
ESE Back-End

D. Gajski

(with contributions from
S. Abdi, R. Ang, A. Gerstlauer,
J. Peng, D. Shin, R. Doemer)

Center for Embedded Computer Systems
University of California, Irvine

Copyright ©2006, CECSESE Back-End 2

Technology advantages

• No basic change in design methodology required
• ES methodology follows present manual design process

• Productivity gain of more then 1000X demonstrated
• Designers do not write models

• Simple change management: 1-day change
• No rework for new design decisions

• High error-reduction: Automation + verification
• Error-prone tasks are automated

• Simplified globally-distributed design
• Fast exchange of design decisions and easy impact estimates

• Benefit through derivatives designs
• No need for complete redesign

• Better market penetration through customization
• Shorter Time-to-Market through automation

Copyright ©2006, CECSESE Back-End 3

Decision
User

Interface
(DUI)

Validation
User

Interface
(VUI)

TIMED

Create

Map

Compile

Replace

Select

Partition

Compiler

Debugger

Stimulate

Verify

ES Environment

Application Tools : Compilers/Debuggers Commercial Tools : FPGA, ASIC

CYCLE
ACCURATE

Verify

Simulate

Check

Compile

ESE Front –End

System Capture + Platform Development

SW Development + HW Development

ESE Back – End

Copyright ©2006, CECSESE Back-End 4

Input: Transaction Level Model (TLM)

CPU Bus

B1 B2

OS

B4

C
PU Mem

IP

B3

HW

HAL

IP Bus

B6

B5

Drivers

Application (C code)

TLM is generated automatically
from ESE Front-End for given

Spec/Platform

Bridge

Copyright ©2006, CECSESE Back-End 5

TLM Features

• Universal Bus Channel (UBC)
• Bus is modeled as universal channel with send/recv, read/write functions
• Well defined functions for routing, synchronization, arbitration and transfer

• SW modeling
• Application SW is modeled as processes in C
• A RTOS model or real RTOS is used for dynamic scheduling of processes
• Communication with peripherals, memory or other IP is done using UBC

• HW modeling
• Application HW is modeled as processes written in C
• Communication with processor, memory or other IP is done using UBC

• Memory modeling
• Memory is modeled as array in C
• Controller is modeled by function in UBC

Copyright ©2006, CECSESE Back-End 6

Cycle-Accurate Software Synthesis

CPU Bus

C
PU

HW IP

IP Bus

Compile

RTOS
Synthesis

HAL
RTOS

EXE
B1 B2

OS
HAL

B5

Bridge

Program

Copyright ©2006, CECSESE Back-End 7

SW Synthesis Issues

• Compiler selection
• The designer specifies which compiler is used for the SW

• Library selection
• Libraries are selected for SW support such as file systems, string

manipulation etc.
• Prototype debugging requires selection of additional libraries

• RTOS selection and targeting
• Designer selects an RTOS for the processor
• RTOS model is replaced by real RTOS and SW is re-targeted

• Program and data memory
• Address range for SW program memory is assigned
• Address range for data memory used by program is assigned
• For large programs or data, off-chip memory may be allocated

Copyright ©2006, CECSESE Back-End 8

Cycle-Accurate Hardware Synthesis

CPU Bus

C
PU Mem

Behavior in CHW (RTL)

Cycle-accurate
Synthesis

IP Bus

IP (RTL)

B3B6

Bridge

Copyright ©2006, CECSESE Back-End 9

HW Synthesis Issues

• IP insertion
• C model of HW is replaced with pre-designed RTL IP, if available

• RTL synthesis tool selection
• RTL synthesis tool must be selected for custom HW design

• C code generation
• C code for input to RTL synthesis tool is generated

• Synthesis directives
• RTL architecture and clock cycle time is selected
• UBC calls are treated as single cycle operations, to be later expanded

during interface synthesis

• HDL generation
• RTL synthesis result in cycle accurate synthesizable Verilog code

