
Covalidation of Hardware-Software Systems

Ian G. Harris

Department of Computer Science
University of California Irvine

Outline

• Hardware/Software Codesign and Covalidation

• Evaluation of Fault Models

• Timing Fault Model

• Automatic Test Generation

• Conclusions

Hardware/Software Codesign

int foo (int in1, int in2)

a = in1 + in2;
int a, b, c;

while (c < a)
b = 0; c = 0;

Task Graph

DSP FPGA

ASIC

Behavioral Specification Architecture

Specification: Describe the behavior of each task

Partitioning: Group tasks to be implemented together

Allocation: Map partitions to hardware

Scheduling: Ordering the execution of tasks

Communication Synthesis: Map data transfers to comm. structures

Hardware-Software Codesign/Covalidation Flow
Codesign Flow Covalidation Flow

Specification

Partitioning
Model

Scheduling
Model

Communication
Model

Allocation,
Partitioning

Communication
Synthesis

Scheduling

Covalidation

Covalidation

Covalidation

Covalidation

Y

good?
N

good?
N

good?
N

good?
N

Y

Y

Y

• Design is refined at each step
• Each design step may introduce errors

Validation/verification is a bottleneck in the design process

High cost of design debug (designers, time-to-market)

High cost of faulty designs (loss of life, product recall)

Hardware and software are often used together

Hardware and software are designed separately

Covalidation is performed late in the process, necessitating long

redesign loops

Hardware/Software covalidation problem is more acute

Importance of Covalidation

General Verification Approaches

• Formal verification
– Time complexity is high
– Confidence is high for specified properties

• Simulation based validation
– Full-chip validation
– Confidence is lower

• Pentium 4 bugs found by FV (492) vs. Validation
(5809) [1]

[1] B. Bentley, “Validating the Intel Pentium 4 Microprocessor,” DAC’01.

Test Sequence

Test
Generation

Evaluation

Cosimulation

Modification
Test Set

Test Response

Evaluation
Fault Coverage

Covalidation
Fault Model

Test generation is either manual or
automatic

Covalidation fault model is needed
to direct test generation

Stages of Covalidation

•Automatic Test Generation

Allows the covalidation process to be more fully automated

Create a test sequence which guarantees detection of design
defects

•Covalidation Fault Model

Describes a set of potential design defects

Provides goals for test generation

Challenges in Hardware-Software Covalidation

Design Errors

Unmodeled Errors

Covalidation Faults

Few faults should model many design errors

A covalidation fault models the behavior of a set of design errors

Properties of a covalidation fault model:

Detection of all faults should imply the detection of a
set of modeled faults

Modeling Accuracy

Model Size

Covalidation Fault Models

The defect associated with each line is non-specific

Detection of the fault is assumed if the statement is executed

Assume that a defect is associated with a single statement in the

int foo (int in1, int in2)

2. a = in1 + in2;
1. int a, b, c;

4. while (c < a)

6. if (c < in2)
7. return (a + b);
8. else

5. c = c + in1;

9. return (a + c);

3. b = 0; c = 0;

behavioral description

Each line could have a defect.

Statement Coverage Example

Fault Model Evaluation

Goal: To measure the accuracy of a fault model.

•Quantitative evaluation is essential for model development

Identify weaknesses in existing models

Build confidence in the use of a fault model

Avoid the fate of software test (use manufacturing test as a
model)

Method for Fault Model Evaluation

•Compare fault coverage to error coverage

Fault coverage is a fast approximation of error coverage

Compute both fault and error coverage for many benchmarks
and test sequences

Examine the difference between the fault and error coverages
and the standard deviation of the difference

Error Coverage Computation

•A design error model is needed to compute error coverage

•Design Error Model Requirements

Must describe a well defined subset of real design errors

Must be small enough to be tractable

•Error coverage is computed by injecting design errors and
performing simulation

Error is detected if the output of the correct behavior is
different from the output of the erroneous behavior

Example: a = b * c (correct) a = x * c (incorrect)

