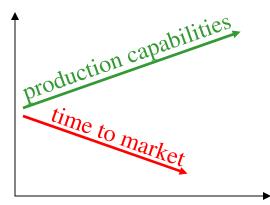
Quantitative Analysis of Transaction Level Models for the AMBA Bus

Gunar Schirner and Rainer Dömer


Center for Embedded Computer Systems University of California, Irvine

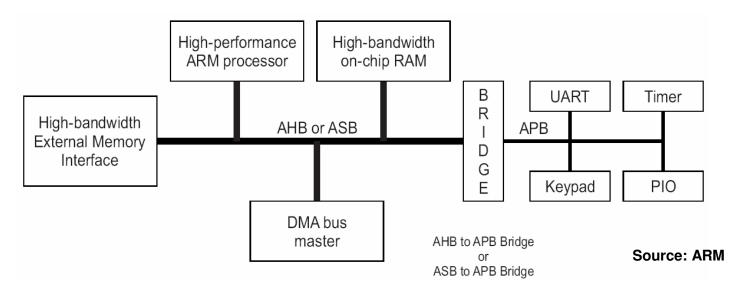
Motivation

- Higher productivity is needed for SoC design
 - Increased production capabilities
 - Shorter time-to-market
- Explore larger design space in less time
 - Requires fast simulation capabilities
- One approach: higher levels of abstraction
 - Transaction Level Modeling
 - Proposed to model communication [02 T. Grötker et. al, System C]
 - · Widely used and accepted
 - Gains performance, but looses accuracy by abstraction
 - Exists a trade-off *speed* vs. *accuracy*
 - > No detailed analysis yet!
 - Designer: which features to abstract?
 - > Users: consequences of using an abstract model?

Goals

- Quantitatively analyze trade-off in Transaction Level Model
 - How much speed improvement?
 - How much loss in accuracy?
- Identify model for a environment condition
 - Guidance for model developer
 - Guidance for model user
- Based on a case study:
 - AMBA AHB 2.0

Outline


- Related Work
- Introduction of AMBA
- Modeling
 - Abstraction Levels
 - Bus Models
- Measurements and Quantitative Analysis
 - Performance
 - Accuracy
- Summary and Conclusions

Related Work

- T. Grötker et al., *System Design with SystemC*. Kluwer Academic Publishers, 2002
- M. Caldari et al., *Transaction-level models for AMBA* bus architecture using SystemC 2.0, DATE 2003
- M. Coppola et al., *IPSIM: SystemC 3.0 Enhancements for Communication Refinement, DATE* 2003
- S. Pasricha et al., *Fast exploration of bus-based onchip communication architectures*, CODES + ISSS 2004
- ARM, Amba AHB Cycle Level Interface specification, ARM IHI 0011A

Introduction to AMBA

- Advanced Microprocessor Bus Architecture (AMBA)
 By ARM
- De-facto standard for on-chip bus system
- Hierarchical structure:
 - System bus + Peripheral bus

Introduction to AMBA: AHB

- Advanced High-performance Bus (AHB)
 - Multi-master bus
 - Pipelined operation
 - Burst transfers

T2

HCLK

HBUSREQx

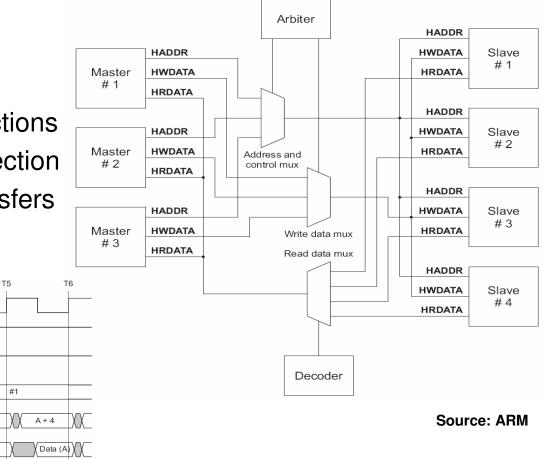
HGRANTx

HMASTER[3:0]

HADDR[31:0]

HWDATA[31:0]

