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Abstract 
Designing Application-Specific Instruction-set Processors (ASIPs) 
usually requires designing a custom datapath, and modifying 
instruction-set, instruction decoder, and compiler. A new alternative 
to ASIPs is No-Instruction-Set-Computers (NISCs) that eliminate the 
instruction abstraction by compiling programs directly to a given 
datapath. The compiler analyzes the datapath and extracts possible 
operations and data flows. The NISC approach simplifies and 
accelerates the task of custom processor design. In this paper, we 
present a case-study of designing a custom datapath for a 2-D DCT 
algorithm. We applied several optimization techniques such as 
software transformations, operation chaining, datapath pipelining, 
controller pipelining, and functional unit customization to improve 
the quality of the design. Most of the techniques are general and can 
be applied to other applications. The result of synthesizing our final 
custom datapath on a Xilinx FPGA shows 7.14 times performance 
improvement, 1.64 times power reduction, 12.5 times energy 
savings, and more than 3 times area reduction compared to a soft-
core MIPS implementation. 

1. Introduction 
In general, custom hardware designs are several orders of magnitude 
faster than the equivalent software implementation. However this 
performance efficiency is achieved at the expense of lower 
productivity and higher design cost. To bridge the productivity and 
performance gap, many design methodologies have been proposed. 
The Application-Specific Instruction-set Processor (ASIP) design is 
one of the promising approaches [2]. ASIPs improve the 
performance of an application by running it on a customized 
datapath, using custom instructions. ASIP designers usually prefer to 
focus on the datapath design, however they have to spend substantial 
amount of time on modifying the instruction-set and the controller 
(instruction decoder). Designing the custom instructions can be 
difficult and complex. The custom instructions should represent the 
capabilities of the corresponding datapath. The designer should also 
consider the effects of the custom instructions on both the instruction 
decoder and the compiler. Such constrains not only complicate and 
slow down the design process, but also impose unnecessary 
limitations on the possible datapath customizations. 
A new alternative to ASIP is No-Instruction-Set-Computer (NISC) 
[3]. Similar to horizontally micro-coded architectures, a NISC 
compiler generates code to control the datapath at every clock cycle. 
However, instead of using any abstraction such as instruction-set or 
microcode, the NISC compiler directly generates the control signal 
values of every component in the datapath for every clock cycle. A 
NISC designer needs to only focus on designing the datapath, i.e. 
selecting the components and connecting them together. There is no 
need for designing instruction-set and instruction decoder, or 
updating the compiler. The NISC compiler inputs the datapath as a 
netlist of RTL components, and automatically analyzes and extracts 
possible operations. The datapath netlist contains components such 
as bus, multiplexer, register, register-file, memory, and functional 
unit. For each component, the functionalities are defined and linked 

to proper values of component’s control signals. After compiling the 
program onto the given datapath, the compiler generates a string of 
control values, called Control Word (CW), for each cycle. These 
control words are stored in a control memory and are applied to the 
datapath by the controller at every cycle. If the size of the program is 
small enough, then it is also possible to generate the control words 
via logic or ROM.  
In this paper, we present a case-study of using NISC approach for 
designing a custom architecture for a Discrete Cosine Transform 
(DCT) algorithm. We start from a general purpose datapath similar 
to MIPS and iteratively customize the datapath to achieve significant 
improvement in terms of power, performance and area. The 
exploration methodology is general and can be applied to other 
multimedia algorithms. Taking the advantage of the NISC design 
methodology and the compiler, we were able to design and explore 
more than 10 different architectures over a course of one week. The 
Verilog files of all the designs presented in this paper are available at 
[8]. Our results show 7.14 times performance improvement, 1.64 
times power reduction, 12.5 times energy savings, and more than 3 
times area reduction compared to a soft-core MIPS implementation.  
The rest of the paper is organized as follows:  Section 2 presents an 
overview of the NISC design methodology. Section 3 explains 
applying NISC approach to design of a custom DCT architecture. 
Section 4 compares different design points in terms of performance, 
power, energy, and area. Section 5 compares our best NISC-based 
DCT implementation to a commercial manual design.  

