
Custom Processor Design Using NISC: A Case-Study on DCT algorithm
Bita Gorjiara, Daniel Gajski

Center for Embedded System Computers, University of California Irvine
{bgorjiar, gajski}@ cecs.uci.edu

Abstract
Designing Application-Specific Instruction-set Processors (ASIPs)
usually requires designing a custom datapath, and modifying
instruction-set, instruction decoder, and compiler. A new alternative
to ASIPs is No-Instruction-Set-Computers (NISCs) that eliminate the
instruction abstraction by compiling programs directly to a given
datapath. The compiler analyzes the datapath and extracts possible
operations and data flows. The NISC approach simplifies and
accelerates the task of custom processor design. In this paper, we
present a case-study of designing a custom datapath for a 2-D DCT
algorithm. We applied several optimization techniques such as
software transformations, operation chaining, datapath pipelining,
controller pipelining, and functional unit customization to improve
the quality of the design. Most of the techniques are general and can
be applied to other applications. The result of synthesizing our final
custom datapath on a Xilinx FPGA shows 7.14 times performance
improvement, 1.64 times power reduction, 12.5 times energy
savings, and more than 3 times area reduction compared to a soft-
core MIPS implementation.

1. Introduction
In general, custom hardware designs are several orders of magnitude
faster than the equivalent software implementation. However this
performance efficiency is achieved at the expense of lower
productivity and higher design cost. To bridge the productivity and
performance gap, many design methodologies have been proposed.
The Application-Specific Instruction-set Processor (ASIP) design is
one of the promising approaches [2]. ASIPs improve the
performance of an application by running it on a customized
datapath, using custom instructions. ASIP designers usually prefer to
focus on the datapath design, however they have to spend substantial
amount of time on modifying the instruction-set and the controller
(instruction decoder). Designing the custom instructions can be
difficult and complex. The custom instructions should represent the
capabilities of the corresponding datapath. The designer should also
consider the effects of the custom instructions on both the instruction
decoder and the compiler. Such constrains not only complicate and
slow down the design process, but also impose unnecessary
limitations on the possible datapath customizations.
A new alternative to ASIP is No-Instruction-Set-Computer (NISC)
[3]. Similar to horizontally micro-coded architectures, a NISC
compiler generates code to control the datapath at every clock cycle.
However, instead of using any abstraction such as instruction-set or
microcode, the NISC compiler directly generates the control signal
values of every component in the datapath for every clock cycle. A
NISC designer needs to only focus on designing the datapath, i.e.
selecting the components and connecting them together. There is no
need for designing instruction-set and instruction decoder, or
updating the compiler. The NISC compiler inputs the datapath as a
netlist of RTL components, and automatically analyzes and extracts
possible operations. The datapath netlist contains components such
as bus, multiplexer, register, register-file, memory, and functional
unit. For each component, the functionalities are defined and linked

to proper values of component’s control signals. After compiling the
program onto the given datapath, the compiler generates a string of
control values, called Control Word (CW), for each cycle. These
control words are stored in a control memory and are applied to the
datapath by the controller at every cycle. If the size of the program is
small enough, then it is also possible to generate the control words
via logic or ROM.
In this paper, we present a case-study of using NISC approach for
designing a custom architecture for a Discrete Cosine Transform
(DCT) algorithm. We start from a general purpose datapath similar
to MIPS and iteratively customize the datapath to achieve significant
improvement in terms of power, performance and area. The
exploration methodology is general and can be applied to other
multimedia algorithms. Taking the advantage of the NISC design
methodology and the compiler, we were able to design and explore
more than 10 different architectures over a course of one week. The
Verilog files of all the designs presented in this paper are available at
[8]. Our results show 7.14 times performance improvement, 1.64
times power reduction, 12.5 times energy savings, and more than 3
times area reduction compared to a soft-core MIPS implementation.
The rest of the paper is organized as follows: Section 2 presents an
overview of the NISC design methodology. Section 3 explains
applying NISC approach to design of a custom DCT architecture.
Section 4 compares different design points in terms of performance,
power, energy, and area. Section 5 compares our best NISC-based
DCT implementation to a commercial manual design.

