
Fast Exploration of Bus-based On-chip Communication
Architectures

Sudeep Pasricha†, Nikil Dutt†, Mohamed Ben-Romdhane‡

 †Center for Embedded Computer Systems ‡Conexant Systems Inc.
 University of California, Irvine, CA Newport Beach, CA

 {sudeep, dutt}@cecs.uci.edu m.benromdhane@conexant.com
ABSTRACT
As a result of improvements in process technology, more and more
components are being integrated into a single System-on-Chip
(SoC) design. Communication between these components is
increasingly dominating critical system paths and frequently
becomes the source of performance bottlenecks. It therefore
becomes extremely important for designers to explore the
communication space early in the design flow. Traditionally, pin-
accurate Bus Cycle Accurate (PA-BCA) models were used for
exploring the communication space. To speed up simulation,
transaction based Bus Cycle Accurate (T-BCA) models have been
proposed, which borrow concepts found in the Transaction Level
Modeling (TLM) domain. More recently, the Cycle Count Accurate
at Transaction Boundaries (CCATB) modeling abstraction was
introduced for fast communication space exploration. In this paper,
we describe the mechanisms that produce the speedup in CCATB
models and demonstrate the effectiveness of the CCATB
exploration approach with the aid of a case study involving an
AMBA 2.0 based SoC subsystem used in the multimedia
application domain. We also analyze how the achieved simulation
speedup scales with design complexity and show that SoC designs
modeled at the CCATB level simulate 120% faster than PA-BCA
and 67% faster than T-BCA models on average.

Categories and Subject Descriptors: I.6.5 [Simulation
and Modeling]: Model Development; I.6.7 [Simulation and
Modeling]: Simulation Support Systems.
General Terms: Performance, Design
Keywords: Fast Communication Architecture Exploration,
Transaction Level Modeling, Bus Cycle Accurate Modeling,
Shared Bus Architectures, AMBA

1. INTRODUCTION
Over the years, System-on-Chip (SoC) designs have evolved from
fairly simple uni-processor, single-memory designs to massively
complex multiprocessor systems with several on-chip memories,
standard peripherals and ASIC blocks. As more and more
components are integrated into these designs to share the ever
increasing processing load, there is a corresponding increase in the
communication between these components. Inter-component
communication is often in the critical path of a SoC design and is a
very common source of performance bottlenecks. It thus becomes
imperative for system designers to focus on exploring the
communication design space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009...$5.00.

Shared-bus based communication architectures such as AMBA [1],
CoreConnect [2], WishBone [3] and OCP [4] are popular choices
for on-chip communication between components in current SoC
designs. These bus architectures can be configured in several
different ways, resulting in a vast exploration space that is
prohibitive to explore at the RTL level. Not only is the RTL
simulation speed too slow to allow adequate coverage of the large
design space, but making small changes in the design can require
considerable re-engineering effort due to the highly complex nature
of these systems. To overcome these problems, designers have
raised the modeling abstraction level above the RTL level. Figure 1
shows the frequently used modeling abstraction levels for
communication space exploration, usually captured with high level
languages such as C/C++ [5]. In Cycle Accurate (CA) models
[6][18], system components (both masters and slaves) and the bus
architecture are captured at a cycle and signal accurate level. While
these models are extremely accurate, they are too time-consuming
to model and only provide a moderate speedup over RTL models.
Bus Cycle Accurate (BCA) models [7] capture the system at a
higher abstraction level than CA models. Components are modeled
at a less detailed behavioral level, which allows rapid system
prototyping and considerable simulation speed over RTL. The
component interface and the bus however are still modeled at a
cycle and signal accurate level, which enables accurate
communication space exploration. However, with the increasing
role of embedded software and rising design complexity, even the
simulation speedup gained with BCA models is not enough.

v1 = a + b;
wait(1); //cycle 1
REG = d << v1;
wait(1); //cycle 2
REQ.set(1);
ADDR.set(REG);
WDATA.set(v1);
wait(1); //cycle 3

bus
arb

…
case CTR_WR:
CTR_WR = in;
wait(1); //cycle 1
CTR_WR2 |=0xf;
wait(1); //cycle 2
HRESP.set(1);
HREADY.set(0);

signal
interface

master slave

…
v1 = a + b;
REG = d << v1;
REQ.set(1);
ADDR.set(REG);
WDATA.set(v1);
wait(3); //3 cycles
…

bus
arb

…
case CTR_WR:
CTR_WR = in;
CTR_WR2 |=0xf;
wait(2); //2 cycles
HRESP.set(1);
HREADY.set(0);
…

slavemaster

…
v1 = a + b;
REG = d << v1;
addr = REG;
REQ.set(1);
write(addr,v1);
wait(3); //3 cycles
…