2. Overview of NISC approach 
A NISC is composed of a pipelined datapath and a pipelined 
controller that drives the control signals of the datapath components 
at each clock cycle. The controller has a fixed template and is 
usually composed of a Program Counter (PC) register, an Address 
Generator (AG) and a Control Memory (CMem). The control values 
are stored in a control memory. For small size programs, the control 
values can also be generated via logic in the controller. The datapath 
of NISC can be simple or as complex as datapath of a processor. 
Figure 1 shows a sample NISC architecture with a memory-based 
controller and a pipelined datapath that has partial data forwarding, 
multi-cycle and pipelined units. 

Figure 1- A sample NISC architecture. 
Figure 2 shows a NISC-based design flow for implementing an 
application on a custom hardware. In NISC, the datapath can be 
generated (allocated) using different techniques. For example, it can 
be an IP, reused form the previous designs, generated by High-Level 



Synthesis, or directly specified by a designer. In our current 
implementation, we use an XML (eXtensible Markup Language) file 
to capture the netlist of components in the datapath. A component 
can be a register, register-file, tri-state buffer, multiplexer, functional 
unit, memory, or bus. The functionalities of components are linked 
to the timing information of their control values. The program, 
written in a high-level language such as C, is first compiled and 
optimized by a front-end and then mapped (scheduled and bound) on 
the given datapath. The compiler generates the control words as well 
as the contents of data memory. The generated results and datapath 
information are translated to a synthesizable RTL design, described 
in Verilog, that is used for simulation (validation) and synthesis 
(implementation). After synthesis and Placement and Routing 
(PAR), the accurate timing, power, and area information can be 
extracted and used for further datapath refinement. For example, the 
user may add functional units and pipeline registers, or change the 
bit-width of the components and observe the effect of modifications 
on precision of the computations, number of cycles, clock period, 
power, and area. In NISC, there is no need to design the instruction-
set because the compiler automatically analyzes the datapath and 
extracts possible operations and branch delay. Therefore, the 
designer can refine the design very fast. 

 
Figure 2- NISC based design flow. 

To give the designer more control over the datapath and application 
mapping, the compiler also allows pre-binding of variables and 
operations. The unbound variables and operations are mapped by the 
compiler automatically. If an application has a particular operation 
that is not supported by a given datapath, then the compiler raises an 
exception and terminates the compilation.  

3. Case study: DCT implementation 
In this section, a short introduction on DCT is presented, and then a 
custom datapath for the DCT is designed and refined using NISC 
methodology. The Discrete Cosine Transform (DCT) [1] and 
Inverse Discrete Cosine Transform (IDCT) are important parts of 
JPEG [4] and MPEG [5] standards. MPEG encoders use both DCT 
and IDCT, whereas MPEG decoders only use IDCT. The definition 
of DCT for a 2-D 8×8 matrix of pixels is as follows: 
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Where u, v are discrete frequency variables (0≤u, v≤7), f[i, j] gray 
level of pixel at position (i, j), and F[u,v] coefficients of point (u, v) 
in spatial frequency. Assuming N=8, matrix C is defined as follows: 

    
16

)12(cos
8
1]][[ πunnuC +

=  

Based on matrix C, an integer matrix C1 is defined as follows: 

    C1 = round( factor × C)  
The C1 matrix is used in calculation of DCT and IDCT: 
    F = C1 × f  × C2 
where, C2= C1T. As a result, DCT can be calculated using two 
consecutive matrix multiplications. 

3.1 Implementing DCT using general-purpose 
datapaths 
Figure 3 shows the C code for multiplying two given matrix A and B 
using three nested loops. Using a MIPS M4K  Core processor [6], 
the matrix-multiplication-based DCT takes 13058 cycles to compute 
[3]. However, given the MIPS datapath, the NISC implementation 
takes 10772 cycles. The 20% reduction in number of cycles is 
because of the finer-grained control that NISC compiler has over the 
datapath compared to traditional compilers that use instruction-set 
abstraction. We generated the synthesizable hardware description for 
our NISC-style MIPS (NMIPS), and synthesized it using Xilinx ISE 
6.3. In our implementation, the bus-width of the datapath is 16-bit, 
and it does not have any integer divider or floating point unit. The 
clock frequency of 78.3MHz was achieved after synthesis and 
Placement-and-Routing.  
All the experiments in this section are synthesized on Xilinx FPGA 
package Virtex2V250-6 using Xilinx ISE 6.3 tool. Two synthesis 
optimizations of retiming and buffer-to-multiplexer conversions are 
applied during optimization to improve the performance. In these 
experiments, we set the PAR effort to the highest level possible for 
maximum clock speed. 