2. Overview of NISC approach
A NISC is composed of a pipelined datapath and a pipelined
controller that drives the control signals of the datapath components
at each clock cycle. The controller has a fixed template and is
usually composed of a Program Counter (PC) register, an Address
Generator (AG) and a Control Memory (CMem). The control values
are stored in a control memory. For small size programs, the control
values can also be generated via logic in the controller. The datapath
of NISC can be simple or as complex as datapath of a processor.
Figure 1 shows a sample NISC architecture with a memory-based
controller and a pipelined datapath that has partial data forwarding,
multi-cycle and pipelined units.

Figure 1- A sample NISC architecture.
Figure 2 shows a NISC-based design flow for implementing an
application on a custom hardware. In NISC, the datapath can be
generated (allocated) using different techniques. For example, it can
be an IP, reused form the previous designs, generated by High-Level

Synthesis, or directly specified by a designer. In our current
implementation, we use an XML (eXtensible Markup Language) file
to capture the netlist of components in the datapath. A component
can be a register, register-file, tri-state buffer, multiplexer, functional
unit, memory, or bus. The functionalities of components are linked
to the timing information of their control values. The program,
written in a high-level language such as C, is first compiled and
optimized by a front-end and then mapped (scheduled and bound) on
the given datapath. The compiler generates the control words as well
as the contents of data memory. The generated results and datapath
information are translated to a synthesizable RTL design, described
in Verilog, that is used for simulation (validation) and synthesis
(implementation). After synthesis and Placement and Routing
(PAR), the accurate timing, power, and area information can be
extracted and used for further datapath refinement. For example, the
user may add functional units and pipeline registers, or change the
bit-width of the components and observe the effect of modifications
on precision of the computations, number of cycles, clock period,
power, and area. In NISC, there is no need to design the instruction-
set because the compiler automatically analyzes the datapath and
extracts possible operations and branch delay. Therefore, the
designer can refine the design very fast.

Figure 2- NISC based design flow.

To give the designer more control over the datapath and application
mapping, the compiler also allows pre-binding of variables and
operations. The unbound variables and operations are mapped by the
compiler automatically. If an application has a particular operation
that is not supported by a given datapath, then the compiler raises an
exception and terminates the compilation.

3. Case study: DCT implementation
In this section, a short introduction on DCT is presented, and then a
custom datapath for the DCT is designed and refined using NISC
methodology. The Discrete Cosine Transform (DCT) [1] and
Inverse Discrete Cosine Transform (IDCT) are important parts of
JPEG [4] and MPEG [5] standards. MPEG encoders use both DCT
and IDCT, whereas MPEG decoders only use IDCT. The definition
of DCT for a 2-D 8×8 matrix of pixels is as follows:

 ∑∑
−

=

−

=

++
=

1

0

1

0
2 2

)12(cos
2

)12(cos],[1],[
N

m

N

n N
vn

N
umnmf

N
vuF ππ

Where u, v are discrete frequency variables (0≤u, v≤7), f[i, j] gray
level of pixel at position (i, j), and F[u,v] coefficients of point (u, v)
in spatial frequency. Assuming N=8, matrix C is defined as follows:

16

)12(cos
8
1]][[πunnuC +

=

Based on matrix C, an integer matrix C1 is defined as follows:

 C1 = round(factor × C)
The C1 matrix is used in calculation of DCT and IDCT:
 F = C1 × f × C2
where, C2= C1T. As a result, DCT can be calculated using two
consecutive matrix multiplications.

