AR WH Codebook A indx
&% ocoderF smad sir anal i coqebook AR _INIT_Cogebiook s
Analyze poebook Codebook sign
Evaluate E seq? Codebaok_Seq? &y
Metrics. . Loge TR Ciocte TOMER 35bis
Cor 1 5 FSMD
Show Estimates ‘563.—57?5 FSide
Estimate Cor i FSMD
Search THAG FSMD
Analyze BTL) Code o
@ siop &g FSAMD
— Codebook_Seqs /
] I == I = | =
hodels | Impars | Sources | Hierarchy | Behaviors | Channels | :I Hw' |: |
..E Campile | Simulate | Analyze | Refine | Synthesize | Shell |
: ¥ =ir_rename -i Shomesspecc/demosVocoderComm,femdl,=ir -0 Jhomesspecc/demo/NocoderFend,zir VocoderLComm Yoco
derFamnd
Compile /

For demo purposes, we will skip the SFSMD generation of those other behaviors as-
signed to HW component. Even this partially refined model is actually simulatable. To
show this, first compile the model by selecting Validation—Compile from the menu
bar.

If reader is not interested, she or he can skip this section to go directly Section 4.2.6
Analyze SFSMD model (page 150).

147

Chapter 4. Custom Hardware Design

4.2.5.1. Simulate SFSMD model (optional) (cont’d)

= | vocoder.sce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF sm.sif |[=I[ml[>
W File Edit Wiew Project Synthesis Vglidationlﬂindnws Help =|=] x|
Ne B | @l) @ | 3¢ B - Enable Instumentation | ¢ | .l
: 3 Compile I I
= Type =
Design Simulate | Marie
Hﬂ_g Vipcoderspes sir Cpen Terminal - Codar SiBuiId_Cnde,
B 22 Vncogerarei sir Kill sirmulatian [Matorala DSPIGEEE W ¢ cod
B35 VocoaerSahed sir ey lLag HW_SHanaan_wisg & codvec
BF2|2 VocoderComm sir = HW Standand &h
PP — Brofile - codebook AR WH Codebook A indx
&% ocoderF smad sir anal " coqebook AR _INIT_Cogebiook i
Analyze poebook Codebook sign
Evaluate E seq? Codebaok_Seq? &y
Metrics. . Loge TR Ciocte TOMER 35bis
W cor i x Cor f_x FSMO
Show Estimates L i ‘563.—57?5 FSide
Estimate Cor i FSMD
Search THAG FSMD
Analyze BTL Z 7]
@ siop &g FSAMD
1 & eyl Codebooh_Seql /
] I == I = | =
Models | Imports | Sources | Hierarchy | Eehaviors | Channels | :I HW Illi
..E Campile | Simulate | Analyze | Refine | Synthesize | Shell |
: Input: "VocoderFsnd,cc" Al
Output ; "VocoderFsmd,o"
Lirking,..
Input: "VocoderFsmd,.o"
Output; "VocoderFsmd"
Tore., J
Simulate A

Note that the SFSMD model compiles correctly into executable "VocoderFSMD" as
seen in the logging window. We now proceed to simulate the model by selecting
Validation— Simulate from the menu bar.

148

Chapter 4. Custom Hardware Design

4.2.5.2. Simulate SFSMD model (optional) (cont’d)

§| vocodersce - SoC Environment - [Build_Code_FSMD - VocoderFsmd - WocoderFsmd.sif] |[=I[ml[>
Help |~ x|
N frame=147 encoding delay = 17,08 me
EE frame=148 encoding delay = 17,09 ms i I
—| |fram==143 encoding delay = 17,05 ms Type - Nate
0| [frame=150 encoding delay = 17,05 ms
frama=101 encoding delay = 17,05 ms p
E frame=152 encoding delay = 17,05 ms Coger SFEIUIId_CUde.
frame=153 encoding delay = 17,05 ms Motorols_OSPI66GE_ W & cod
frame=104 encoding delay = 17,05 ms HW_ Standand wrap & codvec
frame=155 encoding delay = 17,05 ms HW Standa &h
frame=156 encoding delay = 17,05 ms -
frame=157 encoding delay = 17,05 ms AR_WE_Codebook G i<
frame=158 encoding delay = 17,05 ms AR_INIT_Codebook d’jsign
frame=153 encoding delay = 17,09 ms Codefaak
frama=160 encoding delay = 17,05 ms Codebook_Seqi Cﬁ]y
frame=161 encoding delay = 17,05 ms Y ;
frame=162 encoding delay = 17,05 ms Ccideg mxi%ﬂi?xm
frame=163 encoding delay = 17,06 m= i 7};
Sett Sigr_F5ME
done, 163 frames encoded Cor B FEMD
Search 164G FSMD
iles srocispeechfilesdnodtx_good,bit and nodtx,bit are identical =
imulation exited with status 0 = =
resz return to conkinue L, ., _JZ_F
Codebook_Seql /
=] I =M= I = | =
Madels | Imports | Sources | Hierarchy | Behaviars | Channels | :I H I}l -

5 Compile | Simulate | Analyze | Refine | Synthesize | Shell |

4 wterm -title VocoderFamd -e /hindsh —o | /VocoderFamd srodspeechfiles/spoch_unx, inp nodbx,bit nodbx aa dif
t -z srodspeschf iles/noditx_good,bit nodtx,.bit: echa "Simulation exited with statuz #7?" fecho "Press return
to continue .,." :read conficm

[Ready

)

The simulation window pops up showing the progress and successful completion of sim-
ulation. We are thus ensured that the SFSMD generation step has taken place correctly.
Also note that we can perform the SFSMD generation on any behavior of our choice.
This indicates that the user has complete freedom of delving into one behavior at a time
and testing it thoroughly. Since the other behaviors are at higher level of abstraction, the
simulation speed is much faster than the situation when the entire model is synthesized.
This is a big advantage with our methodology and it enables partial simulation of the de-
sign. The designer does not have to refine the entire design to simulate just one behavior
in RTL.

In this simulation, we see the delay per frame in the SFSMD model decreases to 17.05 ns
from 19.89 ns compared to the communication model. Because each state in the SFSMD
model is artificially assigned a 10 ns clock period even though it has a lot of assignments
and operations to be split into multiple states by scheduling and binding.

149

Chapter 4. Custom Hardware Design

4.2.6. Analyze SFSMD model

%choder.sce - SoC Environment - [Code_10i40_35hits - YocoderFsmd - YocoderFsmd sir] || =I[3l[x
W File Edit View Project Synthesis Vglidationlﬂindows Help =|=] x|
| N E’;I o [@l iy [3¢ E = Enable Instrumentation § ¢f [.l

3 Compile | I
= Type o
Design Simulate MName
B 2] Vocogkrspec. sir Open Terminal = Codear & Code_10
B8 UoeoderAreh.sir Kill simulation I= Motoraia_DSPS6665_1W L en
W55 VpcadrSohed sir . HW_Standam wrap Lo cod
aa . View Log.. HW_ Standant
B3| VocoderComm si - i h
Py P—— Brofile - Lodehook AR WA Codaposk Lo pr
vocoderFs Al - it comebook AR _INIT_Codehook &
finalyze baebook Codebook e
Evaluate Codebook Seqt 7y
Metrics... @ U SERES - @ coder
. Cow fr % F5 = @dn |
Show Estimates Set_Sign_FSMD L odnz
Estimate Cor i FSMD - g inds
Search_TOIAG_FSMD L oipos
Aanalyze BTL By Code FSMD | opos 1
@ stop o FSvD L -
— Codebook_Seqs or 1
-1 I = =T T = | =
Models [Imports | Sources | Hierarchy | Behawiors || Channels | HW
| o 104

._ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |

: % wterm -title VocoderFsmd - /bindsh -o | /ocoderFsnd src/speschfilesdspoh_unx, inp nodbx,bit nodbx sa dif
f -z srocsspeechfileshodtx_good,.bit nodtx,bit? echo "Simulation exited with status $7?" :echo "Press return
to continue ,.." :resd conficm

Callect RTL stafistics

)

Once the SFSMD model is generated, we need to allocate RTL components. For al-
location, we need to get some statistical information on design. The statistical infor-
mation contains the number of operations for functional unit allocation, the number of
live variables for storage unit allocation and the number of data transfers for bus allo-
cation and the number of operations in critical path in each state. These kind of useful
information can be obtained by performing RTL analysis. First we select the behav-
ior "Code_10i40_35bits", of which we want to get the statistical information. The RTL
analysis is performed by selecting Validation—Analyze RTL from the menu bar.

150

Chapter 4. Custom Hardware Design

4.2.6.1. Analyze SFSMD model (cont’d)

Environment - Q@IX
W File Edit View Project Synthesis Validation Windows Help =|=] x|
D2 8d 8 ve| x K| EFE] B @ | 0
By B x| L
- || ame |Type - ame
Design A ain
W13 VocoerSpec siv o M cower Coder & Code_10
EE Voeadardrms siv 2258 Miotorois DSPIE6EE 1 o en
W55 VpcadrSohed sir ;_H W HW_Standam_wrap L cod
L am : & LW HW Standant o
B3 VacoderConm i . HE R 2 AR WA Codebook L prm
B B 3¢ it codebook AR_INIT_Codebook o
M- B codebook Codetook e
Codebaok_Seq? =y
- @ codes
Cor iy FSMD modn]
Sef_Sign FEMD L g dnz
Cor # FSMD L o incx
Sosrch THAR FSMD L ipos
Buitet Coge_FSMD L pas 1
a5 FSMD GP0E_
Codebook_Segé Al re" |
~l | =l | &8 | - | =N =
Models | Imports | Sources | Hierarchy | Behawiors || Channels | :l Hi |: |

X Compile | Simulate | Analyze | Refine | Synthesize | Shell |
*¢xx cloulabing power il
*¥% hehavior: Search_10id0_FSHD

#=x% calculating critical path delay
##xx caloulating power

#% phehavior: Set_Sign_FSHMD

==xx caloulating critical path delay |
#=x%% caloulating power

|Ready

RTL analysis tool goes over all sub-behaviors in the behavior "Code_10i40_35bits", and
generates their statistical information for the allocation.

151

Chapter 4. Custom Hardware Design

4.2.6.2. Analyze SFSMD model (cont’d)

|wocodersce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsmd.sir] || =I[3l[x
W File Edit View Project §ynthesis| Walidation Windows Help =|=] x|
D @[S0 AlocaepEs. B0
oy GF Show Yariahles I
. . | Type S ame
Design Architectura Plugins -
B 2] Vocogkrspec. sir B2 architecture Refinement... Coder &»Build_Code
[e]e] ; Motorois DSFIE6GRE 1
E‘E‘ Vocoderarie.siv Schedule behaviors.. HW Stardant - o cod
W55 VpcadrSohed sir scheduling Pl _Standam_wiap " codvec
318 VoosaerComsm. Eheduling Flugins - b :fg_uifngjfb) &
=8 Seheduling Refinement.. S/ SOXen00 LW Logenos, i
R I B ar i cogebook AR IMIT_ Cogebosk i
Allocate Busses... F B cogehiood Codebhook e #an
[]
{3 Show Channels Boegr Codepook_Seq7 ¥
B code roAR Ciode TOfA0 Fobids
Communication Pluging -~ W cor v x Cor & % FShD
2|8 Communication Refinement... M st sigr Set Sigrn FSME
— : W cor & Cor i FSMD
RTL Preprocessing... M seavct TGIAR Search THIAR FSMO
Allocate RTL Units.. v 4 £ S0
] g p &g PSSO
Schedule & Bind RTL... o8 seql Codebook_Seqe ;
] T RTL Plugins - T =]] I=]
Models | Imports | Sources [BTL Refinement... iors | Channels I :I Hw I:l]
C Code Generation...]
X | Compile | Simulate | Ana facca ell |
| [¥=== calculatinz power Import Decisions... i
#% hehavior: Search_10:
* - Sio
#==xx% calculating critic . an

##xx caloulating power

#% phehavior: Set_Sign_FSHMD
==xx caloulating critical path delay |
#=x%% caloulating power

RTL scheduling and variable & operator binding

In order to look at RTL analysis result for the behavior "Build_Code FSMD", select
Synthesis—Schedule & Bind RTL from the menu bar.

152

Chapter 4. Custom Hardware Design

4.2.6.3. Analyze SFSMD model (cont’d)

§| yocodersce - S0C Environment - [Build_Code_FSMD - VocoderFsmd - VocoderFsme 5ir] || =I[3l[x
Ll B 1L Scheduling & Binding x|} =3l =
|D ______ D _____ I - State | Operations |\fariables |Transfers |Delay |Power I R [J Cycle Destinat
Qa0 [| 3 0 000ns O0O00W Lsao [0 [5 i e
DIZ:0E] @51 iy | 4 2 000ns 000w Leat lu [0 2 KT | E—
LS CE | 1l 4 3l 100ns] 100w Toa o L —— {5 |juid_Coce,
=3[@33 |l il | 4 sl toons] 100w — 0__{ cod
Q54 ol z ooons ooow | |[ES98 [0 G -EP- B cadvec
@s5 | 10 4 sl 1oons] 100w Lsad [d [o 5 -tee |ph
@s5 | | 4] 7 k00 ns | 200w Lsas [4 [3 -tee [[Find
@s7 iy | 4 Z 000he 0.00DW Leoe 0 [4 trad sign
(SN | il | 4 s 1oons] 100w —— — 1 ¥
Lsa 7 |d [o _statu
BN DR iy /
@310 d B 12l 1oans] toow [T
oAl | Sl B 17l 100ns] 300w
@s1z] N 6]l 1.00ns] 100w
@313 ol | 3 000ns 0.00W
(SRt | S 0 12 R ns 00w
@315 Il) s oons] zoow
] @316 | 4] 6l 1.00ns] 100w =
Models @317 | kY | 12l 100ns] 100w L
| Vodes | os1: [l N] | 15 [0 ns[400w —,-5|4_
| [Campil @s19] N | Y | 12 10ons] t00w
| =] |@s20] il | 4] 6l 1.00ns] 100w -
s bet| [@521] 11 4| 2 100ns] 100w
sexx o | |@szz |G 0 [B R
wewn d| @zl 1 Y | A 1nnnst 1nnw A RI—— =
*% pheH
sxxx g Help | ok | cancel N
] wwww] 4 /
[Ready A

The RTL Scheduling & Binding window pops up showing the statistical information
for the selected behavior. From left to right in the left panel of the RTL Scheduling &
Binding window, it shows number of operations (Operations column) in each state,
number of variables (Variables), number of data transfers (Transfers), number of oper-
ations in critical path (Delay), and power dissipation (Power).

153

Chapter 4. Custom Hardware Design

4.2.6.4. Analyze SFSMD model (cont’d)

§|ﬂcoﬂer.sce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - VocoderFsmd.sir] || =I[3l[x
i] FTL Scheduling & Binding x|} =
|D =4 I st)) A1l ;
__ ate | Operations | Yariahles |Transfers | Delay | Foueer I 5] Cycle Dest inat.
@s0 [| 3 0 000ns 0.00W Lsao [0 [5 i 5
Design @s oy | 4 2 000ns 0.00W A i
: : Lsat |4 [I B
= £ Ve 52 1 4 3] 100ns] 00w ——— {——— [puild_Code
Lsa2 |d o & inde:
=82 @33 11 1l s 100ns] 100w = = cod
D54 iy | 4 2 000ns 000w LS9 |4 |0 5 P |BPcodvec
@s5 | 10 4 sl 1oons] 100w Lsad | [0 5 -tee |Eh
@s5 | | 4] 7 k00 ns | 200w Lsas [4 [3 -tee [[Find
@s7 o [l 4 2 o00ne 000w Looe 0 b4 tred || 097
(SN | il | 4 s 1oons] 100w i — 1 i
Lsaz 4 [0 —statu
(e W o R | 7
I] =
Os10 [mult,C_mult,_shr extract_sun,-j 100 nsi 1.000W
oAl | “H W Tl 100ns]] 300w
@s1z] N 6]l 1.00ns] 100w
@313 ol | 3 000ns 0.00W
(SRt | S 0 12 R ns 00w
@315 Il) s oons] zoow
] @316 | 4] 6l 1.00ns] 100w =
Models | @317 | kY | 12l 100ns] 100w L I' |
@s: 1l ' | 15 R ns| 400w =
X [Garpil @s19] N | Y | 12 10ons] t00w
| =] |@s20] il | 4 6l 1oons] 100w -
s bet| [@521] 11 4| 2 100ns] 100w
sex= d| |@szz [IIIE 0 iE I c: [1o00 ns[000w
wewn d| @zl 1 IR | A 1nnnst 1nnw A RI—— =
=% e
sxxx g Help | ok | cancel N
wwww]
2 /
|Ready 4

Moving the mouse over the bars in the graph gives us detailed information on each
category. For instance, if we put the mouse over the Operations column in each state,
the operations which are executed in the state will be shown like mult, L_mult, L_shr,
extract_I, sub and > in state S9.

154

4.2.6.5. Analyze SFSMD model (cont’d)

Chapter 4. Custom Hardware Design

[BETES
>|x| %
e . . 3 -
State | Operations |\far|ables |Transfers |Delay |Power I [a Cycle Destinat
Qa0 [| 3 0 000ns O0O00W Lsao [0 [5 L e
Design @s oy | 4 2 000ns 0.00W S i
: : Lsal 4 o I B
m-Hed| |@sz || 1 B sl roons| voow | ISR g fulCode
mEa{| |@s3 1 | 4 sl 1o00ns] 100w ==& —{ cod
D54 iy | 4 2 000ns 000w LS9 |4 |0 5 P |BPcodvec
@s5 | 10 4 sl 1oons] 100w Lsad | [0 5 -tee |Eh
@s5 | | 4] 7 k00 ns | 200w Ls9s [4 e it
—— sign
Sl @ SRR | (o N B (2
. ng . —
& _statu
=00 W Lsa7 [0 [0 5
@s10 100w =
oAl | 300w
@s1z] 1.00 W
@313 0.00 W
(SRt | 300w
@315 zoow
] 8515= 1.00 W =
Madels I =17 . 1.00W e
os1: [l N] | 15 [0 ns[400w —,-5|4_
Compil @s19] N | Y | 12 10ons] t00w
= [@s20] 11l Y | el 1000 100w -
s bet| [@521] 11 4| 2 100ns] 100w
wexx o |@szz [E . BT B - B (o0 ns[i000w
wewn d| @zl 1 IR | A 4nnnst 1anw A R -
*% pheH
*xww] Help | Ok | Cancel J
wwww]
i £
|Ready A

If we move the mouse over the Variables column in each state, the variables which are
live at the end of the state will be shown like code, i, index, indices, k, and track in state

SO.