for(int i=0; i<8; i++) 
    for(int j=0; j<8; j++){ 
        sum=0; 
        for(int k=0; k<8; k++) 
            sum = sum + A[i][k] ×B[k][j]; 
        C[i][j] = sum;     
    } 

Figure 3. C-Code of matrix multiplication 
Figure 4 shows a simple general-purpose datapath (GPD) that 
includes an ALU, a Register File (RF), a multiplier (Mul), a data 
memory (Mem), a Comparator (Comp), and three buses. The RF has 
32 registers, and ALU and Comp are designed to execute various C 
operations listed in Table 1. In NISC, the controller has a fixed 
structure and includes an Address Generator (AG), a Program 
Counter (PC), and a Control Memory (CMem). To support function 
call, a Link Register (LR) is added to the controller. The control and 
data memories are implemented using FPGA Block RAMs. The 
Block RAMs are synchronous and need to be driven by the clock. 
On each FPGA package, 24 Block RAMs exist where each has 16-
Kb capacity. In our experiments, only two Block RAMs per 
architecture are used. Also, the FPGA package has 24 pre-
synthesized multipliers, which only one is used.   

Component Operations  

ALU Add, Sub, And, Or, Xor, Shift-right, Shift-left, Shift-right-unsigned, 
Negate, Not 

Comparator 
Equal, Not-equal, Greater-or-equal, Greater-than, Less-than, Less-or-
equal, Greater-or-equal-unsigned, Greater-than-unsigned, Less-than-
unsigned, Less-or-equal-unsigned 

Table 1. ALU and Comparator operations 
To support constant-based operations and jumps, a 10-bit constant 
and a 10-bit offset is added. The total number of bits in a single 
control word, including the constant and the offset bits, is 61. The 
NISC compiler generates about 50 control words. The clock 
frequency of GPD is 92.6 MHz. 



 
Figure 4. Block diagram of GPD 

In the rest of this section, we use different techniques to improve 
performance, area and power of the design. The techniques include: 
1- Software transformations: unrolling the matrix multiplication 

loops to increase the parallelism in the code, and applying 
simple code transformations to reduce costly operations. 

2- Using Multiply-and-Accumulate (MAC) unit: this technique 
improves the performance by chaining the two operations 
without accessing the Register File. 

3- Adding pipeline registers to the datapath: if applied properly, 
this technique decreases the overall delay by reducing the clock 
period and increasing parallelism. Additionally, the power 
consumption decreases due to the reduction in switching 
activity. 

4- Adding pipeline registers to the controller: although this 
technique increases branch delay (and hence the total number 
of cycles), the controller pipelining can help in reducing the 
critical path 

5- Removing unused parts of ALU, comparator and register file: 
in a general-purpose datapath, all the operations supported in C, 
must be handled by the datapath. However, in a customized 
datapath, only the operations used by a specific application are 
supported. This optimization improves the area and 
performance.  

6- Reducing the bit-width of some components without affecting 
the precision of the DCT calculations: this optimization reduces 
the area. 

3.2 Designing a custom hardware for DCT 
In general, customization of design involves both software and 
hardware transformations. In this section, we first apply the software 
transformations, and then customize and refine the datapath 
accordingly. Currently, the transformations are applied manually. In 
future, they can be applied automatically by tools.  
3.2.1 Software transformations 
To increase the parallelism, we unroll the inner-most loop of the 
matrix multiplication code. The transformed code is shown in Figure 
5. Note that operation “*” represents accessing the value of a pointer 
(i.e. loading from memory). Next, we apply other software 
transformations to reduce the costly operations: To decrease the 
number of multiplications, we replace i × 8 with i<<3 (i shift left 
three times). Additionally, to calculate the address, we need two 
consecutive additions, which may require two chained adders. 
However, if we replace one of the additions with an OR operation, 
then we can chain one adder with an OR unit, which is less costly 
than an extra adder. The conversion is possible in this particular 
application because of the special values of the constants. For 
example, i8+const is equal to i8|const, because 0≤const≤7 at all time 
and the first three bits of i8 is always zero. Additionally, the two for 
loops can be merged to one, by combining the loops’ counters. The 

new counter is represented by variable ij. Figure 6 shows the 
transformed code after the above modifications.  

