
1

ESE Front End 2.0

D. Gajski, S. Abdi, Y. Hwang, L. Yu, H. Cho, I. Viskic
Center for Embedded Computer Systems

University of California, Irvine

http://www.cecs.uci.edu

2

Copyright ©2007, CECSESE Front-End 2

• No basic change in design methodology required
• ESE supported design follows present design process

• Productivity gain of more than 1000X demonstrated
• Designers do not write models

• High error-reduction: Automation + verification
• Error-prone tasks are automated

• Simple design update: 1-day change
• No rework for new design decisions

• Simplified globally-distributed design
• Fast exchange of design decisions and easy impact estimates

• Fast derivative designs
• No need for complete redesign

• Better market penetration through customization
• Shorter Time-to-Market through automation

Technology Advantages

Technology Advantages
This new ESE methodology does not require any changes in the present
corporate methodology and offers three orders of magnitude of productivity
gain because of automatic model generation, synthesis and verification.. It
reduces bugs since the mundane tasks of generating models and verifying them
is automatic.
It also allows simple change management of few hours for small changes and
few days for large changes. Since all the models and changes are made
automatically it is easy to ship those models around the world for design,
checking and upgrades.
However, the main advantage lies in the fact that every system or product can
be easily upgraded with only few days of work. This type of customization
allows better market penetration and shorter time-to-market.

3

Copyright ©2007, CECSESE Front-End 3

Decision
User

Interface
(DUI)

Validation
User

Interface
(VUI)

TIMED

Create

Map

Compile

Replace

Select

Partition

Compiler

Debugger

Stimulate

Verify

ES Environment

Application Tools : Compilers/Debuggers Commercial Tools : FPGA, ASIC

CYCLE
ACCURATE

Verify

Simulate

Check

Compile

ESE Front – End

System Capture + Platform Development

SW Development + HW Development

ESE Back – End

Timed TLM

C + RTL

ES Environment (ESE)
The ESE consists of a front-end and a back-end supported by two interfaces.
The front-end consists of System Capture, which is a graphical user interface
for capturing the definition of the platform architecture and product application
code. Platform Development tool generates timed Transaction-Level Models
(TLMs) of the platform architecture executing the product application defined
by the capture tool. These timed TLMs provide reliable performance metrics
and are used for early exploration of design choices.
In the back-end, the HW Development component is used to generate cycle-
accurate or RTL description of the HW components which can be further
refined by commercially available tools for ASIC or FPGA manufacturing.
SW Development generate firmware necessary to run communication and
application SW on the platform.
Validation User Interface is used to debug and validate developed SW and
HW. Decision User Interface is used by the designer, to estimate the quality
metrics and make decisions such as component selection, task scheduling,
mapping of SW functions to HW components and others.

4

Copyright ©2007, CECSESE Front-End 4

Model Accuracy vs. Execution Time

Time and accuracy trade off among different models

0 2sec 3~4 hrs 15~18hrs

Func. TLM

Exec. Time (MP3)

Accuracy

100%
~92%

~80%

Board

Timed TLM

ISM

PCAM

TLM: Transaction Level Model
ISM: Instruction Set Model
PCAM: Pin/Cycle Accurate Model

Model Accuracy vs. Execution Time
Different types of system models are used at different stages of design.
Traditionally Pin/Cycle Accurate Models (PCAMs) and Instruction-Set
Models (ISMs) have been used to validate designs at cycle accurate level.
However, for a design like MP3 decoder, these models may take several hours
to simulate. The timed TLMs generated by ESE provide accuracy in estimation
within 8% of board prototype. TLMs are also applicable to any type or
complexity of design as opposed to ISMs. Therefore using TLMs generated
automatically by ESE, system designers can evaluate design decisions in a
matter of seconds instead of waiting for hours or even days for a cycle accurate
simulation to complete. Thus, the design modification and evaluation cycle is
shortened, leading to significantly more opportunities for design optimization.