…
case CTR_WR:
CTR_WR = in;
CTR_WR2 |=0xf;
wait(2); //2 cycles
bus_resp(OK);
HREADY.set(0);
…

slavemaster

signal,
transaction interface

Pin Accurate Bus Cycle Accurate (PA-BCA)Pin Accurate Bus Cycle Accurate (PA-BCA)

signal
interface

Cycle Accurate (CA)Cycle Accurate (CA)

Transaction based Bus Cycle Accurate (T-BCA)Transaction based Bus Cycle Accurate (T-BCA)

bus
arb

Figure 1. Modeling Abstractions for Exploration

Recent research efforts [11-14] have focused on using concepts
found in the Transaction Level Modeling (TLM) [8-10] domain to
speed up BCA model simulation. Transaction Level Models are
very high level bit-accurate models of a system with specifics of
the bus protocol replaced by a generic bus (or channel), and where

242

communication takes place when components call read() and
write() methods provided by the channel interface. Since detailed
timing and signal-accuracy is omitted, these models are fast to
simulate and are useful for early embedded software development
and functional validation of the system [8]. Transaction based BCA
(T-BCA) models [11-14] make use of the read/write function call
interface, optionally with a few signals to maintain bus cycle
accuracy. The simpler interface reduces modeling effort and the
function call semantics result in faster simulation speeds.
More recently, we introduced the Cycle Count Accurate at
Transaction Boundaries (CCATB) modeling abstraction [20] for
fast exploration of communication architectures. CCATB extends
the TLM modeling abstraction to speed up system prototyping and
more importantly simulation performance, while maintaining cycle
count accuracy during communication space exploration.
In this paper we will describe the mechanisms behind the speedup
obtained in CCATB models. We will present a simulation
implementation of the CCATB modeling abstraction, for high
performance shared bus architectures. To underline the
effectiveness of our exploration approach, we will describe a case
study involving an AMBA 2.0 based SoC subsystem used in the
multimedia application domain. We will also compare simulation
performance for CCATB, PA-BCA and T-BCA models and
analyze the scalability of these approaches with design complexity.
The paper is organized as follows. Section 2 briefly discusses
requirements for a communication design space exploration effort.
Section 3 gives an overview of the CCATB modeling abstraction
level for communication architecture exploration. Section 4
presents an implementation of the CCATB simulation model.
Section 5 describes a case study which uses CCATB models to
explore the communication space of a multimedia SoC subsystem.
Section 6 compares modeling effort and simulation speeds for the
CCATB and BCA models, and shows how the speeds scale with
increasing system complexity. Finally, Section 7 concludes the
paper and gives directions for future research.

2. COMMUNICATION DESIGN SPACE
EXPLORATION REQUIREMENTS

After system designers have performed hardware/software
partitioning and architecture mapping in a typical design flow [10],
they need to select a communication architecture for the design.
The selection is complicated by the plethora of choices [1-4] that a
designer is confronted with. Factors such as application domain
specific communication requirements and reuse of the existing
design IP library play a major role in this selection process. Once a
choice of communication architecture is made, the next challenge is
to configure the architecture to meet design performance
requirements. Bus-based communication architectures such as
AMBA [1] have several parameters which can be configured to
improve performance: bus topology, data bus width, arbitration
protocols, DMA burst lengths and buffer sizes have significant
impact on system performance and must be considered by
designers during exploration. In the exploration study presented in
this paper, we use our approach to configure a communication
architecture once the selection process is completed. Exploration
studies focusing on the selection of appropriate communication
architectures using our approach can be found in [20].
Any meaningful exploration effort must be able to
comprehensively capture the communication architecture and be
able to simulate the effects of changing configurable parameters at
a system level [19]. This implies that we need to model the entire
system and not just a portion of it. Fast simulation speed is also
very essential when exploring large designs and the vast design
space, in a timely manner. System components such as CPUs,
memories and peripherals need to be appropriately parameterized

[16], annotated with timing details and modeled at a granularity
which would capture their precise functionality, yet not weigh
down simulation speed due to unnecessary detail. Performance
numbers would then be obtained by simulating the working of the
entire system – including running embedded software on the CPU
architecture model. Ultimately, the exploration models need to be
fast, accurate and flexible – providing good simulation speed,
overall cycle accuracy for reliable performance estimation and the
flexibility to seamlessly plug-and-run different bus architectures
and reuse components such as processors, memories and
peripherals.

