
Embedded System DesignEmbedded System Design
Modeling, Synthesis, Verification

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, Gunar Schirner

6/18/2010

Chapter 3: Modeling

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Modeling

• Abstract view of a design
• Representation of reality in each design step

– Apply analysis, synthesis and verification techniques

• Core of automated design flow
• Varying levels of abstraction

– Level & organization of detail
• Well-defined and unambiguous semantics

– Objects, composition rules and transformations

Models of behavior (Models of Computation)
Concurrent computation
Communication

Models of structure
Processing, storage and communication elements (PEs and CEs)
Networks of busses

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Outline

Introduction
• Models of Computation

• Programming models
• Process-based models
• State-based models

• System Design
• Processor Modeling
• Communication Modeling
• System Models
• Summary and Conclusions

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Models of Computation (MoCs)

• Conceptual, abstract description of system behavior
• Classification based on underlying characteristics

– Computation and communication
• Decomposition into pieces and their relationship

– Objects and composition rules
• Well-defined, formal definition and semantics

– Functionality (data) and order (time)
 Formal analysis and reasoning
 Various degrees of complexity and expressiveness

Analyzability and expressiveness of behavioral
models

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Programming Models

• Imperative programming models
• Ordered sequence of statements that manipulate program state
Sequential programming languages [C, C++, …]

• Declarative programming models
• Dataflow based on explicit dependencies (causality)
Functional or logical programming languages [Haskell or Prolog]

• Synchronous programming models
• Reactive vs. transformative: explicit concurrency
• Lock-step operation of concurrent statement blocks
Synchronous languages [Esterel (imperative), Lustre (declarative)]

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Process-Based Models
Concurrency and causality (data flow)

• Set of processes
• Processes execute in parallel

– Concurrent composition
• Each process is internally sequential

– Imperative program

• Inter-process communication
• Shared memory [Java]

– Synchronization: critical section/mutex, monitor, …
• Message passing [MPI]

– Synchronous, rendezvous (blocking send)
– Asynchronous, queues (non-blocking send)

 Implementation: OS processes or threads
Single or multiple processors/cores

Producer

Consumer

Process1 Process2

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Deadlocks

• Circular chain of 2 or more processes which each hold a
shared resource that the next one is waiting for
• Circular dependency through shared resources

Prevent chain by using the same precedence
Use timeouts (and retry), but: livelock

Dependency can be created when resources are shared
Side effects, e.g. when blocking on filled queues/buffers

m2.lock();
m1.lock();
…
m1.unlock();
m2.unlock();

m1.lock();
m2.lock();
…
m2.unlock();
m1.unlock();

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Determinism

• Deterministic: same inputs always produce same results
• Random: probability of certain behavior
• Non-deterministic: undefined behavior (for some inputs)

• Undefined execution order
– Statement evaluation in imperative languages: f(a++, a++)

– Concurrent process race conditions:

Can be desired or undesired
How to ensure correctness?
 Simulator must typically pick one behavior

But: over-specification?
 Leave freedom of implementation choice

x = a;
y = b;

a = 1;
b = 2;

x = ?, y = ?

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Kahn Process Network (KPN) [Kahn74]
• C-like processes communicating via FIFO channels

• Unbounded, uni-directional, point-to-point queues

Deterministic
• Behavior does not depend on scheduling strategy
• Focus on causality, not order (implementation independent)

Difficult to implement [Parks95]
Size of infinite FIFOs in limited physical memory?
Dynamic memory allocation, dependent on schedule
Boundedness vs. completeness vs. non-termination (deadlocks)

P1 P3

P2 P4

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Dataflow
• Breaking processes down into network of actors

• Atomic blocks of computation, executed when firing
• Fire when required number of input tokens are available

– Consume required number of tokens on input(s)
– Produce number of tokens on output(s)

Separate computation & communication/synchronization
 Actors (indivisible units of computation) may fire simultaneously, any order
 Tokens (units of communication) can carry arbitrary pieces of data

• Unbounded FIFOs on arcs between actors

Signal-processing applications

f1() f3()f2()

f4()

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Synchronous Dataflow (SDF) [Lee86]
• Fixed number of tokens per firing