3.1 Implementing DCT using general-purpose
datapaths
Figure 3 shows the C code for multiplying two given matrix A and B
using three nested loops. Using a MIPS M4K  Core processor [6],
the matrix-multiplication-based DCT takes 13058 cycles to compute
[3]. However, given the MIPS datapath, the NISC implementation
takes 10772 cycles. The 20% reduction in number of cycles is
because of the finer-grained control that NISC compiler has over the
datapath compared to traditional compilers that use instruction-set
abstraction. We generated the synthesizable hardware description for
our NISC-style MIPS (NMIPS), and synthesized it using Xilinx ISE
6.3. In our implementation, the bus-width of the datapath is 16-bit,
and it does not have any integer divider or floating point unit. The
clock frequency of 78.3MHz was achieved after synthesis and
Placement-and-Routing.
All the experiments in this section are synthesized on Xilinx FPGA
package Virtex2V250-6 using Xilinx ISE 6.3 tool. Two synthesis
optimizations of retiming and buffer-to-multiplexer conversions are
applied during optimization to improve the performance. In these
experiments, we set the PAR effort to the highest level possible for
maximum clock speed.

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 sum=0;
 for(int k=0; k<8; k++)
 sum = sum + A[i][k] ×B[k][j];
 C[i][j] = sum;
 }

Figure 3. C-Code of matrix multiplication
Figure 4 shows a simple general-purpose datapath (GPD) that
includes an ALU, a Register File (RF), a multiplier (Mul), a data
memory (Mem), a Comparator (Comp), and three buses. The RF has
32 registers, and ALU and Comp are designed to execute various C
operations listed in Table 1. In NISC, the controller has a fixed
structure and includes an Address Generator (AG), a Program
Counter (PC), and a Control Memory (CMem). To support function
call, a Link Register (LR) is added to the controller. The control and
data memories are implemented using FPGA Block RAMs. The
Block RAMs are synchronous and need to be driven by the clock.
On each FPGA package, 24 Block RAMs exist where each has 16-
Kb capacity. In our experiments, only two Block RAMs per
architecture are used. Also, the FPGA package has 24 pre-
synthesized multipliers, which only one is used.

Component Operations

ALU Add, Sub, And, Or, Xor, Shift-right, Shift-left, Shift-right-unsigned,
Negate, Not

Comparator
Equal, Not-equal, Greater-or-equal, Greater-than, Less-than, Less-or-
equal, Greater-or-equal-unsigned, Greater-than-unsigned, Less-than-
unsigned, Less-or-equal-unsigned

Table 1. ALU and Comparator operations
To support constant-based operations and jumps, a 10-bit constant
and a 10-bit offset is added. The total number of bits in a single
control word, including the constant and the offset bits, is 61. The
NISC compiler generates about 50 control words. The clock
frequency of GPD is 92.6 MHz.

Figure 4. Block diagram of GPD

In the rest of this section, we use different techniques to improve
performance, area and power of the design. The techniques include:
1- Software transformations: unrolling the matrix multiplication

loops to increase the parallelism in the code, and applying
simple code transformations to reduce costly operations.

2- Using Multiply-and-Accumulate (MAC) unit: this technique
improves the performance by chaining the two operations
without accessing the Register File.

3- Adding pipeline registers to the datapath: if applied properly,
this technique decreases the overall delay by reducing the clock
period and increasing parallelism. Additionally, the power
consumption decreases due to the reduction in switching
activity.

4- Adding pipeline registers to the controller: although this
technique increases branch delay (and hence the total number
of cycles), the controller pipelining can help in reducing the
critical path

5- Removing unused parts of ALU, comparator and register file:
in a general-purpose datapath, all the operations supported in C,
must be handled by the datapath. However, in a customized
datapath, only the operations used by a specific application are
supported. This optimization improves the area and
performance.

6- Reducing the bit-width of some components without affecting
the precision of the DCT calculations: this optimization reduces
the area.