5

Copyright ©2007, CECSESE Front-End 5

ESE Front End Tool Flow

System Definition

PE/RTOS
Models

Timing
Estimation

Bus/Bridge
Models TLM Generation

SystemC
Simulation

Application Platform

Timed Application

SystemC TLM Metrics

ESE Front End Tool Flow
The inputs to ESE front-end is the system definition consisting of a platform and
application code. A library of processing elements, buses, bridges and RTOS is
provided in ESE to develop such a platform. The retargetable timing estimation tool
in ESE is used to annotate timing to the application code based on the mapping of
application code on the platform components. The timed application and platform
are input to the TLM generator tool that uses the bus and bridge models to generate
a SystemC TLM. This SystemC TLM can be simulated by any commercial or freely
available SystemC simulator to provide the performance metrics. The designer can
use the metrics to make to application code and/or the platform in order to optimize
the system for a particular metric.

6

Copyright ©2007, CECSESE Front-End 6

Platform Architecture

B
rid

ge

CPU Mem

HW IP

Components:
• Processors
• Memories
• IPs
• Custom HW
• Buses
• Bridges

A
rb

ite
r

Platform Architecture
Platform architecture consists of set of components and set of connections selected
from the library or defined by the user. The platform architecture can be
completely or partially defined. More components and connections can be added at
a later stage for optimization of some metrics. ESE will upgrade the TLMs
automatically to satisfy the new upgrades. It must be noted that ESE does not put
any restrictions on the number and type of components and connections used to
define the platform.

7

Copyright ©2007, CECSESE Front-End 7

Application Spec

v1

C
1

P1 P2

P3 P4

C2

Computation
• Processes (in C)

Communication
• Channels (in C)
• Variables (in C)

Application Spec
The application input to ESE is C/C++ processes communicating with channels or
variables. The C code is part of processes and can be easily modified from the ESE
GUI. Even legacy code (usually available in C) can be inserted inside processes.
Processes use channels for synchronized communication and variables for
unsynchronized communication. Since, the channels and variables can be added
graphically, the application spec developer does not need to learn any new
language, such as SystemC, for writing concurrent applications.

8

Copyright ©2007, CECSESE Front-End 8

Input: System Definition

B
rid

ge

v1

C
1

P1 P2

CPU Mem

HW

P3

IP

P4

C2

System Definition = Platform + Application

A
rb

ite
r

System Definition
The input to ESE is essentially a mapping of given application to the platform. This
mapping has well defined rules and can be easily performed in the ESE GUI.
Processes map to processing elements (PEs) such as CPUs, HW components, and
IPs. Variables map to memory components, either local to PEs or shared. Channels
between processes are mapped to routes consisting of buses and bridges. A valid
route must exist between the host PEs of the communicating processes for the
channel to be implemented. ESE automatically provides a set of possible routes for
each application channel. The designer can easily select the route for each channel
in the GUI.

9

Copyright ©2007, CECSESE Front-End 9

Output: SystemC Timed TLM

CPU Bus

P1 P2

OS

P4

C
PU Mem

IP

P3

HW

IP Bus

Bridge

TLM Generation Technique
• Application code sc_thread
• Processing element sc_module
• Bus sc_channel
• Memory Array inside sc_module
• Bridge FIFO channel + sc_process

SystemC Timed TLM
As mentioned earlier, a timed TLM in SystemC is generated automatically for the
given system definition. The TLM captures the application, the platform
architecture and the mapping of the application on the platform into a single
executable model. Components in the model communicate through bus channels
whose functionality will be moved to components during generation of PCAMs
The semantics of the ESE TLMs makes them easy to understand, debug and
upgrade. Each application and platform object maps to a well defined SystemC
construct as shown above.