• Consume fixed number of inputs
• Produce fixed number of outputs

Can be scheduled statically
Solve system of linear equations for relative rates
Periodically schedule actors in proportion to their rates

Find a sequence of firings in each period
Trade-off code size and buffer sizes

– Single-appearance vs. memory-minimal schedule

a cb

d

1 2 1
2

2

2 1 8

1

2

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Process Calculi

• Rendezvous-style, synchronous communication
• Communicating Sequential Processes (CSP) [Hoare78]
• Calculus of Communicating Systems (CCS) [Milner80]
Restricted interactions

Formal, mathematical framework: process algebra
• Algebra = <objects, operations, axioms>

– Objects: processes {P, Q, …}, channels {a, b, …}
– Composition operators: parallel (P║Q), prefix/sequential (a→P),

choice (P+Q)
– Axioms: indemnity (Ø║P = P), commutativity (P+Q=Q+P, P║Q = Q║P)

Manipulate processes by manipulating expressions

Parallel programming languages
CSP-based [Occam/Transputer, Handle-C]

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Outline

Introduction
• Models of Computation
Programming models
Process-based models
• State-based models

• System Design
• Processor Modeling
• Communication Modeling
• System Models
• Summary and Conclusions

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

State-Based Models

Sequence and reactivity (control flow)

• Explicit enumeration of computational states
• State represents captured history

• Explicit flow of control
• Transitions in reaction to events

Stepwise operation of a machine
Cycle-by-cycle hardware behavior
Finite number of states

Formal analysis
Reachability, equivalence, …

s3

s1 s2

e2e2

e1
e1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Finite State Machines
• Finite State Machine (FSM)

• Basic model for describing control and automata
– Sequential circuits

• States S, inputs/outputs I/O, and state transitions
– FSM: <S, I, O, f, h>
– Next state function f: S x I → S

• Output function h
– Mealy-type (input-based), h: S x I → O
– Moore-type (state-based), h: S → O

• Finite State Machine with Data (FSMD)
• Computation as control and expressions

– Controller and datapath of RTL processors
• FSM plus variables V

– FSMD: <S, I, O, V, f, h>
– Next state function f: S x V x I → S x V
– Output function h: S x V x I → O

s1

s2 s3

rr

c = 1c = 0
c = 1

c = 0 v := v + 1

v := 0

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Hierarchical & Concurrent State Machines

• Superstate FSM with Data (SFSMD)
• Hierarchy to organize and reduce complexity

– Superstates that contain complete state machines each
– Enter into one and exit from any substate

• Hierarchical Concurrent FSM (HCFSM)
• Hierarchical (OR) and

parallel (AND) state composition
• Communication through variables,

signals and events
Graphical notation [StateCharts]
 Lock-step concurrent execution

r

s1
s

v:=0

d / e

s2

s3

d / e
r

s1
s

v:=0

d / e

s2

s3

s4d / e

c / v:=v+1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Process State Machines

• Sound combination of process and state based models
• Asynchronous concurrent HCFSM execution [UML StateDiagram]

– Explicit event queues, deadlock analysis [PetriNet]
• Globally asynchronous, locally synchronous (GALS) composition

– Co-design Finite State Machines (CFSM) [Polis]
• Leaf states are imperative processes

– Program State Machine (PSM) [SpecSyn]

Processes and
abstract channels

– Computation &
communication

 Process State
Machine (PSM)
[SpecC] S

PPP4
P5

P3

P2

P1

…
c1.receive(d,e);
a = 42;
while (a<100)
{ b = b + a;

if (b > 50)
c = c + d;

else
c = c + e;

a = c;
}

c2.send(a);
…

d

d
c2
c1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Outline

Introduction
Models of Computation
• System Design

• System design languages
• System modeling

• Processor Modeling
• Communication Modeling
• System Models
• Summary and Conclusions

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Languages

Represent a model in machine-readable form
Apply algorithms and tools

• Syntax defines grammar
• Possible strings over an alphabet
• Textual or graphical

• Semantics defines meaning
• Mapping of strings to an abstract state machine model

– Operational semantics
• Mapping of strings into a mathematical domain (e.g. functions)