Copyright ©2006, CECSESE Back-End 10

Cycle-Accurate Interface Synthesis
CPU Mem

Bridge

Custom
HW

Interface Synthesis

IP

Arbiter

IC

Copyright ©2006, CECSESE Back-End 11

Interface Synthesis Issues

• Synchronization
• UBC has unique flag for each pair of communicating processes
• Flag access is implemented as polling, CPU interrupt or interrupt controller

• Arbitration
• Selected from library or synthesized to RTL based on policy

• Bridge
• Selected from library or synthesized using universal bridge generator

• Addressing
• All communicating processes are assigned unique bus addresses

• SW communication synthesis
• UBC functions are replaced by RTOS functions and assembly instructions

• HW communication synthesis
• DMA controller in RTL is created for each custom HW component
• Send/Recv operations are replaced by DMA transfer states

Copyright ©2006, CECSESE Back-End 12

Pin-Accurate Model
C

PU Mem

Bridge

HW IP

Arbiter

HAL
RTOS

EXE

PAM is downloaded automatically
for fast prototyping with FPGAs

IC
Program

Copyright ©2006, CECSESE Back-End 13

MP3 Player Prototyping with ESE Back-end

• TLM Input
• TLM is generated by ESE front-end for MP3 application and platform

• Synchronization and Arbitration synthesis
• Polling or interrupt mechanism is selected
• Arbiter is selected for busses with multiple masters

• SW synthesis
• Compiler/RTOS for SW is selected and addresses are generated for memories

• HW and Bridge synthesis
• RTL is generated for custom HW cores by NISC compiler
• Bridge between CPU bus and peripheral bus is created by Bridge Generator

• Export to FPGA design tools
• Files are generated for creating complete project for FPGA tools

• FPGA download and test
• FPGA design tools create bit-stream for programming the board
• MP3 player prototype runs directly on FPGA board

Copyright ©2006, CECSESE Back-End 14

MP3 Player TLM

• MP3 encoder mapped to SW (MicroBlaze), filters and PCM to HW
• Mem1 (on OPB bus) for data, Mem2 (on LMB bus) for program
• Custom HWs on DoubleHdshk (DH) bus, with bridge to OPB

OPB Bus

MP3
OS

M
ic

ro
bl

az
e

C
PU

filter2

HW2Mem1

HAL

DH Bus

Bridge

filter1

HW1

PCM

HW3

LMB Bus

Mem2

Copyright ©2006, CECSESE Back-End 15

Synchronization Selection

• Interrupt signals and connections are selected

ESE – MP3Decoder.ese*ESE – MP3Decoder.ese*

Output

PEs

File Edit

Project

p1.sc

p2.sc

Platform1

Platform2

Ready

Running simulation …
% xterm -e ./mp3decoder funky.mp3 funky.pcm

HW1 HW2 MemCPU

Process1

Process2

Main

Process3

var1

c1

Process4

p2_2.sc

Sources

CPU
MicroBlaze

Mem1
SRAM64

HW2

(Filter2)

HW1

(Filter1)
Bridge

Bus1
OPB

Bus2
DoubleHdshk

View Project Simulation Help

Database

CEs Busses

XilKernel

gcc

OSs

Compilers

mb-gcc

Platforms

Channels

c1

c2

c3

c_double_handshak
e

c_handshake

c_semaphore

var1
var2

i_send
in bool

c4

int

bool

c_queue

i_send
i_receive

SWPEs

Bus3
LMB

Mem2
SRAM64

Synthesis

HW3

(PCM)

SynchronizationSynchronization
Bus2 Bus3Bus1

OKAdd IC

Click to Commit Synchronization Decisions

CPU Bridge Intrpt X

Master Slave Type Pin Freq

IC1

Copyright ©2006, CECSESE Back-End 16

Model with Synchronization

• Interrupt signals and connections are created

Copyright ©2006, CECSESE Back-End 17

Arbiter Selection

• Arbiter is selected and request / grant pins are connected

ESE – MP3Decoder.ese*ESE – MP3Decoder.ese*

Output

PEs

File Edit

Project

p1.sc

p2.sc

Platform1

Platform2

Ready

Running simulation …
% xterm -e ./mp3decoder funky.mp3 funky.pcm

HW1 HW2 MemCPU

Process1

Process2

Main

Process3

var1

c1

Process4

p2_2.sc

Sources

CPU
MicroBlaze

Mem1
SRAM64

HW2

(Filter2)