155

Chapter 4. Custom Hardware Design

4.2.6.6. Analyze SFSMD model (cont’d)

§|ﬂcoﬂer.sce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsmd sir] || =I[3l[x
Ll B 1L Scheduling & Binding x|} =3l =
|D ______ D _____ I - State | Operations |\fariables |Transfers |Delay |Power I R [J Cycle Destinat
Qa0 [| 3 0 000ns 0.00W Lsao [0 [5 i 5
Design o= iy | 4 2 000ns 0.00W Lsat |la b 2 -
59 0 I B
LS CE | 1l 4 3l 100ns] 100w Toa o L —— {5 |juid_Coce,
=3[@33 |l il | 4 sl toons] 100w — 0__{ - cod
D54 iy | 4 2 000ns 000w ol o O Mt codvec
@s5 | 10 4 sl 1oons] 100w Lsad | [0 5 -tee |Eh
@s5 | | 4] 7 k00 ns | 200w Lsas [4 [3 -tee [[Find
@s7 iy | 4 Z 000he 0.00DW Leoe 0 [4 trad sign
@s3 | 11 4 sl 1o0ns] 100w — — o P
so NNl BN NEEL R s P g -
@310 d B foad 15, wiie g M5 100 W [
oAl | Sl B 0 ns| | 3.00 W
@s1z] N 6]l 1.00ns] 100w
@313 ol | 3 000ns 0.00W
(SRt | S 0 12 R ns 00w
@315 Il) s oons] zoow
] @316 | 4] 6l 1.00ns] 100w =
Models | @317 | kY | 12l 100ns] 100w L I’ |
@s: 1l ' | 15 R ns| 400w =
| [Campil @s19] N | Y | 12 10ons] t00w
| =] |@s20] il | 4] 6l 1.00ns] 100w -
s bet| [@521] 11 4| 2 100ns] 100w
wexx o |@szz [E . BT B - B (o0 ns[i000w
wewn d| @zl 1 IR | A 1nnnst 1nnw A RI—— =
*% pheH
*xww] Help | Ok | Cancel J
wwww]
2 /
|Ready A

If we move the mouse over the Transfers column in each state, the data transfers hap-
pens at the state will be shown. In state S9, the number of read transfers is 15 and the
number of write transfers, 8.

Left click on Cancel to close the RTL Scheduling & Binding.

156

Chapter 4. Custom Hardware Design

4.3. RTL Allocation

RTL allocation is one of important steps for custom hardware design. It is to select
number of RTL components for the design, while meeting various constraints. For RTL
allocation, we need to get a statistical information on the design.

The statistical information contains the number of operations for functional unit allo-
cation, the number of live variables for storage unit allocation and the number of data
transfers for bus allocation and the number of operations in the critical path in each state.
These kinds of information can be obtained by performing RTL analysis.

157

Chapter 4. Custom Hardware Design

4.3.1. Allocate functional units

%choder.sce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsmd sir] || =I[3l[x
W File Edit View Project §ynthesis| Walidation Windows Help =|=] x|
: allocate PES... 18 ® | .|
. Gf Show Yariahles I
. . | Type S ame
Design Architectura Plugins -
B 2] Vocogkrspec. sir B2 architecture Refinement... Coder &»Build_Code
[=l] ; Miotorois DSPIE6EE 1
88 Lf:oe:‘aaferﬂmﬁ.s.fr Schedule behaviors... HW Stardant - of cod
BE 5 VpooaerSehed.sir < cheduling Flus _HEnaan_wrap 7 cadvec
3 Vococercomn, STEMMMOPNONS oy A St &
R Cici Soheduling Refinement.. S/ SOXen00 LW Logenos, i
e I B ar i cogebook AR IMIT_ Cogebosk i
Allocate Busses... F B cogehiood Codeiook e sign
[}
{3 Show Channels Boegr Codepook_Seq7 ¥
B code roAR Ciode TOfA0 Fobids
Communication Pluging W cor b x Cor B ox FEMOD —
2|8 Communication Refinement... M st sigr Set Sigrn FSME
— : W cor & Cor i FSMD
RTL Preprocessing... M seavct TGIAR Search THIAR FSMO
Sllocate RTL Units... v FCoge_FSMD
- qp & FSMD
Schedule & Bind RTL... B seqo Codebook_Seqe ;
] T RTL Plugins - T =]] I=]
Models | Imports | Sources [BTL Refinement... iors | Channels I :I Hw Illﬁ
C Code Generatian. .]
X compile | Simulate | na 8 € C0 ell |
| [¥=== calculatinz power Import Decisions... i
#% pehavior: Search_10:
* - St
#==xx% calculating critic . an

##xx caloulating power

#% phehavior: Set_Sign_FSHMD
==xx caloulating critical path delay |
#=x%% caloulating power /

RTL unit allocation A

After we produce a valid SFSMD model during preprocessing step, the next step is to
allocate RTL components for HW part of the system. The allocation will be guided by
RTL statistical information. To perform the allocation, select Synthesis— Allocate
RTL Units from the menu bar.

158

43.1.1.

W8 File Edit Miew Project Synthesis Validation Windows

Design

- £3) lived
B8

Chapter 4. Custom Hardware Design

Allocate functional units (cont’d)

Hel

=
px|xlx

\TL Component Allocation

Mama | Type Frecision

Parameters...

me

uild_Code
cod
codvec
h
i
sign
Y

)

An RTL allocation window pops up just like for components and busses. left click on
Add to see the include units from the database into the design.

159

Chapter 4. Custom Hardware Design

4.3.1.2. Allocate functional units (cont’d)

. TEs: - Width Precision i
Functional Uni i 32 hits

32 hits

Register File
Bus 5
Memary 5
Register 32 hits
32 hits
32 hits

[Reamy

)

A RTL Unit Selection window pops up for RTL unit selection. There are various cate-
gories for the RTL components listed on the left-most column. Left click on "Functional
Unit" to see the functional units and their parameters in the right-most column. In this
tutorial, we will select 3 functional units: "L_unit" and "op_unit" for saturated arith-
metic operations and "alu" for the other operations. To select an alu, left click on "alu"
and click on OK to add it to RTL Unit Selection window.

160

Chapter 4. Custom Hardware Design

4.3.1.3. Allocate functional units (cont’d)

Mama | Type

=
Help =|~| %]

me

uild_Code,
cod

Bitwicith:

Help |

B Tore

| (014 I Cancel |

codvec
h

i
sign

Y

Parameters...

za dif

return

|Ready

)

A new property box for the alu component pops up and shows the configurable parame-
ters. In case of alu, bit width is the configurable parameter. Left click on OK to use the

default value of 32 bits.

161

Chapter 4. Custom Hardware Design

4.3.1.4. Allocate functional units (cont’d)

=
W File Edit View Project Synthesis Validation Windows Help =|=] x|
\TL Component Allocation
e
Design
E—Vocc Precision uild_Code,
== alu_32 3E hits 0 hits 1 words cod
=]=]
codvec
h
i
Y
1 =
Models Ii
X Compil
Chel
Man|
Wit in
Ot
Parans
Dore .,
|Ready A

The allocated alu component will be shown in the RTL Component Allocation window.
Left click on Name column of the allocated alu to rename it to ALUL.

We may repeat the last procedure to allocate more RTL components from the database.

162

Chapter 4. Custom Hardware Design

4.3.1.5. Allocate functional units (cont’d)

[=[[Eix]
W File Edit View Project Synthesis Validation Windows Help =|=] x|
\TL Component Allocation
e
Design
E_Vo“ Type Width Precision uild_Code|
gg alu_32 32 hits 0 hits cod
L_unit_3& 32 hits 0 bits codvec
ap_unit_32 ae hits 0 hits i h
i
Y
=] =
Madels Ii
X compil
: R
Che
Man|
Wit in
Ot
Parans
Done .,
|Ready A

In this way, we can allocate an "L_unit" and an "op_unit" and rename them to ALU2
and ALUS3 respectively.

All desirable functional units for hardware implementation have now been selected.
However, we also need storage units like register files and memory. Left click on Add.

163

Chapter 4. Custom Hardware Design

4.3.2. Allocate storage units

] 16 words 0

32 hits int

=
=

!
)

Left click on "Register File" to see the various register files and their properties. Left
click on "RF" to select register file and click on OK to add it to RTL Unit Selection
window.

164

Chapter 4. Custom Hardware Design

4.3.2.1. Allocate storage units (cont’d)

(=3[
W File Edit Wiew Project Synthesis Walidation Windows Help =] =
Design &
LR, uild_Code
i'gg cod
codvec
Bitwicith: 32 hits h
Size: 16 words i
son
Y
1
hModels Iﬂ
b Compil Help | | (0] 4 I Cancel |
Chel A
H Hary
Writin
Ouit]
Parang
Dore ,
[Ready A

A new property box for RF component pops up and shows the configurable parame-
ters. In case of RF, address width and size of register file as well as bit width are the
configurable parameters. Left click on "Address width" to change 4 bits to 5 bits.

165

Chapter 4. Custom Hardware Design

4.3.2.2. Allocate storage units (cont’d)

(=3[
W File Edit Wiew Project Synthesis Walidation Windows Help =] =
Design e
LR, uild_Code
i'gg cod
Address width: S hits codvec
Bitwicith: 32 hits h
Size: 32 il
oo
Y
1
hModels Iﬂ
X compil Help | | Ok I Cancel |
Chel Z
* Han|
Writin
Ouit]
Parang
Dore ,
[Ready P

Since the address width is changed to 5 bits, the allowed address space is 32 words. Left
click on size to change 16 words to 32 words.

Left click on OK to add RF to RTL allocation.

166

Chapter 4. Custom Hardware Design

4.3.2.3. Allocate storage units (cont’d)

[=[[Eix]

W File Edit Wiew Project Synthesis Walidation Windows Help =] =
\TL Component Allocation
e
Design
& 3 Vocd Type Witith Pracision Size uild_Code,
@.gg alu_3z2 32 hits 0 hits i 1 words cod
L_unit_32 32 hits 0 hits i 1 words codvec
op_unit_32 32 hits 0 hits 1 words h
] 32 hits 0 hits g s —
s
Y
]
hModels Iﬂ
X Compil
: Chl
Mar|
Writin
Ouit]
Parang
Dore ,
[Ready A

The selected RF component will be shown in the RTL Component Allocation window.
Left click on Name column of the allocated RF to rename it to RF1.

167

Chapter 4. Custom Hardware Design

4.3.2.4. Allocate storage units (cont’d)

[=IBIX]
W File Edit Wiew Project Synthesis Walidation Windows Help =] =
\TL Component Allocation
Design "
& 3 Vocd Type Witith Pracision Size uild_Code,
@.gg alu_3z2 32 hits 1 words cod
L_unit_32 32 hits 1 words codvec
op_unit_32 3E hits 1 words h
RF_32_32_13 32 hits 32 words indx
RF_32_32_5 32 hits 32 words sign
RF_32_32_35 32 hits 32 words yg
]
hModels Iﬂ
X Compil
I e
Mar|
Writin
Ouit]
Parang
Dore ,
[Ready A

For the purpose of this design we will need 3 register files to perform RTL synthesis.
To add more register files in the allocation table, simply Left click on Copy by 2 times.
This is a useful way to replicate components for large sized allocations.

Now, we have allocated 3 register files. In the similar way, we can allocate a memory
component.

168

Chapter 4. Custom Hardware Design

4.3.2.5. Allocate storage units (cont’d)

[=IBIX]
W File Edit Wiew Project Synthesis Walidation Windows Help =] =
\TL Component Allocation
Design "
& 3 Vocd Type width | Precisio Datatype| Size uild_Code,
@.gg alu_3z 32 hits i 1 words cod
L_unit_32 32 hits 1 wards codvec
op_unit_32 3Z hits 1 words h
RF_3Z_32_%4 3E hits i 32 words indx
RF_32_32_5 32 hits i 32 words sign
RF_32_32_3 32 hits i 32 wards 8
mem_32_#36_8 3& bits i 236 words ¥
]
hModels Iﬂ
X Compil
: Chel
Mar|
Writin
Ouit]
Parang
Dore ,
[Ready A

In the "Memory" category, we select the "mem" type memory. Its size is 256 words, and
then its address width is 8 bits. Also its bit width is 32 bits.

We are now done with storage unit allocation and we have to allocate busses for data
transfers between storage units and functional units. Left click on Add to add more RTL
components.

169

Chapter 4. Custom Hardware Design

4.3.3. Allocate buses

32 hits 1.00 ns

Functional Uni
Register File

Left click on "Bus" to see its properties in the left-most column. Left click on "bus" to
select the bus and press OK.

170

Chapter 4. Custom Hardware Design

4.3.3.1. Allocate buses (cont’d)

[=I[BI[x]
W File Edit View Project Synthesis Validation Windows Help =|=] x|
[x]
e
Design
- £ boed T uild_Code,
@22 al cod
; Eitwidth: ohi: | codvec
h
R inel
R .
i Y
=~
Madels Ii
ompi
X Compil
i Che
Mary
MWritin
Out)
Params
Done .,
|Ready A

A new property box for bus component pops up and shows the configurable parameters.
In case of bus, bit width is the configurable parameter. Left click on OK to add bus to
RTL allocation.

171

Chapter 4. Custom Hardware Design

4.3.3.2. Allocate buses (cont’d)

[=[B]x]
W File Edit View Project Synthesis Validation Windows Help =|=] x|
\TL Component Allocation
e
Design
E_Vo“ Type Width Precision Datatype i uild_Code,
gg alu_iz 32 hits int cod
L_unit_3z 32 bits int codvec
op_unit_32 32 hits int h
mem_32_z56_5 32 bits int inds
RF_3z_32_5 32 bits int sian
RF_32_32_35 32 hits int g
int ¥
0 hits
A | =
Models Ii
X Compil
Chel
Hary
Writin
Out
Parame
Dore .,
|Ready A

The selected bus component will be shown in the RTL Component Allocation window.
Left click on Name column of the allocated bus to rename it to BUS1.

172

4.3.3.3. Allocate buses (cont’d)

Chapter 4. Custom Hardware Design

=
W File Edit View Project Synthesis Validation Windows Help =|=] x|
\TL Component Allocation
e
Design
E—Vocc Type Width Precision Datatype uild_Code
gg alu_iz 32 hits int cod
L_unit_3z 32 bits int codvec
op_unit_32 32 hits int h
mem_32_z56_5 32 bits int inds
RF_3z_32_5 32 bits int sian
RF_32_32_35 32 hits int g
RF_32_32_5 int ¥
0 hits i
A | =
Models Ii
X Compil
Chel
Hary
Writin
Out
Parame
Dore .,
|Ready A

For the purpose of this design we will need 6 buses to perform RTL synthesis. To add
more buses in the allocation table, simply left click on Copy by 5 times. This is a useful
way to replicate components for large sized allocations.

173

Chapter 4. Custom Hardware Design

4.3.3.4. Allocate buses (cont’d)

W File Edit View Project Synthesis Validation Windows Help =|=] x|
ent A on
[ne
Design
IJil— Vaed Type Width Frecision Datatype uild_Code,
oo alu_3z 3Z hits i int cod
L_unit_3z 32 bits i int codvec
op_unit_32 32 hits i int h
bus_32 3z b!ts i !nt ificx
hus_32 3Z hits int sign
hus_32 32 bits i int 8
bus_32 32 bits i int ¥
32 hits i irt
; 3Z hits g
mem_32_236_3 3E hits
RF_32_32_5 32 hits
RF_32_32_% 32 hits
RF_32_32_5 32 bits
-1
Madels Ii
X compil
Che
Mary
MWritin
Out)
Params
Done .,
|Ready A

We are now done with RTL component allocation. Left click on OK to save the alloca-
tion information in the model.

174

Chapter 4. Custom Hardware Design

4.3.3.5. Analyze allocated SFSMD model

Models | Imports | Sources |

Hierarchy | Behaviors | Channels |

§| vocodersce - 30C Environment - [Code_10i40_35hits - VocoderFsmd - YocoderFsmd.sir] ||=||E||¥
W File Edit View Project Synthesis Validation | Windows Help =|=] x|
Ne B | @l @y € | 3¢ B - Enable Instrumentation | ¢ | .l
3 Compile | I
= Type I
Design Simulate Marne
B 2] Vocogkrspec. sir Open Terminal = Codear & Code_10
FFB2 Uscogerdms i Kill simulation [Matoroia_OSFPIGEEE W @ cn
W55 VpcadrSohed sir Wiz e HW_Standam wrap Lo cod
B3| VocoderComm si = HW_Stanaan o h
PP —— Brafile - Lodehook AR WA Codaposk Lo P
DvocoderFsmd sir - i coahook AR_INIT_Codebook o
finalyze harebook Codehaok e
Evaluate Codebook_SeqT oy
tetrics.. Ciogle ' - @ coder
) Cor iy FSMD modn]
Show Estimates Sef_Sign_FaMO | gdnz
Estimate Cor i FSMD - g inds
Search TEHAG FEAMD L s inos
HITELEE [ETL i Build Code_FSMD g ppus !
@ Stop L - @ p FSMD o
1 segl Codehonk_Seqe @
[| T
~l | el 1 23 | = | =N -

ﬂ Caompile | Simulate | Analyze | Refine | Synthesize | Shell |

Writing SIR file,,.

Done .,

Checking parameters, .. Done,
Mangling name to "bus_32".,., Done,

Output.; "Ahome/specc/ ,sce/rtl/shus_32 ,=ir"
Parameterized design successfully generated,

J

Collect RTL stafistics

)

Before scheduling and binding, we may check how RTL allocation will affect perfor-
mance, area, and power in the design. To do so, we can go over RTL analysis again. we
select the behavior "Code_10i40_35bits", for which we want to get the statistical infor-
mation. The RTL analysis is performed by selecting Validation—Analyze RTL from

the menu bar.