•Error is not detected if c = 0 or if statement is not executed

Design Error Model

•“Goof” errors - simple typographical mistakes

Accounted for 12.7% of design errors found in the Pentium 4*

* B. Bentley, “Validating the Intel Pentium 4 Microprocessor”, DAC 2001

•Goof errors are described in research in mutation analysis

1. Arithmetic Operator Replacement - Each +, -, *, / is replaced by
each other

2. Relational Operator Replacement - Each >, <, =, !=, … is
replaced by each other

3. Variable Replacement - Each variable is replaced with each other
variable of same type

Evaluation Experiments

•We evaluate statement coverage and branch coverage

•We use three small examples written in Java

•20 random test sequences are used

•Each sequence achieves 80% - 100% fault coverage

Only high coverage values are interesting

2141465TLC

502721Diffeq

162119GCD

ErrorsBranchesStatemtsBenchmark

Evaluation Result Summary

6.242.285.0610.72TLC

20.4514.6011.598.88Diffeq

3.1616.683.1716.35GCD

St. Dev. diffAverage diffSt. Dev. diffAverage diff

Branch CoverageStatement Coverage

Benchmarks

•Experiment demonstrates the type of information that can
be gained from this evaluation technique

•Data is not sufficient to draw conclusions

•St. dev. is more important than average

Low st. dev shows consistency/fidelity

•St. dev is roughly proportional to the number of errors

Must be formulated for a behavioral description
Manufacturing test has focused on logic level

Hardware-Oriented Language Features:
Timing - signals vs. variables
Concurrency - processes

Must consider both hardware and software features

Development of Hardware/Software Fault Models

Static Faults vs. Timing Faults

• Static faults
• Independent of absolute event timing

• Timing faults
• Depends on a specific timing of events

correct

Static fault

Timing fault

x = y + 1

x = y + 2

x = y + 1

t1

t1

t2

t2

• Producer/Consumer with FIFO to allow rate mismatch
• Delay on “empty” signal impacts synchronization

Timing Fault Example

Proc. XProc. XProc. X FIFOFIFOFIFO Proc. YProc. YProc. Y

dataindatain

writewrite

fullfull

dataoutdataout

readread

emptyempty

outoutin

Mis-Timed Event (MTE) Fault

• Two types of MTE faults can occur
– MTEearly – definition occurs earlier than the correct time
– MTElate– definition occurs later than the correct time

FIFO DescriptionFIFO DescriptionFIFO Description Proc. Y DescriptionProc. Y DescriptionProc. Y Description

DefDef -->> empty <= 1empty <= 1 Use Use -->> if (empty = 0) thenif (empty = 0) then
p := p := ReadFromFIFOReadFromFIFO() ;() ;

timetime

Def

CorrectCorrect LateLate

error spanerror span

DefUse

• Signal refs are classified as either Definition or Use

MTE Fault Detection

• All definition-use (du) pairs must be executed
during testing
• MTE early faults are detected by du pairs
• MTE late faults are detected by ud pairs

• Time difference between the definition and use
must not exceed the error span threshold δ
• Def and Use must be close in time so that a small

time variation will reorder the def and use.
• Magnitude of δ determines sensitivity to timing

variation

Error Span Threshold δ

Def

incorrect definition

error span δ error span δ

• Large δ: small change in def time may not reorder
the def and use
Testing requirements are less stringent, high coverage

• Small δ: small change in def time is more likely to
reorder def and use
Testing requirements are more stringent, low coverage

• Determines the certainty that a def-use pair is
reordered in the presence of a fault

MTE Coverage, Experimental Results

1257
306
402
538

of
stmt.

0.540.3926217DTMF
0.600.54103237risc8
0.930.6520029switch
0.700.1173222AAL1

Stmt.
Cov.

MTE
cov. *

of
pairs

of
signals

Bench-
mark

* Error span threshold is infinitely large. FC is maximized.

•Industrial examples in Verilog

•Functional testbenches provided with each example

Impact of δ on MTE Coverage, Data Switch

threshold threshold δδ

MTE
cov

Automatic Test Generation

• Create test sequences to detect MTE faults
• Formulate the problem as a constraint logic

programming (CLP) problem
• Use a generic CLP solver to perform test

generation
• Solver searches the space of all computations to

identify one which detects each fault

Test Generation Process

• Input: a behavioral system specification
• Output: test sequence to detect a timing fault
• CCG: Computation Constraints Generator
• Computation Constraints describe system behavior

SPEC CCG
Computation
Constraints

ILOG
Solver

Test
Sequence

Fault
Detection
Constraints

ATPG
Constraints

Behavioral Representation: CFSM model

Co-design Finite State Machine: A system is defined as a network of
CFSMs where each CFSM describes a concurrent process in the
system. The CFSMs communicates via events on signals.