HW1

(Filter1)
Bridge

Bus1
OPB

Bus2
DoubleHdshk

View Project Simulation Help

Database

CEs Busses

XilKernel

gcc

OSs

Compilers

mb-gcc

Platforms

Channels

c1

c2

c3

c_double_handshak
e

c_handshake

c_semaphore

var1
var2

i_send
in bool

c4

int

bool

c_queue

i_send
i_receive

SWPEs

Bus3
LMB

Mem2
SRAM64

Synthesis

HW3

(PCM)

ArbitrationArbitration
Bus1 Bus3Bus2

OK

Click to confirm arbiter connections

Master
Name

Request
ID / Port

Grant
ID/Port

Req1 Gnt1
Req2 Gnt2

Arbiter FCFS

HW1
HW2

Copyright ©2006, CECSESE Back-End 18

Model with Arbitration

• The selected arbiter is instantiated and signals are added to
create arbiter connections

Copyright ©2006, CECSESE Back-End 19

SW synthesis

• Compiler, RTOS and libraries are selected for SW
• Default addresses for all addressable memory/bus is generated by ESE

ESE – MP3Decoder.ese*ESE – MP3Decoder.ese*

Output

PEs

File Edit

Project

p1.sc

p2.sc

Platform1

Platform2

Ready

Instantiating FCFS arbiter and connecting request / grant
Creating interrupt connection from Bridge to CPU

HW1 HW2 MemCPU

Process1

Process2

Main

Process3

var1

c1

Process4

p2_2.sc

Sources

CPU
MicroBlaze

Mem1
SRAM64

Bridge

Bus1
OPB

Bus2
DoubleHdshk

View Project Simulation Help

Database

CEs Busses

XilKernel

gcc

OSs

Compilers

mb-gcc

Platforms

Channels

c1

c2

c3

c_double_handshak
e

c_handshake

c_semaphore

var1
var2

i_send
in bool

c4

int

bool

c_queue

i_send
i_receive

SWPEs

Bus3
LMB

Mem2
SRAM64

Synthesis

Bridge

Arbiter
FCFS

HW3

(PCM)

HW2

(Filter2)

HW1

(Filter1)

FIFO

SW SettingsSW Settings

Address MapAddress Map
Bus3Bus1

0x0000
start end

0xff20

0x0000 0x0a40

0x0a60 0x8000

0xff40 0xff60

0xff40

0xff49

0xff510 0xff60

OK

Click to confirm address map

CPU_RTOS

IO Reg0

Mem1

IO Reg1

CPU_Data

Bridge

Bus2

FIFO

CPU

OK

Compiler mb-gcc

RTOS xilkernel

Add Library

Debug

FileSystem

xilDebug

xilFS

Click to confirm SW settings

Copyright ©2006, CECSESE Back-End 20

Model after SW synthesis

• SW application and drivers are targeted for RTOS and ready for
compilation on MicroBlaze

ESE – MP3Decoder.ese*ESE – MP3Decoder.ese*

Output

PEs

File Edit

Project

p1.sc

p2.sc

Platform1

Platform2

Ready

Instantiating FCFS arbiter and connecting request / grant
Creating interrupt connection from Bridge to CPU

HW1 HW2 MemCPU

Process1

Process2

Main

Process3

var1

c1

Process4

p2_2.sc

Sources

CPU
MicroBlaze

Mem1
SRAM64

Bridge

Bus1
OPB

Bus2
DoubleHdshk

View Project Simulation Help

Database

CEs Busses

XilKernel

gcc

OSs

Compilers

mb-gcc

Platforms

Channels

c1

c2

c3

c_double_handshak
e

c_handshake

c_semaphore

var1
var2

i_send
in bool

c4

int

bool

c_queue

i_send
i_receive

SWPEs

Bus3
LMB

Mem2
SRAM64

Synthesis

Arbiter
FCFS

HW3

(PCM)

HW2

(Filter2)