3.2 Designing a custom hardware for DCT
In general, customization of design involves both software and
hardware transformations. In this section, we first apply the software
transformations, and then customize and refine the datapath
accordingly. Currently, the transformations are applied manually. In
future, they can be applied automatically by tools.
3.2.1 Software transformations
To increase the parallelism, we unroll the inner-most loop of the
matrix multiplication code. The transformed code is shown in Figure
5. Note that operation “*” represents accessing the value of a pointer
(i.e. loading from memory). Next, we apply other software
transformations to reduce the costly operations: To decrease the
number of multiplications, we replace i × 8 with i<<3 (i shift left
three times). Additionally, to calculate the address, we need two
consecutive additions, which may require two chained adders.
However, if we replace one of the additions with an OR operation,
then we can chain one adder with an OR unit, which is less costly
than an extra adder. The conversion is possible in this particular
application because of the special values of the constants. For
example, i8+const is equal to i8|const, because 0≤const≤7 at all time
and the first three bits of i8 is always zero. Additionally, the two for
loops can be merged to one, by combining the loops’ counters. The

new counter is represented by variable ij. Figure 6 shows the
transformed code after the above modifications.

for(int i=0; i<8; i++)
 for(int j=0; j<8; j++){
 i8 = i × 8;
 sum = *(A + i8) × *(B + j);
 sum += *(A + i8 + 1) × *(B + 8 + j);
 sum += *(A + i8 + 2) × *(B + 16 + j);
 sum += *(A + i8 + 3) × *(B + 24 + j);
 sum += *(A + i8 + 4) × *(B + 32 + j);
 sum += *(A + i8 + 5) × *(B + 40 + j);
 sum += *(A + i8 + 6) × *(B + 48 + j);
 sum += *(A + i8 + 7) × *(B + 56 + j);
 C[i][j] = sum;
 }

Figure 5. C-code of unrolled matrix multiplication

ij=0;
do {
 i8 = ij & 0xF8;
 j = ij & 0x7;
 aL = *(A+ (i8|0)); bL = *(B + (0|j)); sum = aL × bL;
 aL = *(A+ (i8|1)); bL = *(B + (8|j)); sum += aL × bL;
 aL = *(A+ (i8|2)); bL = *(B + (16|j)); sum += aL × bL;
 aL = *(A+ (i8|3)); bL = *(B + (24|j)); sum += aL × bL;
 aL = *(A+ (i8|4)); bL = *(B + (32|j)); sum += aL × bL;
 aL = *(A+ (i8|5)); bL = *(B + (40|j)); sum += aL × bL;
 aL = *(A+ (i8|6)); bL = *(B + (48|j)); sum += aL × bL;
 aL = *(A+ (i8|7)); bL = *(B + (56|j)); *(C + ij) = sum + (aL × bL);
 ++ij;
} while(ij!=64);

Figure 6. Transformed matrix multiplication C-code

Figure 7. Block diagram of CDCT1

3.2.2 Initial Custom datapath: CDCT1
By looking at the body of loop in Figure 6, four steps of computation
can be identified:
1- Calculation of the memory addresses of the relevant elements
2- Loading the values of those elements from data memory,
3- Multiplying the two values,
4- Accumulating the multiplication results .

We design our custom datapath in a way that each of these steps is a
pipeline stage. Figure 7 shows the proposed custom pipelined

datapath (CDCT1). The datapath includes four major pipeline stages
that are marked in the figure. We have used operation chaining to
reduce RF file accesses and decrease register pressure. Chaining the
operations improves the energy consumption and performance. The
OR and ALU are chained, as well as the Mul and Adder. Note that
the chaining of multiply and add forms a MAC unit in the datapath.
To assure proper usage of the MAC unit, we enforce mapping the
aL, bL, and sum variables, to aL, bL and SUM registers in the
datapath. After compilation, the total number of cycles of the DCT is
3080, and the maximum clock frequency is 85.7MHz.