3. CCATB OVERVIEW
To enable fast exploration of the communication design space, we
previously introduced a novel modeling abstraction level called
Cycle Count Accurate at Transaction Boundaries (CCATB) [20]. A
transaction in this context refers to a read or write operation issued
by a master to a slave, that can either be a single data word or a
multiple data burst transfer. Transactions at the CCATB level are
similar to transactions at the TLM level [8] except that we
additionally pass bus protocol specific control and timing
information. Unlike BCA models, we do not maintain accuracy at
every cycle boundary. Instead, we raise the modeling abstraction
and maintain cycle count accuracy at transaction boundaries i.e. the
number of bus cycles that elapse at the end of a transaction is the
same when compared to cycles elapsed in a detailed cycle/pin
accurate system model. A similar concept can be found in [15]
where Observable Time Windows were defined and used for
verifying results of high level synthesis. We maintain overall cycle
count accuracy needed to gather statistics for accurate
communication space exploration, while optimizing the models for
faster simulation. Intra-transaction events such as interrupts and
transaction aborts that have an impact on cycle count accuracy are
also handled in our framework. More details can be found in [21].
Our approach essentially trades off intra-transaction visibility to
gain simulation speedup.

arbiter
+

decoder

�
��������	
��
������
�������
���
�������������
���
�����
����
������
��������

����

�!�"��
"��������	

�!�"#$��
��

�!�"�#$��
�
	
��������
���
�����

�����

�!�"���
�

�
��������	
��
������
�������
���
�������������
���
�����
����
������
��������

����

�!�"��
"��������	

�!�"#$��
��

�!�"�#$��
�
	
��������
���
�����

�����

�!�"���
�

master1 (ISS +eSW)
�%�""����
�
������&��

������'��())*�+,-'������"

���&����
���"����"
����
���!�
�
.
�

���
�%
�������"# ���
��
���������
.
����
�'��/0+*��/)'1
�����!�
#$��
��
	
�������
���&���
�
��#$�
�
��
	
234�/5�
���&���
�
��#$���
����	
��
��
��"
���&���
�
���
6���!�
����
�'��/0+*�*'4'+1

…

�%�""����
�
������&��

������'��())*�+,-'������"

���&����
���"����"
����
���!�
�
.
�

���
�%
�������"# ���
��
���������
.
����
�'��/0+*��/)'1
�����!�
#$��
��
	
�������
���&���
�
��#$�
�
��
	
234�/5�
���&���
�
��#$���
����	
��
��
��"
���&���
�
���
6���!�
����
�'��/0+*�*'4'+1

…

slave1 (SDRAM)

master2 master3 slave2 slave3
System bus

Figure 2. CCATB Transaction Example

We chose SystemC 2.0 [8-9] to capture designs at the CCATB
abstraction level, as it provides a rich set of primitives for system
modeling. Busses in CCATB are modeled by extending the generic
TLM channel [8] to include bus architecture specific timing and
protocol details. Arbiter and decoder modules are integrated with
this channel model. Computation blocks (masters and slaves) are
modeled at the behavioral abstraction level, just like TLM models
in [8]. Masters are active blocks with (possibly) several
computation threads and ports to interface with busses. Figure 2
shows the interface used by the master to communicate with a
slave. In the figure, port specifies the port to send the read/write
request on (since a master may be connected to multiple busses).
addr is the address of the slave to send the transaction to. token is a
structure that contains pointers to data and control information.

243

Slaves are passive entities, activated only when triggered by the
arbiter on a request from the master, and have a register/memory
map to handle read/write requests. The arbiter calls read() and
write() functions implemented in the slave, as shown for the
SDRAM controller in the figure.

4. SIMULATION SPEEDUP
We now describe an implementation of the CCATB simulation
model to explain how we obtain simulation speedup. We consider a
design with several bus subsystems each with its own separate
arbiter and decoder, and connected to the other subsystems via
bridges. The bus subsystem supports pipelining, burst mode
transfers and out-of-order (OO) transaction completion which are
all features found in high performance bus architectures such as
[17]. OO transaction completion allows slaves to relinquish control
of the bus, complete received transactions in any order and then
request for re-arbitration so a response can be sent back to the
master for the completed transaction. OO latency period refers to
the number of cycles that elapse after the slave releases control of
the bus and before it requests for re-arbitration.
We begin with a few definitions. Each bus subsystem is
characterized by a tuple set X, where X = {Rpend, Ract, Roo}. Rpend is
a set of read/write requests pending in the bus subsystem, waiting
for selection by the arbiter. Ract is a set of read/write requests
actively executing in the subsystem. Roo is a set of out-of-order
read/write requests in a subsystem that are waiting to enter into the
pending request set (Rpend) after the expiration of their OO latency
period. Let A be a superset of the sets X for all p bus subsystems in
the entire system.

