
Embedded System Design Embedded System Design
Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

9/29/2011

Chapter 4: System Synthesis

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 2 Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

2

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 3 Chapter 4: System Synthesis

Traditional System Design

Platform HW Dev. SW Dev. App. Dev. Prototype Board

+ BSP

Board

3

• Hardware first approach

• Platform is defined by architect or based on legacy

• Designers develop and verify RTL model of platform

• Slow error prone process

• SW development after HW is finalized

• Debugging is complicated on the board due to limited observablity

• HW errors found during SW development are difficult to rectify

• Application is ported after system SW is finalized

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 4 Chapter 4: System Synthesis

Virtual Platform based System Design

HW Dev.

Platform Platform

Modeling

Virtual

Platform Board

+ BSP

SW Dev.

App. Dev.

VP

Prototype

4

• Virtual platform (VP) is a fast model of the HW platform

• Typically an instruction set simulator or C/C++ model of the processor

• Peripherals are modeled as remotely callable functions

• Executes several orders of magnitude faster than RTL

• SW and HW development are concurrent

• VP serves as the golden model for both SW and HW development

• SW development can start earlier

• HW designers can use SW for realistic test bench for RTL

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 5 Chapter 4: System Synthesis

Model-based System Design

TLM

Gen.
TLM

ASIC/

FPGA

Tools

Board

+ BSP

+ App

SW Gen.

HW Gen.

Prototype

Platform

C/MoC

Application

Developer

SW Decisions

HW Decisions

5

• Model based design gives control to application developers

• Application is captured as high level C/C++/UML specification

• Transaction level model (TLM) is used to verify and evaluate the design

• System synthesis

• The best platform for given application can be synthesized automatically

• For legacy platforms, application mapping can be generated automatically

• Cycle accurate SW/HW can be generated from TLM for implementation

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 6 Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

6

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 7 Chapter 4: System Synthesis

Model Based Synthesis

System Synthesis

Cycle-accurate SW/HW Synthesis

TLM

CAM

Specification

TLM TLMs

Component

Models

Component

Library

• Synthesis of cycle-accurate model (CAM) from specification

• Process may be divided into several steps

• Specification is defined as application model and design constraints

• Several intermediate models, such as TLMs, may be used

• Platform component models are needed for TLM generation

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 8 Chapter 4: System Synthesis

System Synthesis Inputs and Output

• Inputs

• Application Model

– Purely functional model

– Specified in a given model of computation (Stateflow, dataflow, CSP, MP)

• Component Models

– Data models of configurability and metrics

– Functional models of component services

– Examples: HW IP models (Processor, Peripheral, Bus), SW IP models

(RTOS, Drivers)

• Constraints

– Bounds on metrics (Performance, area, power, reliability, security)

– Optimization goal as a cost function of metrics

• Output

• TLM of application mapped to HW/SW platform

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 9 Chapter 4: System Synthesis

Three Models with Respect to OSI (Ref. Chapter 3)

Cycle Accurate Model

Transaction Level Model

Specification Model

7 . Application

6 . Presentation

5 . Session

4 . Transport

3 . Network

2 b . Link + Stream

2 a . Media Access Ctrl

2 a . Protocol

1 . Physical

7 . Application

6 . Presentation

5 . Session

4 . Transport

3 . Network

2 b . Link + Stream

2 a . Media Access Ctrl

2 a . Protocol

1 . Physical

Address lines

Data lines

Control lines

TLMs

Spec

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 10 Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

10

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 11 Chapter 4: System Synthesis

Synthesis Case 1: Fixed Platform and Mapping

• Initial platform and mapping are given

• Optimization tools may modify spec under given constraints

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 12 Chapter 4: System Synthesis

Tool support for Synthesis Case 1

• GUI for application specification

• GUI for platform specification

• GUI for application to platform mapping

• TLM generation tool

• TLM-based metric estimation tools

• Constraint-based spec optimization tools

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 13 Chapter 4: System Synthesis

Input: Application Model

v1

C
1

P1 P2

P3 P4

C2

13

• Application model consists of
• Processes for computation (eg. P1, P2, P3, P4)

• Channels for communication (eg. C1 between P1 and P3)

• Variables for storage (eg. v1)

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 14 Chapter 4: System Synthesis

Application Model Objects

• Processes
• Symbolic representation of computation

• Contain C/C++ code imported from reference

• Process ports
• Symbolic representation of communication

services required by processes

• Provide object orientation by allowing
processes to connect to different channels

• Channels
• Symbolic representation of inter-process

communication

• Implement communication services such as
blocking, non-blocking, handshake, FIFO etc.