Component CMem+CW RF+RF_o ALU+ALU_o RF setuptime
Delay (ns) 3.28 2.39 5.4 0.58
Table 2. Critical-path delay breakdown of CDCT1

Table 2 shows the critical-path breakdown of CDCT1. Each column
in the table shows the sum of a component delay and its output-
interconnect delay. The critical path goes through CMem, RF, B2,
B4, ALU, B5, and back to RF.

Figure 8. Block diagram of CDCT2

3.2.3 CDCT2: Bus customization and adding a pipeline
register to the datapath
According to Table 2, ALU and the wire that connects ALU to RF
are in the critical path. To reduce the critical path delay, we insert an
additional pipeline register (i.e. reg1) in the output of the ALU, and
call the new design CDCT2 (Figure 8). We also replace all the
global buses, including B5, with point-to-point connections. Only
the connections that are used by the DCT application are kept. Since
there is no function call in DCT, the LR register can be removed.
The NISC compiler automatically analyzes the new datapath and
regenerates the control words to correctly handle the flow of the
data. CDCT2 runs the DCT algorithm in 2952 cycles at the
maximum clock frequency of 90MHz. The reduction in number of
cycles is due to additional parallelism created by the separation of
interconnects. Table 3 shows the breakdown of the critical path of
CDCT2. Note that, in CDCT2, the critical path goes through the
comparator instead of the ALU. In general, adding pipeline registers
combined with retiming optimization is more effective; because,
retiming balances the delay of the pipeline stages by moving some of
the logic across the pipeline registers. In all the experiments here, we
enabled retiming optimization to improve the clock frequency.

Component CMem+CW RF+RF_o Comp+comp_o AG+PC setup
Delay (ns) 2.93 2.45 3.726 2.06
Table 3. Critical-path delay breakdown of CDCT2

3.2.4 CDCT3: Eliminating the unused parts of ALU,
comparator and RF
Next, we customize the ALU and comparator for the DCT
application. In Figure 6, only Add, And, Multiply and Not-equal (!=)
operations are used. The first two operations are executed by ALU,
the third by Mul, and the last by Comp. We can simplify the ALU
and comparator by eliminating the unused operations. NISC
compiler allocates and uses nine registers in RF. Therefore, we
reduce number of registers in RF from 32 to 16. The new
architecture (CDCT3) runs much faster at the clock frequency of
114.4MHz. The breakdown of critical path delay (Table 4) shows a
considerable reduction in the delay of the comparator. Also, the
number of fanouts of RF output wires is reduced, and hence its
interconnect delay is reduced. These modifications, also, reduce the
area significantly.

Component CMem+CW RF+RF_o Comp+comp_o AG+PC setup
Delay (ns) 2.76 1.64 2.29 2.06
Table 4. Critical-path delay breakdown of CDCT3

3.2.5 CDCT4 and CDCT5: Controller pipelining
Looking at the critical paths of the architectures, it is evident that the
controller contributes to a major amount of the delay. The CMem,
CW, and Address Generator (AG) delays are part of the critical path
of CDCT3. To reduce the effect of the controller delay, we insert one
pipeline register (i.e. CW register) in front of the CMem. The new
architecture (CDCT4) can run much faster at the clock frequency of
147MHz. Table 5 shows a reduction in the critical path delay. On the
downside however, the number of cycles of DCT increases to 3080
because of an extra branch delay cycle. Note that the NISC compiler
automatically analyzes the datapath and notices the extra branch
delay. So, the user does not need to change the compiler manually.

Component CMem+CW RF+RF_o Comp+comp_o AG+PC setup
Delay (ns) 1.39 1.6 1.74 2.06
Table 5. Critical-path delay breakdown of CDCT4

To further reduce the effect of controller’s delay on the clock cycle,
we insert another pipeline register (called status register) at the
output of the Comp. This register eliminates the AG’s delay from the
critical path. Table 6 shows the breakdown of the critical path delay
of the new architecture (CDCT5). In CDCT5, the critical path goes
through the multiplier. Since the multiplier is a pre-synthesized unit
in the FPGA package, it is not possible to reduce the critical path
delay any further. Note that, CDCT5 has a branch delay of two and
runs at the clock frequency of 170MHz. The total number of cycles
of DCT has increased to 3208. CDCT4 and CDCT5 occupy larger
area than CDCT3 due to the additional CW and status registers.