10

Copyright ©2007, CECSESE Front-End 10

System Modifications

B
rid

ge

v1

C
1

P2

CPU Mem

HW IP

P4

C2

A
rb

ite
r

P1

P3P6

P5
C

3

TLM is generated/upgraded automatically
with changes in Spec or Platform, including:

• Software changes
• Hardware changes
• Communication changes

System Modifications
The graphical input in ESE makes it very simple to perform changes to the platform
as well as the application. In the above example, new processes P5 and P6 are added
to the system design as part of an upgrade. A new channel, C3, is introduced
between P5 and P6. Since the application is clearly distinguished from the platform
and is entered graphically, such an upgrade is very straightforward in the GUI. A
new TLM with added upgrades is generated automatically by ESE. A similar
change would be quite difficult to make directly in a SystemC model and more so in
a cycle accurate model.

11

Copyright ©2007, CECSESE Front-End 11

Output: Modified TLM

CPU Bus

P1 P2

OS

P4

C
PU Mem

IP

P3

HW

IP Bus

P6

P5

Bridge

Modified TLM
The automatic TLM generation tool in ESE along with the simplified system
upgrade capability provided by the GUI makes TLM upgrade effortless. Hence,
even with several design modification cycles, ESE enables designers to keep their
TLMs consistent with the latest system definition.

12

Copyright ©2007, CECSESE Front-End 12

TLM Generation Features

• Processing Elements (PEs)
• Any number of processes mapped to any PE
• Any number of bus connections

• Connectivity
• Point-to-point links
• Shared bus architecture
• Multi-hop transactions
• NoC platforms

• Bridges and routers
• Any size, number and partition of FIFOs
• Any number of bus connections
• Static and dynamic routing

• Memories
• Any number of bus connections
• Local (inside PE) and shared memories

TLM Generation Features
As mentioned earlier, ESE provides great flexibility in platform and application
choices. There is no restriction on the number of processes mapped to PEs. If more
than once process is mapped to a processor, an RTOS is added from the ESE library
to the processes. If the PE is not a third part IP, then any number of connections
may be made from PE to system buses. The bus object in ESE is highly flexible as it
can be used to denote a point-to-point link, a shared bus or a network link. Also,
ESE provides automatic generation of transducers that can act as shared memories,
bridges or routers. Therefore, TLMs can be generated for practically any type of
platform ranging from single processor systems to complex architectures such as
networks on chip.

13

Copyright ©2007, CECSESE Front-End 13

Timing Estimation Technique

PE1
p1 p2

Tx1

PE3

Tx3

PE4

Application + Platform

BB1

Untimed p2 CDFG

Processor Model

Estim
ation Engine

Timed p2

Bus1

PE2

Bus2

wait(t1)

Tx2

B
us

3
If

BB2 BB3

If YN

YN

BB1

If

If
YN

YN

BB2 BB3

wait(t2) wait(t3)

• DFG scheduling to compute basic block delay
• RTOS model added for PEs with multiple processes

Timing Estimation Technique
Automatic generation of timed TLMs is the key feature of ESE. This consists of
adding timing information to the application code based on its mapping to a given
PE. The application code in each process is converted into a CDFG representation
as shown above. Then, a retargetable PE model, provided in the ESE database, is
used to analyze the execution of each basic block of process code on the given PE.
This analysis provides estimated delay for each basic block in the process. The
basic blocks are then annotated with the estimated delay to produce a timed process
model. This compiled estimation technique, unique to ESE, can be applied to any
application code mapped to any type of PE.
Therefore, ESE estimation is fast, retargettable and provides better accuracy at
TLM level than even ISMs.

14

Copyright ©2007, CECSESE Front-End 14

• Retargetable Processor Models
• Any type of control/datapath pipelining
• Any number of pipelined datapaths
• Multi-cycle units, forwarding, chaining
• Branch prediction
• VLIW and SuperScalar

• Statistical/Dynamic Cache Models

• RTOS models

• Integrated with high level synthesis for custom HW

• Estimation reports
• Basic block level, function level and transaction level

Timing Estimation Features

Timing Estimation Features
ESE supports several different types of processors in the platform for heterogeneous
system design. The estimation technique in ESE is applicable to processors with
various architectural features such as pipelining, branch prediction and various
memory hierarchies. It also supports multi-threaded and multi-process applications
using RTOS models. Designers can choose different granularity of estimation
reports for appropriate analysis of system performance.