– Denotational semantics

Semantic model vs. MoC vs. design model instance
Basic semantic models can represent many MoCs (e.g. FSMs in C)
MoCs can be represented in different languages

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Design Languages

• Netlists
• Structure only: components and connectivity
Gate-level [EDIF], system-level [SPIRIT/XML]

• Hardware description languages (HDLs)
• Event-driven behavior: signals/wires, clocks
• Register-transfer level (RTL): boolean logic
Discrete event [VHDL, Verilog]

• System-level design languages (SLDLs)
• Software behavior: sequential functionality/programs
C-based, event-driven [SpecC, SystemC, SystemVerilog]

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

System Modeling

Basis of any design flow and design automation
Inputs and outputs of design steps
 Capability to capture complex systems

Models at varying levels of abstraction
 Level and granularity of implementation detail

• Design models as an abstraction of a design instance
• Representation of some aspect of reality

– Virtual prototyping for analysis and validation
• Specification for further implementation/synthesis

– Describe desired functionality
Documentation & specification
 Represent design decisions that have been made
 Abstraction to hide details that are not relevant or not yet known

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Design Process
• From specification to implementation

Successive, stepwise model refinement
Layers of implementation detail

Refinement

Model n

DB

Model n+1

Specification model

Implementation model

Optim. algorithm

GUI

Design decisions

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Abstraction Levels

Computation

C
om

m
un

ic
at

io
n

A B

C

D F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

A. System specification model
B. Timed functional model
C. Transaction-level model (TLM)
D. Bus cycle-accurate model (BCAM)
E. Computation cycle-accurate model (CCAM)
F. Cycle-accurate model (CAM)

E

Cycle-
timed

• Abstraction based on level of detail & granularity
• Computation and communication

System design flow
Path from model A to model F

Design methodology and modeling flow
Set of models and transformations between models

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Outline

Introduction
Models of Computation
System Design
• Processor Modeling

• Application layer
• Operating system layer
• Hardware abstraction layer
• Hardware layer

• Communication Modeling
• System Models
• Summary and Conclusions

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Processors

• Basic system component is a processor
• Programmable, general-purpose software processor (CPU)
• Programmable special-purpose processor (e.g. DSPs)
• Application-specific instruction set processor (ASIP)
• Custom hardware processor

Functionality and timing

PE
Controller Datapath

Bus interface CLK

Control signals

Status lines
∆t

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Processor Modeling

• Application modeling
• Native process execution (C code)
• Back-annotated execution timing

• Processor modeling
• Operating system (OS)

– Real-time multi-tasking (RTOS)
– Bus drivers (C code)

• Hardware abstraction layer (HAL)
– Interrupt handlers
– Media accesses

• Processor hardware
– Bus interfaces (I/O state machines)
– Interrupt suspension and timing

P1 P2

OS

PE

Drv

Interrupts

Bus

ISRHAL

p1.c

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

• High-level, abstract programming model
• Hierarchical process graph

– ANSI C leaf processes
– Parallel-serial composition

• Abstract, typed inter-process
communication

– Channels
– Shared variables

 Timed simulation of application functionality (SLDL)
• Back-annotate timing

– Estimation or measurement
(trace, ISS)

– Function or basic block level
granularity

• Execute natively on
simulation host

– Discrete event simulator
– Fast, native compiled simulation

Application Layer

Logical time
5 100

App

P2 C1

P1

P3
C2

 …
 …
 …p1

.c

process p1()
{
...
waitfor(5);
...

}

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Operating System Layer

• Scheduling
• Group processes into tasks

– Static scheduling
• Schedule tasks

– Dynamic scheduling, multitasking
– Preemption, interrupt handling
– Task communication (IPC)

 Scheduling refinement
• Flatten hierarchy
• Reorder behaviors

 OS refinement
• Insert OS model
• Task refinement
• IPC refinement

OS
App

Task
P2

C1

P1

Task
P3C2

OS Model

Application

Processor

Task
Scheduler

P2 P3

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

OS Modeling
• High-level RTOS abstraction

• Specification is fast but inaccurate
– Native execution, concurrency model

• Traditional ISS-based validation infeasible
– Accurate but slow (esp. in multi-processor context), requires full binary