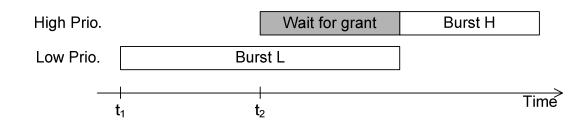
- Retry and split transactions
- Multiplexed interconnection
- Locked, unlocked transfers

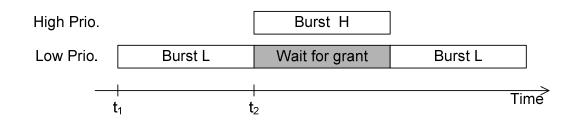

Т3

Τ4

XX

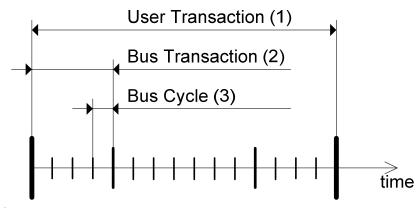
X)


А

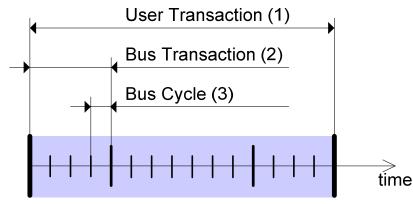

Source: ARM

Introduction to AMBA: Locking

- Bursts over multiple bus cycles (e.g. 4 beats, 8 beats)
 - Locked (non-preemptable):
 - Burst can not be preempted (even from higher priority master)

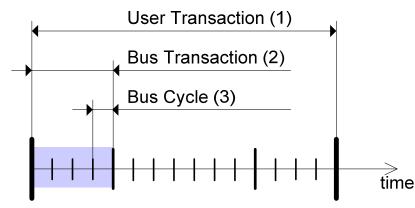


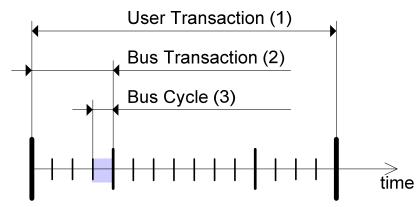
- Unlocked (preemptable):
 - Burst may be preempted, resumed later



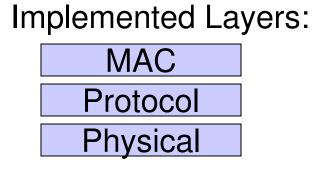
Analyze both transfer types separately

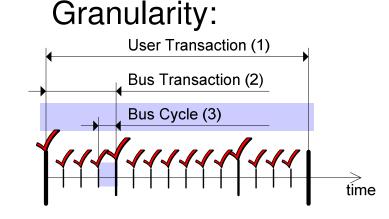
- What are possible abstraction levels?
- ISO/OSI reference layer-based architecture
 - Functionality
 - Granularity of data and arbitration handling
- Layers:
 - 1) Media Access Control (MAC)
 - User Transaction
 - Contiguous block of bytes
 - Arbitrary length, base address
 - 2) Protocol
 - Bus Transaction
 - Bus primitives (e.g. store word)
 - Observes bus address restrictions
 - 3) Physical
 - Bus Cycle
 - Drive or sample bus wires on bus cycle
- Models are composed of layers
 - Using fewer layers yields a more abstract model


- What are possible abstraction levels?
- ISO/OSI reference layer-based architecture
 - Functionality
 - Granularity of data and arbitration handling
- Layers:
 - 1) Media Access Control (MAC)
 - User Transaction
 - Contiguous block of bytes
 - Arbitrary length, base address
 - 2) Protocol
 - Bus Transaction
 - Bus primitives (e.g. store word)
 - Observes bus address restrictions
 - 3) Physical
 - Bus Cycle
 - Drive or sample bus wires on bus cycle
- Models are composed of layers
 - Using fewer layers yields a more abstract model

