
Embedded System DesignEmbedded System Design
Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

7/8/2009

Chapter 8: Embedded Design Practice

7/8/2009 2Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Embedded Design Practice

• Introduction

• System Level Design Tools

• Embedded Software Design Tools

• Hardware Design Tools

• Case Study

• Summary

7/8/2009 3Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Introduction

• System-level tools are available in three different
forms:

• System-level design

• Software design

• Hardware design

• Some academic tools demonstrate complete
process: MoC-to-RTL including custom SW and HW
components

• Automation of system-level tasks shows large gains
as demonstrated on examples of JPEG and MP3

• Results also demonstrate potentially large impact on
embedded systems technology

7/8/2009 4Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Embedded Design Practice

 Introduction

• System Level Design Tools
• Overview

• Academic Tools

• Commercial Tools

• Outlook

• Embedded Software Design Tools

• Hardware Design Tools

• Case Study

• Summary

7/8/2009 5Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Overview

• Electronic System-Level (ESL) design tools
• Many that provide single hardware unit only (see HW design tools)
 True system-level design across hardware and software boundaries

• System-level design flow
• Frontend

– Application & architecture mapping
– Design space exploration (DSE)
 System models (TLMs) for virtual prototyping

• Backend
– Hardware and software synthesis
– Commercial or proprietary (see SW & HW design tools)
 Physical system prototype or implementation

Commercial tools for modeling and simulation
Academic tools for synthesis and verification

7/8/2009 6Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools

• Metropolis
• Platform-based design (PBD)

• SystemCoDesigner
• Dynamic dataflow MoC
• Automated design space exploration

• Daedalus
• KPN MoC for streaming, multi-media applications
• IP-based MPSoC assembly

• PeaCE
• “Ptolemy extension as a Codesign Environment”
• Recent extensions for software development (HOPES)

• SCE
• SpecC-based “System-on-Chip Environment”
• Successive, stepwise Specify-Explore-Refine methodology

7/8/2009 7Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: Metropolis

• Platform-based
• Pre-defined target

architecture

 Reuse

• Meet-in-the-middle
• Platform mapping and

configuration

• General, proprietary meta-modeling language
• Capture function, architecture and mapping

• Modeling framework
• Built-in parsing and simulation

• Back-end point tool integration

Point Tools:
Synthesis/Refinement

Metropolis Infrastructure

Design methodology
Metamodel
Simulator

Point Tools:
Analysis/Verification

Function
Specification

Architecture
Specification

Design
constraints

7/8/2009 8Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: SystemCoDesigner

• SysteMoC input model
• Dynamic dataflow MoC (actors + FSMDs) in SystemC

• Fully automatic, multi-objective design space exploration
• Genetic algorithms to obtain Pareto-optimal design solutions

7/8/2009 9Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: Daedalus

• XML-based open
infrastructure

System-level synthesis

Library of
IP cores

Platform
specification

Mapping
specification

System-level design space exploration

Explore, modify, select instances

Multi-processor System on Chip
(Synthesizable VHDL and C/C++ code for processors)

High-level
Models

RTL-level
Models

Common XML
Interface

Parallel application
specification (KPN)

Automatic
Parallelization

Sequential
application

• KPN input model
• System assembly and simulation

7/8/2009 10Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: PeaCE

• Ptolemy-based
• Heterogeneous SDF+FSM

application MoC

• Stepwise flow
• Application partitioning

• Communication architecture
exploration

• Code and interface generation

• Software extensions: HOPES
• Parallel programming API

• Multi-processor code generation

Algorithm
Specification

Architecture
Specification

Graph Analysis Profiling

cluster.xml timeCost.xml

HW/SW Mapping
& Partitioning

sched.xml

Code Generation

C CodeC Code C CodeVHDL Code

HW/SW Mapping
& Partitioning

Communication
Exploration

arch.xml

Interface Generation

Coverification & Prototyping

Block
Library

Simulation

7/8/2009 11Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: SCE

• SpecC based
• PSM input MoC
• Specify-Explore-Refine
• Interactive, successive,

stepwise refinement

• Frontend
• Compile specification onto

user-defined MPSoC arch.
• Automatically generate TLM

• Backend
• Hardware/software synthesis
• RTL + ISS implementation

Commercial derivative: SER (JAXA)