175

Chapter 4. Custom Hardware Design

4.3.3.6. Analyze allocated SFSMD model (cont’d)

W File Edit View Project Synthesis Validation Windows Help =|=] x|
HE & oo XxbE| X EFEE]8 e 0
[
- | Nz |T5.'pe 1| Mame
Design A ain
W13 VocoerSpec siv o M cower Coder & Code_10
EE Vocodar At sir DSP Miotorois DSPIE6EE 1 o en
W55 VpcadrSohed sir ;_H W HW_Standam_wrap L cod
L apm) 9 AW HW Standsnd &
a|z VocaaerComin. - =i h
—l— s . m il w8 AW codebook AR WA Codaposk Lo prm
derf B B 3¢ it codebook AR_INIT_Codebook o
M- B codebook Codebook e
Codebook_Seq T =y
I~ ¢ codes
Cor iy FSMD modn]
Set Sigrr FSMO — @dnz
Cor B FSMD @ indx
Search_1E46_FEMD L oipos
Buiid_Code_FSMO | o pos_r
a p FSMO & Pos
Codebook_Seql e i
-1 I = =T T = | =
Madels | Imports | Sources | Hierarchy | Behaviors | Channels | :l HW |: |
._ﬂ Compile | Simulate | Analyze | Refine | Synthesize | Shell |
| p— calculating critical path delay Al
##xx caloulating power
#% pehavior: Set_Sign_FSMD
==xx caloulating critical path delay
#=x%x caloulating pouer
|
i Writing SIR file "/hormesspecc/demo/VocoderFemd,rt1Stats, =iv", ., /
|Ready A

RTL analysis tool will go over all sub-behaviors in behavior "Code_10i40_35bits", and
generate the more accurate statistical information with the help of allocation informa-

tion.

176

Chapter 4. Custom Hardware Design

4.3.3.7. Analyze allocated SFSMD model (cont’d)

ocodersce - S0C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderFsmd sir] || =I[3l[x
W File Edit View Project §ynthesis| Walidation Windows Help =|=] x|
Ne | & : allocate PES... 18 ® | .|
B : Show Yariables I
@ | Type W
Design Architecture Pluging - Cl
B 2] Vocogkrspec. sir B2 architecture Refinement... Coder &»Build_Code
[e]e] ; Motorois DSFIE6GRE 1
88 Lf:oe:‘aaferﬂmﬁ.s.fr Schedule behaviors... HW Stardant - of cod
B3 ocoderSohed sir Scheguing Plugins HW_.S}‘ana‘am_mp 7 cadvec
BF212 VocoderCormin. = - AR &h
PP =:c: scheduling Refinement. B W Eodebook AR WA Loaebosk & indx
e I B ar i cogebook AR IMIT_ Cogebosk i
Allocate Busses... F B cogehiood Codebhook e #an
[]
{3 Show Channels Boegr Codepook_Seq7 ¥
B code roAR Ciode TOfA0 Fobids
Communication Pluging -~ W cor v x Cow & % FSD
213 Communication Refinement... M set_sigra Ser_Sign_FSMo
— : W cor & Cor i FSMD
RTL Preprocessing... M search TEEG Search THIAR FSMOD
Allocate RTL Units... r 7 LLEE
] g p &g PSSO
Schedule & Bind RTL... B seqo Codebook_Seqe ;
] T RTL Plugins - T =]] I=]
Models | Imports | Sources [BTL Refinement... iors | Channels I :I Hw I: | 1
C Code Generation...]
X | Compile | Simulate | Ana facca ell |
: Import Decisions... il
#=x% calculating critic
##x% caloulating power @ Si0p
#% pehavior: Set_Sign_Form
==xx caloulating critical path delay
#=x%x caloulating pouer
|
i Writing SIR file "/hormesspecc/demo/VocoderFemd,rt1Stats, =iv", ., /
RTL scheduling and variable & operator binding 4

Now, we will look at RTL analysis result because we allocated RTL components for the
design by selecting Synthesis— Schedule & Bind RTL from the menu bar. Choose
the behavior "Build_Code_FSMD" from the hierarchy.

177

Chapter 4. Custom Hardware Design

4.3.3.8. Analyze allocated SFSMD model (cont’d)

= |vocoder.sce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - YocoderF smd.sir [read-only]] [=][=][>]

|

| State Operationsl VariablesITransfers |De|ay Power '[J Cycle Dest inat ion I Operz ||

Al [@=o 0 3 0 0.00 ns 0.0 MW Lsgo o b2 i = —
@51 ol ¢ z| 2.00 ns 7.7 mw Lot |4 [2 J = B
@sz | il il Giens 6.8 mw el b A oex = wpipel
@33 | 1l ¢ sl siEns 32.5 mw === —
Q54 ol ¢ 2] 200 ns 7.7 mw LS33 |4 p 3 " B i S
@55 | d sl Gt6ns 6.8 mi Legd 4 b 4 twd =0 L
(SEN | ey | 4 Tl 1z3Ens 36.7 mw Less |0 [3 _twe3 = | extr
Qs7 oy | 4 | 2.00 ng 77 W Leoe U [& track - -
Qs | il sl Gi6ns B.6 mw — -

Ls37 |4 [o -status_ | =
il sl oz B s 25w / _

@310 i B 1zl 1z7ens] 1460 mw i
OBl | Il 0 v 1z7enel E01zmw | i
@1z i B sl atEns 50.4 miw goto
@513 ol ¢ 3 2.00 ns 28.3 mw 3
@314l] B 12 1 48 ns B4.1 W oles
@s15 Il s sl 1692 ns 98.8 mwW c

H| |©@s16 il AT 35.1 mw woto | |=
@317 il s 12l Tiens] 0 1018 mw ; -

| 1@ 0 B 15 k.05 ns] | 1093 mw |4]

| |@s13 il 1zl Tiensl | 1mEmw —

o

Al [@sz0 i Y sl 7iEns 351 mw |

| |@sa A :ll siEns B.5 mw

| |©@szz o B Ol asne]EEDD W

|| |©@sz3 1 R | sl siEns B.5 mw

|| |@s24 1 15[EENALTE 120mW [e i =

Help | ok | cancel

il 4

The RTL Scheduling & Binding window pops up showing all the states in the behavior
"Build_Code_FSMD". In the left-most columns, we can see the estimated delay and
powers for each state. For example, state S9 will take 41.80 ns to execute and consume
180.0 mW.

178

Chapter 4. Custom Hardware Design

4.4. RTL Scheduling and Binding

The most important steps during RTL synthesis are scheduling and binding. Scheduling
is to decide the start time of operations in a design. Binding is to map operations to func-
tional units (function binding) and to map variables to storage units (storage binding),
and to map data transfers to buses (connection binding). Due to the interdependence
of scheduling and binding, the order of these steps may be interchanged to get better
design.

In our RTL design methodology, we provides manual scheduling and binding for the de-
signers to make decision for scheduling and binding. But manual scheduling and binding
takes too much time for the designers to do and is tedious and error-prone task. We will
provide automatic scheduling and binding tools by RTL plugins.

Note that if reader is not interested in how to do manual scheduling and binding, she
or he can skip this section to go directly Section 4.4.2 Schedule and bind automatically
(page 192).

179

Chapter 4. Custom Hardware Design

4.4.1. Schedule and bind manually (optional)

= |vocodersce - S0C Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsm.sic] || =I[3l[x
| RTL Scheduling & Binding
4| | state Oper Variati Transfq Delay | Power 2 _[J Cycle Destination | Operat.ion |Sour‘ce 1 ISDu‘ —
Al l@s0 ol = 0 000ns oomw||fLsao B o 4 i = codveclk]
@s1 o] ¢ 2| zoons 00w ([T ga 1 i A J = signli] -
@sz | 1l 4 sBerens oomwi S = Tndex = | milt (i, 654 |I*
@33 10 4| 5| e16ns] zoomw —— ! - : o
@sa ol 4 2| zoons oonw|||[LBEF G RS (5 Lomle tndess £k
@ss | 10 4| sBetens ocomw||[|LS8d4 F o 5 ted =) Lshr _tmp_5, |
@z | 2 4| 7Wz3zns] zoomw L5955 |F 5_-} _tnp_3 [=] extract_l _tmp_d)
Os7 ol 4 z| zoons 0.0mw Lzag F [2 track = sub {i, _tmp_
@ss | 1 4] sl siens oomw — — e 1o 5 ,
sl ¢ 2 IEEEsRenaay| (=22 7% - - 17)
Osmi Tl sl 12 B2.76 ns 00D mw (= i —status.
@s11] s s0 17 276 ns 400w L
@s12] 1] 5] s s6ns] cnomw goto 510z
@s13 o] 4| 3| zoons| zoomw 1
@s1al] 3 sl 2 s ns] 200 mw olee
@s1s] 2| 5] 9 Eozns| Boomw :
@s16] 1l 4] el 716ns] z00mw zoto S11: =
@17 1 sl 1zl 78 ns] oo mw
2 ([@s1cl s 0 15 Bos ns Goomw 5 -
@19 1 al vzl 7aensl Boomw '
@sz20] 10 4| el 7aensl zoomw -
@z 1 4 2] 616ns 00mwW
©szz D S = B 5.6 ns 2000 W
@s23] 1A 5B 616ns 00mw|A
-] | - I I
M ok | cancel —/'
[=1

SCE allows for the designer to manually schedule and bind the operations. However, this
is a tedious task and can be done by automated tools. To perform automatic scheduling
and binding, the designer can skip the manual step and go directly to Section 4.4.2
Schedule and bind automatically (page 192).

If RTL Scheduling & Binding window is not open yet, we have to open it again by
selecting Synthesis—Schedule & Bind RTL from the menu bar. Choose the behavior
"Build_Code_FSMD" from the hierarchy.

we will show how to specify control step for each statement in a state. In RTL Schedul-
ing and Binding window, we select "S9" to do manual scheduling and binding. In the
right side panel of the RTL Scheduling & Binding window, left checks on right side of
the label "L_S9 _0". Then Cycle column for "L_S9 0" is activated. We can specify the
control step for it. In this way, we can specify control step for all statement in the state
S9.

Note that if reader is not interested in how to do manual scheduling and binding, she
or he can skip this section to go directly Section 4.4.2 Schedule and bind automatically

180

Chapter 4. Custom Hardware Design

(page 192).

181

Chapter 4. Custom Hardware Design

4.4.1.1. Schedule and bind manually (optional) (cont’d)

= |vocodersce - S0C Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsm.sic] || =I[3l[x
| |[=[RTL Scheduling & Binding ||Zﬁ
4| | state Oper Variati Transfq Delay |P0wer "'_[J Cycle Destination | Operat.ion |Sour‘ce 1 ISDu‘ —
Al l@s0 ol = 0 000ns oomw||fLsao B o 4 i = codveclk]
@s1 o] ¢ 2| zoons oomw| || s o [3 3 = signli] -
©@sz | 10 4] sl easns oomwl I |9_.£ index =] mult (i, e5sd ||
SS- IBU e | o e e = |
@ss | 0 4| aletens oomw| ||| UMEEGING Y twed =T Lshr _tmp_5, |
@ss | 2l 4| 7Mz3zns] zo0omw| || [_g__Eull binding S tw3 = extract] _tmp_d}
=7 ol 4 z| zoons 0.0mw Lsae |F IE'_-\ track = sub {i, _tmp_
@ss | 1 4] sl siens oomw — 1= 5 ,
sl o 2 IR ey | || =222 9 - - 17)
Osmi Tl sl 12 B2.76 ns 00D mw (= i —status.
@s11] s s0 17 276 ns 400w L
@s12] 1] 5] s s6ns] cnomw goto 510z
@s13 o] 4| 3| zoons| zoomw 1
@s1al] 3 sl 2 s ns] 200 mw olee
@s1s] 2| 5] 9 Eozns| Boomw :
@s16] 1l 4] el 716ns] z00mw zoto S11: =
@=7] 1§ 41 B0.0 mw
4l (@0 + 1 1 3 B0.0 mw : -
Il |@s13] 1l 4l 1zl 716 ns] B0 mw '
| |@sz0] 10 2| el 718n:] 200mw -
| l@sz1] 10 2 2] 616ns 00mwW
| |@sez ED R 2 W 516 ns[2000 mW
(| lmszzl (A 3W 6160 00mw s
I | [~ | =
Help | ok | cancel '/l
[=1

To perform manual binding for operations in the state S9, right click on Label, "L_S9_2".
It will pop up a menu for the binding options. Select Full binding.

182

4.4.1.2. Schedule and bind manually (optional) (cont’d)

Chapter 4. Custom Hardware Design

= |vocodersce - S0C Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsm.sic] | {=1E]
=|RTL Scheduling & Binding [
State Oper Variati Transfq Delay | Fower | 3, :le Dest ination | Operat.ion |Source 1 |Sol
@s0 0 E] 0 000ns 0.0mW L5330 |o 3 i = codvecllk]
@31 ol 4 2| zoons 00w ||| 51 2 3 = =sign[1]
Os2 | 1 . 4 | 3 I B18ns 0.0 m¥ g index = L 1t (1.
@33 10 4| 5| e1ens] zoomw | =
@s4 ol 2| zoons oomw|||Lsaz [4 = = =
@ss | 10 4] 3leiens nomw = _f:]| SIS
@z | 20 4| 7Wz3zns] zoomw _ E :
@s7 offl & 2| zoons oomw|| |83 [3 ~tme5 = fndex-
@3 | 1 4| sQeiEns oomw Lssd [[« = —top_4 =| Lshr {_tmp_5,
m el sl 23 IR s00 m Lses [-~ _twp_3 = | extract_L _trp_d
@s10] 1 51 12 W26 nsfiann mw Lss6 |fp 2 track = =ub (i, _tnp,
@s11l sl 50 7 Eere nsidn I [T | |—— % ciotis - 5 .
@s1z] 10 6] el atens zoomw| |[E=25E F 12 - - “ !
@513 o] 4| 3| zoons] zoomw if —status_
@s14l] 3 sl 2 s ns] 200 mw {
@s1s] 2 5] 9 Eozns| Boomw goto 510;
@z16] 1 4| &l 76ns] zoomw 1
@7 10 41 B0.0 mw olee
@z + B =1 EEl B0.0 mw c
@19 1 al vzl 7aensl Boomw aoto S11;
@s20] 10 4| el 7aens] zoomw
@z 1 4 2] 616ns 00mw 3
©szz D B = B 5.6 ns 2000 W
@sz23] 1Bl sl e1Ens oomw
SLTYAREN -l el EiE e nnemw | S I 1=
Help | Ok | Cancel
4

™

Each column in a statement in right side of the window is now expanded to allow manual
binding. We will bind a function call, mult (Operation column), to "ALU3". To do so,
left click on 2nd blank row of the Operation column. Then pull-down menu pops up
and shows all functional units which can perform function call mult. In this case, one
possible functional unit, "ALU3" is shown in the pull-down menu.

183

Chapter 4. Custom Hardware Design

4.4.1.3. Schedule and bind manually (optional) (cont’d)

= |vocodersce - S0C Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsm.sic] | {=1E]
|| =| RTL Scheduling & Binding [
- State Oper Variati Transfq Delay | Power | 2 [J :le Destination | Operat.ion |Sour‘ce 1 |SDu‘
@s0 0 E] 0 000ns 0.0mW L5330 |o 3 i = codveclk]
@31 ol 4 2| zoons 00w ||| 51 [A J = =sign[i]
Os2 | 1 . 4 | 3 I B18ns 0.0 m¥ index = i Lt ti,
@33 10 4| 5| e1ens] zoomw = =
oy =
@34 o ¢ 2| zoons 00 mw Lsae B = S 3 ez o =
@s5 | 1 4] sleiens oomw —‘:| E—
@z | 20 4| 7Wz3zns] zoomw _ : -
@s7 offl &« 2| zoons oomw|||[L523 B '\';’3-5 7| Lomle “ndex, 3
@3 | 1 4| sQeiEns oomw Lssd [[« fars -4 = Lshr _tmp_5,
m el s N z: RN AE00R | || [l sas G CE = | extract_1 {_tmp_d)
@s10] 1 51 12 W26 nsfiann mw Lss6 |fp 2 track = =ub (i, _tmp_]
@s11l sl 50 7 Eere nsidn I [T | |—— % ciotus - 5 .
@s1z] 10 6] el atens zoomw| |[E=25E P13 - i !
@513 o] 4| 3| zoons] zoomw if —status_
@s14l] 3 sl 2 s ns] 200 mw {
@s1s] 2 5] 9 Eozns| Boomw goto 510;
@z16] 1 4| &l 76ns] zoomw 3
@7 10 41 B0.0 mw oles
2l [@s1:l s < B0.0 mw c
Il |@s13] 1l 4l 1zl 716 ns] B0 mw aoto S1L
|| [@s20] 10 4] el 716nsf 200mw
| l@sz1] 10 2 2] 616ns 00mw 3
| |@sez ED R 2 W 516 ns[2000 mW
| |@s23] "B 30 516n: 00mw
[lmeeal 1 IR el EiE e nnemw | S I 1=
Help | Ok | Cancel
ﬁ _ 4

We will bind a target variable index (Destination column) to RF1[7]. To do so, left click
on 2nd blank row of the Destination column. Then pull-down menu pops up and shows
all storage units In this case, four storage units such as "MEM1", "RF1", "RF2" and
"RF3" are shown in the pull-down menu. Click on "RF1" to select "RF1".

184

Chapter 4. Custom Hardware Design

4.4.1.4. Schedule and bind manually (optional) (cont’d)

§|mce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsmd sir] | {=1E]
| RTL Scheduling & Binding
- State Oper Variati Transfq Delay | Power | 2 [J :le Destination | Operat.ion |Sour‘ce 1 |SDu‘
Al |@so 0 E] 0 000ns 0.0mW L5330 |o 3 i = codveclk]
@31 ol 4 2| zoons 00w ||| 51 [A J = =sign[i]
Os2 | 1 . 4 | 3 I B18ns 0.0 m¥ index = i Lt ti,
@33 10 4| 5| e1ens] zoomw = =
@34 o ¢ 2| 200n: 00mw Lsae B = L[] s = =i
@3z | 10 4| 3P eiEns oomw =
@z | 20 4| 7Wz3zns] zoomw _ : -
@s7 0 . 4 5 I S00ns 0.0 mW L 59.3 |3 -} _tmp_5 =| L_nmult {index. E
@3 | 1 4| sQeiEns oomw Lssd [[« = —tme_4 = Lshr _tmp_5,
m el sl 23 IR s00 m Lses [-~ _twp_3 = | extract_l _tmp_4}
@s10] 1 51 12 W26 nsfiann mw Lss6 |fp 2 track = =ub (i, _tmp_]
@s11l sl 50 7 Eere nsidn I [T | |—— { - .
L 597 I?__‘. _status_ = > J
@s12] 1 5] s o6ns] cnomw e / _
@513 o] 4| 3| zoons] zoomw if —status_
@s14l] 3 sl 2 s ns] 200 mw {
@s1s] 2 5] 9 Eozns| Boomw goto 510;
@z16] 1 4| &l 76ns] zoomw 3
@7 10 41 B0.0 mw oles
2l [@s1:l s < B0.0 mw c
Il |@s13] 1l 4l 1zl 716 ns] B0 mw aoto S1L
|| [@s20] 10 4] el 716nsf 200mw
| l@sz1] 10 2 2] 616ns 00mw 3
| |@sez ED R 2 W 516 ns[2000 mW
| |@s23] "B 30 516n: 00mw
[lmeeal 1 IR E W cimne nn el | I =
Help | Ok | Cancel
ﬁ _ 4

For storage unit binding, the address of the variable in the memory should be specified.
Left click on right side of the 2nd row of Destination column. Specify the memory
address to 7 for variable "index". The -1 in address field for a memory is default value
which means that the address for the memory is not bound yet.

