Synchronous Parallel Discrete Event Simulation (SPDES)

- Executes threads in the same simulation cycles (time, delta) in parallel
- Needed protection of communication and synchronization can be automatically instrumented

Traditional DE simulation	Synchronous PDES	Out-of-order PDES
Simulation Time	One global time tuple	Local time for each thread in tuple
shared by every thread and event	Time advance out-of-order if no conflicts exist	
Event Description	Events are identified by their ids, i.e. event (id)	Events are organized as subsets with the same timestamp: (t, δ)
Simulation Thread Sets	READY, RUN, WAIT, WAITT,	Threads are organized as subsets with the same timestamp: (t, δ)
JOIN, COMPLETE	Threads are organized as subsets with the same timestamp: (t, δ)	
Threading Model	User-level or OS kernel level	OS kernel-level
Run Time Scheduling	Event delivery in order delta cycle loop	Event delivery out-of-order if no conflicts exist
Time advance in order delta loop	Time advance out-of-order if no conflicts exist	
Compile Time Analysis	No synchronization	Need synchronization protection for shared resources,
No conflict analysis needed	e.g. any user-defined and hierarchical channels, data structures in the scheduler	

Static Conflict Analysis
- Compiler builds Segment Graph (SG) derived from Control Flow Graph (CFG) of applications
- Compiler builds Segment Conflict Tables for quick look-up at runtime

Example:
- Segment Graph
- Segment Data Conflict Table
- Out-of-order Parallel Discrete Event Simulation with Predictions (n=244 encoder)

Related Work: Accelerate TLM simulation
- Distributed simulation
 - Chandye et al. [TSE’79]
 - Huang et al. [IEEE’08]
 - Chen et al. [IEEE’11]
- Hardware-based Acceleration
 - Sirowy et al. [DAC’10]
 - Nanjundappa et al. [ASPDAC’10]
 - Simha et al. [ASPDAC’13]
 - Vincio et al. [DAC’12]
- Modeling Techniques
 - Transaction-level modeling (TLM)
 - TLM temporal decoupling
 - Source-level simulation
 - Stattelmann et al. [DAC’11]
- Host-Compiled Simulation
 - Gentlau et al. [HLDVT’11]

SMP Parallel Simulation
- Fujimoto, [CAS&C’06]
- Chopard et al. [ICCC’06]
- Ezuheen et al. [PADS’09]
- Mello et al. [DATE’10]
- Schumacher et al. [CODES’11]
- Chen et al. [IEEEED&T’11]
- Yun et al. [TCAD’11]

Experiments and Results
- Parallel Fibonacci calculation timing information
- Parallel JPEG image encoder with 3 color components encoded in parallel, a sequential Huffman encoding
- Parallel H.264 video decoder with 4 slice decoders and a sequential slice reader and synchronizer
- Host: 64-bit Fedora Linux with 2 6-core CPUs (Intel® Xeon® X5650) at 2.67 GHz with 2 hyper-threads per core (supports 24 threads in parallel)