Covalidation of Hardware-Software Systems

lan G. Harris

Department of Computer Science
University of California Irvine

Outline

Hardware/Software Codesign and Covalidation

Evaluation of Fault Models

Timing Fault Model
Automatic Test Generation

Conclusions

Hardware/Software Codesign

> |
DSP | | FPGA

J_i_i_

ASIC

int foo (intinl, int in2)
int a, b, c;

a = i1nl + In2;

b =0; c=0;
while (c < a)

[] .
] .
[] .
n .
.
: s *
N .
N .
N .

Behavioral Specification Task Graph Architecture

Specification: Describe the behavior of each task
Partitioning: Group tasks to be implemented together
Allocation: Map partitions to hardware

Scheduling: Ordering the execution of tasks

Communication Synthesis: Map data transfers to comm. structures

Hardware-Software Codesign/Covalidation Flow

Codesign Flow

Covalidation Flow

v 4

(Specification/

~

\ 4

Allocation,
Partitioning

Covalidation

AA

(Partltlonlng I
Model

A\ 4

Scheduling i

Covalidation

A\ 4
Scheduling

Model “/

Syn

Communication

thesis

A 4

Covalidation

AA

A 4

Communication

Maodel

\ 4

Covalidation

e Design is refined at each step
« Each design step may introduce errors

b

vy

Importance of Covalidation

e VValidation/verification is a bottleneck in the design process

> High cost of design debug (designers, time-to-market)

> High cost of faulty designs (loss of life, product recall)

® Hardware/Software covalidation problem is more acute

> Hardware and software are often used together
> Hardware and software are designed separately

> Covalidation is performed late in the process, necessitating long

redesign loops

General Verification Approaches

® Formal verification
— Time complexity is high
— Confidence is high for specified properties

® Simulation based validation
— Full-chip validation
— Confidence is lower

® Pentium 4 bugs found by FV (492) vs. Validation
(5809) [1]

[1] B. Bentley, “Validating the Intel Pentium 4 Microprocessor,” DAC’01.

Stages of Covalidation

Test
Generation

(h

Test Set

Modification ~—— Covalidation
Fault Model

Fault Coverage
Evaluation

v

(rest Sequenc@

® Test generation is either manual or
Cosimulation automatic

® Covalidation fault model is needed

Test Response to direct test generation
Evaluation

i

Challenges in Hardware-Software Covalidation

®Covalidation Fault Model

" Describes a set of potential design defects

" Provides goals for test generation

® Automatic Test Generation

" Create a test sequence which guarantees detection of design
defects

" Allows the covalidation process to be more fully automated

Covalidation Fault Models

® A covalidation fault models the behavior of a set of design errors

® Properties of a covalidation fault model:

[Modeling Accuracy)

® Detection of all faults should imply the detection of a
set of modeled faults

Covalidation Faults <2 o ¢ o>

——
———

Unmodeled Errors
L Model Size]

® Few faults should model many design errors

Statement Coverage Example

® Assume that a defect is associated with a single statement in the
behavioral description

int foo (intinl, intin2)
1. Int a, b, C;

0,

OO0

» Each line could have a defect.

® The defect associated with each line is non-specific

® Detection of the fault is assumed if the statement is executed

Fault Model Evaluation

Goal: To measure the accuracy of a fault model.

®Quantitative evaluation is essential for model development
=|dentify weaknesses in existing models
=Build confidence in the use of a fault model

=Avoid the fate of software test (use manufacturing test as a
model)

Method for Fault Model Evaluation

®Compare fault coverage to error coverage
=Fault coverage is a fast approximation of error coverage

=Compute both fault and error coverage for many benchmarks
and test sequences

=Examine the difference between the fault and error coverages
and the standard deviation of the difference

Error Coverage Computation

®A design error model is needed to compute error coverage
®*Design Error Model Requirements
*Must describe a well defined subset of real design errors
=*Must be small enough to be tractable
®*Error coverage is computed by injecting design errors and
performing simulation

*Error is detected if the output of the correct behavior is
different from the output of the erroneous behavior

Example: a = b * ¢ (correct) a = X * ¢ (incorrect)

®Error i1s not detected if ¢ = O or if statement is not executed

Design Error Model

*“Goof” errors - simple typographical mistakes

=Accounted for 12.7% of design errors found in the Pentium 4*
®Goof errors are described in research in mutation analysis

