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• Hardware first approach 

• Platform is defined by architect or based on legacy 

• Designers develop and verify RTL model of platform 

• Slow error prone process 

•  SW development after HW is finalized 

• Debugging is complicated on the board due to limited observablity 

• HW errors found during SW development are difficult to rectify 

• Application is ported after system SW is finalized 
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Virtual Platform based System Design 
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• Virtual platform (VP) is a fast model of the HW platform 

• Typically an instruction set simulator or C/C++ model of the processor 

• Peripherals are modeled as remotely callable functions 

• Executes several orders of magnitude faster than RTL 

•  SW and HW development are concurrent 

• VP serves as the golden model for both SW and HW development 

• SW development can start earlier 

• HW designers can use SW for realistic test bench for RTL 
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Model-based System Design 
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• Model based design gives control to application developers 

• Application is captured as high level C/C++/UML specification 

• Transaction level model (TLM) is used to verify and evaluate the design 

•  System synthesis 

• The best platform for given application can be synthesized automatically 

• For legacy platforms, application mapping can be generated automatically 

• Cycle accurate SW/HW can be generated from TLM for implementation 
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Model Based Synthesis 

System Synthesis 

Cycle-accurate SW/HW Synthesis 
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• Synthesis of cycle-accurate model (CAM) from specification 

• Process may be divided into several steps 

• Specification is defined as application model and design constraints 

• Several intermediate models, such as TLMs, may be used 

• Platform component models are needed for TLM generation 
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System Synthesis Inputs and Output 

• Inputs 

• Application Model 

– Purely functional model 

– Specified in a given model of computation (Stateflow, dataflow, CSP, MP) 

• Component Models 

– Data models of configurability and metrics 

– Functional models of component services  

– Examples: HW IP models (Processor, Peripheral, Bus), SW IP models 

(RTOS, Drivers) 

• Constraints 

– Bounds on metrics (Performance, area, power, reliability, security) 

– Optimization goal as a cost function of metrics 

 

• Output 

• TLM of application mapped to HW/SW platform 
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Three Models with Respect to OSI (Ref. Chapter 3) 
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Synthesis Case 1: Fixed Platform and Mapping 

• Initial platform and mapping are given 

• Optimization tools may modify spec under given constraints 
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Tool support for Synthesis Case 1 

• GUI for application specification 

 

• GUI for platform specification 

 

• GUI for application to platform mapping 

 

• TLM generation tool 

 

• TLM-based metric estimation tools 

 

• Constraint-based spec optimization tools 
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Input: Application Model 

v1 

C
1
 

P1 P2 

P3 P4 

C2 

13 

• Application model consists of 
• Processes for computation (eg. P1, P2, P3, P4) 

• Channels for communication (eg. C1 between P1 and P3) 

• Variables for storage (eg. v1) 
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Application Model Objects 

 

• Processes 
• Symbolic representation of computation  

• Contain C/C++ code imported from reference 

 

• Process ports 
• Symbolic representation of communication 

services required by processes 

• Provide object orientation by allowing 
processes to connect to different channels 

 

• Channels 
• Symbolic representation of inter-process 

communication 

• Implement communication services such as 
blocking, non-blocking, handshake, FIFO etc. 

• Encapsulation for communication functions 

 

• Variables 
• Symbolic representation of data storage 
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Input: Platform Architecture 
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• Platform consists of 
• Hardware: PEs (eg. CPU1, HW), Buses (eg. Bus1), Memories 

(eg. Mem), Interfaces (eg. Transducer) 

• Software: Operating systems (eg. OS1) on SW PEs 
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Platform Objects 

• Processing element (PE) 
• Symbolic representation of computation resources 

• Different types such as SW processors, HW IPs etc. 

 

• Bus 
• Symbolic representation of communication media 

• Types include shared, point-to-point, link, crossbar etc. 