�
p

i

iXA
1=

=

Next we define � to be a transaction request structure, which
includes the following subfields:

• wait_cyc specifies the number of wait cycles before the bus
can signal transaction completion to the master.

• oo_cyc specifies the number of wait cycles before the request
can apply for re-arbitration at the bus arbiter.

• ooflag indicates if the request is an out-of-order transaction

status is defined to be a transaction response structure returned by
the slave. It contains a field (stat) that indicates the status of the
transaction (OK, ERROR etc.) as well as fields for the various
delays encountered such as those for the slave interface
(slave_int_delay), slave computation (slave_comp_delay) and
bridges (bridge_delay). Finally, let M be a set of all masters in the
system. Each master is represented by a value in this set which
corresponds to the sum of (i) the number of cycles before the next
read/write request is issued by the master and (ii) the master
interface delay cycles. These values are maintained in a global table
with an entry for each master and do not need to be specified
manually by a designer – a preprocessing stage can automatically
insert directives in the code to update the table at the point when a
master issues a request to a bus.
Our approach speeds up simulation by preventing unnecessary
invocation of simulation components and efficiently handling idle
time during simulation. We now describe the implementation for
our simulation model to show how this is accomplished.
On a positive clock edge, master computation threads are triggered
and possibly issue read/write transactions, which in turn trigger the
GatherRequests procedure (Figure 3) in the bus module.
GatherRequests simply adds the transaction request to the set of
pending requests Rpend for the subsystem. On the negative clock
edge, the HandleBusRequests procedure (Figure 4) in the bus
module is triggered to handle the communication requests in the
system. This procedure first calls the HandleCompletedRequests

procedure (Figure 5) for every subsystem to check if any executing
requests in Ract have completed, in which case the master is notified
and the transaction completed. HandleCompletedRequests also
removes an out-of-order request from the set of out of order
requests Roo and adds it to the pending request set Rpend if it has
completed waiting for its specified OO period.

end

thenif
begin
procedure

τ
τ
τ
τ
τ

 R R
FALSE .ooflag
0 .oo_cyc

0 .wait_cyc
request

 request

ests()GatherRequ

pendpend �⇐
⇐
⇐

⇐
⇐

Figure 3. GatherRequests procedure

end

do each for

doeach for

doeach for
doeach for

else

thenif
doeach for

doeach for
begin
procedure

ψ
ψλλ

λ
ψττ

τ
ψττ

τ

ψ
τ
τττ

τ
τ

τ

+⇐
⇐

∈
⇐

∈
⇐

∈
∈

⇐

⇐

⇐
==

∈
⇐

∈

_timesimulation imemulation_t si
 -

 M value
 - .wait_cyc .wait_cyc

 R request
 - .oo_cyc .oo_cyc

 R request
 A X set

 riod(A)ncrementPeDetermineI
)R ,R , status,ysAndSets(UpdateDela

).addr,.port,issue(status

 R R
 TRUE) .ooflag(

 T request
)R ,equest(RArbitrateR T

)R,R,sts(RletedRequeHandleComp
 A X set

equests()HandleBusR

act

 oo

ooact

actact

actpend

ooactpend

�

Figure 4. HandleBusRequests procedure

end

else

thenif
doeach for

else

thenif
doeach for

begin
procedure

; S R ; S R ; S R
 S S

 S S

 0) .oo_cyc(
 R request

 S S

.status) .master,notify(
 0) .wait_cyc(
 R request

 ; null S; null S; null S

)R ,R ,sts(RletedRequeHandleComp

 oooo actact pendpend

oooo

pendpend

oo

actact

act

ooactpend

ooactpend

⇐⇐⇐
⇐

⇐
==

∈
⇐

==
∈

⇐⇐⇐

τ

τ
τ

τ
τ

ττ
τ

τ

�

�

�

Figure 5. HandleCompletedRequests procedure

Next, we arbitrate to select requests from the pending request set
Rpend which will be granted access to the bus. The function
ArbitrateRequest (Figure 6) performs the selection based on the
arbitration policy selected for every bus. We assume that a call to
the ArbitrateOnPolicy function applies the appropriate arbitration
policy and returns the selected requests for the bus. After the
selection we update the set of pending requests Rpend by removing
the requests selected for execution (and hence not ‘pending’
anymore). Since a bus subsystem can have independent read and
write channels [17], there can be more than one active request
executing in the subsystem, which is why ArbitrateRequest returns
a set of requests and not just a single request for every subsystem.

