SpecC Language Reference Manual

Version 2.0

Approved December 12, 2002
SpecC Technology Open Consortium

WWW.Specc.org

Authors:

Rainer DOmer
Andreas Gerstlauer
Daniel Gajski

Copyright(© 2002
R. Domer, A. Gerstlauer, D. Gajski.

Contents

1

Introduction 3
1.1 Brief history of the SpecClanguage 4
1.2 Contributors. 4
SpecC Language 7
2.1 Foundation 7
2.1.1 Arrayassignment 7
2.1.2 \Variable initialization, 8
2.2 SpecCtypes o e e 10
2.21 Booleantype 10
2.2.2 Longlongtype 12
2.2.3 Bitvectortype 14
224 Longdoubletype 18
225 Eventtype e 20
2.2.6 Signaltype 23
2.2.7 Bufferedtype 27
228 Timetype e 31
2.3 SpecCclasses e 33
23.1 Behaviorclass 33
232 Channelclass 37
233 Interfaceclass. 42
234 Ports . ..o 45
2.3.5 Classinstantiation and portmapping 47

iv CONTENTS

24 SpecCstatements e 51
2.4.1 Sequentialexecution 51
242 Concurrentexecution 53
2.4.3 Pipelinedexecution e 56
2.4.4 Abstract finite state machine execution 60
2.4.5 Finite state machine with datapath 64
2.4.6 Synchronization 0. 0. 72
2.4.7 Exceptionhandling 76
2.4.8 Executiontime 80
249 Timingconstraints 82

2.5 OtherSpecCconstructs 86
251 Libraries e 86
2.5.2 Persistentannotation. L. 88

3 SpecC Execution Semantics 93

3.1 Timeinterval formalism 93

3.2 Sequential execution 94

3.3 Concurrent execution 95

3.4 Simulationtime 96

3.5 Synchronization 97

3.6 Abstract simulation algorithm. 98

A SpecC Grammar 103

A.l Lexicalelements e 103
A1l Lexicalrules 103
Al2 Comments e e 104
A.1.3 String and characterconstants. 104
A.1.4 White space and preprocessor directives... 105
Al5 Keywords e 105
A.1l.6 Tokenwithvalues 106

A2 Constants e 107

A3 EXPressions. e e 107

CONTENTS Y%
A4 Declarations e 110
A5 Classes e 115
A6 Statements. e e 119
A.7 External definitions 125
B SpecC Standard Library 129
B.1 SpecC standard type and simulation library 129
B.2 SpecC standard channel library 133
B.2.1 Semaphorechannel... 133
B.2.2 Mutexchannel, 135
B.2.3 Critical sectionchannel. 136
B.2.4 Barrierchannel 137
B.25 Tokenchannel 138
B.2.6 Queuechannel, 140
B.2.7 Handshakechannel 142
B.2.8 Double handshake channel 144
Bibliography 147
Index 149

Vi

CONTENTS

Abstract

This SpecC language reference manual (LRM), version 2.0, defines the syntax and the
semantics of the SpecC language 2.0. This document is based on the SpecC LRM version
1.0, dated March 6, 2001. It has been modified and extended according to the results of
the work done by the SpecC language specification working group (LS-WG) of the SpecC
Technology Open Consortium (STOC).

The SpecC language is defined as extension of the ANSI-C programming language.
This document describes the syntax and semantics of the SpecC constructs that were added
to the ANSI-C language.

For each SpecC construct, its purpose, its syntax, and its semantics are defined. In addi-
tion, each SpecC construct is illustrated by an example. The SpecC execution semantics are
formally defined by use of a time interval formalism and an abstract simulation algorithm.

In the appendix, the complete SpecC grammar is included by use of an extended
Backus-Naur form (EBNF), and the contents of the SpecC standard library are defined.

CONTENTS

Chapter 1

Introduction

The SpecC language is a formal notation intended for the specification and design of digital
embedded systems, including hardware and software portions. Built on top of the ANSI-C
programming language, the SpecC language supports concepts essential for embedded sys-
tems design, including behavioral and structural hierarchy, concurrency, communication,
synchronization, state transitions, exception handling, and timing.

This document defines the syntax and the semantics of the SpecC language, version 2.0.
This version 2.0 is based on the SpecC LRM version 1.0 [7]. It incorporates the results of
the language specification working group (LS-WG) established by the SpecC Technology
Open Consortium (STOC).