 

• Memory 
• Symbolic representation of physical storage 

• May contain shared variables or SW program/data 

 

• Transducer 
• For protocol conversion and store-forward routing 

• Necessary for PEs with different bus protocols 

 

• Operating system (OS) 
• Software platform for individual PEs 

• Needed for scheduling multiple processes on a PE 
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Input: Mapping 
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• Processes  PEs 

• Channels  Routes 

• Variables  Memories 
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Mapping Rules 

• Processes to PEs 
• Each process in the application must be mapped to a PE 

• Multiple processes may be mapped to SW PE with OS support 

• Example: P1, P2  CPU1 

 

• Channels to Routes 
• All channels between processes mapped to different PEs are 

mapped to routes in the platform 

• Route consists of bus segments and interfaces 

• Channel on each bus segment is assigned a unique address 

 

• Variables to Memories 
• Variables accessed by processes mapped to different PEs are 

mapped to shared memories 

• All variables are assigned an address range depending on size 

 

18 



Embedded System Design  
© 2009: Gajski, Abdi, Gerstlauer, Schirner 

9/29/2011 19 Chapter 4: System Synthesis 

Computation Timing Estimation 

• Stochastic memory delay model 

• DFG scheduling to compute basic block delay [DATE 08] 

• RTOS model added for PEs with multiple processes 

Timing  
Estimation 

Timed Process 

Processor Model 
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Stochastic Memory Delay Model 

Mem. Overhead= 4.1 
Branch Delay= 1.2 
 

• Assumption 
• Cache and branch prediction hit rate available in data model 

• Delay Estimation 
• Operation access overhead = N

op
 * ((1.0 – HR

i
) * (CD + L

mem
))  

• Data access overhead = N
ld
 * ((1.0 – HR

d
) * (CD + L

mem
))  

• Branch prediction miss penalty = MP
rate

 * Penalty
 

Cache

D-Mapped

16K

Icache: 97.79%

Dcache: 69.96%

Delay : 1

Memory

Delay:  8

BrPredict
Policy: Taken

Penalty : 2
60.00%

Memory/Branch Model 

Mem./Br. Delay 
Calcutation 

1: a = $i - 1 
2: t1 = a + 2 
3: t2 = $n * $m 
4: t3 = t1 - t2 
5: load b 
6: t4 = b / 10 
7: jmp 

LLVM Bytecode 
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Pipeline  
Scheduling 

1: a = $i - 1 
2: t1 = a + 2 
3: t2 = $n * $m 
4: t3 = t1 - t2 
5: load b 
6: t4 = b / 10 
7: jmp 
8: wait 47*CT 

• Assumptions 
• In-order, single issue processor 

• Optimistic during scheduling (100% cache hit) 

Operations Datapath 

Processor Data Model 

Add

IF

ID

EX: int-ALU IntAdd

Sub

IF

ID

EX: int-ALU IntSub

Int-ALU

Qty: 1

IntAdd IntSub
Lat: 1 Lat: 1

Processor Timing Estimation 

LLVM Bytecode 

Operation delay= 42 

Total BB delay=  

Op.+Mem.+Br. = 

47.3 cycles 
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Communication Timing Estimation 
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• Protocol model used to estimate synchronization, arbitration 
and transfer 

• Timing is annotated in bus channel 

Write( ) { 

  Get_Bus( ); 

  Transfer( ); 

  Release_Bus( ); 

} 

Write( ) { 

  Get_Bus( ); 

  wait (t1);  

  Transfer( ); 

  wait (t2); 

  Release_Bus( ); 

  wait (t3); 

} 
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Output: SystemC Timed TLM 
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TLM Generation Technique 

• Application code  sc_thread 

• Processing element  sc_module 

• OS Model  sc_module 

• Bus  sc_channel 

• Memory  Array inside sc_module 

• Interface  FIFO channel+sc_process 

P4 

OS 
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Application to Platform Mapping 

• Mapping is derived from Application and Platform 

• Optimization loop is driven by estimation results and constraints 

 
Chapter 4 System Synthesis 
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Application Example 
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• GSM Encoder 