Specification

System Design
& Refinement

SW
DB

System
models

CPUn.bin

Implementation Model

TLMnTLMnTLMi

Hardware
Synthesis

Software
Synthesis

RTL
DB

RTLnRTLnRTLn
ISSnISSnISSn CPUn.bin

CPUn.bin
HWn.vHWn.vHWn.v

Design
Decisions

PE/CE/bus
Models

7/8/2009 12Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Commercial Tools (1)

• CoFluent
• SystemC-based modeling and simulation

– Networks of timed processes

– Communication through queues, events, variables

• Early, high-level interactive design space exploration
– Graphical application, architecture and mapping capture

– Fast TLM simulation with estimated timing

• Space Codesign
• Graphical application, architecture and mapping capture (Eclipse)

– Process network with message-passing or shared-memory channels

• SystemC TLM simulation
– Annotated, host-compiled or cycle-accurate ISS models

• FPGA-based prototyping
– Cross-compilation and third-party hardware synthesis (Forte/Catapult)

7/8/2009 13Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Commercial Tools (2)

• CoWare
• Virtual system platforms

– SystemC TLM capture, modeling and simulation

– Extensive library of IP, processor and bus models

– Application-specific processor ISS models (LISAtek acquisition)

• Proprietary SystemC simulation framework
– Optimized SystemC kernel

– Graphical debugging, visualization and analysis capabilities

• Soc Designer
• Proprietary, C++ based modeling and simulation

– Fast, statically scheduled cycle-accurate simulation

– Special cycle-callable component models

• VaST and Virtutech
• Proprietary SW-centric virtual platform modeling and simulation

– Fast, cycle-approximate binary translated or compiled ISS + peripherals

7/8/2009 14Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Outlook

• State of the art
• Commercial focus still only on modeling and simulation

• Academic approaches towards true system-level design

• Emerging commercial solutions for backend HW/SW design

• Future complete, automated system design flows
• Further research and development of system-level synthesis and

design space exploration solutions

• Continuing technology transfer from academia into commercial
settings and startups

Productivity gains

Closing gap between application and implementation

7/8/2009 15Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Embedded Design Practice

 Introduction

System Level Design Tools

• Embedded Software Design Tools
• Overview

• Academic Tools

• Commercial Tools

• Outlook

• Hardware Design Tools

• Case Study

• Summary

7/8/2009 16Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Overview

• Tight connection to underlying HW
– Processor, custom hardware, physical process integration

• Requires:
– Processor-specific code generation

» e.g. DSP v.s. general purpose processor

– Processor-specific compiler (cross compiler)
– Processor-specific simulator

» Virtual platform
» Instruction Set Simulator (ISS)

– Non-intrusive analysis/tracing
– Real-time analysis

• Specialized point solutions
– Processor vendor: e.g. ARM RealView Development Suite
– FPGA Vendor: e.g. Xilinx EDK
– OS Vendor: WindRiver WorkBench

7/8/2009 17Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools (1)

• POLIS
• HW/SW co-design environment

• Input: Esterel or graphical FSM notation

• Centered around Codesign Finite State Machine (CFSM)
– Locally synchronous, globally asynchronous

• Formalism for verification, co-simulation, partitioning and synthesis

• METROPOLIS
• Platform based design

• Meta-model; supports many MoCs

• Separate function, architecture and MoC into separate inputs

• Co-simulation heterogeneous PEs with different MoCs

7/8/2009 18Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools (2)

• DESCARTES
• Targets real-time signal processing systems

• Input:
– Asynchronous Data Flow (ADF), and

– extension of Synchronous Data Flow (SDF)

• Computation node scheduling observing
– Latency

– Throughput

– Memory consumption

• C code generation of each computation node

7/8/2009 19Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools (3)

• Software generation from SystemC models
• Herrara et al.

– Single source solution
» Same C++ code on SystemC and on target

– Simplifies debugging / maintenance

– Overload SystemC primitives for target implementation

– Subset of SystemC

• PROTOS (Krause et al.)
– Input

» SystemC threads communicating though point-to-point channels

– Parses SystemC, generates RTOS targeted code for selected RTOS
» Replaces SystemC calls (comm., threads) with RTOS equivalent calls

» Attempts to recreate SystemC events

– Captures RTOS characteristics in XML
» API call signatures, thread fork join, static / dynamic

7/8/2009 20Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools (4)

• Eclipse
• Multi-language development platform

– IDE: Compiler, debugger, source code browser

– Extensible with well defined plug-in system

• Free, open source; managed by Eclipse Foundation

• Main focus JAVA, but supports many other languages

• Very popular framework for custom (also embedded) extensions in
academic and commercial projects, e.g.