Since the SpecC language is a true superset of the ANSI-C programming language, this
document only covers the language constructs not found in ANSI-C. For detailed informa-
tion about the syntax and semantics of ANSI-C, please refer to the ISO Standard ISO/IEC
9899 [1].

Chapter 2 defines the foundation, the types, the classes, the statements, and other con-
structs of the SpecC language. Chapter 3 then defines the execution semantics of the SpecC
language by use of a formal notation called time interval formalism. In addition, an abstract
simulation algorithm for SpecC program execution is given.

In Appendix A, the complete grammar of the SpecC language is included. Finally,
Appendix B defines the contents of the SpecC standard library.

3

4 CHAPTER 1. INTRODUCTION

1.1 Brief history of the SpecC language

The first version of the SpecC language was developed in 1997 at the University of
California, Irvine (UCI) [4]. While many concepts supported by the SpecC language
were new at that time, some concepts were based on previous research, for example, the
SpecCharts|[2, 3] language.

In the following years, research on system design with the SpecC language was intensi-
fied at UCI and early tools including a SpecC compiler and a simulator were implemented.
Highlights of this research have been published in the first book on SpecC, "SpecC: Speci-
fication Language and Methodology” [5], in 1999.

At the same time, the SpecC language gained world-wide acceptance in industry, reach-
ing a major milestone in the SpecC history, the foundation of the SpecC Technology Open
Consortium (STOC) in 1999 [10]. STOC was founded with the goal of promoting the
SpecC idea by standardizing the SpecC language and establishing design guidelines, indus-
try collaboration and interoperability among design tools, based on SpecC.

Since the foundation of STOC, a second book on SpecC, entitled "System Design: A
Practical Guide with SpecC” [8], was published and the SpecC technology advanced fur-
ther, driven by industrial and academic work in general, and by the formation of two STOC
working groups in particular, namely the case study (CS-WG) and language specification
working groups (LS-WG). As a result of the latter, the SpecC language was refined and
extended, leading to its second generation, SpecC 2.0.

This document defines the version 2.0 of the SpecC language standard approved by
STOC.

1.2 Contributors

This document is the result of the work of the language specification working group (LS-
WG) of STOC. The authors wish to thank all active members of this working group for
their fruitful discussions, their valuable contributions, and helpful suggestions.

At the time of approval of SpecC 2.0, the SpecC LS-WG consists of the following
members, listed in alphabetical order:

Yamada Akihiko, Dai Araki, Przemyslaw Bakowski, Ken-ichi Chiboshi, Rainer Doe-

1.2. CONTRIBUTORS 5

mer, Takashi Eda, Hans Eveking, Masahiro Fujita, Hiroshi Fukutomi, Daniel Gajski,

Rajesh Gupta, Tedd Hadley, Roger Hale, Alan Hu, Masato Igarashi, Masaki Ito,

Steven Johnson, Yamashiro Kenji, Tsuneo Kinoshita, Srivas Mandayam, George Milne,
Hiroshi Nakamura, Mike Olivarez, Alex Orailoglu, Sreeranga Rajan, Yoshisato Sakali,

Thanyapat Sakunkonchak, Komatsu Satoshi, Yamaguchi Suguru, Tanimoto Tadaaki,
Ishii Tadatoshi, Hiroaki Takada, litsuka Takayoshi, Shinsuke Tamura, Shibashita Tetsu,
Hiroyuki Tomiyama, Nakamura Toshihiko, Eugenio Villar, Wayne Wolf, Kodama Yuetsu.

CHAPTER 1. INTRODUCTION

Chapter 2

SpecC Language

2.1 Foundation

The SpecC language is based on the ANSI-C programming language as defined in ISO
Standard ISO/IEC 9899 [1].

Unless specified otherwise in this document, the syntax and semantic rules specified for
ANSI-C are also valid for SpecC. Also, the SpecC constructs described in this document are
designed as straightforward extensions, to which the usual ANSI-C semantics are applied,
whenever possible.

2.1.1 Array assignment

In contrast to ANSI-C, the SpecC language allows the assignment of variables of array type.
Syntactically, such array assignment is specified in the same manner as basic variables are
assigned.

The assignment of a whole array is equivalent to the assignment of every element in the
source array to the element with the same index (or indices in case of multi-dimensional
arrays) in the target array.