for(int i=0; i<8; i++) 
    for(int j=0; j<8; j++){ 
        i8 = i × 8; 
        sum = *(A + i8) × *(B + j); 
        sum += *(A + i8 + 1) × *(B + 8 + j); 
        sum += *(A + i8 + 2) × *(B + 16 + j); 
        sum += *(A + i8 + 3) × *(B + 24 + j); 
        sum += *(A + i8 + 4) × *(B + 32 + j); 
        sum += *(A + i8 + 5) × *(B + 40 + j); 
        sum += *(A + i8 + 6) × *(B + 48 + j); 
        sum += *(A + i8 + 7) × *(B + 56 + j); 
        C[i][j] = sum; 
     }    

Figure 5. C-code of unrolled matrix multiplication 
 

ij=0; 
do { 
 i8 = ij & 0xF8; 
 j = ij & 0x7; 
 aL = *(A+ (i8|0) ); bL = *(B + (0|j) );  sum =  aL × bL;  
 aL = *(A+ (i8|1) ); bL = *(B + (8|j) );  sum += aL × bL;  
 aL = *(A+ (i8|2) ); bL = *(B + (16|j) ); sum += aL × bL;  
 aL = *(A+ (i8|3) ); bL = *(B + (24|j) ); sum += aL × bL;  
 aL = *(A+ (i8|4) ); bL = *(B + (32|j) ); sum += aL × bL;  
 aL = *(A+ (i8|5) ); bL = *(B + (40|j) ); sum += aL × bL;  
 aL = *(A+ (i8|6) ); bL = *(B + (48|j) ); sum += aL × bL;  
 aL = *(A+ (i8|7) ); bL = *(B + (56|j) ); *(C + ij) = sum + (aL × bL);  
 ++ij; 
} while(ij!=64); 

Figure 6. Transformed matrix multiplication C-code 
 

 
Figure 7. Block diagram of CDCT1 

3.2.2 Initial Custom datapath: CDCT1 
By looking at the body of loop in Figure 6, four steps of computation 
can be identified:  
1-  Calculation of the memory addresses of the relevant elements 
2-  Loading the values of those elements from data memory,  
3-  Multiplying the two values,  
4-  Accumulating the multiplication results .  

We design our custom datapath in a way that each of these steps is a 
pipeline stage. Figure 7 shows the proposed custom pipelined 



datapath (CDCT1). The datapath includes four major pipeline stages 
that are marked in the figure. We have used operation chaining to 
reduce RF file accesses and decrease register pressure. Chaining the 
operations improves the energy consumption and performance. The 
OR and ALU are chained, as well as the Mul and Adder. Note that 
the chaining of multiply and add forms a MAC unit in the datapath. 
To assure proper usage of the MAC unit, we enforce mapping the 
aL, bL, and sum variables, to aL, bL and SUM registers in the 
datapath. After compilation, the total number of cycles of the DCT is 
3080, and the maximum clock frequency is 85.7MHz.  

Component  CMem+CW RF+RF_o ALU+ALU_o RF setuptime 
Delay (ns) 3.28 2.39 5.4 0.58 
Table 2. Critical-path delay breakdown of CDCT1 

Table 2 shows the critical-path breakdown of CDCT1. Each column 
in the table shows the sum of a component delay and its output-
interconnect delay. The critical path goes through CMem, RF, B2, 
B4, ALU, B5, and back to RF.  
  

 
Figure 8. Block diagram of CDCT2 

3.2.3 CDCT2: Bus customization and adding a pipeline 
register to the datapath 
According to Table 2, ALU and the wire that connects ALU to RF 
are in the critical path. To reduce the critical path delay, we insert an 
additional pipeline register (i.e. reg1) in the output of the ALU, and 
call the new design CDCT2 (Figure 8). We also replace all the 
global buses, including B5, with point-to-point connections. Only 
the connections that are used by the DCT application are kept. Since 
there is no function call in DCT, the LR register can be removed. 
The NISC compiler automatically analyzes the new datapath and 
regenerates the control words to correctly handle the flow of the 
data. CDCT2 runs the DCT algorithm in 2952 cycles at the 
maximum clock frequency of 90MHz. The reduction in number of 
cycles is due to additional parallelism created by the separation of 
interconnects. Table 3 shows the breakdown of the critical path of 
CDCT2. Note that, in CDCT2, the critical path goes through the 
comparator instead of the ALU. In general, adding pipeline registers 
combined with retiming optimization is more effective; because, 
retiming balances the delay of the pipeline stages by moving some of 
the logic across the pipeline registers. In all the experiments here, we 
enabled retiming optimization to improve the clock frequency. 