 Model of operating system
 High accuracy but small overhead at early stages
 Focus on key effects, abstract unnecessary implementation details
 Model all concepts: Multi-tasking, scheduling, preemption, interrupts, IPC

Specification TLM Implementation

Application

SLDL

Channels

RTOS
Model

T1 T2
Application

SLDL

Channels

T1 T2

RTOS

Application

SLDL

Comm. & Sync. API

Instruction Set Simulator

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Simulated Dynamic Behavior

C1

c1.recv()
c1.send()

B
us

bus.recv()

P2 P3

S1

Logical time

t0

t1

t2
t3

t5

t8

t6

t4

t7

Application

t0

t1

t2

t3

t4

t5

t6

t7

t8

Inaccuracy due to
timing granularity

waitfor() waitfor()

waitfor()

waitfor()waitfor()

waitfor()

ISR

P1

waitfor()

OS

C1

c1.recv()

c1.send()

B
us

bus.recv()

Task P2 Task P3

S1

time_wait()

time_wait()

time_wait()

ISR

time_wait()

time_wait()

time_wait()

time_wait()

P1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Operating System Layer

 OS model
• On top of standard SLDL
• Wrap around SLDL primitives,

replace event handling
– Block all but active task
– Select and dispatch tasks

• Target-independent,
canonical API

– Task management
– Channel communication
– Timing and all events

OS
App

Task
P2

C1

P1

Task
P3C2

OS Model

Application

SLDL

OS Model

Task P2 Task P3

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Hardware Abstraction Layer

• External communication
• Software Drivers

– Presentation, session, network
communication layers

– Synchronization (interrupts)
• Hardware/software boundary

– Low-level HW access
– Bus drivers and interrupt

handlers
– Canonical HW/SW

interface
• External interface

– Bus transactions (TLM)
– Interrupt trigger

HALOS
App

Task
P2

C1

P1

Task
P3C2

OS Model

IntA IntB IntC

UsrInt2UsrInt1

D
riv

er
D

riv
er

IntD

Bus
TLM

sample.send(v1);

void send(…) {
intr.receive();
bus.masterWrite(0xA000,

&tmp,
len);

}

Ap
p.

D
riv

er

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

HALOS
App

Task
P2

C1

P1

Task
P3C2

OS Model

IntA IntB IntC

UsrInt2UsrInt1

D
riv

er
D

riv
er

IntD

Bus
TLM

Hardware Layer (1)

• Processor TLM
• HW interrupt handling

– Interrupt logic
» Suspend user code

– Interrupt scheduling
» Priority, nesting

• Peripherals
– Interrupt controller
– Timers

• TLM bus model
– Bus transactions

time

TP1

IntC

t1 t2

TP2

t3 time

TP1

IntC

t1 t2

TP2

t3

HAL: Hardware:

HWHALOS
App

Task
P2

C1

P1

Task
P3C2

OS Model

Ac
ce

ss

HW
Int

IntA IntB IntC

UsrInt2UsrInt1

D
riv

er
D

riv
er

IntD

Bus
TLM

INTA
INTB
INTC
INTD

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Hardware Layer (2)

• Bus-functional
model (BFM)
• Pin-accurate processor

model
– Timing-accurate bus and

interrupt protocols
• Bus model

– Pin- and cycle-accurate
– Driving and sampling of

bus wires

HWHALOS
App

Task
P2

C1

P1

Task
P3C2

OS Model

Ac
ce

ss

HW
Int

IntA IntB IntC

UsrInt2UsrInt1

D
riv

er
D

riv
er

IntD

Pr
ot

INTA
INTB
INTC
INTD

GRANT
CNTRL
ADDR
WDATA
READY

0x27000000

REQ

nonseq.
word

0xA000 0000

0x2F00 9801

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

• Processor layers
• Application

• Native C
• Back-annotated

timing
• Operating system

• OS model
• Hardware abstraction

• Middleware,
Firmware

• Processor
hardware

• Bus I/F
• Interrupts,

suspension

Features
Target approx. computation timing Appl.