Component bL+bL-o Mul+Mul-o P setuptime
Delay (ns) 1.29 4.25 0.3

Table 6. Critical-path delay breakdown of CDCT5
3.2.6 CDCT6: bit-width reduction
In the final optimization, we reduce the bit-width of some of the
components without affecting the precision of the calculations. The
goal of this optimization is further reducing the area. We observed
that the address-calculation pipeline stage does not need the 16-bit
operations. In fact, all the address values are in the range of 0 to 255.
Therefore, the bit width of RF, OR, ALU, and Comp are reduced to
8 bits. In this case, the clock frequency remains fixed at 170MHz.
Figure 9 shows final design (CDCT6) after all the transformations.

Figure 9. Block diagram of CDCT6

4. Comparing performance, power, energy
and area of the NISCs
Table 7 summarizes all the experiments in Section 3. The second
column briefly describes the experiments, and the third column
shows the bit-width of Control Words. In these experiments, we first
mapped DCT to two general-purpose datapaths (NMIPS and GPD).
Then, we designed a custom pipelined datapath for DCT called
CDCT1. Next, we added an additional pipeline register to CDCT1,
simplified the functional units, and added controller pipelining.
Finally, we optimized the bit-width of address-calculation pipeline
stage and generated CDCT6.

 General Description CW bit width
NMIPS NISC with MIPS datapath 76

GPD A general-purpose NISC architecture 61
CDCT1 Custom NISC for DCT 59

CDCT2 CDCT1 + additional pipeline register +
bus transformation 60

CDCT3 CDCT2 with a simplified ALU,
comparator and RF 50

CDCT4 CDCT3 + CW register 50
CDCT5 CDCT4 + status register 51

CDCT6 CDCT5 with a 8-bit-width address
calculation pipeline stage 51

Table 7. Summary of the experiments
Table 8 compares the performance, power, energy, and area of the
all NISC implementations. We synthesized all the NISC
architectures on FPGA. After placement and routing and based on
the critical path delays, we extracted the maximum clock frequency
of each design (shown in the third column).
In Table 8, column fourth shows the total execution time of the DCT
algorithm calculated based on number of cycles and the clock
frequency. Note that although in some cases (such as CDCT4 and
CDCT5) the number of cycles increases, the clock frequency
improvement compensates for that. As a result, the total execution
delay maintains a decreasing trend.

Column fifth shows the average power consumption of the NISC
architectures while running the DCT algorithm. All the designs are
stimulated with the same data values. We used Post-Placement and
Routing simulation to collect the signal activities, and computed the
power consumption using Xilinx XPower tool. Figure 10 shows the
power breakdown of different designs in terms of the clock, logic
and interconnect power. Column sixth shows the total energy
consumption calculated by multiplying power and execution time.

 No. of
cycles

Clock
freq

DCT exec.
time(us)

Power
(mW)

Enegy
(uJ)

Normalized
area

NMIPS 10772 78.3 137.57 177.33 24.40 1.00
GPD 11764 79.5 147.97 150.33 22.24 1.00

CDCT1 3080 85.7 35.94 120.52 4.33 0.81
CDCT2 2952 90.0 32.80 111.27 3.65 0.71
CDCT3 2952 114.4 25.80 82.82 2.14 0.40
CDCT4 3080 147.0 20.95 125.00 2.62 0.46
CDCT5 3208 169.5 18.93 106.00 2.01 0.43
CDCT6 3208 171.5 18.71 104.00 1.95 0.34