Component  CMem+CW RF+RF_o Comp+comp_o AG+PC setup 
Delay (ns) 2.93 2.45 3.726 2.06 
Table 3. Critical-path delay breakdown of CDCT2 

3.2.4 CDCT3: Eliminating the unused parts of ALU, 
comparator and RF 
Next, we customize the ALU and comparator for the DCT 
application. In Figure 6, only Add, And, Multiply and Not-equal (!=) 
operations are used. The first two operations are executed by ALU, 
the third by Mul, and the last by Comp. We can simplify the ALU 
and comparator by eliminating the unused operations. NISC 
compiler allocates and uses nine registers in RF. Therefore, we 
reduce number of registers in RF from 32 to 16. The new 
architecture (CDCT3) runs much faster at the clock frequency of 
114.4MHz. The breakdown of critical path delay (Table 4) shows a 
considerable reduction in the delay of the comparator. Also, the 
number of fanouts of RF output wires is reduced, and hence its 
interconnect delay is reduced. These modifications, also, reduce the 
area significantly.  

Component  CMem+CW RF+RF_o Comp+comp_o AG+PC setup 
Delay (ns) 2.76 1.64 2.29 2.06 
Table 4. Critical-path delay breakdown of CDCT3 

3.2.5 CDCT4 and CDCT5: Controller pipelining 
Looking at the critical paths of the architectures, it is evident that the 
controller contributes to a major amount of the delay. The CMem, 
CW, and Address Generator (AG) delays are part of the critical path 
of CDCT3. To reduce the effect of the controller delay, we insert one 
pipeline register (i.e. CW register) in front of the CMem. The new 
architecture (CDCT4) can run much faster at the clock frequency of 
147MHz. Table 5 shows a reduction in the critical path delay. On the 
downside however, the number of cycles of DCT increases to 3080 
because of an extra branch delay cycle. Note that the NISC compiler 
automatically analyzes the datapath and notices the extra branch 
delay. So, the user does not need to change the compiler manually.  

Component  CMem+CW RF+RF_o Comp+comp_o AG+PC setup 
Delay (ns) 1.39 1.6 1.74 2.06 
Table 5. Critical-path delay breakdown of CDCT4 

To further reduce the effect of controller’s delay on the clock cycle, 
we insert another pipeline register (called status register) at the 
output of the Comp. This register eliminates the AG’s delay from the 
critical path. Table 6 shows the breakdown of the critical path delay 
of the new architecture (CDCT5). In CDCT5, the critical path goes 
through the multiplier. Since the multiplier is a pre-synthesized unit 
in the FPGA package, it is not possible to reduce the critical path 
delay any further. Note that, CDCT5 has a branch delay of two and 
runs at the clock frequency of 170MHz. The total number of cycles 
of DCT has increased to 3208. CDCT4 and CDCT5 occupy larger 
area than CDCT3 due to the additional CW and status registers. 

Component  bL+bL-o Mul+Mul-o P setuptime 
Delay (ns) 1.29 4.25 0.3 

Table 6. Critical-path delay breakdown of CDCT5 
3.2.6 CDCT6: bit-width reduction 
In the final optimization, we reduce the bit-width of some of the 
components without affecting the precision of the calculations. The 
goal of this optimization is further reducing the area. We observed 
that the address-calculation pipeline stage does not need the 16-bit 
operations. In fact, all the address values are in the range of 0 to 255. 
Therefore, the bit width of RF, OR, ALU, and Comp are reduced to 
8 bits. In this case, the clock frequency remains fixed at 170MHz. 
Figure 9 shows final design (CDCT6) after all the transformations. 