• Encapsulation for communication functions

• Variables
• Symbolic representation of data storage

14

v1

C
1

P1 P2

P3 P4

C2

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 15 Chapter 4: System Synthesis

Input: Platform Architecture

T
X

CPU1 Mem

HW CPU2

A
rb

it
e
r

Bus1 Bus2

OS2

OS1

15

• Platform consists of
• Hardware: PEs (eg. CPU1, HW), Buses (eg. Bus1), Memories

(eg. Mem), Interfaces (eg. Transducer)

• Software: Operating systems (eg. OS1) on SW PEs

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 16 Chapter 4: System Synthesis

Platform Objects

• Processing element (PE)
• Symbolic representation of computation resources

• Different types such as SW processors, HW IPs etc.

• Bus
• Symbolic representation of communication media

• Types include shared, point-to-point, link, crossbar etc.

• Memory
• Symbolic representation of physical storage

• May contain shared variables or SW program/data

• Transducer
• For protocol conversion and store-forward routing

• Necessary for PEs with different bus protocols

• Operating system (OS)
• Software platform for individual PEs

• Needed for scheduling multiple processes on a PE

16

T
X

CPU1 Mem

HW CPU2

A
rb

it
e
r

Bus1 Bus2

OS2

OS1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 17 Chapter 4: System Synthesis

Input: Mapping

T
X

v1

C
1

P1 P2

CPU1 Mem

HW IP

P3

CPU2

P4

C2

A
rb

it
e

r

Bus1 Bus2

OS

OS

17

• Processes PEs

• Channels Routes

• Variables Memories

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 18 Chapter 4: System Synthesis

Mapping Rules

• Processes to PEs
• Each process in the application must be mapped to a PE

• Multiple processes may be mapped to SW PE with OS support

• Example: P1, P2 CPU1

• Channels to Routes
• All channels between processes mapped to different PEs are

mapped to routes in the platform

• Route consists of bus segments and interfaces

• Channel on each bus segment is assigned a unique address

• Variables to Memories
• Variables accessed by processes mapped to different PEs are

mapped to shared memories

• All variables are assigned an address range depending on size

18

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 19 Chapter 4: System Synthesis

Computation Timing Estimation

• Stochastic memory delay model

• DFG scheduling to compute basic block delay [DATE 08]

• RTOS model added for PEs with multiple processes

Timing
Estimation

Timed Process

Processor Model

const

status

RF

OR

ALU
AR

Mem
DR

offset

CMem

C
W

P
C

AG P

bL

Sum

Add

aL

Mul

wait(t1)

BB1

If

If Y N

Y N

BB2 BB3

wait(t2) wait(t3)

Process CDFG

BB1

If

If Y N

Y N

BB2 BB3

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 20 Chapter 4: System Synthesis

Stochastic Memory Delay Model

Mem. Overhead= 4.1
Branch Delay= 1.2

• Assumption
• Cache and branch prediction hit rate available in data model

• Delay Estimation
• Operation access overhead = N

op
 * ((1.0 – HR

i
) * (CD + L

mem
))

• Data access overhead = N
ld
 * ((1.0 – HR

d
) * (CD + L

mem
))

• Branch prediction miss penalty = MP
rate

 * Penalty

Cache

D-Mapped

16K

Icache: 97.79%

Dcache: 69.96%

Delay : 1

Memory

Delay: 8

BrPredict
Policy: Taken

Penalty : 2
60.00%

Memory/Branch Model

Mem./Br. Delay
Calcutation

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp

LLVM Bytecode

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 21 Chapter 4: System Synthesis