• Compresses raw speech data frame-by-frame 

• Over 10K lines of C code in specification 

• 5 top level functions: LP, OP, CL, CB, UP 

• Contains if-then-else and loop control flow 
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Profiling 

• Given input MoC, profile application for: 

• Computation 

– Number of operations (size) 

– Operations type per data type and frequency 

of use 

– Concurrency between modules and 

dependency 

• Communication 

– Volume, frequency of communication between 

modules  

– Timing dependency 

– Latency requirements 

• Storage 

– Instruction size 

– Variable size 

Profiling

Profiled App.

Simulation

Instr. Appl

Static Analysis

Basic Block 

Counters

Instrumentation

Application
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Profiled Statistics 
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• Profiling helps select the appropriate components for 

implementation 

• All fixed point ops No need for processors with floating point units 

• Large number of multiplications  Processor with HW multiplier is ideal 

• CB is most computationally intensive  Ideal for custom HW mapping 
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Application Graph 
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• Profile information is abstracted into a simplified graphical 

representation for synthesis algorithms 

• Node tags = number of operations in the process (#ops) in millions 

• Edge tags = kilobytes transferred between the processes 

• Control dependencies are excluded for simplicity 

Embedded System Design  
© 2009: Gajski, Abdi, Gerstlauer, Schirner 

9/29/2011 30 Chapter 4: System Synthesis 

Platform Connectivity Graph 
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• Platform architecture is abstracted into a connectivity graph 

showing possibility of inter-PE communication 

• Node label = PE name 

• Node tag = estimated computation speed of the PE in Million of 

Operations per second (Mops) 

• Edge implies a communication path between PEs 

• No edge between HW IP and DSP due to missing DMA on Bus1 
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Load Balancing (LB) Algorithm 

• Greedy heuristic to map processes to least busy PEs 

 

• PE load = total time PE will be busy executing the mapped 

processes 

• Defined as ∑#ops(p) / Speed (PE), for all p mapped to PE 

• Does not account for any communication time! 

 

• Feasibility list defined for each process 

• The set of PEs to which a process can be mapped such that the process’ 

communication requirements are not violated 

• Let processes p & q are have an edge in the application graph 

• Let q be already mapped to PE’ 

• PE is in feasible(p) if there exists edge (PE, PE’) in platform graph 

 

• Basic idea 

• Map processes to least loaded feasible PE in decreasing order of #ops 
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LB Algorithm in Action 
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Longest Processing Time (LPT) Algorithm 

• Drawbacks of LB 

• Does not account for communication 

• May not terminate with a mapping if feasibility list is empty 

• LPT accounts for communication and always produces a mapping 

 

• Fully connected platform 

• DMA is added to allow HW peripherals to communicate with 

processes and memories 

• No need to evaluate feasibility of mapping 

 

• Cost of mapping process to PE is defined 

• Includes both communication and computation time 

 

• Basic idea 

• Map processes to least cost PE in decreasing order of #ops 
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LPT Cost Function 

• E(p, PE): Estimated time for running p on PE 

• Mops(p) / Speed (PE) + time to send data to mapped processes 

• C(p, PE) = T(PE) + E(p, PE) – SystemEndTime 

• PE with lowest execution time may not have the lowest cost 

• E(p, PE3) > E(p, PE2), but C(p, PE3) < C(p, PE2) 

= max (T(PE), for all PEs) 
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New Connectivity Graph of Updated Platform 

• Platform architecture is abstracted into a connectivity graph 

• Node label= PE name, Node tag= estimated PE speed in Mops 

• Edge = Connectivity between PEs 

• Edge label = effective transaction speed between PEs in Kilobytes per 

second (Kbps): added for LPT algorithm 

In
te

rf
a

c
e

 