244

end
return

doeach for

begin
function

T
T \ R R

)R nPolicy(c,ArbitrateO T T
 R subsystem c channel tindependen

null T

)R ,equest(RArbitrateR

pendpend

pend

pend

actpend

⇐
⇐

∈
⇐

�

Figure 6. ArbitrateRequest function

After the call to ArbitrateRequest, if the ooflag field of the selected
request is TRUE, it implies that this request has already been issued
to the slave and now needs to wait for �.wait_cyc cycles before
returning a response to the master. Therefore we simply add it to
the executing requests set Ract. Otherwise we issue the request to
the slave which completes the transaction in zero-time and returns a
status to the bus module. We use the returned status structure to
update the transaction status by calling the UpdateDelaysAndSets
procedure (Figure 7). In this procedure we first check for the
returned error status. If there is no error, then depending on whether
the request is an out-of-order type or not, we update �.oo_cyc with
the number of cycles to wait before applying for re-arbitration, and
�.wait_cyc with the number of cycles before returning a response to
the master. We also update the set Ract with the actively executing
requests and Roo with the OO requests. If an error occurs, then the
actual slave computation delay can differ and is given by the field
error_delay. The values for other delays such as burst length and
busy cycle delays are also adjusted to reflect the truncation of the
request due to the error.

 end

 else

else

then if

thenif
begin
procedure

arb_delay) ppl_delay

th_delayburst_leng ay .(busy_del
y)error_dela ay bridge_del

 elay lave_int_d status.(s .wait_cyc
ERROR .status

 R R

arb_delay) ppl_delay
th_delayburst_leng ay .(busy_del

ay)bridge_del p_delay slave_com
elay lave_int_d status.(s .wait_cyc

 R R

arb_delay) ay bridge_delppl_delay
th_delayburst_leng ay .(busy_del .wait_cyc

.arb_delay
ay)bridge_del p_delay slave_com

_delay slave_into_delay status.(o .oo_cyc
TRUE .ooflag
TRUE) (status.oo

OK .status
 OK) at(status.st

)R ,R , status,ysAndSets(UpdateDela

actact

oooo

ooact

++
++

++
⇐

=

⇐
++

++
++

⇐

⇐
+++

+⇐
+

++
+⇐

⇐
==

=
==

τ

τ
τ

τ

τ

τ

τ

ττ
τ

τ
τ

τ

τ

�

�

Figure 7. UpdateDelaysAndSets procedure

After returning from the UpdateDelaysAndSets procedure, we find
the minimum number of cycles (�) before we need to invoke the
HandleBusRequests procedure again, by calling the
DetermineIncrementPeriod function (Figure 8). This function
returns the minimum value out of the wait cycles for every
executing request (�.wait_cyc), out-of-order request cycles for all
waiting OO requests (�.oo_cyc) and the next request latency cycles
for every master (�). If there is a pending request which needs to be
serviced in the next cycle, the function returns 1, which is the worst
case return value. By default, the HandleBusRequests procedure is
invoked at the negative edge of every simulation cycle, but if we
find a value of � which is greater than 1, we can safely increment
system simulation time by that value, preventing unnecessary
invocation of procedures and thus speeding up simulation.

end
return

do each for

doeach for
do each for

doeach for
doeach for

thenif
doeach for

doeach for

begin
function

ψ
λψψ

λ
τψψ
τ

τψψ
τ

ψ
ψ

Χ

ψ

} , { min

M value
 } ``.oo_cyc , { min

 R `` request
 X R set

} `.wait_cyc , { min
 R ` request

 X R set
 return

1
 NULL R

 R set
 A X set

inf

riod(A)ncrementPeDetermineI

oo

oo

act

act

pend

pend

⇐
∈

⇐
∈

∈
⇐

∈
∈

⇐
≠

∈
∈

⇐

Figure 8. DetermineIncrementPeriod function

It should be noted that for some very high performance designs it is
possible that there is very little scope for this kind of speedup.
Although this might appear to be a limitation, there is still
substantial speedup achieved over BCA models because we handle
all the delays in a transaction in one place – in the bus module,
without repeatedly invoking other parts of the system on every
cycle (master and slave threads and processes) which would
otherwise contribute to simulation overhead.