Pipeline
Scheduling

1: a = $i - 1
2: t1 = a + 2
3: t2 = $n * $m
4: t3 = t1 - t2
5: load b
6: t4 = b / 10
7: jmp
8: wait 47*CT

• Assumptions
• In-order, single issue processor

• Optimistic during scheduling (100% cache hit)

Operations Datapath

Processor Data Model

Add

IF

ID

EX: int-ALU IntAdd

Sub

IF

ID

EX: int-ALU IntSub

Int-ALU

Qty: 1

IntAdd IntSub
Lat: 1 Lat: 1

Processor Timing Estimation

LLVM Bytecode

Operation delay= 42

Total BB delay=

Op.+Mem.+Br. =

47.3 cycles

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 22 Chapter 4: System Synthesis

Communication Timing Estimation

PE1 p1 p2

Tx1

PE3

Tx3

PE4

Application + Platform

Untimed Bus1

Protocol Model

E
s
tim

a
tio

n
 E

n
g

in
e

Timed Bus1

Bus1

PE2

Bus2

Tx2

B
u

s3

• Protocol model used to estimate synchronization, arbitration
and transfer

• Timing is annotated in bus channel

Write() {

 Get_Bus();

 Transfer();

 Release_Bus();

}

Write() {

 Get_Bus();

 wait (t1);

 Transfer();

 wait (t2);

 Release_Bus();

 wait (t3);

}

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 23 Chapter 4: System Synthesis

Output: SystemC Timed TLM

Bus1

P1 P2

OS

C
P

U
1

Mem

CPU2

P3

HW IP

Bus2

TX

TLM Generation Technique

• Application code sc_thread

• Processing element sc_module

• OS Model sc_module

• Bus sc_channel

• Memory Array inside sc_module

• Interface FIFO channel+sc_process

P4

OS

23

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 24 Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

24

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 25 Chapter 4: System Synthesis

Application to Platform Mapping

• Mapping is derived from Application and Platform

• Optimization loop is driven by estimation results and constraints

Chapter 4 System Synthesis

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 26 Chapter 4: System Synthesis

Application Example

Encoder

Update

Codebook

Search

Closed-loop

Pitch search

Open LoopLP_Analysis

2
 s

u
b

 f
ra

m
e

s
2
x
 p

e
r

fr
a

m
e

• GSM Encoder

• Compresses raw speech data frame-by-frame

• Over 10K lines of C code in specification

• 5 top level functions: LP, OP, CL, CB, UP

• Contains if-then-else and loop control flow

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 27 Chapter 4: System Synthesis

Profiling

• Given input MoC, profile application for:

• Computation

– Number of operations (size)

– Operations type per data type and frequency

of use

– Concurrency between modules and

dependency

• Communication

– Volume, frequency of communication between

modules

– Timing dependency

– Latency requirements

• Storage

– Instruction size

– Variable size

Profiling

Profiled App.

Simulation

Instr. Appl

Static Analysis

Basic Block

Counters

Instrumentation

Application

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 28 Chapter 4: System Synthesis

Profiled Statistics

(*, int),

46.20%

(+, int),

33.50%

(/, int),

9.10%

others,

4.10%

Encoder

8,802

272

79,544

69,112

0

163

Update

43.6MOp

Codebook

646.5MOp

Closed-loop

478.7MOp

Open Loop

337.1MOp

LP_Analysis

377.0MOp

2
 s

u
b

 f
ra

m
e

s
2
x
 p

e
r

fr
a

m
e

3
1

5
,5

6
8

• Profiling helps select the appropriate components for

implementation

• All fixed point ops No need for processors with floating point units

• Large number of multiplications Processor with HW multiplier is ideal

• CB is most computationally intensive Ideal for custom HW mapping

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 29 Chapter 4: System Synthesis