185

Chapter 4. Custom Hardware Design

4.4.1.5. Schedule and bind manually (optional) (cont’d)

§|Mnmem - [Build_Code_F35MD - VocoderFsmd - YocoderFsmd sir] | {=1E]
| RTL Scheduling & Binding
- State | Oper{ Varial Transfi Delay '_[J Cycle Destination I Operat ion ISDur‘ce 1 |Source 2 |
Al |@so 0 3 0000 Lsaofp o 3 i = codveclk]
@s1 o] ¢ 2| zm Leat f [r 3 J = signli]
852 I 1 = 4|| 3= B.15 incdex = wult i, EE&4)
53 1 4 sl 616 = = =
@s¢ ol 4 z| zoof|llsse B2 Ae 2 e = ERE
@35 | 10 4] a3llsas = _’:jl —::__'Itzl _':]|
D=6 2 4 7232 -
@s7 I 0 = 4 l 5 |.2.DD L3z |k |3 -} _tmp_5 = L_mult (index, 52
@ss | 1 2] sllsis Lssa |F [+ |5 —tmp_d4 =| Lshr (_tmp_B. 1)
m 5 . 3 . 23 - B Ls95 IF |5 -} _tmp_3 = | extract_l {_tmp_d)
@s10 1 . EI 12 .2-?E Lsae Im IE'_-\ track = sub (i, _tmp_37
@s11] 3 50 "Wz ——— { .
@s1z| 1l 5| ofos| =22 F [st IS ? . ©
@513 0 l 4 | 3 I 200 if _status_
@z14]] 3 sl 2 Blss {
@s15] 2zl 51 slBe: goto 510z
@z16] 1 4| &) 78 3
@7 1 sl z) 78 olee
3 [@s1zl s 0 15 s c
] OS19| 1 . 4' 12. 718 zoto 511;
|| |@sz0] 10 4] &l 7ae
| l@sz1] 10 2 2] 518 3
|| |@522 IEE K] =t W o6
I lmszal (EE 3 W 6i6 s
T 1 = 1 T
Help | Ok | Cancel
B A
e]

Likewise, source variable, "i" is bound to RF2[3].

186

Chapter 4. Custom Hardware Design

4.4.1.6. Schedule and bind manually (optional) (cont’d)

= |vocodersce - SoC Enviranment - Build_Code_FSMD - VocoderFsmd - YocoderFsmd . sir” —||3]x
= [] | [=1E3]
|| =| RTL Scheduling & Binding [
- State Oper Warial Transfi Delay '_[J Cycle Destination I Operat ion ISDur‘ce 1 |Source 2 |
@s0 000 || Lsse B o 2 i = codveclk]
@31 2| 2.00 Lot 13 3 = signli]
=L /
@sz | l 3l 618 index = it i, G554
o | 1WAl sfen) 5 = 5
822 | = j| gll 2102 Lsa2 F [S Ok o Rz oifils 3
@5 | 2l 2] Wz =1 : =
@s7 I D= 4| 2| 500 L3z |k |3 -} _tmp_5 = L_mult (index, 52
@ss | 1 2] sllsis Lssa |F [+ |5 —tmp_d4 =| Lshr (_tmp_B. 1)
m 5 . Ls95 IF |5 -} _tmp_3 = | extract_l {_tmp_d)
OSW 1 . EI 12 276 |5 | 5 track = =ub (i. _tmp_3)
sl sl sl v levs Ls96 by
@ . & _status_ = ¥ J Q
@s1z| 1l 5] ofos| =22 F [3 _
@513 0 l 4 | 3 I 200 if _status_
@z14]] 3 sl 2 Blss {
@s1s] 2| 5] Bz goto 510z
@z16] 1 4| &) 78 3
@7 1 sl z) 78 L
CE BT R o
] OS19| 1. 4' 12.?16 zoto 511;
|| |@sz0] 10 4] &l 7ae
| l@sz1] 10 2 2] 518 3
|| |@522 IEE K] =t W o6
I lmszal (EE 3 W 6i6 s
T 1 = 1 T
Help | Ok | Cancel
B A
e

So for, we performed functional unit and storage unit binding. We can specify more
information on binding, such as ports of the functional unit and storage unit and buses
for data transfers. For the output port binding of the functional unit, left click on 1st row
of the Operation column which will show all output ports in ALU3 unit.

187

Chapter 4. Custom Hardware Design

4.4.1.7. Schedule and bind manually (optional) (cont’d)

§|moder.sce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - VocoderFsmd.sir] | {=1E]
| |= | RTL Scheduling & Binding [
- State Oper Warial Transfi Delay '_[J Cycle Destination I Operat ion ISDur‘ce 1 |Source 2 |
@s0 0.00 Lsaofp o 3 i = codveclk]
@31 2| 2.00 Lot 13 3 = signli]
S /
852 | = | 3= 516 index = it (. £5547
53 4 508 6.16 =l result - =
£
82‘5‘ | 1U= j| gll E?E Lss2 F b S OqF N awz oz a5
@ | 0 4] W2 =l = : =
@s7 0 . 4 2| 500 L 593 I |3 -} _tmp_5 = {index, 59
@ss | 1 2] sllsis Lssa |F [+ |5 —tme_4 = h {_tmp_5, 1)
m cl 0 z: D Lsos F [=S _twp_3 = | extract_l (_tmp_d?
@s10 1 . EI 12 J2.76 = Lsae Im IE'_-\ track = =l (i, _tmp_3)
@s11] 3 50 "Wz ——— { .
@s1z| 1l 5| ofos| =22 F [st IS ? . ©
@513 0 l 4 | 3 I > 100 if _status_
@z14]] 3 sl 2 Blss {
@s1s] 2| 5] Bz goto 510z
osis| 10 4| 3
@=7] 1§ 41 L
Al [@s:l <« W o1 s o
il |@=s12] 10 41 12| 716 T
|| |@sz0] 10 4] &l 7ae
|l l@s21] 0 & 2l 616 3
|| |@s22 I K] 52 W 5.6
I lmszal (EE 3 W 6i6 s
| = T =] T
Help | QK. | Cancel
g 4
===

For the input port binding of the functional unit, left click on 3rd row of the Operation
column which will shows all input ports in ALU3 unit.

188

Chapter 4. Custom Hardware Design

4.4.1.8. Schedule and bind manually (optional) (cont’d)

§|mce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsmd sir] | {=1E]
| |E[RTL Scheduling & Binding [
- State Oper Warial] Transfi Delay -‘_ Cycle Destination I Operat ion ISDur‘ce 1 |Source 2 |
@s0 N N O == S T i = cadveclk]
@31 2| 2.00 Lsst |1 3 3 = signli]
s /
@sz | l 3l 618 index = it i, G554
Os3 | = 4' 5II B.16 I_-\ = result
Ds4 0 4 2| z.00 LS9z & |2 Y RFL & ALLE FFo I__\
@ss| 10 4| allee _ = 5 A = =13 !
1npPor =1 o
Qs | 20 4] 7Wz: £ = B =] outh
@s7 0 . 4 2| 500 L3z |k |3 -} _tmp_5 = L_mult {incdex. 5)
OSS | 1 . 4| 3. 616 = |4 -} _tmp_4 = L_shr {_tme_5. 1)
cl 0 z: D Lsos F [=S _twp_3 = | extract_l (_tmp_d?
@s10 1 . EI 12 J2.76 = = I__\ track = =l (i, _tmp_3)
@s11 sl 50 17 W = e £ ot - S R 5
@s1z| 1l 5| ofos| =22 F [3 - - 17 .
@513 0 l 4 | 3 I 200 if _status_
@z14]] 3 sl 2 Blss {
@s1s] 2| 5] Bz goto 510z
@z16] 1 4| &) 78 3
@=7] 1§ 41 12| 7.16 L
Al [osiell «H ol B 1
il |@s1a] 1l 4l 1zl 78 T
|| |@sz0] 10 4] &l 7ae
| l@sz1] 10 2 2] 518 3
|| |@522 IEE K] =t W o6
I lmszal (EE 3 W 6i6 s
11 = | - 1 |
Help | Ok | Cancel
B A
===

In this way, we can select write port for the write storage unit (RF1[7]) and read port for
the read storage unit (RF2[3]).

189

Chapter 4. Custom Hardware Design

4.4.1.9. Schedule and bind manually (optional) (cont’d)

= |vocodersce - S0C Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsm.sic] | {=1E]
| |= | RTL Scheduling & Binding [
- State Oper Warial Transfi Delay '_[J Cycle Destination I Operat ion ISDur‘ce 1 |Source 2 |
I |@s0 0.00 Lsaofp o 3 i = codveclk]

@31 2| 2.00 Lsst |1 3 3 = signli]

=R /
@5z | l 3l 618 index = mlt . G554
883 [= 4| 5II B.15 . 2| vesult
54 o ¢ 2| z.oo Lssz F 3 LG — |—_~.

@ss | 10 4] alleas BUS1 LRI :

@ss | 20 2| Wz BLS2 a:b o) outh

@s7 0 . 4 2| 500 L 593 I |3 _} = L_mult {index. 5)

@ss | 10 4| s@es|||Lsee F [« 2BkE4 =] Lestr {-tme 5, 1)

G . 3 . bkl 4160 LS95 |- |5 -} BUSS = | extract_1 {_tmp_d}
@s10] 1 5] 2P| | BUSR = b (i, _tmwp_3)
L 59 6 |7 |6 v, =u i, _tmp_

©@s11l] s sl 7z e - 5 3 o

@s1z| 1l 5] ofos| =22 F [3 _

@513 i l 4 | 3 I 200 if _status_

@z14]] 3 sl 2 Blss {

@s1s] 2| 5] Bz goto 510z

@] 10 4] 3

osi7| 11 4l ;
Al |@s:l <l =1 s m i
il |[@=19] 0 21 12| 718 ot S11L:
|| |@sz0] 10 4] &l 7ae
| l@sz1] 10 2 2] 518 3
|| |@s22 I K] 52 W 5.6
[lvszzl (EEE G Woris |/
1 = | =) 1 |
Help | QK. | Cancel
B 4
==

For the bus binding, left click on 1st row of the Destination column which shows all
allocated buses. For target variable "index", "BUS3" is selected for write.

190

Chapter 4. Custom Hardware Design

1.10. Schedule and bind manually (optional) (cont’d)

§|moder.sce - SoC Environment - [Build_Code_FSMD - YocoderFsmd - YocoderFsmd sir] | {=1E]
| RTL Scheduling & Binding
- State Oper Warial Transf Delay S Cycle Destination I Operat.ion ISDur‘ce 1 |Source 2 |
Al |@s0 N N O == S T i = cadveclk]
@31 2| 2.00 Lsst |1 3 3 = signli]
s /
@sz | l 3l 618 index = it 0. EEEA}
@s: | 11 4| s 616 | Bus3 | | result —|EUs2 =
82‘5‘ | = j| gll E?E Lsaz Bl 9% Sk N aws Rz affs -"]
OSE I 5 . 4| o inport = a.h — | outh
@s7 0 . 4 2| 500 L3z |k |3 -} _tmp_5 = L_mult {incdex. 5)
@ss | 1 2] sllsis Lssa |F [+ |5 —tmp_d4 =| Lshr (_tmp_B. 1)
5 . Lsas IF [& _tmp_3 = | extract_l {_tmp_d)
m = | /
OSW 1 . EI 12 276 |5 5 track = =ub (i. _tmp_3)
Lsae F ¢ =
©@s11l] s sl 7z e - 3 5 a
@siz| 1l 6] ceRoref |2 F 3
@513 0 l 4 | 3 I 200 if _status_
@z14]] 3 sl 2 Blss {
@s1s] 2| 5] Bz goto 510z
@z16] 1 4| &) 78 3
@=7] 1§ 41 12| 7.16 L
2l [@s1:l s < c ==
il |@s19] 1l 4l 1zl 716 T
|| |@sz0] 10 4] &l 7ae
| l@sz1] 10 2 2] 518 3
|| |@522 IEE K] =t W o6
I lmszal (EE 3 W 6i6 s
T 1 = 1 T
Help | Ok | I Cancel
i 4
e)

In this way, we can perform all binding in the RTL Scheduling and Binding win-
dow. However manual binding takes too much time and is an error-prone task. The easy
alternative is to use automatic scheduling and binding tools.

Left click on Cancel. Otherwise, the scheduling and binding information will be in-
serted and then used by automatic scheduling and binding tools. It may generate incor-
rect RTL model.

191

Chapter 4. Custom Hardware Design

4.4.2. Schedule and bind automatically

§| vocodersce - SoC Environment - [Code_10i40_35hits - vocoderFsmd - YocoderFsmd sir] || =I[3l[x
W File Edit View Project §ynthesis| Walidation Windows Help =|=] x|
D @[S0 AlocaepEs. B0
Show Wariahles I
@ | Type -
Design Architecture Pluging - Cl
B 2] Vocogkrspec. sir B2 architecture Refinement... Coder & cCoue_10
[e]e] ; Motorois_ DSFIE6GRE_ 1 -
O-B8 Vecoderaretssir Schedule behaviars.. W it e en
BE 5 VpooaerSehed.sir Scheduling Pluging HW_&E"‘?;*'M_WP -7 cod
212 Ussodertormss. u - - ~h
w85 oosatrCorn B Scheduling Rafinament ar wr comebook AR_WA_Codeposk L o
Wl ocoderr SRy " VE s it codetook AR INIT_Coetosk s
Allocate Busses... F B cogehiood Codebhook _(,Ox
Cogehook_SeqT ey
{5} Show Channels - = | o coder
Communication Plugins - o 51 @ dn
212 Communication Refinement... Set Sigrn FSME @dnZ
— - Cow i FSMD - g inds
RTL Preprocessing... Search THAG FEMO | o ipos
Allocate RTL Units.. Build_Coge_f SO | o pos_r
. A p FEMD -
Schedule & Bind RTL.. Codebook_Seqe - grr. /
] T RTL Flugins " 1 scril_bind | I = 1] =
Madels | Imports | Sources | [RTL Refinement... 2 scitl_sched Bls :I H Illﬁ
C Code Generation...]
X | Compile | Simulate | Ana facca ell |
3 Import Decisions... il
#=x% calculating critic
##x% caloulating power @ Si0p
#% pehavior: Set_Sign_Form
==xx caloulating critical path delay
#=x%x caloulating pouer
|
i Writing SIR file "/hormesspecc/demo/VocoderFemd,rt1Stats, =iv", ., /
|Ready A

As already discussed, manual scheduling and binding takes too much time for designer
to do and also is error-prone task. We will now perform scheduling and binding with the
help of tools which implement scheduling and binding algorithms. In our design flow,
an automatic decision making tools for system-level design are called a "Plug in". For
RTL scheduling and binding, we call "RTL Plugins” by selecting Synthesis—RTL
Plugins—scrtl_bind from the menu bar. Before that, we have to select a behavior

"Code_10i40_35bits".

192

Chapter 4. Custom Hardware Design

4.4.2.1. Schedule and bind automatically (cont’d)

= | vocodersce - SoC Environment - [Code_10i40_35hits - YocoderFsmd - YocoderF smd.sif || =I[3l[x
W File Edit View Project Synthesis Validation Windows Help =|=] x|
10 By | EEE=| 1B @ | 0
X]
- i Mame |Type T Mame
Design & Main
W13 VocoerSpec siv - Dl coer Coder & Code_10
EE Vocodar At sir 2258 Miotorois DSPIE6EE 1 o en
(-85 ViocodierSied sir Ll HW_Standard_wrap L cod
ajm . T | Standand L
malE e] T Synihesis s Codsbook AN
DvocoderFsmd sir } T Cogebook i
—Plugin i %
Fdelent
harme: scrl_hind bsooh_Seql 'y
Diescription: 2] 35pits [@ coder
RTL scheduling and binding Ak FSMO I gdn |
Sign_FSMD g dnZ
A FEMD - g inds
Behavior: | Code_10i40_35hits (HW) _iI lof 7080 FEMO | o ipos
- o | Come_F3mo L o pos 1
= Clock period: |1D ns ¢ || Famo G pos_|
bbook_Segd e /
~1 I More == | || Start Cancal | 1 -] -
taodels | Imparts | Sources | A :I il I;l;
X | Compile | Simulate | Analyze | Refine | Synthesize | Shell |
Preparing scHl_bind... 4

An RTL Synthesis dialog box pops up. In the middle of the dialog box, a pull-down
list is available to select the desired behavior. The default behavior in the list is the
one that is highlighted in the behavior hierarchy tree. For our demo, select behavior
"Code_10i40_35bits (HW)" from the list. By default, the clock period of the behavior is
10 ns. Now click on Start to begin "scrtl_bind".

193

Chapter 4. Custom Hardware Design

4.4.2.2. Schedule and bind automatically (cont’d)

W File Edit View Project Synthesis Validation Windows Help =|=] x|
N d@d 8| ve Xbbn| X EEE| 82 0
]
- i iame |Type T | Marne
Design A ain
W13 VocoerSpec siv o M cower Coder & Code_10
gg Voeaaerrnt s D5F Miotorois DSPIE6EE 1 @ cn
555 VpcodierSohed sir ;:” W HW_Standsrd_wrap o cod
L apm) 9 AW HW Standsnd &
a|z VocaaerComin. - =i h
-El2 OC m - B ar wr codetook AR WA Codebosk L pm
VORI S B B ar ot comebook AR IMIT Codehosk e
- B cogebook Codebook e
Codebook_Seq T =y
[[@ coder
Cor iy FSMD modn]
Set_Sign_FSMD g dnZ
Cor #_ FSMD L oindx
Sosrch THAR FSMD L oipos
Buitet Coge_FSMD L o pos 1
a p FSMO & Pos
Codebook_Seql e i
~l | =l | - _-.IJ -
Models | Imports | Sources | Hierarchy | Behaviors | Channels | :I HW Illﬁ
X | Compile | Simulate | Analyze | Refine | Synthesize | Shell |
L calculating power Al
Writing S5IR file "/homesspecc/demos/VocoderFend,synthesized. sir", ..,
Done ,
|Ready

)

Note that "scrtl_bind" annotates scheduling and binding information into SFSMDs for
all 6 sub-behaviors of the behavior "Code_10i40_35bits", as seen in the logging window.
The tool finally generates the SFSMD model for the behavior "Code_10i40_35bits".