5. EXPLORATION CASE STUDY
To validate our modeling approach with the CCATB abstraction,
we performed an exploration study with a consumer multimedia
SoC subsystem which performs audio and video encoding for
popular codecs such as MPEG. Figure 9 shows this platform, which
is built around the AMBA 2.0 communication architecture [1], with
a high performance bus (AHB or Advanced high performance bus)
and a peripheral bus (APB or Advanced peripheral bus) for high
latency, low bandwidth peripheral devices. The system has an
ARM926EJ-S processor to supervise flow control and perform
encryption, a fast USB interface, on-chip memory modules, a DMA
controller, an SDRAM controller to interface with external memory
components and standard peripherals such as a timer, UART,
interrupt controller, general purpose I/O and a Compact Flash card
interface.

AHB System bus

ARM926EJ-S

MEM1 SDRAM
controller

DMA

MEM2

A/V
Encoder

USB 2.0

A
H

B
/A

P
B

B
ri

dg
e

MEM4MEM3

MEM5

APB peripheral bus

ITC Timer

UART Flash
Interface

GPIO

UART

Figure 9. SoC Multimedia Subsystem

Consider a scenario where the designer wishes to extend the
functionality of the encoder system to add support for audio/video
decoding and an additional AVLink interface for streaming data.
The final architecture must also meet peak bandwidth constraints
for the USB component (480Mbps) and the AVLink controller
interface (768Mbps). Figure 10(a) shows the system with the
additional components added to the AHB bus. To explore the
effects of changing communication architecture topology and
arbitration protocols on system performance, we modeled the SoC
platform at the CCATB level and simulated a test program for
several interesting combinations of topology and arbitration
strategies. For each configuration, we determined if bandwidth
constraints were being met and iteratively modified the architecture
till all the constraints were satisfied.
Table 1 shows the system performance (total cycle count for test

245

program execution) for some of the architectures we considered,
shown in Figure 10 (a), (b) and (c). In the columns for arbitration
strategies, RR stands for a round robin scheme where bus
bandwidth is equally distributed among all the masters. TDMA1
refers to a TDMA strategy where in every frame 4 slots are allotted
to the AVLink controller, 2 slots to the USB, and 1 slot for the
remaining masters. In TDMA2, 2 slots are allotted to the AVLink
and USB, and 1 slot for the remaining masters. In both the TDMA
schemes, if a slot is not used by a master then a secondary RR
scheme is used to grant the slot to a master with a pending request.
SP1 is a static priority scheme with the AVLink controller having a
maximum priority followed by the USB, ARM926, DMA, A/V
Encoder and the A/V Decoder. The priorities for the AVLink
controller and USB are interchanged in SP2, with the other
priorities remaining the same as in SP1.

Arbitration Scheme Arch
RR TDMA1 TDMA2 SP1 SP2

Arch1 27.24 24.65 25.06 25.72 26.49
Arch2 24.98 23.86 23.03 23.52 23.44
Arch3 22.02 21.79 21.65 21.18 21.26

Table 1. Execution cycle counts (in millions of cycles)

For architecture Arch1, performance suffers due to frequent
arbitration conflicts in the shared AHB bus. The shaded cells
indicate scenarios where the bandwidth constraints for the USB
and/or AVLink controller were not met. From Table 1 we can see
that none of the arbitration policies in Arch1 satisfy the constraints.

AHB System bus

ARM926EJ-S

MEM1 SDRAM
controller

DMA

MEM2

A/V
Encoder

USB 2.0 AVLink
controller

A/V
Decoder

A
H

B
/A

P
B

B
ri

dg
e

MEM4MEM3 MEM5

(a) Arch1

A/V
Decoder

AHB System bus AHB/AHB
Bridge

AHB System bus

ARM926EJ-S

MEM1 SDRAM
controller

DMA

MEM2

A/V
Encoder

USB 2.0

A
H

B
/A

P
B

B
ri
d
ge

MEM4MEM3 MEM5

MEM6 AVLink
controller

(b) Arch2

A/V
Decoder

AHB System bus AHB/AHB
Bridge

AHB System bus

ARM926EJ-S

MEM1

SDRAM
controller

DMA

MEM2

A/V
Encoder

USB 2.0

A
H

B
/A

P
B

B
ri
dg

e

MEM4MEM3 MEM5

MEM6

AHB System bus

AVLink
controller

(c) Arch3

Figure 10. SoC Communication Architecture Topologies

To decrease arbitration conflicts, we shift the new components to a
dedicated AHB bus as shown in Figure 10(b). An AHB/AHB
bridge is used to interface with the main bus. We split MEM5 and
attach one of the memories (MEM6) to the dedicated bus and also
add an interface to the SDRAM controller ports from the new bus,
so that data traffic from the new components does not load the
main bus as frequently. Table 1 shows a performance improvement