 
Figure 9. Block diagram of CDCT6 

4. Comparing performance, power, energy 
and area of the NISCs 
Table 7 summarizes all the experiments in Section 3. The second 
column briefly describes the experiments, and the third column 
shows the bit-width of Control Words. In these experiments, we first 
mapped DCT to two general-purpose datapaths (NMIPS and GPD). 
Then, we designed a custom pipelined datapath for DCT called 
CDCT1. Next, we added an additional pipeline register to CDCT1, 
simplified the functional units, and added controller pipelining. 
Finally, we optimized the bit-width of address-calculation pipeline 
stage and generated CDCT6.  

 General Description CW bit width 
NMIPS NISC with MIPS datapath 76 

GPD A general-purpose NISC architecture 61 
CDCT1 Custom NISC for DCT 59 

CDCT2 CDCT1 + additional pipeline register + 
bus transformation 60 

CDCT3 CDCT2 with a simplified ALU, 
comparator and RF 50 

CDCT4 CDCT3 + CW register 50 
CDCT5 CDCT4 + status register 51 

CDCT6 CDCT5 with a 8-bit-width address 
calculation pipeline stage 51 

Table 7. Summary of the experiments 
Table 8 compares the performance, power, energy, and area of the 
all NISC implementations. We synthesized all the NISC 
architectures on FPGA. After placement and routing and based on 
the critical path delays, we extracted the maximum clock frequency 
of each design (shown in the third column). 
In Table 8, column fourth shows the total execution time of the DCT 
algorithm calculated based on number of cycles and the clock 
frequency. Note that although in some cases (such as CDCT4 and 
CDCT5) the number of cycles increases, the clock frequency 
improvement compensates for that. As a result, the total execution 
delay maintains a decreasing trend. 

Column fifth shows the average power consumption of the NISC 
architectures while running the DCT algorithm. All the designs are 
stimulated with the same data values. We used Post-Placement and 
Routing simulation to collect the signal activities, and computed the 
power consumption using Xilinx XPower tool. Figure 10  shows the 
power breakdown of different designs in terms of the clock, logic 
and interconnect power. Column sixth shows the total energy 
consumption calculated by multiplying power and execution time. 

 No. of 
cycles 

Clock 
freq 

DCT exec. 
time(us) 

Power 
(mW) 

Enegy 
(uJ) 

Normalized 
area 

NMIPS 10772 78.3 137.57 177.33 24.40 1.00 
GPD 11764 79.5 147.97 150.33 22.24 1.00 

CDCT1 3080 85.7 35.94 120.52 4.33 0.81 
CDCT2 2952 90.0 32.80 111.27 3.65 0.71 
CDCT3 2952 114.4 25.80 82.82 2.14 0.40 
CDCT4 3080 147.0 20.95 125.00 2.62 0.46 
CDCT5 3208 169.5 18.93 106.00 2.01 0.43 
CDCT6 3208 171.5 18.71 104.00 1.95 0.34 

Table 8. Performance, power, energy, and area  
 of the DCT implementations 

In these experiments, GPD consumes lower power than NMIPS 
because it does not have any forwarding path. Also, CDCT1 
consumes less power than GDP because CDCT1 controls the 
activation of multiplier by aL and bL registers, while GDP wastes 
power by always activating ALU, Mul and Comp simultaneously.  
CDCT2 consumes less power compared to CDCT1 because of the 
replacing shared bus B5 with short point-to-point connections. 
Instead of having a B5 with two fanins and four fanouts, three point-
to-point connections are used. This optimization reduces the total 
bus capacitance and hence, the total power consumption. The 
diagram of Figure 10 confirms the reduction in interconnect power 
consumption of CDCT2. 
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Figure 10. Power breakdown of the DCT implementations 

Power consumption of CDCT3 is lower than CDCT2 because of the 
elimination of unused operations in ALU and comparator. 
Elimination of operations reduces number on fan-outs of the RF 
output wires. Therefore, reduction in interconnect power, as well as 
logic power is achieved. The power breakdown of CDCT3 confirms 
this fact. Note that as the clock frequency goes up, the clock power 
gradually increases. 
In CDCT4, the power consumption further increases, because of: (1) 
the higher clock power due to higher clock frequency and higher 
number of pipeline registers; (2) the higher logic power due to CW 
register gates; and more importantly, because of (3) the power 
consumption of logic and interconnects added by retiming algorithm. 
Since the difference between the delays of the two pipeline stages 
located before and after CW register is high, the retiming works 
aggressively to balance the delay. As a result it adds extra logic to 
the circuit.  