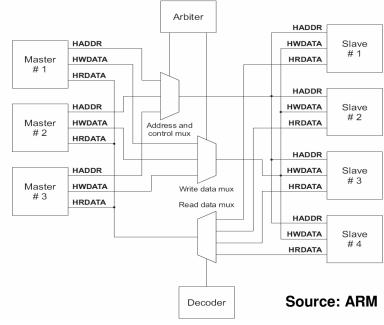

- What are possible abstraction levels?
- ISO/OSI reference layer-based architecture
 - Functionality
 - Granularity of data and arbitration handling
- Layers:
 - 1) Media Access Control (MAC)
 - User Transaction
 - Contiguous block of bytes
 - Arbitrary length, base address

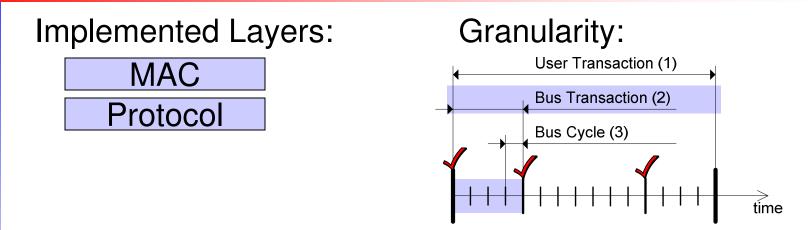
2) Protocol


- Bus Transaction
 - Bus primitives (e.g. store word)
 - Observes bus address restrictions
- 3) Physical
 - Bus Cycle
 - Drive or sample bus wires on bus cycle
- Models are composed of layers
 - Using fewer layers yields a more abstract model

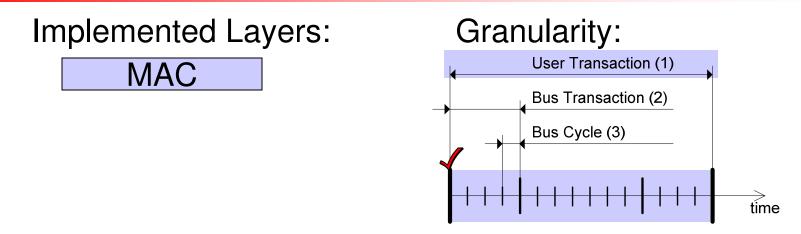


- What are possible abstraction levels?
- ISO/OSI reference layer-based architecture
 - Functionality
 - Granularity of data and arbitration handling
- Layers:
 - 1) Media Access Control (MAC)
 - User Transaction
 - Contiguous block of bytes
 - Arbitrary length, base address
 - 2) Protocol
 - Bus Transaction
 - Bus primitives (e.g. store word)
 - Observes bus address restrictions
 - 3) Physical
 - Bus Cycle
 - Drive or sample bus wires on bus cycle
- Models are composed of layers
 - Using fewer layers yields a more abstract model


Modeling: Bus Functional (BFM)

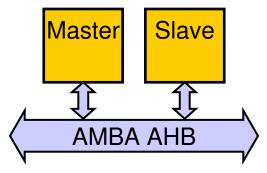


- Pin accurate
- Bus cycle accurate •
 - Arbitration check \checkmark on each cycle
- Includes additional active • components
 - Multiplexers (tri-state-free bus)
 - Arbiter
 - Address decoder
 - Clock generator

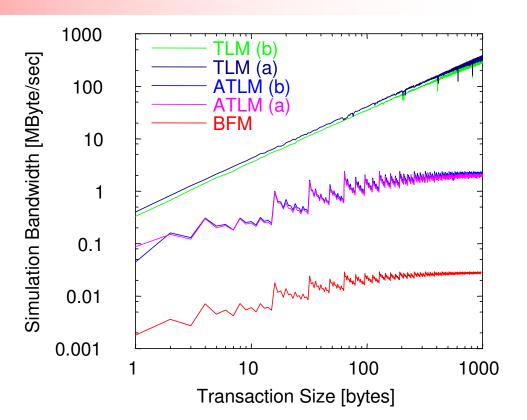


Modeling: Arbitrated TLM (ATLM)

- Priority arbitration per bus transaction (e.g. StoreWord, StoreWordBurst4)
- Abstract model
 - Not pin accurate, not bus cycle accurate in all cases
- Variants:
 - ATLM (a): as above
 - ATLM (b): arbitration decision immediately
 - Arbitration requests not collected for one CLK cycle
 - > May lead to wrong arbitration decision, depending on execution order