For array assignments, the target and source arrays must have the same type and the
same dimensions. As the result of an array assignment, the target array will have the same
contents as the source array.

The result type of an array assignment operatioroid. This is in contrast to standard

7

8 CHAPTER 2. SPECC LANGUAGE

assignment operations where the result type is given by the type of the left argument. As a
consequence, an array assignment operation may not be used as a subexpression in another
expression (but only as an expression statement).

Example:
1 int a[10],
2 b[10];
3 double ¢[3][3],
4 d[3][3],
5 e[3][3];
6
7 void f(void)
8 {
9 a = b; // array assignment
10 c = d; // array assignment
11 c[2] = d[1]; // sub —array assignment
12 /¢ = (d = e); // illegall
13 }

2.1.2 Variable initialization

In contrast to ANSI-C, the SpecC language initializes every variable that is statically de-
clared in the SpecC description. Unlesstatic variable has an explicit initializer specified
by the user, the variable is implicitly initialized with zero (while it would be uninitialized
in ANSI-C).

Variables defined in global scope without storage class specification are considered
static, as are variables defined in class scope.

Example:
1 int i =0, // explicitly initialized to 0
2 i2; // implicitly initialized to 0
3 char C; // implicitly initialized to ’ \ 000’
4 float f; // implicitly initialized to 0.0f
5 void *P; // implicitly initialized to 0 (NULL)
6 long I12]; // implicitly initialized to {ool }
7
8 void fct(void)

2.1. FOUNDATION

9 {
10
11
12
13
14 }
15

int X;
static int Y;
/s

16 behavior B

17 {
18
19
20
21
22
23
24
25 }

bool b;
double d

3

void main(void)

{
}

/o

// uninitialized
// initialized to O

// initialized to false
// initialized to 0.0

10 CHAPTER 2. SPECC LANGUAGE

2.2 SpecC types

2.2.1 Boolean type

Purpose: Explicit representation of Boolean values
Synopsis:

basic _type _name =

| bool
constant =

| false

| true
Semantics:

(a) A Boolean value, of typbool, has one of two valuestue or false

(b) A Boolean value can be used to hold the result of logical and relational operations
(e.g.!, &&, <, >, ==, etc.).

(c) If converted (implicitly or explicitly) to an integer typerue becomes 1 anéhlse
becomes 0.

(d) A Boolean type cannot tegnedor unsigned

Example:
1 bool f(bool bl, int a)
2 {
3 bool b2;
4
5 if (bl == true)
6 { b2 =>b1l || (a > 0)
7 }

2.2. SPECCTYPES

8 else
9 { b2 = Ib1;
10 }
11 return (b2);
12 }

Notes:

i. The typeboolin SpecC is equivalent to the tyjp@ol in C++.

11

12 CHAPTER 2. SPECC LANGUAGE

2.2.2 Longlong type

Purpose: Representation of very large integer values

Synopsis:
decinteger I {decinteger }[IL]IL]
octinteger I {octinteger }[IL]ML]
hexinteger I {hexinteger }ILJ[IL]
decinteger il {decinteger }([uU]lL]L] J]|[®][319]))
octinteger {octinteger }([uUJIL]IL] [[IL]iL]uu)
hexinteger .l {hexinteger }(uUJL]IL] [[IL]iL]uu)
basic _type _name =

int

| long

| ...

| signed

| unsigned

basic _type _specifier =
basic _type _name
| basic _type _specifier basic _type _name

constant =

| integer

Semantics:

(&) An integer literal of typesigned long long intis specified with a suffiX, where the
suffix is case-insensitive.

(b) An integer literal of typaunsigned long long intis specified with a suffixill or llu,
where the suffix is case-insensitive.

(c) Thelong long int type is an integral data type for very large values. The number of
bits of the representation is equal to or higher than the number of bits of the repre-
sentation of théong int data type.

2.2. SPECCTYPES

13

(d) Thelong long int type can besignedor unsigned

(e) The usual type promotion and type conversion rules apply.

Example:
1 bool Boolean;
2
3 char Character;
4
5 unsigned char UCharacter;
6
7 short Short;
8
9 unsigned short UShort;
10
11 int Integer;
12
13 unsigned int Ulnteger;
14
15 long Long;
16
17 unsigned long ULong;
18
19 long long LongLong;
20
21
22 unsigned long long ULongLong;
23

Notes:

i. The example shows the standard integral types of the SpecC language and their typi-

cal storage sizes and value ranges.