Table 8. Performance, power, energy, and area
 of the DCT implementations

In these experiments, GPD consumes lower power than NMIPS
because it does not have any forwarding path. Also, CDCT1
consumes less power than GDP because CDCT1 controls the
activation of multiplier by aL and bL registers, while GDP wastes
power by always activating ALU, Mul and Comp simultaneously.
CDCT2 consumes less power compared to CDCT1 because of the
replacing shared bus B5 with short point-to-point connections.
Instead of having a B5 with two fanins and four fanouts, three point-
to-point connections are used. This optimization reduces the total
bus capacitance and hence, the total power consumption. The
diagram of Figure 10 confirms the reduction in interconnect power
consumption of CDCT2.

0
20
40
60
80

100
120
140
160
180
200

NMIPS GPD CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6

P
ow

er
 (m

W
)

clock logic interconnect

Figure 10. Power breakdown of the DCT implementations

Power consumption of CDCT3 is lower than CDCT2 because of the
elimination of unused operations in ALU and comparator.
Elimination of operations reduces number on fan-outs of the RF
output wires. Therefore, reduction in interconnect power, as well as
logic power is achieved. The power breakdown of CDCT3 confirms
this fact. Note that as the clock frequency goes up, the clock power
gradually increases.
In CDCT4, the power consumption further increases, because of: (1)
the higher clock power due to higher clock frequency and higher
number of pipeline registers; (2) the higher logic power due to CW
register gates; and more importantly, because of (3) the power
consumption of logic and interconnects added by retiming algorithm.
Since the difference between the delays of the two pipeline stages
located before and after CW register is high, the retiming works
aggressively to balance the delay. As a result it adds extra logic to
the circuit.

In CDCT5, we added the status register to the output of Comp and
reduced the critical path. In this case, the retiming algorithm works
less aggressive because the delays of the pipeline stages are less
imbalanced. As a result, we observe a reduction in logic and
interconnect power. The last column of Table 8 shows the
normalized area of different designs calculated based on the number
of FPGA slices that each design (including memories) occupies. The
area trend also confirms the increase in area in CDCT4 followed by
a decrease in CDCT5, which we believe is because of the retiming.
Figure 11 shows the performance, power, energy and area of the
designs normalized against NMIPS. The total execution delay of
DCT algorithm has a decreasing trend except for the GPD that takes
many cycles to finish the execution. The power consumption
decreases up to CDCT3 and then increases. The energy consumption
significantly drops at CDCT1, because of the reduction in number of
cycles and power consumption. From CDCT1 to CDCT6, the
energy decreases gradually in a slow paste.
As shown in Figure 11, CDCT6 is the best design in terms of delay,
energy consumption and area. However, CDCT3 is the best in terms
of power consumption. As a result, CDCT3 and CDCT6 are
considered the pareto-optimial solutions. Compared to NMIPS,
CDCT6 runs 7.14 times faster, consumes 1.69 times less power and
12.51 times less energy. Also CDCT6 occupies 3 times less area
than NMIPS. Note that performance of NMIPS is 20% better than
performance of a MIPS core. Also, since NMIPS does not have
instruction decoder, its area is less than MIPS. In our experiments,
we compared the results to NMIPS which is conservative relative to
MIPS core. The Verilog description of all the experiments can be
downloaded from [8].

0

0.2

0.4

0.6

0.8

1

1.2

NMIPS GPD CDCT1 CDCT2 CDCT3 CDCT4 CDCT5 CDCT6

N
or

m
al

iz
ed

 v
al

ue
s

Normalized exec. Time Normalized power
Normalized area Normalized energy

Figure 11. Comparing different DCT implementations

The experiments show that using NISC methodology, a designer (or
a tool) can start from a simple general-purpose datapath and
iteratively refine and customize it for one or more applications. If
properly designed, the custom hardware can be shared by several
applications. It is also possible to trade some of the customizations
for post-implementation re-programming by maintaining some of
the general-purpose features of the initial design.