1. Arithmetic Operator Replacement - Each +, -, *, / is replaced by
each other

2. Relational Operator Replacement - Each >, <, =, I=, ... IS
replaced by each other

3. Variable Replacement - Each variable is replaced with each other
variable of same type

* B. Bentley, “Validating the Intel Pentium 4 Microprocessor”, DAC 2001

Evaluation Experiments

®*\We evaluate statement coverage and branch coverage

*We use three small examples written in Java

Benchmark

Statemts

Branches

Errors

GCD

19

1

162

Diffeq

21

v

502

TLC

65

14

®20 random test sequences are used

214

®Each sequence achieves 80% - 100% fault coverage

=Only high coverage values are interesting

Evaluation Result Summary

*Experiment demonstrates the type of information that can
be gained from this evaluation technique

®Data is not sufficient to draw conclusions

Statement Coverage Branch Coverage
Benchmarks | Average diff | St. Dev. diff | Average diff | St. Dev. diff
GCD 16.35 3.17 16.68 3.16
Diffeq 8.88 11.59 14.60 20.45
TLC 10.72 5.06 2.28 6.24

®St. dev. iIs more important than average

=L ow st. dev shows consistency/fidelity

®St. dev is roughly proportional to the number of errors

Development of Hardware/Software Fault Models

°*Must be formulated for a behavioral description

Manufacturing test has focused on logic level

* Must consider both hardware and software features

* Hardware-Oriented Language Features:

Timing - signals vs. variables
Concurrency - processes

Static Faults vs. Timing Faults

® Static faults
® Independent of absolute event timing

® Timing faults
® Depends on a specific timing of events

correct X X=y+1 X

t1 t2
Static fault m

t1 2|
Timing fault _(x =y + X

Timing Fault Example

® Producer/Consumer with FIFO to allow rate mismatch
® Delay on “empty” signal impacts synchronization

dataout

Mis-Timed Event (MTE) Fault

® Signal refs are classified as either Definition or Use

® Two types of MTE faults can occur

— definition occurs earlier than the correct time
— definition occurs later than the correct time

time >
FIFO Description Proc. Y Description
Correct L?Lte
Def Use Def
Def -> empty <=1 Use -> if (empty = 0) then “~error span —

p := ReadFromFIFO() ;

MTE Fault Detection

® All definition-use (du) pairs must be executed
during testing
® MTE early faults are detected by du pairs
® MTE late faults are detected by ud pairs

® Time difference between the definition and use
must not exceed the error span threshold 6

® Def and Use must be close in time so that a small
time variation will reorder the def and use.

® Magnitude of 6 determines sensitivity to timing
variation

Error Span Threshold 6

® Determines the certainty that a def-use pair is
reordered in the presence of a fault

incorrect cjefinition

Def

error spano —— <——errorspano ——

® Large 6: small change in def time may not reorder
the def and use

»Testing requirements are less stringent, high coverage

® Small 6: small change in def time is more likely to
reorder def and use

»Testing requirements are more stringent, low coverage

MTE Coverage, Experimental Results

Bench- | # of # of # of MTE Stmt.
mark stmt. | signals | pairs | cov.* | Cov.
AAL1 538 22 1732 0.1 0.70
switch 402 29 200 0.65 0.93
risc8 306 37 1032 0.54 0.60
DTMF | 1257 17 262 0.39 0.54

®Industrial examples in Verilog

®Functional testbenches provided with each example

* Error span threshold is infinitely large. FC is maximized.

Impact of 6 on MTE Coverage, Data Switch

.3

L
(m]

=
=]

L
o

MTE
cov

MTE Fault LCoverage
L] L L]
ST T

]
=

[} oo —w— |
. LD cov. S

i

Q =10 100 150 200 250 400 450 400

Time Separation

threshold o

Automatic Test Generation

® Create test seque

® Formulate the pro
programming (CL

nces to detect MTE faults

nlem as a constraint logic
P) problem

® Use a generic CL
generation

P solver to perform test

® Solver searches the space of all computations to
identify one which detects each fault

Test Generation Process

ILOG
Solver

=

e Input: a behavioral system specification

e Output: test sequence to detect a timing fault
 CCG: Computation Constraints Generator
« Computation Constraints describe system behavior

Test
Sequence

Behavioral Representation: CFSM model

Co-design Finite State Machine: A system is defined as a network of
CFSMs where each CFSM describes a concurrent process in the
system. The CFSMs communicates via events on signals.