/1 bit

// [false=0, true=1]

/8 bit, signed

/[—128, 127]

/8 bit, unsigned

// [0, 255]

// 16 bit, signed

/[—32768, 32767]

// 16 bit, unsigned

// [0, 65535]

// 32 bit, signed

/[—2147483648, 2147483647]
// 32 bit, unsigned

/[0, 4294967295]

// 32 bit, signed

/[—2147483648, 2147483647]
// 32 bit, unsigned

/[0, 4294967295]

// 64 bit, signed

/[—9223372036854775808,
// 9223372036854775807]
// 64 bit, unsigned

// [0, 18446744073709551615]

14

2.2.3 Bit vector type

CHAPTER 2. SPECC LANGUAGE

Purpose: Representation of bit vectors of arbitrary length

Synopsis:

bindigit [01]

binary {bindigit }+
bitvector {binary }[bB]

bitvector _u

{binary }([uU][bB]
basic _type _name =

| signed

| unsigned
| bit
| bit

[constant
[constant

constant =
| bitvector

| bitvector _u

postfix _expression =

| postfix _expression [comma

| postfix _expression [constant
constant _expression T

concat _expression =

cast _expression
| concat _expression '@’

Semantics:

_expression '’ constant
_expression

|[oB][uU])

_expression

_expression T
-expression

cast _expression

(@) Abitvectorbit]l : r] represents an integral data type of arbitrary bit length. The length
of a bit vector is determined by its left and right bounds, as follolesigth(bv) =

abgleft(bv) —rright(bv) 4+ 1).

2.2. SPECCTYPES 15

(b)

()

(d)

()
(f)

@

(h)

(i)

0)

In arithmetic operations, the bit indicated by the left bound represents the most-
significant bit (MSB), whereas the bit indicated by the right bound represents the
least-significant bit (LSB). Except for the bit slice and bit access operations (see
below), a bit vector is always normalized to the boufi@sgth— 1 : 0] before any
operation is performed with it. Also, the result type of a bit vector operation is al-
ways normalized tdlength—1 : O], wherelengthis determined by the operand with
the greatest bit vector length.

As a short-cut, the typleit[length is equivalent tdit(l : r], wherel = length—1 and
r=0.

The left and right bounds$,andr, of a bit vector are specified at the time of declara-
tion and must be constant expressions which can be evaluated to constants at compile
time. The same applies to thengthspecifier for the short declaration.

A bit vector is eithesignedor unsigned

A bit vector can be used as any other integral type in expressions and the usual
conversion and promotion rules apply. (For example, iypéas equivalent to type
bit[sizeofint)*8—1:0].)

Implicit promotion from @nsigned int, (unsigned long, or (unsigned long long

to bit vector is performed when necessary. Hereby, the resulting bit vector length
is determined from the number of bits of the source type (which is implementation
dependent).

Automatic conversion, such agnedunsignedextension or truncation, is supported
for bit vectors as with any other integral type.

Bit vector constants are noted as a sequence of zeros and ones immediately followed
by a suffixb or ub indicating thesigned or unsigned bit vector type, respectively.
The suffix is case-insensitive.

In addition to the standard C operations, a concatenation operation, noted as @, and a
slicing operation, noted gkb : rb], are available in SpecC (see lines 11 and 13 in the

16 CHAPTER 2. SPECC LANGUAGE

example). Both operations can be applied to bit vectors as well as to any other integral
type (which will then be implicitly converted to a bit vector of suitable length).

(k) The binary operator @, applied to two bit vectagleft argument) and (right
argument), results in the concatenatiora@indb. The result type is a bit vector with
bounds{length(a) +lengthlb) — 1 : Q].

(I) The unary postfix operatdtb : rb], applied to a bit vectoa, results in a bit slice o
where the left-most bit is specified by indbéxand the right-most bit is specified by
indexrb. Ib andrb must be constant expressions which can be evaluated to constants
at compile time. The result type is a bit vector with boufaisgIb —rb) +1: Q).

(m) The unary bit access operafbt (similar to the array access operator) is available as
a short-hand for accessing a single [bit b] of a bit vector. The result type of this
operation isunsigned bif0 : 0].