In CDCT5, we added the status register to the output of Comp and 
reduced the critical path. In this case, the retiming algorithm works 
less aggressive because the delays of the pipeline stages are less 
imbalanced. As a result, we observe a reduction in logic and 
interconnect power. The last column of Table 8 shows the 
normalized area of different designs calculated based on the number 
of FPGA slices that each design (including memories) occupies. The 
area trend also confirms the increase in area in CDCT4 followed by 
a decrease in CDCT5, which we believe is because of the retiming.  
Figure 11 shows the performance, power, energy and area of the 
designs normalized against NMIPS. The total execution delay of 
DCT algorithm has a decreasing trend except for the GPD that takes 
many cycles to finish the execution. The power consumption 
decreases up to CDCT3 and then increases. The energy consumption 
significantly drops at CDCT1, because of the reduction in number of 
cycles and power consumption. From CDCT1 to CDCT6, the 
energy decreases gradually in a slow paste.  
As shown in Figure 11, CDCT6 is the best design in terms of delay, 
energy consumption and area. However, CDCT3 is the best in terms 
of power consumption. As a result, CDCT3 and CDCT6 are 
considered the pareto-optimial solutions. Compared to NMIPS, 
CDCT6 runs 7.14 times faster, consumes 1.69 times less power and 
12.51 times less energy. Also CDCT6 occupies 3 times less area 
than NMIPS. Note that performance of NMIPS is 20% better than 
performance of a MIPS core. Also, since NMIPS does not have 
instruction decoder, its area is less than MIPS. In our experiments, 
we compared the results to NMIPS which is conservative relative to 
MIPS core. The Verilog description of all the experiments can be 
downloaded from [8]. 
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Figure 11. Comparing different DCT implementations 

The experiments show that using NISC methodology, a designer (or 
a tool) can start from a simple general-purpose datapath and 
iteratively refine and customize it for one or more applications. If 
properly designed, the custom hardware can be shared by several 
applications. It is also possible to trade some of the customizations 
for post-implementation re-programming by maintaining some of 
the general-purpose features of the initial design. 

5. Comparison with a manual design 
We have also compared the quality of our final design (CDCT6) 
with a commercial manual design [7]. In [7], the quality of a manual 
design after mapping to Xilinx Virtex2V250-6 package is reported. 
We also used the same package in our experiments to enable the 
comparison. Their design takes 82 cycles to compute an 8×8 DCT 
with a 15-bit precision (ours has a 16-bit precision). They have 
achieved maximum clock frequency of 74MHz on the FPGA 
package (we achieved 170MHz). Therefore, their total execution 
time of an 8×8 DCT is 1.1us. Compared to NMIPS that takes 

137.57us, the manual design is 125 times faster. This clearly shows 
two orders of magnitude performance gap between the manual 
design and software implementation. Compared to CDCT6 that 
takes 18.71us to compute DCT, the manual design is 17 times faster. 
These results show that a custom NISC architecture can serve as an 
intermediate point between software and hardware implementations.  
On the other hand, the total area of the manual design is 1365 FPGA 
slices, while the area of CDCT6 is 169 slices. Note that the low area 
of CDCT6 allows fitting eight of CDCT6 in the same area as of the 
manual hardware design. Since the DCT algorithm can usually run 
on different parts of an image in parallel, the performance of eight 
CDCT6 is almost eight times of the performance of one. This makes 
the CDCT6 only two times slower than the manual hardware design. 
Figure 12 compares the performance and normalized area of the two 
designs (power is not reported in [7]). Note that it took us about one 
week to explore different design alternatives while it usually takes 
significantly longer time to implement and verify a manual designs.    
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Figure 12. Comparing CDCT6 with a   
commercial manual design [7] 

6. Conclusions and future works 
In this paper, we presented a case-study of designing a custom 
datapath for DCT application using NISC. We started from a 
general-purpose pipelined datapath and iteratively refined it to 
achieve better performance, power and area. Our results show 7.14 
times performance improvement, 1.64 times power reduction, 12.5 
times energy savings, and more than 3 times area reduction 
compared to a soft-core MIPS implementation. We also compare the 
quality of our designs to a state-of-the-art commercial manual 
design. Future works includes simultaneous optimization of a 
datapath for multiple applications. 
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