194

Chapter 4. Custom Hardware Design

4.4.2.3. Browse scheduling and binding result (optional)

Communication Plugins -~

2|2 Communication Refinement...

searcl T0aE
[
qr

RIL Preprocessing...
Allocate RTL Units. ..
Schedule & Bind RTL...

z
b cogehook

o T RTL Plugins -

todels I Impars I Sources | [@ BTL Refinement...

Search_ 1646 FSMD

=

&g FEMD
Codebook_Seql
AfR_SYNG_ Codetook
ranitor

Stimulus

£ |vocoder.sce - SoC Environment - [Build_Code_FSMD - VocoderFsmd - YVocoderFsmd.sir [read-onl ==
E Y
W File Edit Wiew Project §ynthesis| Walidation Windows Help =] x|
D @] S| [0 Alocate PEs. Ba |0
Show Yariables
@ - | Type 7w
Desigh architecture Flugins - HW_Siandard Wiap ame
- 12 Viocoserspec sir 98 Architecture Refinement... HW_Stanaand &Build_Code,
®-38 VocoerAmir.sir =chedule behavi OOk AR_WE_Coaebook & eod
oros) C=E 2 BEE .. | codetock AR INIT_Cogebook
.,, o VircogerSohed sir ¢ codvec
m_glgb, o Scheduling Plugins - fok Cotebonk &h
ala rocogeramE L et P ; 7 Coehook_Seq? i
] aimi 2CNEGUING RENNEMENL.. o 014 Code_ 10786 35bits inch
allocate Busses... oo fr i Cor 5 FEMD o sign
Show Chanmel set_sign Set Sighn_ FSD Sy
%) B el cor fr Cor i FSMD

Bhhels I

B5 © code Generation...

X compile | Simulate | Ana
i Import Decisions...

el |

@ Stop

RTL scheduling and variable & operator hinding

|

To check the scheduling and binding result generated by "scrtl_bind", we have to go
over RTL Scheduling & Binding window again by selecting Synthesis— RTL
Scheduling & Binding from the menu bar. Before that, we have to select a behavior

"Build_Code_FSMD".

If reader is not interested in details of the scheduling and binding results, she or he skips
this section and go directly Section 4.5 RTL Refinement (page 198).

195

Chapter 4. Custom Hardware Design

4.4.2.4. Browse scheduling and binding result (optional) (cont’d)

vocodersce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF smd.sir [read-only]) (| [=1|E=

w|=|RTL Scheduling & Binding Xkl
_| State | Cperations |

| |©@s0
o|| |@s1
| |@s2
Q=3
D sa
@ss
@ sk
Q@s7
@ s8

@1 |1
@=1z]
@s13
o=
@s1s
@s=16]
@=17]
@s1: [l
@=19]
@szo]
@s21]
©s2c I
@s=z3] 1
T =

] Help | (018 | Cancel
1 A

Retmy

F

|

| Cycle Dest inat ion Operat ion | Source 1 ISDurce 2
i = cadveclk]

=

J = signli]
index = mult (i, 6554 2
_tmp_5 = L_mult {index. 5}
_tmp_d = L_shr {_tmp_ 5. 1
_tmp_3 = | extract_L (_tmp_d?)

|5 track = =ub (1. _tmp 3
L_s9_7¥ |2 _status_ = > 3 a

if _status_

goto S10;

else

zota S511: =

£

e A R P T = B =T U B o R
L

3

In the RTL scheduling and Binding window, Cycle column shows the control step of
each statement. To see the binding information, we activate Full binding by selecting
Full binding in the binding pop-up menu.

196

Chapter 4. Custom Hardware Design

4.4.2.5. Browse scheduling and binding result (optional) (cont’d)

% vocodersce - 50C Environment - [Build_Code_FSMD - VocoderFsmd - YocoderF smd.sir [read-only]) (| [=1|E=
_ ate perations | ycle st inat ion perat ion DT CE OUTCE
| State | Operat 3! Cycl i 0 5 1 |5 2 |
= @so 5 Lsso | IO—_} 1 = cadveclk] B
o|| @31] L3l |1__\ d = signli] B
@sz | 1 4
E incex = mu 1t (i, [t p] 2
(OEEN | 1 s BUS3 | | result o Buse =]
D34 0 Lsez2 |m |1 7 A | &
=== RFL =[]z 1 ALUZ | RFL]
Q58 I 1 "' ——I
@s6 . 2 inport a.kb — | outB
_tmp 5 = L_mult Cindex . =
@s7 0 P
055 |] | BUS3 ves | BUs4 |
6 L3 F B 9%s b -“] Az afrrr -"J
@10 I 1 inport a.b — | cutA
@sn . 3 Ls9.4a |m |3 -} _tmp_d = L_shr {_tmp_5. 1)
051 z I 1 L5935 |- |4 _} _tmp_3 = | extract_l (_tmp_d?
Os13 u & track = sub (i. _tm
= - _tmp_37
Osi4 . 3 L5396 |F |5 -{: - .
@s15 . 5 Ls37 IF |2 - _status_ = » J 0
|| 051‘5' 1 if _status_
= =
@=17] 1 £
—| @1z 1l 4 goto 510; L
| @519 1 3 —
: @sz0] 1 else =
||l |@s21] 1 :
Osez _D goto 511
@sz1 /
F— - :
Help | (018 | Cancel
N A
ek A

This is the scheduling and binding result for the L_S9 2 and L_S9 3 statement. The
statement L_S9 2 is scheduled control step 1 relative to the start of state S9. The func-
tion call "mult" is performed by ALU3. The variable "index" in statement L_S9 2 is
bound to RF1[2] which stores the result of the function call "mult” through the bus
"BUS3".

Left click on Cancel.

197

Chapter 4. Custom Hardware Design

4 5. RTL Refinement

So far, we performed allocation, scheduling and binding of which information is anno-
tated into SFSMD model. Then the SFSMD model should be refined into cycle-accurate
RTL model which is represented by finite state machine with data (FSMD). The cycle-
accurate model will reflect all scheduling and binding information.

Basically, this step will split the state to the multiple states reflecting scheduling infor-
mation. Now each state will take one clock period exactly to perform.

The RTL refinement tool can generate cycle-accurate FSMD model in various hardware
description language such as Verilog HDL and Handel-C in addition to SpecC. The
Verilog HDL model will be used to be input of the commercial logic synthesis tool like
Design Compiler from Synopsys. Also the Handel-C model will be fed into Celoxica
Design Kit to generate gate-level netlist.

198

4.5.1. Generate RTL model

Chapter 4. Custom Hardware Design

=|vocoder.sce - 30C Enviranment - [Cade_10i40_35hits - YocaderFsmd - YocoderF smd.sir [read-only]] |Q|E|E
W File Edit ¥iew Project §ynthesis| Walidation Windows Help == x|
N [EQ [é') allocate PEs... =X I .|
G Show Yariahles 1
. . Type (S ame
Design Architecture Pluging -
o 2] Vocogerspes. sir 88 architecture Refinement... Codar & code_10
]| ; Hiodors i
B B8 VocogerAri.sir Schedule hehaviars.. o) len
B35 ocomarSehed sir _ _ a ¢ cod
IJﬂ_Elg S Scheduling Plugins - HW 5 i b
LT @2 Scheduling Refinement.. podEBO0K AR_IWA 5 prm
it _codebook AR, &
&llocate Busses... ebook Cirdtebi _Oox
seq 7 Codeb ey
5 Show Channels : | o coder
Communication Plugins .~ | @ -nr & cor & | — @dn
2|2 Communicatian Refinement... - sst_sige Sat Sy @dn2
— - W cor & Lo fr g ind=
RTL Preprocessing... L searcr 1Gi4G Sears) L oipos
Allocate RTL Units... : buiiel_code Bl | g pos_1
; F g & A -
Schedule & Bind RTL... 1
_ Bt [aels 2t 7| o
] T RTL Plugins = T B] I=]
Madeals | Imports | Sources | [BTL Refinement... Channels | :I Hi I: | 1
C Code Generatian...]
X cCompile | Simulate | &na R ca el |
Import Decisions...
@ Stop
RTL refinement 4

We refine the SFSMD maodel to cycle-accurate model by selecting Synthesis—RTL

Refinement from the menu bar.

The refinement step will split the state into multiple states reflecting the scheduling
information. Also, each state will take exactly one clock period to execute.

199

Chapter 4. Custom Hardware Design

4.5.1.1. Generate RTL model (cont’d)

| vocodersce - S0C Environment - [Code_10i40_35hits - YocoderFsmd - YocoderF smd.sir [read-only]] |Q|E|E
W File Edit Miew FProject Synthesis Validation Windows Help =|=| x|

nEErIE I I EEE IR aaEiEEe
. =]
x a3
. [IType B Name
Design
EFQ Vocoderspec. sir Behavior: Code_10i40_35hits (HW) _II Cagar & Code_10
B8 VocogrAri.sir Clock period: ~&en
535 ViocoderSohied sir Outout stul L cod
818 VocomerTomms | [0 dt SHE ' h
~ (13 No binding - rm
~ [2) Starage hinding —gx
_— .
~ [3) FU & storage hinding | g codes
(47 Busg, FU & storage binding I @n
= @dnZ
I© Keep original hehavior - @inds
—Translation — g ipos
= Generate Yerilog output: - @post
gt
|fh0mefspecc.l’dem0NucoderRTL.v| Codebalad C_?ni“ /
T - E| =)
Models | Imports | Sources F) atpetz il sz] Hw |: |
Ifhomefspecc!demo!CudeJDi4D_35bits.hcc =
X compile | Simulate | Anal
II Start Cancel |
A

Freparing refinement... 4

The RTL Refinement dialog box pops up showing us all options which can be used
for refinement tool. At the top of the dialog box, a pull-down list is available to select
the desired behavior to be refined. The default behavior is the one that is highlighted
in the behavior hierarchy tree. For our demo, select "Code_10i40_35bits (HW)" from
the list then left click on Start to begin RTL refinement. Notice that like in the earlier
refinement phases, we have options for partial refinement steps. The user might avoid
some binding steps if he wants to look at intermediate models. Also note that we have
selected a clock period of 10 ns, corresponding to the speed of our custom hardware unit.
It may be recalled that while selecting the hardware component, we specified a hardware
component with clock speed of 100 Mhz, which imposes a clock period of 10 ns.

The RTL refinement tool can generate cycle-accurate FSMD model in various hardware
description language such as Verilog HDL and Handel-C in addition to SpecC. The
Verilog HDL model will be used to be input of the commercial logic synthesis tools
such as Design Compiler from Synopsys. Also the Handel-C model will be fed into
Celoxica Design Kit to generate gate-level netlist. In this demo, we will generate SpecC

200

Chapter 4. Custom Hardware Design

RTL and Verilog HDL model for the design.
Change output file name for the Verilog HDL model to "VocoderRTL.v".

201

Chapter 4. Custom Hardware Design

4.5.1.2. Generate RTL model (cont’d)

50 Environment - [Main - YocoderFsmd - YocoderFsmd.il1 sir [read-only]] [=][=][>]
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
D2 Hd 8 vwex X[[FFE] B e 0]
D Ty,]]
’ il Mame
Design
o 2] Vocogerspes. sir & rain
B-38 Vocogerarei.sir AF manitor Monitor @local_dt
S5 VncoderSched s A stimulus Stimuly v dbs_mod
WHE|2 VocodeeTomr i - Elu!ld_CUde [serial_hi
— |4 Build_Code_F3MD
_ | Cor_h Cbspeech_
E@vocoderFs|(Il |4 cor_h_FsMD Chteelt_ctr
L@ Cor_h_x Scader
L4 Cor_h_x_FSMD o monitor
@ L_unit_32 o stimulus
&+ Il Motorola_DSPSEE00_BF —
—AG_p
4 G_p_FSMD
@ RF_32_32_5
M RF_32_64_6
| F Search_10i40 /
=l T = T | - | =
Madels | Imports | Sources | Hierarchy | EBehaviors || Channels | Raw I E~ | 1
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
| |#* behavior: Set_Sign_FSHD 3
*x#%% caloulating critical path delay
*#%% calculating pouwer
MWriting SIR file "Ahomesspecc/demnoNocoderFsmd,rtll,sir", ..
1
| |Done. /
Ready A

Note that RTL refinement step generates new RTL model for 6 sub-behaviors of the
behavior "Code_10i40_35bits", as seen on the logging window. Also note that a new
model "VocoderFsmd.rtl.sir" is added in the Project manager window.

202

Chapter 4. Custom Hardware Design

4.5.1.3. Generate RTL model (cont’d)

§| vocodersce - S0C Environment - [Main - YocoderFsmd - YocoderFsmd.rl.sir [read-only]] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz 8gd g ve X B aaEEEIE]
; [[| Name
Design
o 2] Vocogerspes. sir &omain
B-38 Vocogerarei.sir @ local_dt
B ocoaersohed sir _ T dibe_mod
BH-2|2 VacodeTamn sir :gu!:g_goge ESMD Tserial_bi
T ui ode
oI VocogierFame siv o n - @speech
— T = VbRl _ctr
i ocoderF MDD
QOpen Scader
Delete Dal | FSMD & manitor
Onen Inaut 4 & stimulus
Ren npu | DSPSEE00_BF —
Becreate
o
B
Rename 5 s
Change Description... 4 6
Statistics... b0 /
I TR | - -] -
todels | Imports | Sources | Hierarchy | Behaviors || Channels | Raw I E~ | 1

__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
L= - e) et o~ e 2 ™
##x% caloulating critical path delay
*x#% caloculating power

Writing SIR file "/homedspecc/denc/VocoderFend,rtl,=ir", ..

Daorne, 1
i £
[Ready A

Like before, we must give our new model a suitable name. We can do this by right click-
ing on "VocoderFsmd.rtl.sir" and selecting Rename from the pop up menu. Rename the
model to "VocoderRTL.sir".

203

Chapter 4. Custom Hardware Design

4.5.2. Browse RTL model

Communication Pluging -

3|g Communication Refinemant...

RTL Preprocessing...
&llocate RTL Units...
Schedule & Bind RTL...

] T RTL Plugins =

Maodels | Imports | Sources [RTL Refinement...

= vocoder.sce - 30C Enviranment - [Build_Code_RTL - VocaoderRTL - YocaderRTL i) |Q|E|E
[C] Eile Edit View Project Synthesis | Walidation Windows Help == x|
N [EQ [éH") allocate PEs... =X I .|
: = Show Yariables
@ - IType My
Design Architecture Pluging - ame
o 2] Vocogerspes. sir 88 architecture Refinement.. Coger & Build_Code
ag 7 Hiotorals_D5PSGERT_wr
B B8 Vocoderarirsir Schedule behaviars.. - - & cod
B ocoaersohed sir AW Standarm weap & cadvec
L am Scheduling Fluging = HWStamdant
ala VecoaerCaomn, = - #h
IJl-'__- Vieiors, oias acheduling Refinement... W1 Codehook AR_WE _Codebook P indx
- ar_ it codebook AR_INIT_Codeboof o
LEREEEE siocate Busses.. cogebaok Codebook Oos'gn
[}
5 Show Channels e Comepood_Seqi s
- B coge 7040 Covgle T0i40 3580ts

Co v K ATL
Sel_Siger_ATL
Cor fr ATE
SearTh TR ATL

=

Codfaboof_ Seql

| -

s | Channels |

C Code Generation...
X compile | Simulate | F«nn% =

Tow 1.1

el |

Import Decisions...
% sir_rename -i fhomed: e

RTL @ Stop

r -o fhomedspecc/denoocoderRTL .=ir VocoderFsmd Vocoder

RTL gcheduling and variable & operatar binding

)

In order to look at RTL model for the behavior "Build_Code RTL", select
Synthesis—Schedule & Bind RTL from the menu bar.

204

4.5.2.1. Browse RTL model (cont’d)

Chapter 4. Custom Hardware Design

= vocoder.sce - 30C Enviranment - [Build_Code_RTL - VocaoderRTL - YocaderRTL i) |Q|E|E
| RTL Scheduling & Binding
State Ciper Vari4 Tra\nlDeIayI |P0wer I Cycle Destination | Operat ion |Source 1 |SDL
@so 00 0 000ns 00mW bus1 = RFO[1]
@51 i 0 10.3 mW L s9.0 o A bus0 = codveclbus1]
Qs B o] 1] s4nw _r I_ 4 RFOLO] = b0
©@s3 M ol R Es0 m [| et
Ds4 [103 mw
@ss W ol s 94mw
o= P o 9.3 mw
@z [l ol B szsmw
@s7 T 10.3 mw
@ss W ol s 94mw
o ol 2 EEE sl ze mw
@591 1 oy R 5w
@592 ol s R G35 mw
@z W o R 241 mw
@s94 W o] 2B S0amw
@s95 0 ol Sismw
@s10 o oS Bl sl 700 mw
@z [l o) 2R S61 mw
@s10_2 0 ol 3BT ns| 534 mw
@sn o e IEEEEE 1118 mw I
@sn_0 [l ol B sednw
@s11_2 o o] 3 7 nsl 283 mw
@s12 o ol 38 sl 462 mw
@z [l o s 94 mw
a2k n il MEE . T TERY I =
Help | Ok | Cancel
2 -
Eady A

In the right-most column of the RTL Scheduling and Binding window, some states are
split to multiple states. For example, state S9 is split to 6 states, S9, S9 1, ..., S9_5. Note
that the delay of these states is less than 10 ns in Delay in the right-most column.

Left click on Cancel.