HW1

(Filter1)

Copyright ©2006, CECSESE Back-End 21

HW synthesis

• RTL code for HW components is generated using NISC compiler

Output

PEs

File Edit

Project

p1.sc

p2.sc

Platform1

Platform2

Ready

Instantiating FCFS arbiter and connecting request / grant
Creating interrupt connection from Bridge to CPU

HW1 HW2 MemCPU

Process1

Process2

Main

Process3

var1

c1

Process4

p2_2.sc

Sources

CPU
MicroBlaze

Mem1
SRAM64

Bridge

Bus1
OPB

Bus2
DoubleHdshk

View Project Simulation Help

Database

CEs Busses

XilKernel

gcc

OSs

Compilers

mb-gcc

Platforms

Channels

c1

c2

c3

c_double_handshak
e

c_handshake

c_semaphore

var1
var2

i_send
in bool

c4

int

bool

c_queue

i_send
i_receive

SWPEs

Bus3
LMB

Mem2
SRAM64

Synthesis

HW2

(Filter2)

HW1

(Filter1)

Arbiter
FCFS

HW3

(PCM)

HW2 HW3HW1

OK

Click to create HW RTL

Replace with IP1

Synthesize
with

NISC Compiler
NISC Compiler
ESE-RTL
Synopsys BC
Forte

Copyright ©2006, CECSESE Back-End 22

NISC compilation

• NISC compiler generates synthesizable RTL verilog from
application code for selected architecture

ESE – MP3Decoder.ese*ESE – MP3Decoder.ese*

Output

PEs

File Edit

Project

p1.sc

p2.sc

Platform1

Platform2

Ready

Instantiating FCFS arbiter and connecting request / grant
Creating interrupt connection from Bridge to CPU

HW1 HW2 MemCPU

Process1

Process2

Main

Process3

var1

c1

Process4

p2_2.sc

Sources

CPU
MicroBlaze

Mem1
SRAM64

Bridge

Bus1
OPB

Bus2
DoubleHdshk

View Project Simulation Help

Database

CEs Busses

XilKernel

gcc

OSs

Compilers

mb-gcc

Platforms

Channels

c1

c2

c3

c_double_handshak
e

c_handshake

c_semaphore

var1
var2

i_send
in bool

c4

int

bool

c_queue

i_send
i_receive

SWPEs

Bus3
LMB

Mem2
SRAM64

Synthesis

HW2

(Filter2)

HW1

(Filter1)

Arbiter
FCFS

HW3

(PCM)

NISC EnvironmentNISC Environment

Pixel sum;
//First Temp=Input*COS2
for (i=0; i<8; i++)
 {
 sum = Input[i][0]*COS2[0][j]

NISC Input C
code

Select Architecture Pipelined Datapath

OK

Click to generate RTL verilog

Copyright ©2006, CECSESE Back-End 23

Model after HW synthesis

• Model is updated with RTL code for HW units

Copyright ©2006, CECSESE Back-End 24

Bridge synthesis

• RTL code for Bridge is generated using BridgeGenerator

ESE – MP3Decoder.ese*ESE – MP3Decoder.ese*

Output

PEs

File Edit

Project

p1.sc

p2.sc

Platform1

Platform2

Ready

Instantiating FCFS arbiter and connecting request / grant
Creating interrupt connection from Bridge to CPU

HW1 HW2 MemCPU

Process1

Process2

Main

Process3

var1

c1

Process4

p2_2.sc

Sources

CPU
MicroBlaze

Mem1
SRAM64

Bridge

Bus1
OPB

Bus2
DoubleHdshk

View Project Simulation Help

Database

CEs Busses

XilKernel

gcc

OSs

Compilers

mb-gcc

Platforms

Channels

c1

c2

c3

c_double_handshak
e

c_handshake

c_semaphore

var1
var2

i_send
in bool

c4

int

bool

c_queue

i_send
i_receive

SWPEs

Bus3
LMB

Mem2
SRAM64

Synthesis

HW2

(Filter2)

HW1

(Filter1)