– Tensilica Xtnesa Xplorer IDE
» Custom processor generation, cross compilation and debugging

– Greensys AUTOSAR Builder
» Develop AUTOSAR (automotive) software components

» Capture system and application level description aiding integration

7/8/2009 21Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Commercial Tools (1)

• MathWorks: Real-Time Workshop
• Simulink

– Model-based design tool
– Block diagram capturing of system functionality

» Compose of predefined blocks (e.g. filters, control functions)

– Hierarchical composition
– Discrete time and continues time models

• Real-Time Workshop generates target code based on Simulink model
– ANSI C / C++
– Stand alone / RTOS based

• dSpace Cooperation: TargetLink
• Integrates into Matlab/Simulink
• Automotive focus

– Supports OSEK/VDX compliant OS
– Target code for Electronic Control Units (ECU)
– Extensions to support AUTOSAR

7/8/2009 22Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Commercial Tools (2)

• Esterel Technologies:
Software Critical Application Development Environment
(SCADE)
• Targets safety critical applications

• Graphical notation of hierarchical data flow and safe state machines
– Rich set of predefined blocks (operators, linear functions, filters, state

machines, model composition)

• Internally based on Lustre, synchronous data flow language

• KCG: C code generator certified for airborne systems
– Generates code for each block

• Worst Case Execution Time (WCET) analysis integration

• Extensible through gateway (e.g. Matlab/Simulink, UML/SysML)

7/8/2009 23Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Commercial Tools (3)

• UML/SysML Products
• Universal Modeling Language (UML)

– Specification of software systems, early in process
» Construction, documentation

– Modeling language, not programming language
– Defines 13 diagram types

» System structure, System behavior, Interaction of system elements

– Use std. programming language to capture algorithms

• Systems Modeling Language (SysML)
– Extension and subset of UML (extending SW focus to System)

» E.g. adds: requirement diagram (perf. analysis), MoC for continues systems

• Many commercial tools for capture, analysis, validation and
framework code generation:

– IBM Telelogic Rhapsody
– Spark Systems’ Enterprise Architect
– Gentleware’s Poseidon
– Artisan Software’s Artisan Studio

7/8/2009 24Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Outlook

• Status
• Vendor specific solutions / domain specific solutions

– E.g. processor, FPGA fabric or OS vendors

– Automotive, signal processing

• More attention to reusable and scalable implementations
• Component-based approaches (e.g. AUTOSAR)

• Integrated documentation / design (e.g. UML, SysML)

• Platform complexities increase
• Many-core platforms, heterogeneity

• Manual implementation increasingly inefficient

• Increasing focus on generation / synthesis
• Develop systems as composition of algorithms

• Automatic generation of embedded software

• Focus on essential function aspects instead of implementation detail

7/8/2009 25Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Embedded Design Practice

 Introduction

System Level Design Tools

Embedded Software Design Tools

• Hardware Design Tools
• Overview

• Academic Tools

• Commercial Tools

• Outlook

• Case Study

• Summary

7/8/2009 26Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Overview (1)

• Historical Perspective: Four Phases

• Concept Phase (1970s)
– Basic definition for languages, methods, tools

– Instruction-Set Processor Specification/ CMU RT-CAD System (1976)

– MIMOLA at U of Kiel (1978)

• Algorithms Phase (1980s)
– Allocation, binding, scheduling algorithms

– Design flow for controllers, datapaths, custom processors

– Early tools: Yorktown Silicon Compiler (IBM), Cathedral (IMEC), System
Architects’ Workbench (CMU), Design Environment (U of Karlsruhe)

7/8/2009 27Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Overview (2)

• Consolidation Phase (1990s)
– HLS books: System Architect’s Workbench (1990), and others

– Commercial tools: Behavioral Compiler (Synopsys), Monet (Mentor),
Cyber Synthesis Tool (NEC)

– Obstacles: Tool-dependent language subsets, simple controller and
datapath architecture, non-programmable, fixed, FSM controller,
interfacing components not defined, consumer market not prepared

• Acceptance phase (2000s)
– HLS tools acceptance forced by system complexities

– Standard programming or system languages as input (C/C++, SystemC)