Processor Model

OS
App

Task
P2

C1

P1

Task
P3C2

OS Model

App

Task
P2

C1

P1

Task
P3C2

HALOS
App

Task
P2

C1

P1

Task
P3C2

OS Model

A
cc

es
s

UsrIntr2UsrIntr1

D
riv

er
D

riv
er

IntB IntC IntDIntA

HWHALOS
App

Task
P2

C1

P1

Task
P3C2

OS Model

A
cc

es
s

HW
Int.

UsrIntr2UsrIntr1

D
riv

er
D

riv
er

Bus
TLM

INTA
INTB
INTC

INTD

intB intC intDintA

O
S

Features
Target approx. computation timing
Task mapping, dynamic scheduling
Task communication, synchronization

Appl. O
S H
AL

Features
Target approx. computation timing
Task mapping, dynamic scheduling
Task communication, synchronization
Interrupt handlers, low level SW drivers

Appl. O
S H
AL

H
W

-TLM

H
W

-BFM

Features
Target approx. computation timing
Task mapping, dynamic scheduling
Task communication, synchronization
Interrupt handlers, low level SW drivers
HW interrupt handling, int. scheduling
Cycle accurate communication

Appl. O
S H
AL

H
W

-TLM

H
W

-BFM

BFM
 - ISS

Features
Target approx. computation timing
Task mapping, dynamic scheduling
Task communication, synchronization
Interrupt handlers, low level SW drivers
HW interrupt handling, int. scheduling
Cycle accurate communication
Cycle accurate computation

Appl.

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Outline

Introduction
Models of Computation
System Design
Processor Modeling
• Communication Modeling

• Application layer
• End-to-end layers
• Point-to-point layers
• Protocol and physical layers

• System Models
• Summary and Conclusions

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Busses

• For each transaction between two communication
partners
• 1 sender, 1 receiver
• 1 master (initiator),

1 slave (listener)

Any combination of master/slave, sender/receiver
Master/Slave bus
 Statically fixed master/slave assignments for each PE pair
 PEs can be masters, slaves or both (dual-port)

Node-based bus (e.g. Ethernet, CAN):
 Sender is master, receiver is slave

Reliable (loss-less, error-free)?

PE1 PE2

tnSender Receiver

SenderReceiver
tm

Master and/or slave? Master and/or slave?

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Communication Primitives
• Events, transitions

• Pure control flow, no data
• Shared variables

• No control flow, no synchronization
• Synchronous message passing

• No buffering, two-way control flow
• Asynchronous message passing

• Only control flow from sender to receiver guaranteed
• May or may not use buffers (implementation dependent)

• Queues
• Fixed, defined queue length (buffering)

• Complex channels
• Semaphores, mutexes

Reliable communication primitives (lossless, error-free)

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Communication Modeling
• ISO/OSI 7-layer model

A model, not an implementation !

Layer Semantics Functionality Implementation OSI

Application Channels, variables Computation Application 7

Presentation End-to-end typed messages Data formatting OS 6

Session End-to-end untyped messages
Synchronization,
Multiplexing

OS 5

Transport End-to-end data streams Packeting,
Flow control OS 4

Network End-to-end packets Subnet bridging,
Routing OS 3

Link Point-to-point logical links
Station typing,
Synchronization

Driver 2b

Stream Point-to-point control/data
streams

Multiplexing,
Addressing

Driver 2b

Media
Access Shared medium byte streams

Data slicing,
Arbitration

HAL 2a

Protocol Media (word/frame) transactions Protocol timing Hardware 2a

Physical Pins, wires Driving, sampling Interconnect 1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

PE1 PE2

Application Layer (1)

• Synchronization
• Synthesize control flow

Implement sequential transitions across parallel
components

Parallel processes plus synchronization events

P2

P1 P1

P2

BSnd

BRcv

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Application Layer (2)

• Storage
• Shared variable mapping to

memories

Map global storage to local
memories

C1
P2P1

v1
PE1 PE2

P1

P2
C1

BSnd

v1

BRcv

v1

CPU HW

P1 P2C1

v1

HWCPU

P1 P2

Mem
v1

C1

Memory-mapped I/O

Shared memory

Distributed

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Application Layer (3)