15

Copyright ©2007, CECSESE Front-End 15

ESE: Platform and Application Capture

Platform and Application Capture
The central canvas of the ESE GUI shows the platform, which has been assembled
from the component database shown on lower left corner. The application processes
are organized on the upper right corner, which carries the mapping of the processes
to platform PEs. The communication channels are shown in the lower right corner.
Process C code can be edited using the editor as shown.

16

Copyright ©2007, CECSESE Front-End 16

ESE: TLM Generation and Estimation

TLM Generation and Estimation
The results after TLM generation and estimation are shown graphically. After
automatic TLM generation, the simulation launches a SystemC simulator terminal.
At the end of simulation, the estimated metrics can be analyzed graphically using
pie charts.

17

Copyright ©2007, CECSESE Front-End 17

MP3 Decoder Application

• Functional block diagram (major blocks only)

• Application features
• 12K lines of C code
• IMDCT and DCT are compute intensive

– Candidates for HW implementation
• Left channel and right channel are data independent

– Concurrent execution possible

MP3 Decoder Application
To demonstrate the usefulness of ESE, an MP3 decoder application was chosen.
The block diagram above shows the IMDCT and DCT transforms that are applied
during the stereo decoding on the left and right channels of the MP3 input. These
function blocks are the most time consuming part of the decoding and are hence
ideal for implementation using custom HW for faster decoding. The C model is also
used to create test benches with golden PCM output files. These test benches are
used later to verify the ESE generated TLMs.

18

Copyright ©2007, CECSESE Front-End 18

• MP3 Decoder on Xilinx Multimedia FPGA board
• Microblaze soft-core with 0/1/2/4 HW components

MP3 Platforms

MP3 Platforms
To demonstrate the ESE support for heterogeneous multi-processor platforms, 4
designs were selected as shown above. These platforms consist of 2 different buses,
OPB (on-chip peripheral bus) and DH (double-handshake). There are two different
types of PEs, a Microblaze processor from Xilinx and custom HW IPs for DCTs and
IMDCTs. For platforms consisting of two buses, a transducer is used to allow
communication between PEs on the different buses.

19

Copyright ©2007, CECSESE Front-End 19

Results: Functional TLM Generation and
Simulation

• Functional TLM generation in seconds vs. weeks of
manual coding
• Huge productivity gain

• Functional TLM simulation in fraction of a second
• Early application development and debugging

Design SystemC
LoC

Manual
Coding

Func. TLM
Generation

Func. TLM
Simulation

M1 2095 2 weeks 0.63 s 0.01 s
M2 2894 3 weeks 0.66 s 0.01 s
M3 3148 4 weeks 0.66 s 0.01 s
M4 3653 4 weeks 0.74 s 0.01 s

Average 2948 ~3 weeks ~ 0.7 s 0.01 s

Functional TLM Generation and Simulation Results
Besides the timed TLM, ESE can also generate a high speed untimed TLM that can
be used for functional verification and application development. Functional TLMs
for the selected platforms consist of over 2000 lines of SystemC code that took
weeks to write manually. The same code was generated in less than a second by
ESE. Since there was no timing added to the application code, the functional TLMs
simulated in a fraction of a second. These TLMs are ideal for application
development and debugging when the timing estimation for every code change is
not of concern.

20

Copyright ©2007, CECSESE Front-End 20

Results: Timed TLM Generation and
Simulation

Design Timed TLM
Generation

Timed TLM
Simulation

ISM Sim. CA Sim.