CPU Mem 

HW  DSP 

A
rb

it
e

r 

Bus1 Bus2 

M 

M 

S 

S S 

CPU 

150 

HW 

200 

DSP 

100 

300 200 

100 

DMA 

M 

Edge possible due to DMA 

Embedded System Design  
© 2009: Gajski, Abdi, Gerstlauer, Schirner 

9/29/2011 36 Chapter 4: System Synthesis 

LPT Algorithm in Action 

LP 

377 

OP 

337 

CL 

479 

UP 

44 

CB 

647 

8.8 

69 

80 

0.16 

0.27 

320 

(a) Application graph 

(b) Platform connectivity graph w/ mapping 

CPU 

150 

HW 

200 

DSP 

100 

CL, UP 

LP 

300 200 

100 CB 



Embedded System Design  
© 2009: Gajski, Abdi, Gerstlauer, Schirner 

9/29/2011 37 Chapter 4: System Synthesis 

Outline 

• System design trends 

 

• Model-based synthesis 

 

• Transaction level model generation 

 

• Application to platform mapping 

 

• Platform generation 

 

• Cycle-accurate model generation 

37 

Embedded System Design  
© 2009: Gajski, Abdi, Gerstlauer, Schirner 

9/29/2011 38 Chapter 4: System Synthesis 

Platform Generation 
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Component Database 

PE Type Cost Speed Capacity 

(Speed *6 sec) 

CPU 2 100 600 

DSP 1 50 300 

HW 5 200 1200 

• Timing constraint:  Application must complete in <6 seconds. 

 

• Database of processing elements used for component selection 

• Characterized by type, cost and speed 

• Cost includes IP licensing, development, manufacturing etc. 

• PE Computation Capacity = PE speed (in Mops) * timing constraint 

• Indicates number of operations (in millions) that may be mapped to a 

PE while still meeting the timing constraints 
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Platform Generation Algorithm 

• Greedy heuristic to minimize cost and meet timing constraint 

 

• PE slack 

• Capacity remaining on the PE 

• Slack(PE) = Capacity(PE) – (∑#ops(p), for all p mapped to PE) 

 

• Closeness factor of a process p to a PE 

• Total communication data between p and all processes mapped to PE 

• C(p, PE) = ∑ (Edge-weight(p, q) in app. graph), for all q mapped to PE 

 

• Basic idea 

• Iterate over processes (p) with in decreasing order of #ops 

• Update slacks of allocated PEs 

• Map p to closest PE with Slack(PE) ≥ #ops(p) 

• Allocate least cost PE with Capacity ≥ #ops(p) if mapping fails 
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Platform Generation Algorithm in Action 
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(a) Application graph 

(b) Generated Platform w/ mapping 
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CAM Generation 
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Cycle-Accurate Software Synthesis (Chapter 5) 
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• Processes  Compiled App. 

• OS model Real OS 

• HAL model  Real HAL 



Embedded System Design  
© 2009: Gajski, Abdi, Gerstlauer, Schirner 

9/29/2011 45 Chapter 4: System Synthesis 

Cycle-Accurate Hardware Synthesis (Chapter 6) 
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• Process  Synthesizable RTL 

• High level synthesis for custom 

• Replacement for HW IP 
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Cycle-Accurate Interface Synthesis (Chapter 7) 
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• Sync. Model  Interrupts 

• Bus channel  Arbiter + Signals 

• Interface model  RTL 

• Channel access  PE interface  
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Cycle-Accurate Model 
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Summary 

• Emergence of model-based system design 

• Virtual platforms replace prototypes for early SW development 

• Increasing adoption of TLMs for SW/HW design 

• Challenges for synthesis of large system designs 

• Manual model development is time consuming and error-prone 

• Different platforms are needed for different application domains 

• Mapping application to a multi-core platform is complicated 

• Need for well defined model semantics is needed at TLM 
and cycle-accurate levels 

• Enables automatic TLM generation 

• System synthesis becomes possible 

• Future of system synthesis 

• Based on formalized system level models such as TLM 

• Automatic mapping of application to platform 

• Automatic generation of application specific platforms 
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