• Channels
• Complex channel

synthesis

Client-server
implementation
Server process
Remote procedure call

(RPC) channels

Dedicated hardware

Additional process

P2P1
CQueue

Queue HW2HW1

P1 P2
C1 C2

HW1 HW2

P1 P2
C1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Presentation Layer

• Data formatting
• Translate abstract data types into canonical network byte

layout
1. Global network data layout
2. Shared, optimized layout for each pair of communicating

PEs
 Convert typed messages into untyped, ordered byte streams
 Convert variables into memory byte layout

tAdslCard
card
line

tCard
char id
short curPwr
short maxPwr

tLine
int fecCounter
float snr
short bitRate

42
152
375

0
45.8
640

• Bitwidth of machine character
(smallest addressable unit)

• Size and Alignment (in
characters)

• Endianess

curPwrid maxPwr fecCounter snr bitRate
byte

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Session Layer

• Channel merging
• Merge application channels into a set of untyped

end-to-end message streams
1. Unconditionally merge sequential channels
2. Merge concurrent channels with additional session ID

(message header)
 Channel selection over end-to-end transports

HW1CPU

HW2

P1 P3C3 P4

C4

P2
C2

C1

CPU HW1

HW2

P1

C4
C4

C3

C4

C3 P3 P4

P2

C3

C12

C1

C1

C2

C2

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Network Layer

• Bridges
– Transparently connect slave & master

sides at protocol level
– Bridges maintain synchronicity, no

buffering
• Transducers

– Store-and-forwarding of data packets
between incompatible busses

– Intermediate buffering, results in
asynchronous communication

Transducer

Address

Data

Address

Data

PE2PE1

Synchronization

Synchronization

Bridge

Address

Data

Address

Data

PE2
(slave)

PE1
(master)

Synchronization
(slave) (master)

HWCPU

P1 P2C1

C2

HWCPU

C
EP1 P2L1AC1

C2C2

C1L1B

L2A L2B

• Split network into subnets
• Routing of end-to-end paths over point-to-point links
• Insert communication elements (CEs) to connect busses

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Transport Layer

• Packeting and routing
 Packetization to reduce buffer sizes

1. Fixed packet sizes (plus padding)
2. Variable packet size (plus length header)

 Protocol exchanges (ack) to restore synchronicity
 Iff synchronous message passing and transducer in the path

 Packet switching and identification (logical routing)
1. Dedicated logical links (defer identification to lower layers)
2. Network endpoint addressing (plus packet address headers)

 Physical routing in case of multiple paths between PEs
1. Static, predetermined routing (based on connectivity/headers)
2. Dynamic (runtime) routing

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Communication Modeling
• ISO/OSI 7-layer model

Layer Semantics Functionality Implementation OSI

Application Channels, variables Computation Application 7

Presentation End-to-end typed messages Data formatting OS 6

Session End-to-end untyped messages
Synchronization,
Multiplexing

OS 5

Transport End-to-end data streams Packeting,
Flow control OS 4

Network End-to-end packets Subnet bridging,
Routing OS 3

Link Point-to-point logical links
Station typing,
Synchronization

Driver 2b

Stream Point-to-point control/data
streams

Multiplexing,
Addressing

Driver 2b

Media
Access Shared medium byte streams

Data slicing,
Arbitration

HAL 2a

Protocol Media (word/frame) transactions Protocol timing Hardware 2a

Physical Pins, wires Driving, sampling Interconnect 1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Link Layer (1)

• Synchronization (1)
• Ensure slave is ready before master initiates transaction

1. Always ready slaves (memories and memory-mapped I/O)
2. Defer to fully synchronized bus protocol (e.g. RS232)
3. Separate synchronization mechanism

 Events from slave to master for master/slave busses
 Synchronization packets for node-based busses

curPwrid maxPwr fecCounter snr bitRate

ready?

time

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Link Layer (2)

• Synchronization (2)
 Dedicated interrupts

 Shared interrupts

S0

S1

S0

S1

BUS

M
aster I/O

Slave I/O

R/W Data

PE1 PE2

R/W Data

Interrupt
handlerin

tF
la

g

Set
intFlag?

Generate interrupt

Transfer
request?

S0

S1

S0

S1

B
U

S

M
aster I/O

Slave I/O

R/W Data

PE1 PE2

R/W Data

Interrupt
handlerin

tF
la

g Set
intFlag?