– More sophisticated algorithms

– Complex IPs and custom architectures with programmable controllers

7/8/2009 28Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools

• GAUT
• Custom processors for digital signal processing application
• Bit-accurate specification in C/C++
• Pipelined architecture of processor, memory and interface unit

• No-Instruction Set Computer (NISC)
• Custom processor with control memory vs. program memory

• SPARK High-Level Synthesis
• C-to-VHDL HLS framework with pre-synthesis optimizations

• xPilot Synthesis System
• Platform-based behavioral synthesis with multiple metric

optimization

7/8/2009 29Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: NISC

• NISC features programmability
• Parametrizable architecture
• Programmable controller with control-

word memory
– Large codes accommodated

• NISC features metric closure
• Separation of allocation from binding

& scheduling
• Datapath completely defined before

binding and scheduling by compiler
• Architecture-cell concept

• NISC tools
• Datapath generator generates

datapath from source
– Manual override possible

• Retagertable cycle-accurate compiler
• RTL generator for FPGA prototyping
• Optimization by manual code or

datapath refinement

IDE

Code
Refinement

Application

GUI

Datapath
Refinement

Datapath

Component/
Template

Library

Datapath Generator

NISC Compiler

RTL Generator

Synthesis Backend

RTL

7/8/2009 30Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: SPARK

• SPARK is HLS framework
• For multimedia and image

applications

• For control intensive functional
blocks

• Input: ANSI-C, resource
library, constraints and user
directives

• Output: Synthesizable RTL
VHDL code

• Tasks:
• Pre-synthesis optimizations

• Scheduling and allocation

• Binding and control synthesis

• RTL generation
Code Generation Back End

C Input

Synthesizable RTL VHDL, Behavioral C

Constraints &
Resource

Library Parser Front End

SPARK IR

Hierarchica
l Task

Graphs
(HTGs) +
Data Flow

Graphs

PreSynthesis Optimizations

Loop Unrolling, Loop Fusion, Loop Invariant Code Motion CSE,
IVA, Copy Propagation, Inlining, Dead Code Elimination

Scheduling and Allocation

Heuristics Transformation Toolbox

Resource Binding & Control Synthesis

Operation/Variable Binding FSM Generation/Optimiz.

7/8/2009 31Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Academic Tools: xPilot

• Platform-based behavioral
synthesis

• Input: C or SystemC

• Output: RTL and constraints
files

• SSDM models process
network

• Tasks:
• Pre-synthesis optimization by

LLVM compiler

• Physically-aware optimizations
during scheduling and binding

• RTL generation with physical
location constraints

7/8/2009 32Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Commercial Tools (1)

• Catapult Synthesis
• C++-to-RTL

• Block architecture for different C functions with communication
channels between

• User directives for interface and memory mappings, loop unrolling
and pipelining, HW hierarchy, block communication, resource
allocation, latency and cycle constraints

• Cynthesizer
• Pin- and protocol-accurate SystemC as input

• Hybrid scheduling approach for protocol and computation
sections

• Gate-level library generated for estimation

• Custom datapath components are created from user indicated
C++ code

7/8/2009 33Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Commercial Tools (2)

• PICO
• C-to-RTL mapping under performance constraints (throughput, cycle-

time) for data streaming applications
• Complex application engines for system platforms
• Compile-time configurable architecture template based on Khan-process-

network model
• Advanced parallelizing compiler

• CyberWorkBench (CWB)
• C-based HLS and verification tool (“All-in-C” approach)
• Legacy RTL blocks as black boxes
• Cycle-accurate simulation model generated for validation
• Input C code verified through assertions

• Bluespec
• An alternative to loop-and-array paradigm
• Bluespec System Verilog (BSV) language specifies concurrent system

behavior as a collection of rewrite rules
• BSV is translated into Verilog or SystemC RTL by Bluespec Compiler

7/8/2009 34Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Outlook

• Status
• Designers acceptance of C-to-RTL concepts

• Increasing supply of HLS tools

• C/C++ is favored as input description

• Pre-synthesis optimization for better results

• Open Issues
• Synthesized architecture needs additional features

– Control and datapath pipelining

– Programmable controllers

– Architecture cells or custom-processor templates

– Retargetable compilers

• Platform generation and synthesis
– Merging components into platform and mapping application