• An Example of CFSMs System: traffic light controller

*long1

1

23

*car, havecar=1
*start1

*short

*long2
e1

e2

e3

highway

• Each edge is a cause-reaction pair

•MTEearly fault on *short signal: asserted while the highway is in the
green state

street

4

56

*car, havecar=0
*start2

*short

e4

e5

e6

Computation Model

• Each computation of the system must be described by
the values of a set of integer variables

• Computation Variables:

State Variable contains the value of state for each
CFSM c at a given time step t. SVhighway,0 = “green”

Edge Variable the edge in each CFSM c which is
traversed at a given time step t. EVhighway,1 = “e1”

Signal Variable the value of signal at a given time step.
trigger signal *short_0 = 0
value signal havecar_2 = 1

State Constraints of CFSM Computation

a CFSM can be in state s at time t (SVc,t = s) if one of the following
statements is true:

• The CFSM is in state s at time t-1 and the CFSM does not traverse an
edge at time t-1;

• The CFSM is in a state sp at time t-1 and an edge from state sp to s is
traversed at time t-1.

sSp

... ...

...

...

......

...

...

state

edge edge

state
t-1 t-1t t
s s ssp

null x xe

e

Example: state constraints of CFSM highway at time step 2,
(SVhighway,2 = “yellow”) → (SVhighway,1 = “yellow”) ∩ (EVhighway,1 = NULL)

∪ (SVhighway,1 = “green”) ∩ (EVhighway,1 = e1)
(SVhighway,2 = “red”) → (SVhighway,1 = “red”) ∩ (EVhighway,1 = NULL)

∪ (SVhighway,1 = “yellow”) ∩ (EVhighway,1 = e2)
(SVhighway,2 = “green”) → (SVhighway,1 = “green”) ∩ (EVhighway,1 = NULL)

∪ (SVhighway,1 = “red”) ∩ (EVhighway,1 = e3)

Example of State Constraints

highway

2

1

3

*car, havecar=1
*start1

*short

*long2
e1

e2

e3

Edge Constraints of CFSM Computation

a CFSM will traverse an edge e if all of the following
statements are :
• The CFSM is in state sp at time t, where sp is the

predecessor state of edge e;
• All of the trigger conditions of edge e are satisfied at

time t.

t

edge
t
e

... ...state

*x

sp

1... ...

e

*x=1
Sp S

Example of Edge Constraints

Example: edge constraints of CFSM highway at time 1,
(EVhighway,1 = “e1”) →

(SVhighway,1 = “green”) ∩ (car1 = 1) ∩ (havecar1 = 1) (1)
(EVhighway,1 = “e2”) →

(SVhighway,1 = “yellow”) ∩ (short1 = 1) (2)
(EVhighway,1 = “e3”) →

(SVhighway,1 = “red”) ∩ (long21 = 1) (3)
(EVhighway,1 = “null”) → NOT1 ∩ NOT2 ∩ NOT3

*car, havecar=1
*start1e1

1

23
*short

*long2

e2

e3

Signal Constraints of CFSM Computation

two types of signals exist in CFSM system
• Trigger Signal: such as *short

*tsigt = 1 if at least one edge emitting this signal is
traversed at time (t-1);

*tsigt = 0 otherwise.

*tick→*short
e2

... ...
t-1

edge e2*short
t
1

Example of Trigger Signal Constraints

Example: trigger signal *short constraints of CFSM highway
at time 3,

(short3 = 1) → (EVtimer,2 = “e8”) ∪ (EVtimer,2 = “e11”)
(short3 = 0) → (EVtimer,2 ≠ “e8”) ∩ (EVtimer,2 ≠ “e11”)

e11

e8

*start1

*start2
*tick
*short

*tick *long1

*tick
*short

*tick *long2

e10

e9

e7

e12

timer

Formulation of Fault Detection Constraints

• Fault Detection Constraints: i.e.*short occurs early

• Equations: SVhighway,1 = green, short1 = 1.

highway

*car, car=1
*start1*long2

*short

e1

e2

e3
*car, car=0

*start2*long1

street
*short

e4

e5

e6
*tick
*short

*start1

*start2
*tick
*short

*tick *long1

*tick *long2

timer

e11

e10
e9

e8

e7

e12

-

-

0

1

green

1

… …

… …

2

*short

highway state

time step

Test Generation Result, Traffic Light Controller

• Fault: *short occurs early
when highway is green

• Fault Detection Constraints:
equations given earlier

• Environment:
Machine P4, 2GHz CPU,
256MB MEM
GNU-Prolog version1.2.1

• Performance: 45 ms

010signal
*short

yellowgreengreenhighway
state

redredredstreet
state

1-*short

-green-highway
state

210time step

110car
010*car
111 *tick

CFSM Computation

Summary

• A method to evaluate the accuracy of a fault model

• A fault model for timing and synchronization errors

• A CLP-based test generation tool