Example:
1 typedef bit [3:0] nibble _type;
2 nibble _type a;
3 unsigned bit [15:0] C;
4
5 void f(nibble _type b, bit [16:1] d)
6 {
7 a = 1101B; // bitvector assignment
8 ¢ = 1110001111100011ub;
9 c[7:4] = a; // bitslice assignment
10
11 b = c[2:5]; // bitvector slicing
12 c[0] = c[16]; // single bit access
13 d=a @b @ c[0:15]; // bitvector concatenation
14 b += 42 + a x 12; // arithmetic operations
15 d ="(b | 10101010B); // logic operations
16 }
Notes:

i. A bit vector can be thought of as a parameterized type whose bounds are defined with
the name of the type.

2.2. SPECCTYPES 17

ii. Bit vector bounds and bounds of bit vector slices are required to be constants at
compile time. As a result, the length of any bitvector expression is always known at
compile time. This enables an efficient implementation of bit vectors.

iii. Note that the index of the bit access operatandgrequired to be a constant. A single
bit access always yields the bourifs 0], so there is no need for a constant index.

iv. Since bit vectors are fully integrated into the integral data types, there is typically no
need for explicit type casting in any operations involving bitvectors. Thus, bit vectors
may be used just as integers.

v. Note that, depending on the given bounds, bit slicing can reverse the order of the bits
in the result.

vi. Special port mapping rules apply to ports of bitvector type, see Section 2.3.5.

18 CHAPTER 2. SPECC LANGUAGE

2.2.4 Long double type

Purpose: Representation of high-precision floating point values

Synopsis:

digit 0 -9

integer {digit }+

exponent [eE]l+ —]? {integer }

fraction {integer }

floatl {integer }"." {fraction }?({exponent })?
float2 """ {fraction }({exponent })?
float3 {integer }{exponent }

floating {floatl }|{float2 }|{float3 }
float f {floating }[fF]

float I {floating }[IL]

basic type _name =
| long
| double

basic _type _specifier =
basic _type _name
| basic _type _specifier basic _type _name

constant =

| floating

Semantics:

(a) Afloating point literal can be attached the suffigpecifying it as typéong double
The suffix is case-insensitive.

(b) Thelong doubledata type is a floating point type with a high-precision representa-
tion. Its precision is equal to or higher than the precision ofdihieble data type.

(c) The usual promotion and conversion rules apply.

2.2. SPECCTYPES 19

Example:
1 float Float; // 32 bit
2 double Double; // 64 bit
3 long double LongDouble; // 96 bit
Notes:

i. The example shows the standard floating point types of the SpecC language and their
typical storage sizes.

ii. The typelong doublein SpecC is equivalent to the tyjpeng doublein C++.

20 CHAPTER 2. SPECC LANGUAGE

2.2.5 Eventtype

Purpose: Basic mechanism for synchronization and exception handling

Synopsis:

basic _type _name =
| event

wait _statement =
wait paren _event list
| wait paren _and_event list

notify _statement =
notify paren _event list '}
| notifyone paren _event list '}

exception =
trap paren _event list compound _statement
| interrupt paren _event list compound _statement

paren _event list =

event _list
| 'C event _list)
event ist =
event _identifier
| event _list ’; event _identifier
| event ist * ||' event _identifier

paren _and_event _ist =
and _event _list
| 'C and _event list)

and _event _ist =
event _identifier '&&’ event _identifier
| and_event list '&& event _identifier

clock _specifier =
event _list

sensitivity dist _opt =

2.2. SPECCTYPES 21

<nothing >
| event _list

Semantics:

(a) Theeventtype is a special type that enables SpecC to support exception handling
and synchronization of concurrently executing behaviors.

(b) Theeventtype must not be combined with any other type, type modifier or type
qualifier. It must not be used as a member of any composite or aggregate type.

(c) An event doesiot have a value. Therefore, an event must not be used in any expres-
sion.

(d) Events can only be used with theit, notify andnotifyone statements (see the ex-
ample and Section 2.4.6), with tlwy -trap -interrupt statement (see Section 2.4.7),
with the buffered type (see Section 2.2.7), or with thiemd statement (see Sec-
tion 2.4.5).