– Interfacing synthesized components (Interface cells)

7/8/2009 35Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Embedded Design Practice

 Introduction

System Level Design Tools

Embedded Software Design Tools

Hardware Design Tools

• Case Study
• Embedded System Environment

• Design Driver: MP3 Decoder

• Results

• Summary

7/8/2009 36Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Embedded System Environment (ESE)

System Definition

Component
Models

ESE Front End

Component
Libraries

ESE Back End

Application Platform

TLM

Prototype

Graphical capture

SystemC executable

C+RTL, FPGA bitstream

mapping

C/C++

Automatic model generation

Automatic SW/HW synthesis

7/8/2009 37Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

ESE Front End Design Flow

System Definition

PE/RTOS
Models

Timing
Estimation

Bus/IF/Mem
Models

TLM Generation

Application Platform

Timed Application

Timed TLM

mapping

SystemC
Simulation Metrics

Design
Optimization

Modify Application,
Platform, Mapping

7/8/2009 38Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Input: Application Model

v1

C
1

P1 P2

P3 P4

C2

• Application model consists of
• Processes for computation (eg. P1, P2, P3, P4)
• Channels for communication (eg. C1 between P1 and P3)
• Variables for storage (eg. v1)

7/8/2009 39Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Application Model Objects

• Processes
• Symbolic representation of computation
• Contain C/C++ code imported from reference

• Process ports
• Symbolic representation of communication

services required by processes
• Provide object orientation by allowing

processes to connect to different channels

• Channels
• Symbolic representation of inter-process

communication
• Implement communication services such as

blocking, non-blocking, handshake, FIFO etc.
• Encapsulation for communication functions

• Variables
• Symbolic representation of data storage

v1

C
1

P1 P2

P3 P4

C2

7/8/2009 40Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Input: Platform Architecture

T
X

CPU1 Mem

HW CPU2

A
rb

it
er

Bus1 Bus2

OS2

OS1

• Platform consists of
• Hardware: PEs (eg. CPU1, HW), Buses (eg. Bus1), Memories

(eg. Mem), Interfaces (eg. Transducer)
• Software: Operating systems (eg. OS1) on SW PEs

7/8/2009 41Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Platform Objects

• Processing element (PE)
• Symbolic representation of computation resources
• Different types such as SW processors, HW IPs etc.

• Bus
• Symbolic representation of communication media
• Types include shared, point-to-point, link, crossbar etc.

• Memory
• Symbolic representation of physical storage
• May contain shared variables or SW program/data

• Transducer
• For protocol conversion and store-forward routing
• Necessary for PEs with different bus protocols

• Operating system (OS)
• Software platform for individual PEs
• Needed for scheduling multiple processes on a PE

T
X

CPU1 Mem

HW CPU2

A
rb

it
er

Bus1 Bus2

OS2

OS1

7/8/2009 42Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Input: Mapping

T
X

v1

C
1

P1 P2

CPU1 Mem

HW IP

P3

CPU2

P4

C2

A
rb

it
e

r

Bus1 Bus2

OS

OS

• Processes PEs
• Channels Routes
• Variables Memories

7/8/2009 43Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Mapping rules

• Processes to PEs
• Each process in the application must be mapped to a PE
• Multiple processes may be mapped to SW PE with OS support
• Example: P1, P2 CPU1

• Channels to Routes
• All channels between processes mapped to different PEs are

mapped to routes in the platform
• Route consists of bus segments and interfaces
• Channel on each bus segment is assigned a unique address

• Variables to Memories
• Variables accessed by processes mapped to different PEs are

mapped to shared memories
• All variables are assigned an address range depending on size

7/8/2009 44Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Output: SystemC TLM

Bus1

P1 P2

OS

C
P

U
1

Mem

CPU2

P3

HW IP

Bus2

TX

TLM Generation Technique
• Application code sc_thread
• Processing element sc_module
• OS Model sc_module
• Bus sc_channel
• Memory Array inside sc_module
• Interface FIFO channel+sc_process

P4

OS

7/8/2009 45Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Model Accuracy vs. Execution Time

0 2sec 3~4 hrs 15~18hrs

Func. TLM

Exec. Time (MP3)

Accuracy

100%
~92%

~80%

Board

Timed TLM

ISM

CAM

TLM: Transaction Level Model
ISM: Instruction Set Model
CAM: Cycle-Accurate Model