Application Graph

LP

377

OP

337

CL

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

Encoder

8,802

272

79,544

69,112

0

163

Update

43.6MOp

Codebook

646.5MOp

Closed-loop

478.7MOp

Open Loop

337.1MOp

LP_Analysis

377.0MOp

2
 s

u
b

 f
ra

m
e

s
2
x
 p

e
r

fr
a

m
e

3
1

5
,5

6
8

• Profile information is abstracted into a simplified graphical

representation for synthesis algorithms

• Node tags = number of operations in the process (#ops) in millions

• Edge tags = kilobytes transferred between the processes

• Control dependencies are excluded for simplicity

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 30 Chapter 4: System Synthesis

Platform Connectivity Graph

In
te

rf
a

c
e

CPU Mem

HW IP DSP

A
rb

it
e

r

Bus1 Bus2

M

M

S

S S

CPU

150

HW

200

DSP

100

• Platform architecture is abstracted into a connectivity graph

showing possibility of inter-PE communication

• Node label = PE name

• Node tag = estimated computation speed of the PE in Million of

Operations per second (Mops)

• Edge implies a communication path between PEs

• No edge between HW IP and DSP due to missing DMA on Bus1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 31 Chapter 4: System Synthesis

Load Balancing (LB) Algorithm

• Greedy heuristic to map processes to least busy PEs

• PE load = total time PE will be busy executing the mapped

processes

• Defined as ∑#ops(p) / Speed (PE), for all p mapped to PE

• Does not account for any communication time!

• Feasibility list defined for each process

• The set of PEs to which a process can be mapped such that the process’

communication requirements are not violated

• Let processes p & q are have an edge in the application graph

• Let q be already mapped to PE’

• PE is in feasible(p) if there exists edge (PE, PE’) in platform graph

• Basic idea

• Map processes to least loaded feasible PE in decreasing order of #ops

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 32 Chapter 4: System Synthesis

LB Algorithm in Action

LP

377

OP

337

CL

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Platform connectivity graph w/ mapping

CPU

150

HW

200

DSP

100
CB,UP

CL, LP

OP

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 33 Chapter 4: System Synthesis

Longest Processing Time (LPT) Algorithm

• Drawbacks of LB

• Does not account for communication

• May not terminate with a mapping if feasibility list is empty

• LPT accounts for communication and always produces a mapping

• Fully connected platform

• DMA is added to allow HW peripherals to communicate with

processes and memories

• No need to evaluate feasibility of mapping

• Cost of mapping process to PE is defined

• Includes both communication and computation time

• Basic idea

• Map processes to least cost PE in decreasing order of #ops

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 34 Chapter 4: System Synthesis

LPT Cost Function

• E(p, PE): Estimated time for running p on PE

• Mops(p) / Speed (PE) + time to send data to mapped processes

• C(p, PE) = T(PE) + E(p, PE) – SystemEndTime

• PE with lowest execution time may not have the lowest cost

• E(p, PE3) > E(p, PE2), but C(p, PE3) < C(p, PE2)

= max (T(PE), for all PEs)

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 35 Chapter 4: System Synthesis

New Connectivity Graph of Updated Platform

• Platform architecture is abstracted into a connectivity graph

• Node label= PE name, Node tag= estimated PE speed in Mops

• Edge = Connectivity between PEs

• Edge label = effective transaction speed between PEs in Kilobytes per

second (Kbps): added for LPT algorithm

In
te

rf
a

c
e

CPU Mem

HW DSP

A
rb

it
e

r

Bus1 Bus2

M

M

S

S S

CPU

150

HW

200

DSP

100

300 200

100

DMA

M

Edge possible due to DMA

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 36 Chapter 4: System Synthesis

LPT Algorithm in Action

LP

377

OP

337

CL

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Platform connectivity graph w/ mapping

CPU

150

HW

200

DSP

100

CL, UP

LP

300 200

100 CB

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 37 Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

37

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 38 Chapter 4: System Synthesis

Platform Generation

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 39 Chapter 4: System Synthesis

Component Database

PE Type Cost Speed Capacity

(Speed *6 sec)

CPU 2 100 600

DSP 1 50 300

HW 5 200 1200

• Timing constraint: Application must complete in <6 seconds.

• Database of processing elements used for component selection

• Characterized by type, cost and speed

• Cost includes IP licensing, development, manufacturing etc.