M1 31 s 0.01 s 3.6 h 16 h
M2 50 s 0.22 s 18 h
M3 47 s 0.25 s 18 h
M4 71 s 0.36 s 18 h

Average ~ 1min ~ 0.2 s 3.6 h ~ 18 h

N/A

• Timed TLM generated in minutes vs. hours of CA/ISM
simulation
• Early SW/HW performance estimation

• Timed TLM simulation in < 1 sec.
• Extensive design exploration

Timed TLM Generation and Simulation Results
ESE also generates timed TLMs in few minutes even for complex platforms with up
to 5 different components. The simulation time for these TLMs was less than a
second. In contrast ISMs took 3.6 hours to simulate while PCAM simulation was in
the order of 16 to 18 hours. This does not take into account the coding, modification
and debugging of ISMs and PCAMs. Design changes at pin/cycle accurate level are
significantly more error prone and time consuming which results in days or even
weeks for each design change and evaluation cycle. Using ESE, this cycle can be
reduced to an order of minutes. Therefore, designers can spend greater time in
innovative design optimizations and almost no time in mundane pin/cycle accurate
model development and simulation.

21

Copyright ©2007, CECSESE Front-End 21

Results: Estimation Quality

Cache Size M1 M2 M3 M4
0K/0K 6.27% 9.00% 18.18% 18.61%
2K/2K 6.68% -7.16% -15.79% -9.35%
8K/4K 4.74% 9.13% -1.66% -0.18%

16K/16K -13.83% 4.66% 2.63% 3.65%
32K/16K -13.89% -8.29% 1.57% 2.29%
Average 9.08% 7.65% 7.97% 6.82%

Board ISM Error
0K/0K 27215K 39.48%
2K/2K 8914K 18.38%
8K/4K 5828K 3.55%

16K/16K 4413K -16.32%
32K/16K 4384K -16.60%
Average N/A 18.86%

M1Cache size

ISM Error

• TLM estimation applicable to all designs
• ISM only available for SW

• TLM estimation error < ½ of ISM error
• Reliable design exploration with timed TLMs

Timed TLM Error

Error %= (1 - Estimated cycles/ Board Cycles)*100

Estimation Quality Results
ESE can automatically generate timed TLMs for heterogeneous multi-processor
platform. In contrast, ISMs can only provide estimation for single processors. (That
is why ISM is available only for M1 platform.) The above results compare the ESE
TLM estimation with actual board measurements obtained using a timer. It can be
seen that timed TLMs are more accurate than ISMs in most cases and less than half
as erroneous as ISMs on average. Therefore, designers can use ESE for reliable
estimation of their design at an early stage even before the HW RTL is ready.

22

Copyright ©2007, CECSESE Front-End 22

ESE Advantages

• Platform and Application can be easily captured using GUI

• Functional TLMs are automatically generated for
development and testing of application code

• Timed TLMs are automatically generated for early design
exploration

• Legacy SW and HW IPs can be easily added for design
reuse and upgrade

• ESE allows concurrent development of platform SW, HW
and application code

ESE Advantages
There are numerous advantages of using ESE. The product specification and
implementation is easily captured with proprietary GUI. All models are generated
automatically after design decisions are made by the users. This saves enormous
amount of time in learning modeling languages and writing and interfacing
appropriate models. Reliable timing estimation in ESE allows for rapid and early
design space exploration.
Product upgrades are simplified because ESE allows convenient reuse of legacy
application code and design decisions. ESE allows parallel development of SW,
HW and application code and their integration. In other words, it allows early
testing of each thereby allowing faster and globally distributed development.
Similarly, the upgrades can be easily developed any time and anywhere.

23

Copyright ©2007, CECSESE Front-End 23

Acknowledgments

• We would like to acknowledge the previous R&D teams
who contributed many concepts and methods used in
ESE 2.0
• SpecCharts/SpecSyn (’92): F. Vahid, S. Narayan,

J. Gong, S. Bakshi
• SpecC/SCE (’00) team: R. Doemer, J. Zhu,

A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu

• We also want to thank P. Chandraiah for MP3 reference
code, Q.V Dang for developing the GUI, and A.
Gerstlauer for many very useful discussions.