• Board implementation: Reference for model accuracy
• CAM: Accurate but simulates extremely slow
• ISM: Faster than CAM, but inaccurate
• Functional TLM: No timing, fast simulation (Ideal for SW development)
• Timed TLM: Very fast and accurate (Ideal for early estimation)

7/8/2009 46Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

ESE Back End Prototyping Flow

SystemC TLM

CRTLSW/RTOS
Library

Interface
Synthesis

SW
Synthesis

RTL IP
Library

Binary HW RTL IF RTL

OR
Bus

Library

Pin/Cycle Accurate Model (PCAM)
Generator

C/Verilog CAM
FPGA
Tools

Prototype

CA Sim.
Tools

7/8/2009 47Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

P4

OS
RTOS/
Driver

Synthesis

Compile

Cycle-Accurate Software Synthesis

Bus1

C
P

U
1

HW IP CPU2

Bus2

Compile

RTOS/
Driver

Synthesis
HAL

RTOS

EXE
P2

OS

HAL TX

Program

P1

HAL
RTOS

EXE

Program

• Processes Compiled App.
• OS model Real OS
• HAL model Real HAL

7/8/2009 48Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

SW Synthesis Issues

• Compiler selection
• The designer specifies which compiler is used for the SW

• Library selection
• Libraries are selected for SW support such as file systems, string

manipulation etc.
• Prototype debugging requires selection of additional libraries

• OS selection and targeting
• Designer selects an OS for the processor
• OS model is replaced by real RTOS and SW is re-targeted
• C code for drivers is generated from Hardware Abstraction Layer

(HAL) model

• Program and data memory
• Address range for SW program memory is assigned
• Address range for data memory used by program is assigned
• For large programs or data, off-chip memory may be allocated

7/8/2009 49Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Cycle-Accurate Hardware Synthesis

Bus1

C
P

U
1

Mem

Processes in CHW IP (RTL)

Cycle-
accurate

Synthesis

Bus2

CPU2

P3

TX

• Process Synthesizable RTL
• High level synthesis for custom
• Replacement for HW IP

7/8/2009 50Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

HW Synthesis Issues

• IP insertion
• C model of HW is replaced with pre-designed RTL IP, if available

• RTL synthesis tool selection
• RTL synthesis tool must be selected for custom HW design

• C code generation
• C code for input to RTL synthesis tool is generated

• Synthesis directives
• RTL architecture and clock cycle time is selected
• UBC calls are treated as single cycle operations, to be later

expanded during interface synthesis

• HDL generation
• RTL synthesis result in cycle accurate synthesizable Verilog

code

7/8/2009 51Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Cycle-Accurate Interface Synthesis

CPU1 Mem

TX

HW IP

Interface Synthesis

CPU2

Arbiter

IC

• Sync. Model Interrupts
• Bus channel Arbiter + Signals
• Interface model RTL
• Channel access PE interface

7/8/2009 52Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Interface Synthesis Issues

• Synchronization
• UBC has unique flag for each pair of communicating processes
• Flag access is implemented as polling or CPU interrupt

• Arbitration
• Selected from library or synthesized to RTL based on policy

• Bridge
• Selected from library or synthesized using bridge generator

• Addressing
• All channels are assigned unique bus addresses

• SW communication synthesis
• Bus channel function calls are replaced by C drivers

• HW communication synthesis
• DMA controller in RTL is created for each custom HW component
• Send/Recv operations are replaced by DMA transfer states

7/8/2009 53Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Cycle-Accurate Model

C
P

U
1

Mem

Interface

HW IP

Arbiter

HAL
RTOS

EXE

PCAM is downloaded
automatically for fast

prototyping with FPGAs or
simulated using validation tools

IC

Program

HAL
RTOS

EXE

Program

CPU2

• Channel sync. Interrupts
• Transducer model
• Replacement for HW IP

7/8/2009 54Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Example: MP3 Decoder Application

• Functional block diagram (major blocks only)