for Arch2 as arbitration conflicts are reduced. With the exception of
the RR scheme, bandwidth constraints are met with all the other
arbitration policies. The TDMA2 scheme outperforms TDMA1
because of the reduced load on the main bus from the AVLink
component which results in inefficient RR distribution of its 4 slots
in TDMA1. TDMA2 also outperforms the SP schemes because SP
schemes result in much more arbitration delay for the low priority
masters (ARM CPU, DMA), whereas TDMA2 guarantees certain
bandwidth even to these low priority masters in every frame.
Statistics gathered during simulation indicate that the A/V decoder
frequently communicates with the ARM CPU and the DMA.
Therefore with the intention of improving performance even further
we allocate the high bandwidth USB and AVLink controller
components to separate AHB busses, and bring the A/V decoder to
the main bus. Figure 10(c) shows the modified architecture.
Performance figures from the table indicate that the SP1 scheme
performs better than the rest of the schemes. This is because the SP
scheme works well when requests from the high bandwidth
components are infrequent (since they have been allocated on
separate busses). The TDMA schemes suffer because of several
wasted slots for the USB and AVLink controller, which are
inefficiently allocated by the secondary RR scheme.
We thus arrive at the Arch3 topology together with the SP1
arbitration scheme as the best choice for the new version of the
SoC design. We arrived at this choice after evaluating several other
combinations of topology/arbitration schemes not shown here due
to lack of space. It took us less than a day to evaluate these
different communication design space points with our CCATB
models and our results were verified by simulating the system with
a more detailed pin accurate BCA model. It would have taken
much longer to model and simulate the system with other
approaches. The next section quantifies the gains in simulation
speed and modeling effort for the CCATB modeling abstraction,
when compared with other models.

6. SIMULATION AND MODELING
EFFORT COMPARISON

We now present a comparison of the modeling effort and
simulation performance for pin accurate BCA (PA-BCA),
transaction based BCA (T-BCA) and our CCATB models. For the
purpose of this study we chose the SoC platform shown in Figure
11. This platform is similar to the one we used for exploration in
the previous section but is more generic and is not restricted to the
multimedia domain. It is built around the AMBA 2.0
communication architecture and has an ARM926 processor ISS
model with a test program running on it which initializes different
components and then regulates data flow to and from the external
interfaces such as USB, switch, external memory controller (EMC)
and the SDRAM controller.

Switch

AHB System bus 1

ARM926EJ-S

ROM

SDRAM
controller

Arbiter +
Decoder

DMA RAM

A
H

B
/A

P
B

B
ri
dg

e

APB peripheral bus

ITC Timer

UART EMCUSB

AHB/AHB
BridgeAHB System bus 2

RAM

Traffic
generator1

Arbiter +
Decoder

AHB System bus 3

RAM

Traffic
generator2

Arbiter +
Decoder

Traffic
generator3

Figure 11. SoC platform

For the T-BCA model we chose the approach from [14]. Our goal
was to compare not only the simulation speeds but also to ascertain
how the speed changed with system complexity. We first compared
speedup for a ‘lightweight’ system comprising of just 2 traffic

246

generator masters along with peripherals used by these masters,
such as the RAM and the EMC. We gradually increased system
complexity by adding more masters and their slave peripherals.
Figure 12 shows the simulation speed comparison with increasing
design complexity.

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7

masters

K
cy

cl
es

/s
ec

CCATB
PA-BCA
T-BCA

Figure 12. Simulation Speed Comparison

Note the steep drop in simulation speed when the third master was
added – this is due to the detailed non-native SystemC model of the
ARM926 processor which considerably slowed down simulation.
In contrast, the simulation speed was not affected as much when
the DMA controller was added as the fourth master. This was
because the DMA controller transferred data in multiple word
bursts which can be handled very efficiently by the transaction
based T-BCA and CCATB models. The CCATB particularly
handles burst mode simulation very effectively and consequently
has the least degradation in performance out of the three models.
Subsequent steps added the USB switch and another traffic
generator which put considerable communication traffic and
computation load on the system, resulting in a reduction in
simulation speed. Overall, the CCATB abstraction level
outperforms the other two models. Table 2 gives the average
speedup of the CCATB over the PA-BCA and T-BCA models. We
note that on average, CCATB is faster than T-BCA by 67% and
even faster than PA-BCA models by 120%.