Generate interrupt

rd
yF

la
g

Transfer
request?

Set

R
ea

d
rd

yF
la

g

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Link Layer (3)

• Synchronization (3)
 Slave polling

 Flag in master

S0

S1

S0

S1

B
U

S

M
aster I/O

Slave I/O

R/W Data

PE1 PE2

R/W Data

rdyFlag?

rd
yF

la
g

Transfer
request?

SetRead rdyFlag

S0

S1

S0

S1
B

U
S

M
aster I/O

Slave I/O

R/W Data

PE1 PE2

R/W Data

rd
yF

la
g

Transfer
request?

Write rdyFlag

Slave I/O

M
aster I/O

rdyFlag?

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Stream Layer

• Addressing
• Multiplexing of links over shared medium
• Separation in space through addressing
 Assign physical bus addresses to links

1. Dedicated physical addresses per link
2. Shared physical addresses plus packet ID/address in

packet header

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Media Access (MAC) Layer

• Data slicing
• Split data packets into multiple bus word/frame

transactions

 Optimized data slicing utilizing supported bus modes
(e.g. burst)

• Arbitration
• Separate individual bus transactions in time

1. Centralized using arbiters
2. Distributed

 Insert arbiter components

curPwrid maxPwr fecCounter snr bitRate

StoreWord StoreWord StoreWord StoreWord StoreWord StoreWord StoreWord StoreByte

Byte
stream

Bus
Primitives

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

• Bus interface
• Generate state machines implementing bus protocols
• Timing-accurate based on timing diagrams and timing

constraints

Bus protocol database

• Port mapping and bus wiring
• Connectivity of component ports to bus, interrupt wires/lines
Generate top-level system netlist

time

 Bus Arb. n+1 Bus Arb n+2
Addr. Cycle n-1 Addr. Cycle n+1
Data Cycle n-2 Data Cycle n-1

Bus Arbitration

DataWriteCycle
AddressCycle

time

HGRANT
HCNTRL
HADDR
HWDATA
HREADY

0x27000000

HCLK
HREQ

nonseq.
word

0xA000 0000

0x2F00 9801

Arbitration Cycle Address Cycle Data Cycle

Protocol, Physical Layers

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Outline

Introduction
Models of Computation
System Design
Processor Modeling
Communication Modeling
• System Models

• Specification model
• Transaction-level models
• Bus-cycle accurate model
• Cycle-accurate model

• Summary and Conclusions

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Address

Data

Control

CAM

System Models
• From layers to system models…

Cycle Accurate Model

Transaction Level Models

Specification Model

7. Application MPApp 7. Application App
6. Presentation
5. Session
4. Transport
3. Network
2b. Link + Stream
2a. Media Access

TLM
OS

HAL

6. Presentation
5. Session
4. Transport
3. Network
2b. Link + Stream
2a. Media Access

OS

HAL
2a. Protocol
1. Physical

HW
2a. Protocol
1. Physical

HW

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Specification Model

• Abstract, high-level system functionality
• Computation

– Processes
– Variables

• Communication
– Sync./async. message-passing
– Memory interfaces
– Events

Abstract
MP Channel

Abstract
MP Channel

P2P1

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Network TLM

• Topology of communication architecture.
• PEs + Memories + CEs
• Upper protocol layers inserted into PEs/CEs
• Communication via point-to-point links

– Synchronous packet transfers (data transfers)
– Memory accesses (shared memory, memory-mapped I/O)
– Events (control flow)

Transducer

CPU HW

Application
Presentation
Session
Transport
Network

P1

OS

App.

D
riv

er

Network

Application
Presentation
Session
Transport
Network

P2

HW

App.

 Slave Bus
MP Model

Serial Bus
MP Model`Master Bus

MP Model Bridge

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Protocol TLM
• Abstract component & bus structure/architecture

• PEs + Memories + CEs + Busses
• Communication layers down to protocol transactions
• Communication via transaction-level channels

– Bus protocol transactions (data transfers)
– Synchronization events (interrupts)

Application
Presentation
Session
Transport
Network
Link
Stream

P1

MAC

OS

Stream & MAC

CPU

HAL

App.