• PE Computation Capacity = PE speed (in Mops) * timing constraint

• Indicates number of operations (in millions) that may be mapped to a

PE while still meeting the timing constraints

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 40 Chapter 4: System Synthesis

Platform Generation Algorithm

• Greedy heuristic to minimize cost and meet timing constraint

• PE slack

• Capacity remaining on the PE

• Slack(PE) = Capacity(PE) – (∑#ops(p), for all p mapped to PE)

• Closeness factor of a process p to a PE

• Total communication data between p and all processes mapped to PE

• C(p, PE) = ∑ (Edge-weight(p, q) in app. graph), for all q mapped to PE

• Basic idea

• Iterate over processes (p) with in decreasing order of #ops

• Update slacks of allocated PEs

• Map p to closest PE with Slack(PE) ≥ #ops(p)

• Allocate least cost PE with Capacity ≥ #ops(p) if mapping fails

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 41 Chapter 4: System Synthesis

Platform Generation Algorithm in Action

LP

377

OP

337

CL

479

UP

44

CB

647

8.8

69

80

0.16

0.27

320

(a) Application graph

(b) Generated Platform w/ mapping

HW

200

CPU

100

DSP

50

CB,CL, UP

LP

OP

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 42 Chapter 4: System Synthesis

Outline

• System design trends

• Model-based synthesis

• Transaction level model generation

• Application to platform mapping

• Platform generation

• Cycle-accurate model generation

42

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 43 Chapter 4: System Synthesis

CAM Generation

SystemC TLM

CRTL SW/RTOS

Library

Interface

Synthesis

SW

Synthesis

RTL IP

Library

Binary HW RTL IF RTL

OR
Bus

Library

Pin/Cycle Accurate Model (PCAM)

Generator

C/Verilog CAM
FPGA

Tools

Prototype

CA Sim.

Tools

43

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 44 Chapter 4: System Synthesis

P4

OS
RTOS/

Driver

Synthesis

Compile

Cycle-Accurate Software Synthesis (Chapter 5)

Bus1

C
P

U
1

HW IP CPU2

Bus2

Compile

RTOS/

Driver

Synthesis

HAL
RTOS

EXE
P2

OS

HAL TX

Program

P1

HAL
RTOS

EXE

Program

44

• Processes Compiled App.

• OS model Real OS

• HAL model Real HAL

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 45 Chapter 4: System Synthesis

Cycle-Accurate Hardware Synthesis (Chapter 6)

Bus1

C
P

U
1

Mem

Processes in C HW IP (RTL)

Cycle-

accurate

Synthesis

Bus2

CPU2

P3

TX

45

• Process Synthesizable RTL

• High level synthesis for custom

• Replacement for HW IP

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 46 Chapter 4: System Synthesis

Cycle-Accurate Interface Synthesis (Chapter 7)

CPU1
Mem

TX

HW IP

Interface Synthesis

CPU2

Arbiter

IC

46

• Sync. Model Interrupts

• Bus channel Arbiter + Signals

• Interface model RTL

• Channel access PE interface

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 47 Chapter 4: System Synthesis

Cycle-Accurate Model

C
P

U
1

Mem

Interface

HW IP

Arbiter

HAL
RTOS

EXE

PCAM is downloaded

automatically for fast

prototyping with FPGAs or

simulated using validation tools

IC

Program

HAL
RTOS

EXE

Program

CPU2

47

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

9/29/2011 48 Chapter 4: System Synthesis

Summary

• Emergence of model-based system design

• Virtual platforms replace prototypes for early SW development

• Increasing adoption of TLMs for SW/HW design

• Challenges for synthesis of large system designs

• Manual model development is time consuming and error-prone

• Different platforms are needed for different application domains

• Mapping application to a multi-core platform is complicated

• Need for well defined model semantics is needed at TLM
and cycle-accurate levels

• Enables automatic TLM generation

• System synthesis becomes possible

• Future of system synthesis

• Based on formalized system level models such as TLM

• Automatic mapping of application to platform

• Automatic generation of application specific platforms

48