Example:

int d;
event e;

void send(int x)

{
d = x;
notify e;

O ~NO UL WN P

}

10 int receive(void)
1 {

12 wait e;

13 return (d);

14 }

©

Notes:

22

CHAPTER 2. SPECC LANGUAGE

i. The example shows a very primitive communication scheme synchronized by the use
of an event.

ii. Since areventdoes not have any value, it cannot transport any message. If a message
needs to be sent together withewent asignal (see Section 2.2.6) @hannel (see
Section 2.3.2) is probably the better choice for modeling the communication.

2.2. SPECCTYPES 23

2.2.6 Signal type

Purpose: Representation of busses and wires

Synopsis:

default _declaring ist =

| signal _class declaration qualifier list identifier _declarator
initializer opt

| signal _class type _qualifier Jlist identifier _declarator
initializer opt

declaring list =

| signal _class declaration _specifier declarator initializer _opt
| signal _class type _specifier declarator initializer _opt

port _declaration =
port _direction signal _class _opt parameter _declaration

signal _class _opt =
<nothing >
| signal _class

signal _class =
signal

event _identifier =

identifier
| edge selector identifier
| identifier edge _selector

edge _selector =
rising
| falling

Semantics:

(2) Thesignal type class defines an implicit composite type for the representation of
wires or busses between concurrent behaviors.

24 CHAPTER 2. SPECC LANGUAGE

(b) Thesignaltype class can be specified for ordinary or composite types. It must not be
specified for areventtype or abuffered type class.

(c) Thesignaltype class must not be used as a member of any composite or aggregate
type.

(d) A variable ofsignal type is implicitly composed of an event, a current and a new
value.

(e) A signal can be used wherever an event is expected. In this case, the event of the
signal is accessed implicitly.

() An event carried by a signal can be filtered by use of eitherrigiag or falling
operator. Arising or falling operator must not be applied to a pure event.

(g) Therising operator filters out all events that do not represent a rising edge of the
signal. A rising edge of the signal is defined as the signal value changing from a zero
(current) value to a non-zero (new) value.

(h) Thefalling operator filters out all events that do not represent a falling edge of the
signal. A falling edge of the signal is defined as the signal value changing from a
non-zero (current) value to a zero (new) value.

(i) Therising or falling operator must only be used with read accesses to the event of a
signal. These operators must not be used witmthtdy or notifyone statements.

() A signal can be used in an expression. For every read access, implicitly the current
value of the signal is read. For every write access, implicitly the new value of the
signal is written.

(k) The event of a signal is implicitly notified with every write access to the signal.

() Atthe time the event of a signal is delivered, the current value of the signal is updated
with the new value.

Example:

2.2. SPECCTYPES 25

1 behavior B1(in signal bit [16] a,
2 in signal bit [16] b,
3 out signal bit [16] c)
4 {
5 void main(void)
6 {
7 while (true)
8 {
9 wait a, b;
10 c=a+b
11 }
12 1
13 };
14
15 behavior B2(in signal bit [1] CLK,
16 in signal bit [16] a,
17 in signal bit [16] b,
18 out signal bit [16] ¢)
19 {
20 void main(void)
21
22 while (true)
23 {
24 wait CLK rising ;
25 c=a+b
26 }
27 1
28 };
Notes:

i. A variable of type classignal can be viewed as a composite variable which contains

an event, a current value and a new value. Whenever the signal is used in place of an
event, such as with theait or notify statements, the event of the signal is accessed.
On the other hand, if the signal is accessed in any expression, the current value is
used for read access, and the new value is used for write access.

ii. Any assignment to a signal will write to the new value and also notify the event of

the signal. Then, the new value will be copied to the current value at the time the
notified event is delivered. Thus, the signal will be updated (with a slight delay) and

26

CHAPTER 2. SPECC LANGUAGE

any behaviors waiting for the update of the signal will be notified about the arrival of
a new value.

iii. A signal can also be viewed ashaiffered variable with a built-in clock event (and

no reset condition).

Since a signal can be used whenever an event is expected, a signal can also be used
with thewait andnotify statements (see the example and Section 2.4.6), or with the
try -trap-interrupt statement (see Section 2.4.7). In these casesisihg or falling
operators can be used conveniently to react only to the rising or falling edges of the
signal.

The example shows two behaviddd and B2 which add the values given at their
input portsa andb and write the result to their output part B1is modeled as a
combinatorial component. It reacts immediately to any change of the input values.
B2, on the other hand, is modeled as a sequential component. It recomputes its output
only at the rising edge of theLK input port.