D
riv

er
D

riv
er

Bridge
MAC MAC
Stream Stream
Link Link

Network

Transducer

Application
Presentation
Session
Transport
Network
Link
Stream

P2

MAC

HW

HW

App.

Slave Bus
TLM

Master
Bus TLM

Serial Bus
TLM`

Interrupt TLM

HW

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Bus Cycle-Accurate Model (BCAM)
• Component & bus structure/architecture

• PEs + Memories + CEs + Busses
• Pin-accurate bus-functional components
• Pin- and cycle-accurate communication

– Bus and interrupt protocols
– Pins and wires

Address
Data

Control

Application
Presentation
Session
Transport
Network
Link
Stream

P1

Serial

MAC
Protocol

Physical

OS

Stream & MAC

Interrupt

Data
Control

Physical Physical
Protocol Protocol

CPU

HAL

HW

App.

D
riv

er
D

riv
er

Bridge

Physical Physical
Protocol Protocol
MAC MAC
Stream Stream
Link Link

Network

Transducer

Application
Presentation
Session
Transport
Network
Link
Stream

P2

MAC
Protocol
Physical

HW

HW

App.

Address

A
rb

ite
r

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Cycle-Accurate Model (CAM)

• Component & bus implemenation
• PEs + Memories + CEs + Busses
• Cycle-accurate components

– Instruction-set simulators (ISS) runing final target binaries
– RTL hardware models
– Bus protocol state machines

Address
Data

Control

Serial

Protocol

Interrupt line

Data
Control

Physical

CPU

HW

CPU_Clk

Bridge

Transducer

HW

I/F

RTL

Address

A
rb

ite
r

ISS

HAL
OS

App.

HW_Clk

Bridge_Clk

T_Clk

B
in

ar
y

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Modeling Results

0.01

0.1

1

10

100

1000

10000

100000

Spec. TLM (Net) TLM (Prot) PAM PCAM

Si
m

ul
at

io
n

Ti
m

e
[s

] MP3
JPEG
GSM

0

5

10

15

20

25

Spec. TLM (Net) TLM (Prot) PAM PCAM

A
ve

ra
ge

 E
rr

or
 [%

]

MP3
JPEG
GSM

Embedded System Design
© 2009: Gajski, Abdi, Gerstlauer, Schirner

6/18/2010

Summary and Conclusions

• Modeling of system computation and communication
• From specification

– System behavior, Models of Computation (MoCs)
• To implementation

– Layers of implementation detail
Flow of well-defined models as basis for automated design process

• Various level of abstraction, accuracy and speed
• Functional specification

– Native speeds but inaccurate
• Traditional cycle-accurate model (CAM)

– 100% accurate but slow
Transaction-level models (TLMs)
 Fast and accurate virtual prototyping

	Chapter 3: Modeling
	Modeling
	Outline
	Models of Computation (MoCs)
	Programming Models
	Process-Based Models
	Deadlocks
	Determinism
	Kahn Process Network (KPN) [Kahn74]
	Dataflow
	Synchronous Dataflow (SDF) [Lee86]
	Process Calculi
	Outline
	State-Based Models
	Finite State Machines
	Hierarchical & Concurrent State Machines
	Process State Machines
	Outline
	Languages
	Design Languages
	System Modeling
	Design Process
	Abstraction Levels
	Outline
	Processors
	Processor Modeling
	Application Layer
	Operating System Layer
	OS Modeling
	Simulated Dynamic Behavior
	Operating System Layer
	Hardware Abstraction Layer
	Hardware Layer (1)
	Hardware Layer (2)
	Processor Model
	Outline
	Busses
	Communication Primitives
	Communication Modeling
	Application Layer (1)
	Application Layer (2)
	Application Layer (3)
	Presentation Layer
	Session Layer
	Network Layer
	Transport Layer
	Communication Modeling
	Link Layer (1)
	Link Layer (2)
	Link Layer (3)
	Stream Layer
	Media Access (MAC) Layer
	Protocol, Physical Layers
	Outline
	System Models
	Specification Model
	Network TLM
	Protocol TLM
	Bus Cycle-Accurate Model (BCAM)
	Cycle-Accurate Model (CAM)
	Modeling Results
	Summary and Conclusions