5. Comparison with a manual design
We have also compared the quality of our final design (CDCT6)
with a commercial manual design [7]. In [7], the quality of a manual
design after mapping to Xilinx Virtex2V250-6 package is reported.
We also used the same package in our experiments to enable the
comparison. Their design takes 82 cycles to compute an 8×8 DCT
with a 15-bit precision (ours has a 16-bit precision). They have
achieved maximum clock frequency of 74MHz on the FPGA
package (we achieved 170MHz). Therefore, their total execution
time of an 8×8 DCT is 1.1us. Compared to NMIPS that takes

137.57us, the manual design is 125 times faster. This clearly shows
two orders of magnitude performance gap between the manual
design and software implementation. Compared to CDCT6 that
takes 18.71us to compute DCT, the manual design is 17 times faster.
These results show that a custom NISC architecture can serve as an
intermediate point between software and hardware implementations.
On the other hand, the total area of the manual design is 1365 FPGA
slices, while the area of CDCT6 is 169 slices. Note that the low area
of CDCT6 allows fitting eight of CDCT6 in the same area as of the
manual hardware design. Since the DCT algorithm can usually run
on different parts of an image in parallel, the performance of eight
CDCT6 is almost eight times of the performance of one. This makes
the CDCT6 only two times slower than the manual hardware design.
Figure 12 compares the performance and normalized area of the two
designs (power is not reported in [7]). Note that it took us about one
week to explore different design alternatives while it usually takes
significantly longer time to implement and verify a manual designs.

1.1

18.71

0

5

10

15

20

Manual Design CDCT6
DC

T
ex

ec
. t

im
e

(u
s)

8.1

1

0

2

4

6

8

10

Manual Design CDCT6

N
or

m
al

iz
ed

 A
re

a

Figure 12. Comparing CDCT6 with a
commercial manual design [7]

6. Conclusions and future works
In this paper, we presented a case-study of designing a custom
datapath for DCT application using NISC. We started from a
general-purpose pipelined datapath and iteratively refined it to
achieve better performance, power and area. Our results show 7.14
times performance improvement, 1.64 times power reduction, 12.5
times energy savings, and more than 3 times area reduction
compared to a soft-core MIPS implementation. We also compare the
quality of our designs to a state-of-the-art commercial manual
design. Future works includes simultaneous optimization of a
datapath for multiple applications.

Acknowledgements
This work is in part supported by SRC contact 1118.001. We also
acknowledge Mehrdad Reshadi for providing his NISC compiler.

References
[1] N. Ahmed, T. Natarajan, and K.R. Rao, Discrete Cosine

Transform, IEEE Trans. On Computers, vol. C- 23, 1974.
[2] M.K. Jain, M. Balakrishnan, and A. Kumar, ASIP Design

Methodologies: Survey and Issues, In Proc. of International
Conference on VLSI Design, 2001.

[3] M. Reshadi, D. Gajski, An Algorithm for Compiling Programs to
Custom Pipelined Datapaths, In Proc. International Symposium on
System Synthesis (ISSS05), 2005.

[4] ISO/IEC JTC1 CD 10918. Digital Compression and Coding of
Continuous-tone Still Images - part 1, requirements and guidelines,
ISO, 1993 (JPEG)

[5] ISO/IEC JTC1 CD 13818. Generic Coding of Moving Pictures and
Associated Audio: Video, ISO, 1994 (MPEG-2 standard)

[6] MIPS32® M4K™ Core, http://www.mips.com
[7] http://www.cast-inc.com/cores/dct/cast_dct-x.pdf
[8] http://newport.eecs.uci.edu/~bgorjiar/projects/NISC/customDCT/

http://www.mips.com
http://www.cast-inc.com/cores/dct/cast_dct-x.pdf
http://newport.eecs.uci.edu/~bgorjiar/projects/NISC/customDCT/