Modeling: Transaction Level (TLM)

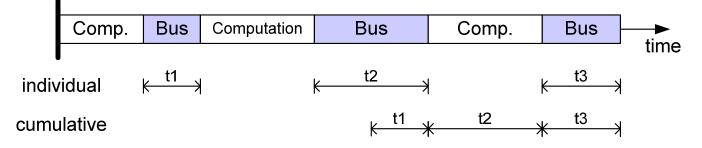
- No arbitration: Contention avoidance by semaphore
 - Resolution depends on simulator
- Expected to be the fastest model
 - Single memcpy, Single time wait
- Variants:
 - TLM (a): as above
 - TLM (b): no contention resolution at all
 - Multiple transfers at same time


Performance Analysis: Test Setup

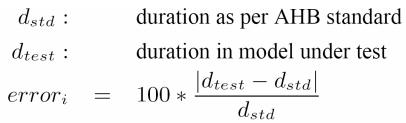
- Performance metrics
 - Simulation bandwidth for a model with one master and one slave
- Connection Setup
 - 1 master
 - 1 slave
- Repeatedly send user transaction
 - Measure simulation time for user transaction
 - Compute simulation bandwidth
- Platform
 - SpecC compiler and simulator
 - scc version 2.2.0, based on QuickThreads
 - Linux PC
 - Pentium 4, 2.8 GHz

Performance Analysis: Bandwidth

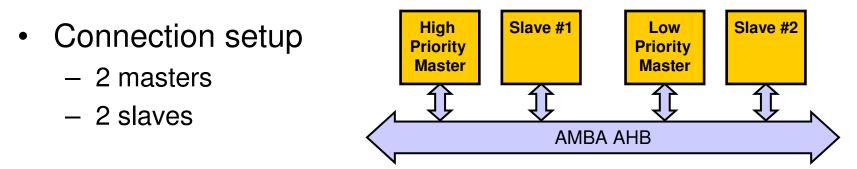
- Confirmation: Abstraction yields speedup
- Two orders of magnitude between major models
- No performance difference between variants
- Saw tooth shape due to bus transactions, e.g.:
 - 3 byte == 2 bus transactions
 (1 short + 1 byte)
 - 4 byte == 1 bus transaction
 (1 word)



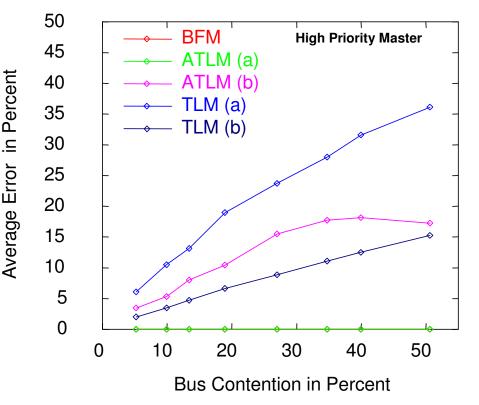
Feature	BFM	ATLM	TLM
Simulation Time [ms]	16.75	0.2137	0.00246
Sim. Bandwidth [MByte/s]	0.03	2.29	198
Rel. Speedup over BFM	1	78	6802


Performance for a 512 byte transfer

Accuracy Analysis


- What is accuracy?
 - Functionality / Timing
- What are the relevant measurements for a time accuracy?
 - Depends on prediction goal
 - Application latency due to bus accesses
 - Analyze individual transfer duration
 - Overall application delay due to all bus accesses
 - Analyze *cumulative* transfer duration

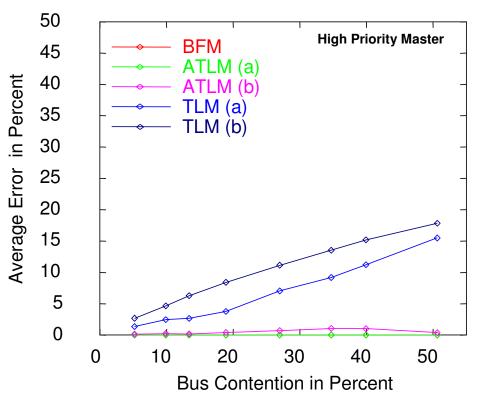
• Definition of error (for this work):