205

Chapter 4. Custom Hardware Design

4.5.3. View RTL model (optional)

§| vocodersce - SoC Environment - [Build_Code_RTL - YocoderRTL - YocoderRTL sir) |Q|E|E
[C] Eile Edit ¥iew | Eroject Synthesis Validation Windows Help == x|
0 & __sowee. ¥ B aaEEEIE]
Hierarchy. .. B
Cnnnectiiit _H[hame IType [J MName
Design = ¥ -4 Wain
B2 Vocoder, Graphs = m- Wl coger Coder & Build_Code,
®-38vece. Trace.. iZSzW ﬁ;j@gﬁa}ﬂﬁ%ﬁ&ﬁ_w & cod
aio; Sl)
‘jlj'” Quality Metrics... @ i o gﬁ”d"ec
e |g—|§ Show Testhench B ar wr cogebook AR_WA_Codebook £ ind
_u _. B+ B ar init codebock AR_INIT Codebook o
e Show Children B 8 coskbook Cowetook o
Customize... Coebook_Seq? Y
Code_10/40_35bits
S Co v K ATL
Set_Sigrn ATL
Cor & ATL
Sead 1AL RTE
Buitd_Coae_ATL
& g ATL
Codfaboof_ Seql 7|
-l | —| I | = -] =
Models | Imports | Sources | Hierarchy | Behaviors | Channels | :I Hiw I: |]
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: ¥ sir_rename -i /home/specc/demo/NocoderFand,rt.l,sir -0 Jhome/specc/deno/NocoderRTL ,sir YocoderFsmd Vocoder
RTL
Wiew source

)

We now browse through the newly created model in the Design hierarchy window. Note

that the type of the instance "build_code™ has now changed to "Build_Code_RTL" after
RTL refinement.

Select the behavior "Build_Code_RTL" by left clicking on it. We now take a look at the
synthesized source code to see if the RTL refinement tool has correctly generated the
RTL model. Do this by selecting View— Source from the menu bar.

Note that if reader is not interested, she or he can skip this section to go directly Section
4.5.4 View Verilog RTL model (optional) (page 209).

206

Chapter 4. Custom Hardware Design

4.5.3.1. View RTL model (optional) (cont’d)

IEEIES]
[=[Axljep =)= x|

vocodersce - S0C Environment - [Build_Code_RTL - YocoderRTL - YocoderRTL. sir"]
oderRTL si - SpecC

File Edit Search Miew

behavior Build_Code_RTL(
in short int codvec[10]1,

1]

in short int sign[40], -

D
out short int cod[40]1, Bl Cod
L in short int h[40], 3706”)' _Code
out short int y[40], cod
out short int indx[101) o codvec

= A
void main(void) = i
s o incix

bit[31:01 BUST; & sign
bit[21:0] BUS2; &y
bit[21:0]1 BUS3;

bit[31:0]1 BUS4;

bit[21:0] BUSS;

bit[31:0]1 MEMI[256];
bit[31:0]1 RF1[32];
bit[31:0]1 RF2[32];
bit[21:0]1 RF3[32];

unsigned bit[0:0] _status_;

Fsmd(10u)
i

o EN

|
m

L_51_0: BUST = 0;
RF1L[0T = BUST;
goto 52;

i

g2 £
F -
[[Line: 4432 Col: 1 4

Relrey —

The SpecC Editor pops up showing the RTL code for behavior, "Build_Code RTL."
Scrolling down the editor window shows several function declarations in this behavior.
It is to be noted that these declarations correspond to the functions implemented for the
allocated RTL components. Also, we can observe a FSMD construct with 10 ns clock
period.

207

Chapter 4. Custom Hardware Design

4.5.3.2. View RTL model (optional) (cont’d)

vocodersce - S0C Environment - [Build_Code_RTL - YocoderRTL - YocoderRTL. sir"]
- YocoderRTL.si - SpecC Editor

[=[Elf]
CI ARTE S|

(=[]

File Edit Search Miew

H
59:
ame
=] H
BUS2 = RFI[1]; k5 Build_Code
L_59.0: BUST = codvec[BUS2]; eod |
RFTL0T = BUST; Eo
goto S9_1; codvec
3 h
- §9—1 : || o inox
BUSZ = RF1[01; < sign
BUS4 = RF1[01; Fy
L_S9_2: BUS3 = mult(BUS4, £554);
RF1[2] = BUS3;
L_S9_1: BUS1 = sign[BUS21;

L]

=lol |]

RF2[0] = BUST;
goto 53_2;
H

59_2:

g i

EUSZ = RF2[01;

BUS4 = RF1[21;

L_59_7: _status_ = BUSZ » 0; | =
L_59_3: BUS3 = L_multi(BUS4, 5);

T - b, NN
goto 59_3; e~
3

|

S9_3:

i

BUSZ = RF3[0];

L_59_4: BUS1 = L_shr(BUSZ, 1);
RF2I01 = BUST;

goto 59_4;

k4

U =
[Line: 4432 Col: 1 4

£

)

Scrolling down further shows the assignments for the state variables. Recall that the
RTL synthesis produced 112 states. These states are enumerated here from 0 through
111. Note the final assignment (S_EXIT = 111). Further observations of the generated
code show read/write operations on the register files. For instance, RF1 is the register
file written in the statement RF1[0] = BUS1, as shown in state S9.

208

Chapter 4. Custom Hardware Design

4.5.4. View Verilog RTL model (optional)

[EEX
Help x|l x|

Build_Code_FSMD(clk, rst, _start_. _dore_. codvec, sign, cod, h. y, indx):

[0:0] clks:
[0:0] rat: — [J
[0:0] _start_: r
[030] _dore_: - Mame
[15:0] codvec: .
[%5:0]]sign; A &glgo_goue_
15:0] cod:
e ¢ codvec
[15:0] y: p
[15:0] indx:
[15:0] cod: o indx
[15:0] y: !
[15:0] indx: g?gn

[31:0] RF1[0:31]:
[31:0] RF2[0:31]:
[31:0] RFZ[0:31];
[31:0] HEML[0:255];
[31:0] BUSL:

[31:0] BUS2:

[31:0] BUS3: B
[3130] BUS4:

[31:0] BUSS:
[31:0] BUSE: /
[0:0] _status_t =

[B:0] state: - _ﬁJHW 5];

]|
Ivlo

I
[T T e | R R TR TR TR TR
-

[R R R R R R N Ty Ty s)
Do=-ImIm A ERS RS
[== T = L R TN

=y

[Ready

|

Check out the Verilog code generated in the file VocoderRTL.v. This code is generated
by the RTL refinement tool. The designer may go the shell and launch his favorite editor
to browse through the generated Verilog code.

If reader is not interested, she or he can skip this section to go directly Section 4.5.5
Simulate RTL model (optional) (page 211).

Note that the Verilog code has corresponding modules for 6 sub-behaviors of
Code_10i40_35bits.

209

Chapter 4. Custom Hardware Design

4.5.4.1. View Verilog RTL model (optional) (cont’d)

= [EE5
= Help =] x|
;| == H
:: BUS2 = RF1[1]:
................. RFL[0] = BUSL: e
— BUS1 = codvec[BUSZ]: i
[0} state = 59_1: B ame
= exl & Build_Code,
T RF1[2] = BUSE: W ¢ cod
BUS2 = RFL[0]4 & codvec
BlS4 = RFL[0]: h
RF200] = BUSL:
BUSL = sign[BUS2]: o indx
BUSZ = mult(BUS4, E554):
state = §9 2 C5)S|gn
'y
g5 2

RFZ[0] = BUSE:

BUSZ = RF2[0]:

BUS4 = RF1[2]:

BUSE = L_mult(BUS4, 5):
status = BUSZ:0:

59 33 .
RF2[0] = BUSL:
BUS2 = RF3[0]: /
BUSL = L_shr(BUSZ, 1): 1 <
state = 59 43 — j - I- -
59 4: 51“_
RF3[0] = BUSL: ’
BUSZ = RFZ[0]:
BUS1 = extract_l{BUS2):
state = 595

59 5:

RF1[3] = BUSL:
BlISZ = RF1[0]:
BUSZ = RF3[0]:

BUSL = sub(BIs2, BUSZ):

[Ready

267,29 43

|

In the Verilog code, we use "case" construct to represent FSMD. Al states are defined by
parameter construct. If " _start_" signal is activated, FSMD begins to execute and then if

FSMD reaches state S_EXIT, "_done_" signal is asserted and FSMD will end to execute
and will wait for next entry of execution.

210

Chapter 4. Custom Hardware Design

4.5.5. Simulate RTL model (optional)

= | wocoder.sce - 50C Environment - [Build_Code_RTL - YocoderRTL - YocoderRTL sir'] ||Q|E|E
File Edit Wiew Project Synthesis ‘alidation | wWindows Help =|=] %
Eile Edit ¥i Eroject Synthesis ‘alidati Wind Help
| = [[[= s Ye I ¢ B » Enable Instrumentation h o, I .l
Compile I
Type B
Design Simulate MName
o 2] Vocogerspes. sir Open Terminal e Cictar & Build_Code,
B8 VocoderArmi.sir Kill simulation s Mistorola_OSPSEEET_wr o cod
BHEE VocoderSehed sir , AW Standzm_weag o codvec
i , Wiy LG HW Standard
WHE|2 VocodeeTomr i — h
- VacoderFamd i Erafile ehook AR_WE_Codabaok o indx
- it codebook AR_INIT Codebook e
i v ocoderRTL.sir Analyze ok Cogebook sign
Evaluate ag Codebook_Seq T Py
Metrics. . o THER Covgle T0i40 3580ts
- : W cor i % Cor fr % ATE
e L set_sign Se_Sigr_ATL
Estimate W cor i Cor ki ATL
\WF searciy TOi40 Searmd TG RTE
Analyze RTL ‘o T
@ siop 4. &
ey Cogatock_Segs

-~
Maodels | Imports | Sources |

| -

Hierarchy | Behaviors | Channels |

Tow 1.1

RTL

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

¥ sir_rename -i /home/specc/demo/NocoderFand,rt.l,sir -0 Jhome/specc/deno/NocoderRTL ,sir YocoderFsmd Vocoder

Compile

)

Now, we have to create an executable for the generated FSMD model by selecting
Validation— Compile from the menu bar.

If reader is not interested, she or he can skip this section to go directly Chapter 5 Em-
bedded Software Design (page 215).

211

Chapter 4. Custom Hardware Design

4.5.5.1. Simulate RTL model (optional) (cont’d)

= | wocoder.sce - 50C Environment - [Build_Code_RTL - YocoderRTL - YocoderRTL sif |Q|E|E
File Edit ¥iew Project Synthesis ‘alidation | Windows Help =|=| x
| ¥ p
N [[[é“o] I ¢ B » Enable Instrumentation f of, I .l
Compile I 1
Type B
Design 1 Simulate LEE
o 2] Vocogerspes. sir Open Terminal e Cictar & Build_Code,
B8 VocoderAri.sir Kill simulation . Mistoroia_DSPSEE0G_wr & cod
B35 ocomarSehed sir . W Standzm_weap & codvec
o) . View Lag.. HW_ Standant
WHE|2 VocodeeTomr i - o h
LW VooderFame sir Profile ehook AR_WE_Codabaok S indx
: i codebook AR_INIT_Codeboof o
s v ocoderRTL. sir Analyze ok Cogebook sigh
Evaluate ag Codebook_Seq T Py
RS ode_ 16140 Code_15i48_35bits
- : W cor i % Cor fr % ATE
ehimy [Exlligitzs set_sign Sef_Sign_ATL
Estimate W zor & Cor fr ATL
\WF searciy TOi40
Analyze RTL
@ :iop L
T = Codfaboof_ Seql 7|
] I == T =] -] =)
Madeals | Imports | Sources | Hierarchy | Behaviors | Channels | :I Hi I: | 1
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Input: "VocoderRTL,cc" A
Output: "VocoderRTL,o"
Linking, ..
Input: "VocoderRTL,.o"
Output ; “VocoderRTL"
Done, JI
Simulate A

Note that the RTL model compiles correctly generating the executable VocoderRTL
as seen in the logging window. We now proceed to simulate the model by selecting
Validation—Simulate from the menu bar.

212

4.5.5.2. Simulate RTL model (optional) (cont’d)

Chapter 4. Custom Hardware Design

frame=147
frame=148
frame=143
frame=150
frame=151
frame=152
frame=153
frame=154
frame=155
frame=156
frame=157
frame=158
frame=159
frame=160
frame=161
frame=162
frame=163

encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay
encoding delay

done, 163 frames encoded

ilez src/zpeschfiles/nodtx_good.bit and nodtx,bit are identical
imulation exited with status O
ress return to continue L.,

==

Help || x|
I Type 'l Mame
Coger & Build_Code
MMotorala_SPS6E00_ W, o cod
HW Stardat wesg & codvec
W Srandanr o h
AR_WR_Codebook .

LW d
AR_INIT Codetoak g e
Cogetok £lgn
Codebook_Seq? Py

Coge_ T4 3560t
Co v K ATL
Sel_Siger_ATL

Cor fr ATE

SearTh TR ATL

? RTL
Codfaboof_ Seql

‘— L
| ‘ ‘ B segs
]

-~
Maodels | Imports | Sources |

| -

Hierarchy | Behaviors | Channels |

Tow 1.1

sread confirm

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

% xterm -title NocoderRTL -8 /hindsh -o |, AocoderRTL srcd/speechf ilesdspch_unx, inp nodbx,bit nodtx 2a diff
-z =rc/speechf iles/nodbx_good.bit nodbtx,bit: echo "Simulation exited with status $7" recho "Press return to
continue L.."

Ready

)

The simulation window pops up showing the progress and successful completion of
simulation. We are thus ensured that the RTL refinement step has taken place correctly.
Also note that we can perform the RTL refinement on any behavior of our choice. This
indicates that the user has complete freedom of delving into one behavior at a time and
testing it thoroughly. Since the other behaviors are at a higher level of abstraction, the
simulation speed is much faster than the situation when the entire model is synthesized.
This is a big advantage with our methodology and it enables partial simulation of the de-
sign. The designer does not have to refine the entire design to simulate just one behavior
in RTL.

In this simulation, we see the delay per frame in RTL model increases to 18.13 ns from
17.05 ns compared to SFSMD model. Because each state in the SFSMD model is split
into multiple states by scheduling and binding.

213

Chapter 4. Custom Hardware Design

4.6. Summary

In this chapter we showed the task of custom HW design for the behaviors mapped to
HW component. We started from a bus functional model of the system and isolated the
behaviors that we want to implement in HW. These behaviors underwent a series of
transformations to arrive at a FSMD style model that can serve as input to industry stan-
dard logic synthesis tools. Besides, generating the SpecC models, SCE is also capable of
generating HW models in standard HDL like Verilog and Handel-C, which can be used
by the Celoxica Design Kit.

We also saw various advantages of working with SCE during RTL synthesis. The envi-
ronment and language allow the user to concentrate only on one behavior if he or she
needs to. That is, the designer may choose to perform cycle accurate implementation
of a critical behavior and keep the remaining behaviors at a higher level of abstraction
for fast simulation. The RTL synthesis process itself allows the designer to perform the
scheduling and binding steps manually. However, we also showed the automatic RTL
synthesis capabilities. The designer is free to tweak the synthesis results and generate a
new model at any time.

214

Chapter 5. Embedded Software Design

5.1. Overview

Figure 5-1. SW code generation with SCE

Specification

Analysis untimed

System level
Design

Architecture
Exploration

timed

SW Scheduling/
RTOS
L]

Communication
Synthesis

Custom HW SW code cycle
generation generation accurate

In this chapter, we look at software code generation as highlighted in figure 5-1. The
bus functional model derived after system level design contains a behavioral hierarchy
of tasks mapped to SW components. Since the SpecC code is not a natural input for
generating the processor’s instruction-set specific code, we need to produce C code that
can be compiled for the processor. In this phase we use the SW generation tool to flatten
the hierarchical SpecC code and produce C code. We thus enable the designer to use
an off the shelf processor with C compiler and produce cycle accurate SW for it. The
instruction set simulator for the processor can be used in conjunction with the SpecC
simulator to perform cycle accurate simulation of both HW and SW.

215

Chapter 5. Embedded Software Design

5.2. SW code generation

[=I[E[x]
BEA File Edit ¥iew Project Synthesis Walidation Windows Help == x|
Dz 8@ 8 ve % X[EEEE] B @ | 0]
x 3|
- i Marme IType = Narme
Design - tain |
m- 12 Vocoserspes.siv Wl coder Coder & motorola,
B30 VocogerArh sir e ar_ce
BHEE VocoderSehed sir o ar_cc
n8 ; P ar_cc
E_—L—_V;C‘Ode@fﬁmﬂf By i AW Standand weap L d:) ar_cc
Lfocoa’erFsma’.sxr & monitor Wanitar s _

iV OcoderRTL i A stimulus Stimulus [ArEL
| Build_Cods —cF ar_co
|4 Build_Code_FSMD | o ar_co
& Cor_h i ar_ce
—' CDI’_h_FSMD —(ﬁj ar_cco
—AF Cor_h_x - ar_cc
4 Cor_h_x_F3MD i ar_ce
L _unit_32 | P ar o

Il Matorola_DSPSEE00_BF =
Fop o ar_cc
il / T |
~ I L ! | - -] -
Models | imports | Sources | Hierarchy | Behawiors | Channels]DSP I: |]
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
[Ready 4

Once we are done with HW and have obtained a RTL model, we will generate soft-
ware for the DSP. For our design example, we need to generate C code for behavior
"Motorola_DSP56600" and all its child behaviors. We start by selecting behavior *"Mo-
torola_DSP56600" in the design hierarchy tree.

216

5.2.1. Generate C code

Chapter 5. Embedded Software Design

=|vocoder.sce - S0C Enviranment - [Motarala_DSP56R00 - YocoderRTL - YocoderRTL sir) |Q|E|E
BEA File Edit ¥iew Project §ynthesis| Walidation Windows Help == x|
N [EQ [éHO allocate PEs... =X I .|
: R = ¢} Show Variahles [
. : [Type A rare
Design Architecture Pluging -
|¢_‘|-:.:= Viocoderspes siv 898 architecture Refinement... Coer hotorola)
Spe oo
oo ; Moloraia_ DSPI66GE_ wrs, i
B B8 VocogerAri.sir Schedule hehaviars... i oar_cc
BB Vneodersched sir _ : o ar_ce
IJﬂ_Elg S Scheduling Plugins o peld HW handiar lhandier o ar oo
LW Vseoderrs S5 Scheduling Refinement... SW_.FQWQW_WP | cfrar co
| onitor -
LR eitocate Busses.. Stimulus - ar_ce
o ar_ce
5 Show Channels o | | e ar oo
Communication Pluging - ¢ ar_co
3/ Communication Refinement... o ar_ce
— . o ar_ce
TL Preprocessing... | ar oo
Allocate RTL Units... o ar_co
00_BF -
Schedule & Bind RTL... - y P ar_cc .
AV v
] T RTL Plugins = T B] I=]
Madeals | Imports | Sources [EE BTL Refinement... | Channels |] DsP I: | 1
C Code Genetation...]
X compile | Simulate | &na M C ca I
H Import Decisions...
@ Stop
C code generation 4

To generate C code for behavior "Motorola_DSP56600", select Synthesis—C Code

Generation... from the menu bar.

