Discussion: Flip-Flops

D-Latch Design
Latch vs. Flip-Flop Timing
D-latch Design

- Design a gated D-latch using NAND gates and inverters. Draw the schematic and create a truth table for it. An implementation of simple gates is provided for reference.

- Procedure
 - 1. Convert NOR and AND to NAND
 - 2. Redraw schematic and create truth table

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>Q</th>
<th>Q'(next)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth table
Latch and Flip-Flop Comparison

- Compare the behavior of D latch and D flip-flop devices by completing the timing diagram in the figure below. Assume each device initially stores a 0.

- Latches are level-sensitive since they respond to input changes during clock width. (e.g. when clock is 1)
- Flip-Flops respond to input changes only during the change in clock signal, (e.g. at rising edge of clock signal)

```
C
D
Q(D latch)
Q(D flip-flop)
```
Latch and Flip-Flop Comparison

- Compare the behavior of D latch and D flip-flop devices by completing the timing diagram in the figure below. Assume each device initially stores a 0.
 - Latches are level-sensitive since they respond to input changes during clock width. (e.g. when clock is 1)
 - Flip-Flops respond to input changes only during the change in clock signal, (e.g. at rising edge of clock signal)