• Characteristics
• Over 12K lines of C code in Spec

• IMDCT36 and DCT32 compute intensive functions

• Constraint: Frame processing delay < 26.12ms

• Design objective
• Select platform and mapping to meet constraint

HuffDec

DCT32IMDCT36

PCM

DCT32IMDCT36

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2 granules

7/8/2009 55Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

• MP3 mapped to Microblaze on Xilinx board
• Pure software solution

• Easy to implement, debug and upgrade

• Frame decoding delay estimated by TLM at 35.66 ms

• Does not meet the frame delay constraint of 26.12 ms

MP3 Platform SW+0

HuffDec

DCT32IMDCT36

PCM

DCT32IMDCT36

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2 granules

MB

OPB

Mem
SW+0

7/8/2009 56Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

• MP3 mapped to Microblaze (MB) SW and 1 HW component
• DCT32 from left channel moved to custom HW for acceleration

• Everything else in SW on Microblaze

• Transducer (Tx) added to connect HW module’s DHB interface to OPB

• Frame decoding delay estimated by TLM at 32.89 ms

• Faster than SW+0 but does not meet frame delay constraint of 26.12 ms

MP3 Platform SW+1

SW+1

HuffDec

DCT32IMDCT36

PCM

DCT32IMDCT36

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2 granules

MB

OPB

Mem

DHB

DCT

Tx

7/8/2009 57Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

MP3 Platform SW+2

HuffDec

DCT32IMDCT36

PCM

DCT32IMDCT36

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2 granules

SW+2

• MP3 Decoder mapped to Microblaze SW and 2 HW components
• DCT32 from both left and right channels moved to HW

• DCT32 functions for the two channels execute concurrently in HW

• Bridge added to connect HW module’s DHB interface to OPB

• Frame decoding delay estimated by TLM at 29.99 ms

• Faster than SW+1 but does not meet frame delay constraint of 26.12 ms

MB

OPB

Mem

DHB

DCT

Tx

DCT

7/8/2009 58Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

MP3 Platform SW+4

HuffDec

DCT32IMDCT36

PCM

DCT32IMDCT36

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2 granules

SW+4

• MP3 Decoder mapped to Microblaze SW and 4 HW components
• Both DCT32 and IMDCT36 from both channels moved to HW

• Everything else in SW on Microblaze

• Bridge added to connect HW module’s DHB interface to OPB

• Frame decoding delay estimated by TLM at 15.96 ms

• Significantly faster than SW+2 and meets frame delay constraint!

MB

OPB

Mem

DHB

DCT

Tx

DCT
IMDC

T
IMDC

T

7/8/2009 59Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

Design Quality: ESE

• Area
• ESE designs use fewer FPGA slices and more BRAMs than manual

HW: Controller implemented with memory vs. gates

• Performance
• ESE designs execute at similar speed as manual designs

0
10
20
30
40
50
60
70
80
90

100

SW+0 SW+1 SW+2 SW+4

ESE Designs

0

5

10

15

20

25

30

35

%Slices

%BRAMs

Delay(ms)

0
10

20
30

40
50
60

70
80

90
100

SW+0 SW+1 SW+2 SW+4

Manual Designs

0

5

10

15

20

25

30

35

%Utilization Delay %Utilization Delay

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

607/8/2009Chapter 8: Embedded Design Practice

Development Time: ESE vs. Manual

0

10

20

30

40

50

60

70

Spec. TLM RTL Board

models

p
er

so
n

-d
ay

s SW+0

SW+1

SW+2

SW+4

• ESE drastically cuts RTL and Board development time
• Manual development includes months of RTL coding

• Models can be developed at Spec level with ESE

• TLM, RTL and Board models are generated automatically by ESE

ESE

Manual

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

617/8/2009Chapter 8: Embedded Design Practice

Validation Time: ESE vs. Traditional

• ESE cuts validation time from hours to seconds
• No need to verify RTL models for every design change

• Designers can perform high speed validation with TLM and board

0

1

2

3

4

5

6

7

8

9

10

Spec. TLM RTL Board
models

se
co

nd
s

SW+0

SW+1

SW+2

SW+4

ESE

X

ho
ur

s 18.06 hrs
17.71 hrs
17.56 hrs
15.93 hrs

Traditional

7/8/2009 62Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

Chapter 8: Embedded Design Practice

ESE Technology Summary

• C based application input
• Supports model based design and legacy reuse

• Automatic functional and timed TLM generation
• Enables early design validation and reliable estimation

• Automatic SW synthesis
• Provides modular, verifiable, platform specific SW code

• Automatic interface synthesis
• Allows rapid implementation of heterogeneous networks

• FPGA and C/HDL export
• Generates standard input for commercial prototyping and CA validation

tools