Model
Abstraction

Average CCATB
speedup (x times)

Modeling
Effort

CCATB 1 ~3 days
T-BCA 1.67 ~4 days

PA-BCA 2.2 ~1.5 wks
Table 2. Comparison of speed and modeling effort

Table 2 also shows the time taken to model the communication
architecture at the three different abstraction levels by a designer
familiar with AMBA 2.0. While the time taken to capture the
communication architecture and model the interfaces took just 3
days for the CCATB model, it took a day more for the transaction
based BCA, primarily due to the additional modeling effort to
maintain accuracy at cycle boundaries for the bus system. It took
almost 1.5 weeks to capture the PA-BCA model. Synchronizing
and handling the numerous signals and design verification were the
major contributors for the additional design effort in these models.
In summary, CCATB models are faster to simulate and need less
modeling effort compared to T-BCA and PA-BCA models.

7. CONCLUSION
Early exploration of System-on-chip communication architectures
is extremely important to ensure efficient implementation and for
meeting performance constraints. We described the mechanisms
responsible for speedup in our recently proposed CCATB modeling
abstraction, which enable fast and efficient exploration of the
communication design space, early in the design flow. We
demonstrated the usefulness of our approach in a case study
involving exploration of a multimedia SoC subsystem. Using
models at the CCATB abstraction, we were able to quickly explore
the impact of changes in the system and arrive at an architecture
which met component bandwidth constraints and outperformed

other choices. We also showed that the CCATB models are faster
to simulate than pin-accurate BCA (PA-BCA) models by as much
as 120% on average and are also faster than transaction based BCA
(T-BCA) models by 67% on average. In addition, the CCATB
models take less time to model than T-BCA and PA-BCA models.
Our future work will focus on automatic refinement of CCATB
models from high level TLM models and interface refinement from
CCATB down to the pin accurate BCA abstraction level for RTL
co-simulation purposes.

8. ACKNOWLEDGEMENTS
This research was partially supported by grants from Conexant
Systems Inc., UC Micro (03-029) and NSF grants CCR 0203813
and CCR 0205712.

9. REFERENCES
[1] Flynn. “AMBA: enabling reusable on-chip designs”. IEEE

Micro, 1997.

[2] IBM CoreConnect http://www.chips.ibm.com/products/ power
pc/cores

[3] Wishbone Specification http://www.silicore.net/wishbone.htm

[4] Open Core Protocol International Partnership (OCP-IP). OCP
datasheet, http://www.ocpip.org

[5] “System-on-Chip Specification and Modeling Using C++:
Challenges and Opportunities”, IEEE D&T May/June 2001

[6] Joon-Seo Yim et al. “A C-Based RTL Design Verification
Methodology for Complex Microprocessor”, DAC, 1997

[7] Luc Séméria, Abhijit Ghosh, "Methodology for Hardware/
Software Co-verification in C/C++", ASP-DAC, 2000

[8] Sudeep Pasricha, “Transaction Level Modeling of SoC with
SystemC 2.0”, SNUG, Bangalore, 2002

[9] T. Grötker, S. Liao, G. Martin, S. Swan. “System Design with
SystemC”. Kluwer Academic Publishers, 2002.

[10] D. Gajski et al., “SpecC: Specification Language and
Methodology”, Kluwer Academic Publishers, January 2000

[11] Xinping Zhu , S. Malik, “A hierarchical modeling framework
for on-chip communication architectures”, ICCAD, 2002

[12] M. Caldari et al“Transaction-Level Models for AMBA Bus
Architecture Using SystemC 2.0”, DATE, 2003

[13] O. Ogawa et al. “A Practical Approach for Bus Architecture
Optimization at Transaction Level”, DATE, 2003

[14] AHB CLI Specification http://www.arm.com/armtech/ahbcli

[15] R. A. Bergamaschi and S. Raje, “Observable Time Windows:
Verifying the Results of High-Level Synthesis”, ECDT, 1996

[16] M. Ben-Romdhane et al. “Quick-Turnaround ASIC Design in
VHDL: Core-Based Behavioral Synthesis” Kluwer, 1996

[17] AMBA AXI Specification http://www.arm.com/armtech/AXI

[18] H. Jang et al., “High-Level System Modeling and Architecture
Exloration with SystemC on a Network SoC: S3C2510 Case
Study”, DATE, 2004

[19] M. Loghi et al. “Analyzing On-Chip Communication in a
MPSoC Environment”, DATE, 2004

[20] Sudeep Pasricha, Nikil Dutt, Mohamed Ben-Romdhane,
"Extending the Transaction Level Modeling Approach for Fast
Communication Architecture Exploration", DAC, 2004

[21] Sudeep Pasricha et al "Rapid Exploration of Bus-based
Communication Architectures at the CCATB Abstraction",
CECS Technical Report 04-11, May 2004

247