217

Chapter 5. Embedded Software Design

5.2.1.1. Generate C code (cont’d)

= | wocoder.sce - 50C Environment - [Motorola_DSPSEROD - YocoderRTL - VocoderRTL sit] |Q|E|E
BEA File Edit ¥iew Project Synthesis Walidation Windows Help == x|
Dz 8@ 8 ve % X[EEEE] B @ | 0]
[
ITW]E A Mame
Design
o 2] Vocogerspes. sir Coder Homotorola,
B2 Liocoderari.sir Matarola_DSPS6660_ wrap e ar_ce
(28 Vs onerScfed sir - : f o ar_ce
BH-2|2 VacodeTamn) = ra—— T ——— | P ar_ce
W Vocoerfs - ar_ce
Behavior: | Motorola_DSPS6E00 (DSP) | - ar_ce
o ar_ce
C cade file: lefar_co
|a’h0me.-’speccfdemufMotorola_DSF'SEEDD.c i ar_ce
C header file: o ar_ce
o ar_ce
|fh0mefspeccfdemufMotorola_DSF'SEEDD.h Lo ar e
I Keep original hehavior o ar_ce
o ar_cc
/ T |
T T I stat | cancel el =m |
Models | Imports | Sources)] It [}ld

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

Freparing code generation... 4

A dialog box pops up for the user to input the name of the C and Header file of the
generated software. Now press the Start button to start the C code generation process.

218

Chapter 5. Embedded Software Design

5.2.1.2. Generate C code (cont’d)

50C Environment - [hain - YocoderRTL - YocoderRTL c.sii] [=][=][>]
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz 8gd g ve X B aaEEEIE]
X 3|
-][iame 7 | Mame
Design B
m- 12 Vocoserspes.siv Coger & rain
B-38 Vocogerarei.sir ¥ monitor Monitar @local_dt
BFEEE ioeogierSofied sir ‘stimulus Stimulus o dbx_mod
BH-2|2 VacodeTamn sir _:gz::g—gggg ESMD T serial_bi
oI VocogierFame siv & Cor h - hspeech_
s YocoderRTL. si & CDI’:h_FSMD Chedt=_ctr
o vocoderRT -4 Cor_h_x 870'3‘“_”
4 Car_h_x_FSMD & manitor
—AF L _unit_32 | & stimulus
gl& Motorola_DSPSEEDD
Il Matorola_DSPSEEO0_BF
— A a_p
& G_p_FSMD
—MFRF_32_32_5
—AFRF_32_B4_B /
I =~ I = -] =

~I
Maodels | Imports | Sources | Hierarchy | Behaviors | Channels Raw I E: | j

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

++++ Summary of Software Generation ++++ A
-- 17 gzlohal varisbles are gensrated in C
-- 45 global functions are generated in C
-- 95 hehaviors are implemented in C
-- 0 channels are implemented in C
Code generation successfully completed,

7
[Ready A

As displayed in the logging window, the software generation is being performed. The
newly generated software model "VocoderRTL.C.sir" is displayed to the design window.
It is also added to the current project window, under the RTL model "VocoderRTL.sir"
to indicate that it was derived from "VocoderRTL.sir"

219

Chapter 5. Embedded Software Design

5.2.1.3. Generate C code (cont’d)

[=I[Bl[]
Help =(~|x|
. i Mame |Type IPE |Ell A [J
Design I A - A rain
o 2] Vocogerspes. sir Ml coger Coder Bir
@_gg VocoderAreh sir D5F Motoris_ DEPSEGRE_wrag 5P
BHEE VocoderSehed sir T"'F' I
B)a . Wty Bush HW_famdier ihanater
EELE_V;‘C‘?@@WWS#' ; E- = AW MW Standam_ wrap HW
Vocoderfsmmd sir . & monitor Waonitar
B v ocoderRTL sir A stimulus Stirmulus
nvocoderRTLC sir |- Euild_Code
|4 Build_Code_F3MD —
¥ Car_h
& Cor_h_FSMD
A Cor_h_x
4 Cor_h_x_F3MD
A L_unit_32
% Motorola_DSFEEEO0
Il Motorola_DSPSEE00_BF 7|
== =
Models | Imports | Sources | Hierarchy | Behaviors | Channels
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
: ¥ sir_rename -i /home/specc/demo/NocoderRTL,c,sir -0 /homedspecc/denc/NVocoderRTLE ,sir VocoderRTL VocoderRTL
C
[Ready A

Like in the previous sections, we need to change the design name to follow the same
naming style in this tutorial. In the project window, select design "VocoderRTL.C.sir".
Right click and select Rename... Change the design name to "VocoderRTLC.sir"

220

Chapter 5. Embedded Software Design

5.2.2. Browse and View C code

arvin.ics.uci.eduyhome

File Edit Seftings Help

[][=][]

Etruct C_Motorola_DSPSEE00

short int TO;

short int ch_anal[10];
short int code[407;

short int exc_i[407;
short int gain_code;
short int gain_pits

short int h1[40];

bool local_dtx_mode;
short int prm[57];

short int resz[40];

bool reset_flag 1;

bool reset_flag 23

zhort int speech_frane[160];
short int sun[1607;

short int twditx_ctrl_wval;
shart int xn[407;

short int yl[40];

short int y2[40];

struct Coder_12k2 coder_12k2;
struct Post_Process post_processs
=truct Pre_Process pre_process;

15

void Closed_Loop_Segl_main{struct Closed_Loop_Segl #This)

WALTFORCD)

(#(This-»p_h1)) = (short int) (({This->h1));

(x(This->p_exc_i)) = (x(This-»p_exc)) + (x(This->i_subfr));
(#(This->p_speech_i}) = (#(This-»p_speech)) + (x(This->i_subfrl);

3758,1

void Compute_CH_Excitation_Gain_main{struct Compute_CH_Excitation_Gain #This)

42%

5

o

IEEIES]
Help =(~|x|
|PE |Elus il
=
e D5F
| O Wagper ‘
Al
£
I =
35
o
4

Check out the C code generated in the file "Motorola_DSP56600.c". This code is gen-
erated by the software generation tool. The designer may go to the shell and launch his

favorite editor to browse through the generated C code.

The code generation process converts the SpecC description of tasks into ANSI C code.
The main idea is that we convert the behaviors and channels into C struct and convert
the behavioral hierarchy into the C struct hierarchy. Variables defined inside a behavior
or channel and ports of behaviors are converted into data members of the corresponding
C struct. Finally, functions inside a behavior or channel are converted into global func-
tions with an additional parameter added representing the behavior to which the function

belongs.

221

Chapter 5. Embedded Software Design

5.2.3. Simulate C model (optional)

=|vocoder.sce - 30C Enviranment - [Matorala_DSP5AE00_C_Wrapper - YocaderRTLC - YocaderRTLC sir’] |Q|E|E
[] Eile Edit View Project Synthesis Walidation | Windows Help == x|
| = [[[é“o] I ¢ B » Enable Instrumentation h o, I .l
Compile 1
|Type IPE |EILJ_J
Design Simulate
E-g Vocogerspen sir Open Terminal - Codar B
@_gg_ugwgeﬁq red sir Kill simulation [ofomfa DEPSEGEE wrap DEF
S VosowerSohed S ! HGIGHT e i
s Wiew Log...
|Jﬂ‘§|§ Ve 2 s HW fravadiar iharndie
. Frofile HW_Standanyd weap HW
oI VoooderFsma sir = Manitar
B ocoderRTL sir Analyze Stimulus
W ocoderRTLC S Evaluate
Metrics. . = B
Show Estimates
Estimate
Analyze RTL
@ siop EEDD
[e 600_BF /
| = =
Models | Imports | Sources | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

¥ sir_rename -i /home/specc/demo/NocoderRTL,c,sir -0 /homedspecc/denc/NVocoderRTLE ,sir VocoderRTL VocoderRTL
C

Compile 4

So far we have finished the C code generation. However, we also need to confirm that the
generated C code is correct for the design. In other words the C code must be functionally
equivalent to the SpecC model. The simulation step is optional, so if the designer is
not interested in it, he or she may skip it and go directly to Section 5.3 Instruction set
simulation (page 225).

We will validate the generated C code through simulation. But first we need to import C
code into the design and compile the model into an executable. To compile the C code
model to executable, go to Validation menu and select Compile .

222

Chapter 5. Embedded Software Design

5.2.3.1. Simulate C model (cont’d)

= [vocoder.sce - 30C Enviranment - [Matorala_DSPSAR00_C_Wrapper - YocaderRTLC - VocoderRTLC.sit] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
| = [[[=) |l)] I ¢ B » Enable Instrumentation f of, I .l
Compile 1
|Type IPE |EILJ_J
Design Simulate
LS Q Vocogerspen sir Open Terminal - Codar B
@_gg VocoderAreh sir Kill simulation [Motoris_ DEPSEGRE_wrag 5P
B ocoaersohed sir . .
'li'kglg VoeoderCom sir View Log.. 561 HW_fanaler handier
_- Lf’ocoa’erFs.ma’ s Brailz i i
’ haonitor
EHERY ocoderRTL sir Analyze Stirmulus
W ocoderRTLC S Evaluate
Metrics. . = B
Show Estimates
Estimate
Analyze RTL
@ siop EEDD
[e 600_BF /
-~ | = =
Models | Imports | Sources | Hierarchy | Behaviors | Channels
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Input: "VocoderRTLC ,cc" A
Output? "VocoderRTLC 0"
Linking, ..
Input: "VocoderRTLC.o"
Output; "VocoderRTLC"
Done, JI
Simulate A

The messages in the logging window shows that the C code model is compiled success-
fully without any syntax error. Now in order to verify that it is functionally equivalent to
the previous model, we will simulate the compiled model on the same set of speech data
used in the specification validation. Go to Validation menu and select Simulate .

223

Chapter 5. Embedded Software Design

5.2.3.2. Simulate C model (cont’d)

==
Help =(~|x|
frame=147 encoding delay = 18,12 ms
sl [frame=148 encoding delay = 18,12 ms L I
—| |Framz=143 encoding delay = 18,12 ws pe I FE |Bl B
D frame=150 encoding delay = 18,12 ms
]E frama=101 encoding delay = 18,12 ms o .
frame=152 encoding delay = 18,12 ms
frame=153 encoding delay = 18,12 ms toirnia_ DSPSOEGE_wrag D5P
frame=154 encoding delay = 18,12 ms : :
frame=155 encoding delay = 18,12 ms o
frame=156 encoding delay = 18,12 ms
frame=157 encoding delay = 18,12 ms ffﬁaﬁkian{_u¢ap AW
frame=158 encoding delay = 18,12 ms niar
frame=153 encoding delay = 18,13 ms ulus
frama=160 encoding delay = 18,12 ms
frame=161 encoding delay = 18,12 ms -
frame=162 encoding delay = 18,12 ms
frame=163 encoding delay = 18,12 m=
done, 163 frames encoded
Files srcdspeechfiles/nodtx_good.bit and nodtx,bit are identical
Simulation exited with status 0
Press return to continue ...,
|| £
=T =
Models | Imports | Sources | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

[Ready A

Like in the earlier cases, a simulation window pops up. The simulation result is correct
and we have thus verified that the generated C code is functionally correct.

224

Chapter 5. Embedded Software Design

5.3. Instruction set simulation

= [vocoder.sce - 30C Enviranment - [Matorala_DSPSAR00_C_Wrapper - YocaderRTLC - VocoderRTLC.sit] |Q|E|E
[O] Eile | Edit Wiew Project Synthesis WValidation Windows Help == x|
| [[ew.. ciieN [[¢ B iaEEEEE
= Jpen... Citl+0
— = : H[Mame |Type IPE |Ell A [J
De €3 Close Citl+W | A 2 vain
‘B Reload Ctrl+R I coder Coter =2
DEP Motormis_ DSPSEEEE wrap DEF
Reload all 5 n -
& Save Citl+5 e M ity Bust KW fandier handier
Save s) E- = AW MW Standam_ wrap HW
= LS _ A manitar anitar
& save Al BIRTL.sir A stimulus Stimulus
|- Euild_Code
lmport.. |4 Build_Code_F3MD —
Export... & Cor_h
Print Clrl+P A Cor_h_FSMD
St : A Cor_h_x
Properties... |4 Cor_h_x_F3MD
Statistics... —AFL_unit_32
- % Motorola_DSFEEEO0
Recent Files - Il Motorola_DSPSEE0N_BF /
[Exit ctrl+a T =|||F =
MOGETS [Tmpors | Sadrces Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

sread confirm

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to continue L.."
Simulation exited. exit status: O

Import design

)

After we generated C code for the DSP, we compile the C code into DSP’s instruction
set and import the instruction set simulator (ISS) for the Motorola DSP56600. To start
importing, select File—Import from the menu bar.

225

Chapter 5. Embedded Software Design

5.3.1. Import instruction set simulator model

= | wocoder.sce - 50C Environment - [Motorola_DSPSEEO0_C_Wrapper - YocoderRTLC - VocoderRTLC sir] [EEE

[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|

|Type IPE |EILJ_[J
Design
o 2] Vocogerspes. sir Coder B
=38 vocoserdmpsr || | mose o Moloimia O5PS8E5S D58
-2 osond = .
#3212 I o
- Laak in: | —A/homesspeccidemas
L .. [7 wocoderarch.2 sir [7 vocoderarch.sir 7 vocoe
[7 wocoderarch.ana.sit [7 vocoderComm.anasic [] Yocoo |
(R SCE_Tutorial [] “ocoderarchins sir [7 vocoderComm fsmd.in.si] Yococ
Cddoc [7 vocoderarchschedinsiv (] YocoderCommfsmd.sir] Vocoo
Cfigures [7 vocoderarch.sched sir [7 vocoderComm.ins sir [vococ
Cdsrc [wocoderarch.schedtmpsic [] VocoderCamm sir [wacoe
1 | =
File name: | I Open | 7|
R =
Models | Imports || File type: SR files (% sin =y Cancel |
7|]

__E Compile | SimulEe—[~AMEyZe | Relne | oyfnesize || enem |
: # xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return

to comtinue L.." sread conficm
Simulation exited. exit status: O

Select design to import.. 4

Select directory "IP" from the file selection menu by double Left click.

226

Chapter 5. Embedded Software Design

5.3.1.1. Import instruction set simulator model (cont’d)

= | wocoder.sce - 50C Environment - [Motorola_DSPSEEO0_C_Wrapper - YocoderRTLC - VocoderRTLC sir] [EEE
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|

1 HIEEIE]

|Type IPE |EILJ_[J

Design I
o 2] Vocogerspes. sir
B-38 Vocogerarei.sir
-2 osond =

Codar B

F-212 Ve [o
- Laak in: |_qa’h0mefspeccfdem0.-’lF'f
mf
5
L& s

File name: |Dsp|ss.sir | Open 7|
EU T I e P

Models [[mports || Fie type: SIR files (i) =y Cancel |

A

__E Compile | SimulEe—[~AMEyZe | Relne | oyfnesize || enem |

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

Simulation exited. exit status: O

Select design to import..

Inside directory IP, select "Dsplss.sir" and Left click on Open.

The SIR file contains the instruction set simulator for our chosen DSP. The behavior
loads the compiled object code for the tasks that were mapped to DSP and executes it
on the instruction set simulator.

227

Chapter 5. Embedded Software Design

5.3.1.2. Import instruction set simulator model (cont’d)

[=[Elf]

Help =(~|x|
[
i Marme Type 30
Diesign I 1&g vian
o 2] Vocogerspes. sir 1l coger Coder
B-38 Vocogerarei.sir A monitor hnnitor
B ocoaersohed sir A stimulus Stimulus
WHE|2 VocodeeTomr i - Build_Code
) |4 Build_Code_F3MD
E- 0 ViscodierFsmd si | @ cCorn
@—EVDCDUEYRTL.SH —'Cor:h_FSMD

W vocoderRTLC sir A Cor_h_x
@ Cor_h_x_FSMD

A L_unit_37

R % Motorola_DSPSEE0D

& Bl Motorola_DSPSEE00_BF
__"[g_p

& G_p_FsmMD

| @RF_32_32 5 /

= 1 | =

Models | Imports | Sources | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

Simulation exited. exit status: O

[Ready 4

Once "Dsplss.sir' is imported, we can notice behavior "DspISS™ as a new root behavior
in the design hierarchy tree. This is because behavior "DspISS™ has not been instantiated
yet.

228

Chapter 5. Embedded Software Design

5.3.1.3. Import instruction set simulator model (cont’d)

§| vocodersce - S0C Environment - [Motorola_DSPSEGO0_wrap - YocoderRTLC - YocoderRTLC sir"] |Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Ba X &
&[Mame Type |P 3l
Diesign I 1&g vian
o 2] Vocogerspes. sir 1l coger Coder
B-38 Vocogerarei.sir Sur
(8182 ViocoderSched s : Hl_Standar SOUES
8|2 VocoderTamin siv :gﬁmﬂ; gior::;tlirs LS.
oI ViscogerFamd siv | @ Euild Code Connectivity. ..
FHEREY ocoderRTL sir |4 Euild_Code_FSMD Isolate
erRTLC sir ¥ Cor_h Yirap
A Cor_h_FSMD - o
L @ Cor_h_x Delete Del
M Cor_h_#_F3MD Rename
B+ Il Deplss
L &L unit_az sty e
-2 hotorola_DSPSEE00 Set As Tap-Level
p
I Motorola_DSPSEB00_BF
[':'Q P Graphs - J
I || I =
Models | Imports | Sources | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

Simulation exited. exit status: O

[Ready A

In the design hierarchy tree, select behavior "DSP". Right click and select Change
Type.