 An Example of CFSMs System: traffic light controller

* —_
*car, havecar=1 ;za:,that\;ecar—o
*long2 - *startl star
e3 el e6 el
*lon
e2 eb5
" *short 2 /, “— *short °

highway street

Each edge is a cause-reaction pair

*MTE,,, fault on *short signal: asserted while the fighway is in the
green state

Computation Model

® Each computation of the system must be described by
the values of a set of integer variables

® Computation Variables:

State Variable contains the value of state for each
CFSM c at a given time step t.

Edge Variable the edge in each CFSM c which is
traversed at a given time step t.

Signal Variable the value of signal at a given time step.
trigger signal
value signal

State Constraints of CFSM Computation

a CFSM can be in state s attime t (SV,, = s) If one of the following
statements is true:

 The CFSM is in state s at time t-1 and the CFSM does not traverse an
edge at time t-1;

« The CFSMis in a state s, at time t-1 and an edge from state s, to s Is
traversed at time t-1.

sate | s | s |- sate | s, | s

Example of State Constraints

Example: state constraints of CFSM highway at time step 2,
(SVhighway,2 = “YelloOW”) =& (SVyignuay,1 = “Yellow”) M (EVyighay,, = NULL)
N (Svhighway,l = “green”) a (Evhighway,l = el)
(Svhighway,z = “red”) - (Svh|ghway 1~ “red”) a (EVh|ghway 1= NULI—)
U (Svhlghway 1~ ye”OW”) M (Evh|ghway 1~ 62)
(Svhighway,z - “green”) — (Svh|ghway 1= “green”) M (Evh|ghway,1 = NULL)
v (SV ="red”) n (EV = e3)

highway,1 — highway,1

*car, havecar=1

"long2 > *startl

*short

highway

Edge Constraints of CFSM Computation

a CFSM will traverse an edge e if all of the following

statements are :

« The CFSMis In state s, at time t, where s, Is the
predecessor state of edge e;

« All of the trigger conditions of edge e are satisfied at
time t. *x=1

Qate nan Sp N t

Example of Edge Constraints

Example: edge constraints of CFSM highway at time 1,
(Evhighway,l = “eln) —
(SVhighway1 = “green”) m (car, =1) n (havecar, =1) (1)

(Evhighway,l = “62”) —

(SVhighway,1 = “Yellow”) m ('short; = 1) (2)
(Evhighway,l = “93") —
(Svhighway,l = “red”) a (Iong21 = 1) (3)

(EVhighway.1 = “NUll’) - NOT1 A NOT2 N NOT3

*car, havecar=1

"longZ e3 el1\=> *startl

< e’ 2
*short

Signal Constraints of CFSM Computation

two types of signals exist in CFSM system
e Trigger Signal: such as *short
*tsig, = 1 If at least one edge emitting this signal is
traversed at time (t-1);
*tsig, = 0 otherwise.

*tick—>*short
Q e2 =O

t-1
edge ~ | e |- et T 1

Example of Trigger Signal Constraints

Example: trigger signal *short constraints of CFSM highway
at time 3,

(short3 = 1) — (Evtimer,Z = “98”) N (EVtimer,Z = “e11”)
(short; = 0) = (EVymero # “€8") N (EViimer o # “€117)
- g

*tick>*long2
Q el?2 :O
*tick>
*short | €11 e’ |*startl
| *tick—>
*start2| €10 €8 | *short
L9
Q‘*tické*longl O timer

Formulation of Fault Detection Constraints

* Fault Detection Constraints: i.e.*short occurs early

time step 0 1 2
highway state - green |
*short - o

« Equations: SVyynway1 = 9reen, short; = 1.

r'd
_n tck> lell e7 |*startl
“long ‘car, car=1 xjgng 6 A *cai, car=0 «ghort |
63 el *Startl e Start2 C)
2 €5 'S, “tick>
*short O *short *start2|€10 e8 | xshort
A 4
h|ghway Stl‘eet < e9 Ve
Q *tick>*longl \D

timer

Test Generation Result, Traffic Light Controller

Fault: *short occurs early
when highway Is green

Fault Detection Constraints:
equations given earlier

Environment:

Machine P4, 2GHz CPU,
256MB MEM

CFSM Computation

GNU-Prolog versionl1.2.1

Performance: 45 ms

time step 0 1 2
highway green
state
*short 1
street red red red
state
highway green green yellow
state
signal 0 1 0
*short
*tick 1 1 1
*car 0 1 0
car 0 1 1

Summary

® A method to evaluate the accuracy of a fault model

® A fault model for timing and synchronization errors

® A CLP-based test generation tool