Arbiter
FCFS

HW3

(PCM)Replace
with

Bridge SynthesisBridge Synthesis

OK

Replace with BridgeIP

Synthesize with BridgeGen

Bridge

Click to generate HW RTL for Bridge

Copyright ©2006, CECSESE Back-End 25

Model after Bridge synthesis

• Design is ready for prototyping after SW, HW and Interface
synthesis

Copyright ©2006, CECSESE Back-End 26

Export to FPGA Design Tools

• Platform and SW specification files are created for FPGA design tools
• C code for Microblaze and Verilog for HWs and Bridge is exported

Copyright ©2006, CECSESE Back-End 27

Benefit: FPGA Prototype in 1 Week

• Bit stream from FPGA design environment is downloaded to board
• Implemented prototype is tested with MP3 music files

Copyright ©2006, CECSESE Back-End 28

Manual Design Quality

• Area
• % of FPGA slices and BRAMS

• Performance
• Time to decode 1 frame of MP3 data

0
10
20
30
40
50
60
70
80
90

100

SW+0 SW+1 SW+2 SW+4

Design Points

%
 c

hi
p

ut
ili

za
tio

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

se
co

nd
s %Slices

%BRAMs
Exec. time

Copyright ©2006, CECSESE Back-End 29

Design Quality with NISC components

• Area
• NISC uses fewer FPGA slices and more BRAMs than manual HW

• Performance
• NISC comparable to manual HW and much faster than SW

0
10
20
30
40
50
60
70
80
90

100

SW+0 SW+1 SW+2 SW+4 NISC+0

Design Points

%
 c

hi
p

ut
ili

za
tio

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

se
co

nd
s %Slices

%BRAMs
Exec. time

Copyright ©2006, CECSESE Back-End 30

Development Time with ESE

0

10

20

30

40

50

60

70

Spec. TLM RTL Board

models

pe
rs

on
-d

ay
s SW+0

SW+1
SW+2
SW+4

Manual Development Time

• Model Development time
• Includes time for C, TLM and RTL Verilog coding and debugging

• ESE drastically cuts RTL and Board development time

ESE

0

10

20

30

40

50

60

70

Spec. TLM RTL Board

models

pe
rs

on
-d

ay
s SW+0

SW+1
SW+2
SW+4

Copyright ©2006, CECSESE Back-End 31

0

10

20

30

40

50

60

70

Spec. TLM RTL Board

models

pe
rs

on
-d

ay
s SW+0

SW+1
SW+2
SW+4

Development Time with ESE

• ESE drastically cuts RTL and Board development time
• Models can be developed at Spec and TL
• Synthesizable RTL models are generated automatically by ESE

ESE

Copyright ©2006, CECSESE Back-End 32

Validation Time with ESE

0
1
2
3
4
5
6
7
8
9

10

Spec. TLM RTL Board
models

se
co

nd
s SW+0

SW+1
SW+2
SW+4

Validation Time

• Simulation time measured on 3.3 GHz processor
• Emulation time measured on board with Timer
• ESE cuts validation time from hours to seconds

ESE

0
1
2
3
4
5
6
7
8
9

10

Spec. TLM RTL Board
models

se
co

nd
s SW+0

SW+1
SW+2
SW+4

X

ho
ur

s

18.06 hrs
17.71 hrs
17.56 hrs
15.93 hrs

Copyright ©2006, CECSESE Back-End 33

0
1
2
3
4
5
6
7
8
9

10

Spec. TLM RTL Board
models

se
co

nd
s SW+0

SW+1
SW+2
SW+4

Validation Time with ESE

• ESE cuts validation time from hours to seconds
• No need to verify RTL models
• Designers can perform high speed validation at TLM and board

ESE

Copyright ©2006, CECSESE Back-End 34

ESE Back-end Advantages

• HW synthesis in ESE removes the need to code and debug
large RTL HDL models

• Transducer and interface synthesis allows flexibility to include
heterogeneous IP in the design

• SW driver synthesis removes the need for SW developers to
understand HW details

• SW and HW application can be easily upgraded at TL and
validated on board

• C and graphical input of TL model allows even non-experts to
develop and test HW/SW systems with ESE