229

Chapter 5. Embedded Software Design

5.3.1.4. Import instruction set simulator model (cont’d)

§| vocodersce - S0C Environment - [Motorola_DSPSEGO0_wrap - YocoderRTLC - YocoderRTLC sir"] |Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz 8@ 8 ve % X[EEEE] B @ | 0]
&[MHame Type |p & _[J
Diesign I 1&g vian
o 2] Vocogerspes. sir 1l coger Coder

kdntarnla MSPSERNN wran

B B2 VocogerAmh.sir
535 ViocoderSohied sir i

WHE|2 VocodeeTomr i : ;”tm'}irs

- VocoderFsmd sir | @ Euild Code

@—EVDCDUEYRTL.SH | @ Build_Code_FSMD
W VocoderRTLC sir 4 Cor_h

¥ Cor_h_F3mMD |

i Cor_h_x

M Cor_h_#_F3MD

b+ Il Dsplss

4 L_unit_3z

- & Motorola_DSPS6EI0

Il Motorola_DSPSEE00_BF

o p /

| = T]
Models | Imports | Sources | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

Simulation exited. exit status: O

[Ready A

The type of behavior "DSP" may now be changed by selecting DsplSS.

By doing this, we have now refined the software part of our design to be implemented
with the DSP56600 processor’s instruction set. Recall that the software part mapped to
DSP has already been compiled for the DSP56600 processor and the object file is ready.
As mentioned earlier, the new behavior will load this object file and execute it on the
DSP’s instruction set simulator. Thus the model becomes clock cycle accurate.

230

Chapter 5. Embedded Software Design

5.3.2. Simulate cycle accurate model

=|vocoder.sce - 30C Enviranment - [Dspl33 - YocoderRTLC - YocoderRTLC 5ir) |Q|E|E
Eile Edit Miew Project Synthesis ‘Validation | Windows Help == x
Eile Edit i Eroject Synthesis ‘alidati Wind Help
3 ::|° & I 74 [: = Enahle Instrumentation %) I .l
Compile 1
Type |P 3
Design Simulate
E-Q Vocogerspen sir Open Terminal - Codar
83 ViocoderAri.sir Kill simulation - =
-G8 VipooderScied siv view Log HU_Statrdzrd_wrap H
BH-2|2 VacodeTamn sir = gior::;tlirs
oI ViscogerFamd siv Brailz
B ocoderRTL sir Analyze D
Exaluate
Metrics. . —
Show Estimates
Estimate
600
Analyze RTL 500 BF
@ siop |D_wrap
] | £
-~ | = T =
Models | Imports | Sources | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

sread confirm

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to continue L.."
Simulation exited. exit status: O

Compile

)

We now have the clock cycle accurate model ready for validation. We begin as usual
with compiling the model by selecting Validation— Compile from the menu bar.

231

Chapter 5. Embedded Software Design

5.3.2.1. Simulate cycle accurate model (cont’d)

= | wocoder.sce - 50C Environment - [Dspl55 - YocoderRTLC - YocoderRTLC sit] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
| = [[[=) |l)] I ¢ B » Enable Instrumentation f of, I .l
Compile
=01 Typa |P 3 [J
Design Simulate
LS 13 Vocogerspec.sir Open Terminal - Coder
B-38 Vocogerarei.sir Kill simulation
-G8 VipooderScied siv View L Hl_Standard_wrep H
a)m) lewlLog.. Kuonitar
BH-2|2 VacodeTamn sir Sfimulus
oI VoooderFsma sir Brailz
EHERY ocoderRTL sir Analyze D
W ocoderRTLC S Evaluate
Metrics. . —
Show Estimates
Estimate
600
Analyze RTL 500 BF
@ siop |D_wrap
[T ===-F £
| = | -
Models | Imports | Sources | Hierarchy | Behaviors | Channels
__E Compile | Simulate | Analyze | Refine | Synthesize | Shell |
i Input: "VocoderRTLC ,cc" A

Output? "VocoderRTLC 0"
Linking, ..

Input: "VocoderRTLC.o"

Output; "VocoderRTLC"

Done. JI
4

Simulate

The model compiles correctly as shown in the logging window. We now proceed to
simulate the model by selecting Validation— Simulate from the menu bar.

232

Chapter 5. Embedded Software Design

5.3.2.2. Simulate cycle accurate model (cont’d)

coderRTLC |Q @ E
Help || x|
European digital cellular telecommunications system T
12200 bitsds speech codec for Type |p a1
enhanced full rate speech traffic channels
Bit-Exact SpecC Simulation Code - encoder Coder
Yersion 1,0
Harch 13, 1333 HIW Standar wiEp o
kAanitor
Stimulus

IT¥: disabled

Input speech file: =rc/speechfiles/spch_uni,inp
Output bitstream file: nodtx,bit

SPOEG: Loading file ‘dsp,.cld’ ...

SPREE: Funning...

SPOEE Cucle 42277

o p

FF T OO T O _ DT SO0 0 _ W

==

Maodels | Imports | Sources |

Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

to comtinue L.." sread conficm

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return

[Ready

)

Like in the earlier cases, a simulation window pops up. The DSP Instruction set simu-
lator can be seen to slow down the simulation speed considerably. This is because the
simulation is being done one instruction at a time in contrast to the high level simulation

we had earlier.

233

Chapter 5. Embedded Software Design

5.3.2.3. Simulate cycle accurate model (cont’d)

§| vocodersce - S0C Environment - [DsplSS - YocoderRTLE - YocoderRTLC 5ir]

(=B
File Edit ¥iew Project Synthesis ‘alidation | Windows Help =|=| x
| i p
:;| 0 i«[(= a] I é“b e I 3¢ E ~ Enable Instrumentation |} g I .l
: n : Compile
=2 |Type |P 3 [J
Design Simulate
|¢_‘|- Q Vocogerspen sir Open Terminal - Codar
m-B8 Vocoderdmi sir Kill simulation - F
’ L WocodetRTLC
BB ncogerSohed sir View Log n Hl_Standard_wrep i
WHE|2 VocodeeTomr i — gior::;tlirs
oI VoooderFsma sir [Efiliz
m-ERvocoderRTL sir Ahalyze o
Exaluate
Metrics. . —
Show Estimates
Estimate
600
Analyze RTL fO0_BF
@ siop |D_wrap
[~==-F 7|
| = | -
Models | Imports | Sources | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif

f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

[Ready

)

It may take hours for the simulation to complete. The simulation may be killed by se-
lecting Validation—Kill simulation from the menu bar.

234

Chapter 5. Embedded Software Design

5.3.2.4. Simulate cycle accurate model (cont’d)

=|vocoder.sce - S0C Enviranment - [Dspl33 - YocoderRTLC - YacoderRTLC sir ||Q|E|E
[C] Eile | Edit ¥iew PEroject Synthesis Validation Windows Help == x|
[) Mew.. Ctrl+N
= Qpen... Cirl+ 0 foosmsnsssssssn
—" . 51[Mame Type EE f
De €3 Close Ctl+ | A 2 vain
‘T Reload Ctrl+R 1 coger Coger
FEDEE I B Al HW_Standzr_ wisp
& Save CHl+5 | AF manitor ronitar
Save As) AF stimulus Stimulus
o et sir | @ Build_Cade
& save Al BrRTL sir A Build_Code_FSMD
ir ¥ Cor_h
liport. | Cor_h_FSMD |
Expart... 4 Cor_h_x
Print Ctrl+P A Cor_h_x_FSMD
St : - L_unit_3z
Properties... B Motorola_DSP56600
Statistics... &+ Il Motorola_DSPSEEI0_BF
= = EF-Motorola_DEFSEE00_wrap
| Recent Files - - ap /
~I— Exit [wii{ee) I— P | =) | -
Models [Tmpors | Sodrces | Hierarchy | Behaviors | Channels

E Compile | Simulate | Analyze | Refine | Synthesize | Shell |

xterm -title NocoderRTLC -e /bindsh o |, AocoderRTLC sro/speechfiles/spoh_unx, inp nodbx,bit nodbx aa dif
f -z sroc/speechfiles/nodtx_good,bit nodtx,bit: echo "Simulation exited with status $7" recho "Press return
to comtinue L.." sread conficm

Quit (Ctrl+@)

)

The demo has now concluded. To exit the SoC environment, select Project—s Exit from
the menu bar.

235

Chapter 5. Embedded Software Design

5.4. Summary

In this tutorial, we performed the SW synthesis task after RTL synthesis of HW. Note
that these two tasks are orthogonal and may be done in any order. We showed C code
generation for the behaviors mapped to SW component. This is a useful feature of SCE,
since we can generate C code which can be compiled onto any processor to generate
assembly. The code can then used for an instruction set simulator to run on a cycle-
by-cycle basis with the RTL HW. All these built in features of SCE allow the designer
to move across abstraction levels even for parts of a design. The flexibility and design
capablity that is thus provided to the designer is enormous.

236

Chapter 6. Conclusion

In this tutorial we presented the System on Chip design methodology. The SoC method-
ology defines the 4 models and 3 transformations that bring an initial system specifica-
tion down to an RTL-implementation. In addition to validation through simulation, the
well-defined nature of the models enables automatic model refinement, and application
of formal methods, for example in verification.

The complete design flow was demostrated on an industrial strength example of the
\Vocoder Speech encoder.We have shown how SCE can take a specification model and
allow the user to interactively provide synthesis decisions. In going from specification
to RTL/Instruction-set model for the GSM Vocoder, we noted that compared to tradi-
tional manual refinement, the automatic refinement process gives us more than a 1000X
productivity gain in modeling, since designers do not need to rewrite models.

Table 6-1. VVocoder Refinement Effort

Refinement Step |Modified Lines |Manual Automated
Refinement Refinement

Spec -> Arch 3,275 3~4 months ~1 min.

Arch -> Comm 914 1~2 months ~0.5 min.

Comm ->RTL/IS |6,146 5~6 months ~2 min.

Total. 10,355. 9~12 months. ~4 mins.

To draw the conclusion, SCE enables the designer to use the following powerful advan-
tages that have never been available before.

1. Automatic model generation.

New models are generated by Automatic Refinement of abstract models. This means
that the designer may start with a specification and simply use design decisions to
automatically generate models reflecting those decisions.

2. Eliminates SLDL learning.

SCE eliminates the need for system-level design languages to be learnt by the
designer. Only the knowledge of C for creating specification is required.

237

Chapter 6. Conclusion

3.

238

Enables non-experts to design.

This also enables non-experts to design systems. There is no need for the designer
to worry about design details like protocol timing diagrams, low level interfaces etc.
Consequently, software developers can design hardware and hardware designers
can develop software.

. Supports platforms.

SCE is great for platform based design . By limiting the choice of components and
busses, designers may select their favorite architecture and then play around with
different partitioning schema.

. Customized methodology.

SCE can also be customized to any methodology as per the designer’s choice of
components, system architecture, models and levels of abstraction.

. Enables IP trading.

SCE simplifies IP trading to a great extent by allowing interoperability at system
level. With well defined wrappers, the designer can plug and play with suitable IPs
in the design process. If an IP meets the design requirements, the designer may
choose to plug that IP component in the design and not worry about synthesizing or
validating that part of the design.

Appendix A. Frequently Asked Questions

1. What is SCE ?

SCE is an acronym for System-on-Chip Environement. It is a design environement
based on a model refinement methodology. The environment consists of several
tools and user interfaces to help the designer take a functional system specification
to its cycle accurate implementation with minimal effort.

2. What are the supported platforms for SCE ?

SCE 2.2.0 beta is currently supported on Linux RedHat 7.3. The public distribution
of the operating system is included on the CD-ROM. SCE has also been tested for
RedHat 8.0 and SuSE 8.2 distributions of Linux. Other platforms will be supported
in the future as the need arises.

3. What is the level of expertise needed to design with SCE ?

SCE is designed with the goal of allowing even non-experts to perform system de-
sign. A very basic knowledge of SW and HW design, equivalent to an undergraduate
degree in computer engineering, is required to work with SCE.

4. \What is the difference between behavior and model ?

A model is a description of the design in a machine readable form (like SpecC).
There may be several models used in a system design effort. These models capture
the design with varying levels of abstraction. A behavior, in context of SCE, is a unit
of computation. A model is made up by a hierarchy of behaviors that communicate
with each other using variables or channels.

5. What are the models that | need ?

In SCE, the designer may start with only a specification model. This model cap-
tures the functionality of the design without any implementation details. As we go
through the design process, various models with greater implementation details are
generated automatically using the built in tools in SCE. The designer only needs
to guide the model generation with decisions. The four primary models in the SCE

239

Appendix A. Frequently Asked Questions

240

methodology are Specification model, Architecture model, Communication model
and Cycle-accurate model. The designer may choose to start with any model as per
his or her choice.

. What do | need to do with all these models ?

Each of the models need to be compiled to generate an executable. Once they are
compiled, they need to be simulated to make sure that they work correctly. The
designer may choose to view the models in graphical form to understand and verify
the implementation details added as a result of refinement. The specification model
also needs to be profiled to get useful data for making architectural decisions.

. How do | get a cycle accurate model of my design ?

The designer may start with any of the system level models namely specification
model, architecture model or communication model. With the help of design deci-
sions, SCE will generate subsequently refined models of the design. The final model
generated after RTL refinement and SW compilation will be a cycle accurate model
of the design.

. Why is profiling relevant ?

Profiling is performed to gather useful data about the specification. It gives both a
quntitative and a qualitative measure of the computation inside each behavior or a
set of behaviors. This information is used to choose the right type and number of
components for the system architecture.

. How do I discover the ""computationally intensive' behaviors in my model ?

A straightforward approach is to produce bar charts for each leaf behavior in the
model. For a reasonably complex design, the designer can use the hierarchical na-
ture of the behaviors to display comparision between composite behaviors. Behav-
iors with low computation may be eliminated. For a behavior with high compu-
tation, the designer can display its child behaviors and so on. The author of the
specification model can also supply this information upfront, since he or she would
be well conversant with the model.

Appendix A. Frequently Asked Questions

10. Why should I evaluate an architecture before refinement ?

11.

12.

13.

14.

Most designs have constraints on execution time. The architecture exploration phase
requires the designer to come up with the best set of components (and the distri-
bution of computation over them) to meet this constraint. One way would be to
generate the architecture model and then simulate it. This is time consuming if the
designer has to go over several architectural choices. Evaluation of a model is a
static analysis feature that allows the designer to check if an architectural choice
meets the design constraints.

If my architecture model simulation shows an encoding delay of *0.0ms"*, what
did I do wrong ?

This may be because the specification was not profiled before an architecture model
was generated. Profiling generates information that allows architecture refinement
to insert the appropiate delays for the target component.

Can I refine any behavior in a model ?

The behavior which is set as the "top level” of the design is considered for archi-
tecture and communication refinement by the tools. Typically, the behavior repre-
senting the design under test (without the testbench) is set as the "top level™ behav-
ior. However, for RTL refinement, the designer may choose a particular behavior
mapped to HW. This will allow the designer to examine only an interesting part of
the design without having to simulate the entire model at cycle accurate level.

Why do | need to rename all the generated models ?

Renaming is done to avoid overwriting of models during exploration. Automatically
generated models are read-only for the same reason. Renaming also gives a suitable
name to the model so that it can be easily recognized in the project window.

I want multiple busses in my design. How do I map channels to busses ?

The design example in the tutorial has only one bus. The shortcut for mapping
all channels to one bus is to map the top level behavior to that bus. In case of
multiple busses, select Synthesis— Show Channels after allocating the busses.

241

Appendix A. Frequently Asked Questions

15.

16.

17.

18.

19.

242

This would expose all the channels between the components. Individual channels
can then be mapped to respective busses.

Can | use point to point wire connections instead of busses in my design ?

Busses in SCE represent generic connection elements. It is possible to have point
to point connections between components. This can be done simply by including
such a point to point protocol in the protocol library and selecting it during com-
munication synthesis. During channel mapping the designer must take care to map
channels between only the relevant components to the point to point "connection
element.”

Why do | need to do RTL preprocessing ?

Preprocessing is needed to generate a super finite state machine model of the de-
sign, which serves as an input to RTL refinement. The preprocessing step splits the
behaviors into super states, with each super state comprising of a basic block.

Why does RTL scheduling and binding display work only for leaf behaviors ?

During preprocessing each leaf behavior under the selected behavior for HW im-
plemetation is converted to a super FSM. Displaying only one super FSM at a time
avoids overcrowding in the display and state name conflicts.

How do | know which RTL units to choose ?

The designer chooses the RTL units that can perform the operations required in
the model. RTL analysis gives statistical information on the number and type of
operations in each super state. Structural constraints can put lower bound on the
number of units. For example, if a unit with 3 inputs and 1 output is allocated, then
atleast 4 busses must be allocated for feasible binding.

How do I view source code generated by SCE ?

The SpecC source code for the behavior definition can be seen by clicking on the be-
havior in the hierarchy tree and selecting View——Source. The code for the behav-
ior instance can be seen by right clicking on the instance in hierarchy and clicking
Source. However, SCE also produces C, Verilog and Handel-C files. Since these

20.

21.

Appendix A. Frequently Asked Questions

files do not show up in the hierarchy, they have to be opened externally from a shell
using standard editors.

What is the current status of SCE ?

SCE is currently a demo version that works for select examples. In the future, it will
be enhanced to a prototype tool.

What other features are planned in the immediate future for SCE ?

In the immediate future, we plan to expand the libraries with more components, IPs
and bus protocols. Improvements are planned for communication synthesis frame-
work to handle complex communication architectures. There is also work planned
for OS targetting and generation of RTOS models.

243

Appendix A. Frequently Asked Questions

244

References

S. Abdi, J. Peng, R. Doemer, D. Shin, A. Gerstlauer, A. Gluhak, L. Cai, Q. Xie, H. Yu,
P. Zhang, and D. Gajski, System-on-Chip Environment - Tutorial, CECS Technical
Report 02-28, September 24, 2002.

A. Gerstlauer, R. Doemer, J. Peng, and D. Gajski, System Design: A Practical Guide
with SpecC, Kluwer Academic Publishers Inc., June, 2001.

D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao, SpecC: Specification Lan-
guage and Methodology, Kluwer Academic Publishers Inc., March, 2000.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of Embedded
Systems, Prentice Hall, June, 1994,

D. Gajski, F. Vahid, S. Narayan, and J. Gong, “SpecSyn: An Environment Supporting the
Specify-Explore-Refine Paradigm for Hardware/Software System Design”, IEEE
Transactions on VVLSI Systems, Vol. 6, No. 1, pp. 84-100, 1998, Awarded the IEEE
VLSI Transactions Best Paper Award, June 2000.

D. Gajski, L. Ramachandran, F. Vahid, S. Narayan, and P. Fung, “100 hour design cycle
: A test case”, Proc. Europ. Design Automation Conf. EURO-DAC, 1994.

245

References

246