Accuracy Analysis: Setup

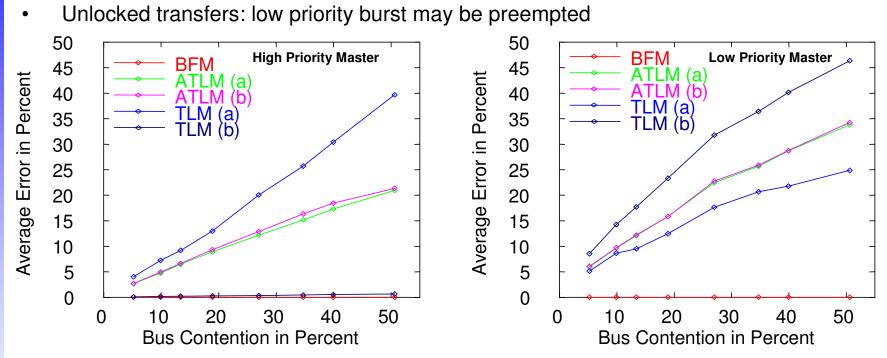
- Predefined set of 5000 transactions
 - Linear random distributed in:
 - Length (1 ... 100 bytes) and content
 - Delay between transactions (simulates local computation time)
 - Destination address
 - Log for each transaction
 - Start time, Duration
- Repeat same set of transactions with each model
- Repeat for varying bus contentions

Accuracy Analysis: Locked Transfers (Individual)

- Average error of individual user transaction duration
 - Each point is avg. of 5000 transactions
- BFM
 - No error
- ATLM (a)
 - NO ERROR
 - Locked transfers only, additional features of BFM not exercised
- ATLM (b)
 - Up to 15% error
 - Immediate arbitration may make wrong prediction
- TLM (a)
 - Linear increasing worse decisions
 - Coarse grain arbitration simulation
- TLM (b)
 - Surprising close results
 - Assumes always available bus
- The more abstract the more inaccurate



Accuracy Analysis: Locked Transfers (Cumulative)


- Error of sum of all user transaction durations
 - Each point is cumulative error of 5000 transactions
- ATLM (a):
 - NO ERROR
- ATLM (b):
 - Minimal error only
 - Miss predictions seen in duration analysis averages out!
- TLM (a):
 - Linear increasing worse decisions
 - Now better than the TLM (b)

• TLM (b):

- Linear increasing worse decisions
- Always too optimistic
- Errors average out
- Except for unrealistic TLM(b)

Accuracy Analysis: Unlocked Transfers (Cumulative)

- BFM: the only accurate model
- ATLM (a): now shows error, arbitration check per bus cycle
- ATLM (b): similar to ATLM (a), additional arbitration error negligible
- TLM (a) + TLM (b): Inverse results between high prio. and low prio.
- TLM (b): error is less predictable
- > Only BFM yields accurate results
- TLM(b) is unreliable
 - (c) 2006 G. Schirner, R. Dömer

Summary

- Modeled AMBA AHB in 3 major models:
 - BFM, ATLM, TLM
 - Variants ATLM (b), TLM (b)
- Analyzed execution performance
 - 100x speedup per abstraction step
- Quantified error due to abstraction
 - ATLM: 0% (indiv., locked), 35% (cumul., unlocked)
 - TLM: 35% (indiv., locked), 40% (cumul., unlocked)

Conclusion

- Higher abstraction (decreasing accuracy) yields speedup
 - 100x speedup per abstraction step
- Variation at same abstraction level
 - No significant speed up
 - Accuracy loss
- Accuracy depends on
 - Abstraction level
 - Bus contention
 - Used bus features
- Guideline for model user:

Environment Condition	Model	Granularity	Speedup
Single masterNo bus contention	TLM	User Transaction	10000x
Locked transfers onlyUnlocked transfers with low contention	ATLM	Bus Transaction	100x
 Unlocked transfers with high contention 	BFM	Bus Cycle	1