2.2. SPECCTYPES 27

2.2.7 Buffered type

Purpose: Representation of clocked storage components

Synopsis:

default _declaring ist =

| signal _class declaration qualifier list identifier _declarator
initializer opt

| signal _class type _qualifier Jlist identifier _declarator
initializer opt

declaring list =

| signal _class declaration _specifier declarator initializer _opt
| signal _class type _specifier declarator initializer _opt

port _declaration =
port _direction signal _class _opt parameter _declaration

| ...

signal _class _opt =
<nothing >
| signal _class

signal _class =

| buffered
| buffered [clock _specifier T
| buffered [clock _specifier '} reset signal _opt 7T

clock _specifier =
event _list
| constant
| 'C time)

event _ist =
event _identifier
| event _ist ’; event _identifier
| event ist * ||' event _identifier

event _identifier =
identifier

28 CHAPTER 2. SPECC LANGUAGE

| edge selector identifier
| identifier edge _selector

edge _selector =
rising
| falling

time =
constant _expression

reset _signal _opt =
<nothing >
| identifier
| ' identifier

Semantics:

(a) Thebuffered type class defines an implicit composite type for the representation of
clocked storage components such as registers, register files, or memories.

(b) Thebuffered type class can be specified for ordinary or composite types. It must not
be specified for aeventtype or asignal type class.

(c) Thebuffered type class must not be used as a member of any composite or aggregate
type.

(d) A variable ofbuffered type is implicitly composed of a current and a new value.

(e) A buffered variable can be used in an expression. For every read access, implicitly
the current value of the buffered variable is read. For every write access, implicitly
the new value of the buffered variable is written.

() The clock specifier of a buffered variable determines the internal or external clock
that updates the variable. An external clock is specified by an explicit event list. An
internal clock is specified by a time period given as a constant or constant expression.
The internal clock is an implicit periodic task that notifies update events in a periodic
fashion, where the periodic delay is given by the specified time period.

(g) Atthe time a clock event (internal or external) is received at the buffered variable, its
current value is updated with the new value, unless a reset signal is asserted.

2.2. SPECCTYPES 29

(h)

If specified, the reset signal of the buffered variable defines an asynchronous reset
of the variable. At any time it is asserted, the asynchronous reset signal resets the
buffered variable to its initial value. The initial value is determined by the specified
initializer for the variable. If no initializer is specified, the initial value defaults to
zero.

(i) The asynchronous reset signal must be specified as a variablgnal type class.

Optionally, the reset signal may be negated, which is specified by the !-operator.

(0 Anasynchronous reset is asserted whenever the value of the specified reset signal be-

(k)

comes non-zero. For a negated reset signal, an asynchronous reset is asserted when-
ever the value of the specified reset signal becomes zero.

As long as an asynchronous reset signal is asserted for a buffered variable, the vari-
able will contain its initial value. No value update will take place.

Example:
1 signal unsigned bit [1] CLK = 0,
2 RST = 1;
3 buffered [CLK rising ; 'RST] bit [16] Regl = 10,
4 Reg2 = 20;
5
6 void Swap(void)
7 {
8 Regl = Reg2;
9 Reg2 = Regl,
10 wait CLK rising ;
11 }
12
13 void Reset(void)
14
15 RST = 0;
16 waitfor 10;
17 RST = 1;
18 }

Notes:

30

CHAPTER 2. SPECC LANGUAGE

A variable of type classuffered can be viewed as a composite variable which con-
tains a current value and a new value. Whenever the buffered variable is accessed in
any expression, the current value is used for read access, and the new value is used
for write access.

ii. Any assignment to a buffered variable will write to the new value. The new value will

be copied to the current value at the time a clock event is notified. In other words, the
buffered variable will be updated with a delay of one clock cycle.

iii. An asynchronous reset signal can be specified to reset the buffered variable to its

Vi.

initial value. As soon and as long as the specified reset signal is asserted, the buffered
variable will have its initial value.

The example shows two buffered variabReglandReg2which represent registers
driven by the rising edge of a clock. Also, the registers have an asynchronous reset
condition which is active low.

The functionSwapin the example demonstrates how the contents of the registers can
be exchanged at a clock event.

The functionResetasserts the reset signal for the registers for a period of 10 time
units, resetting the registers to their initial values of 10 and 20.

2.2. SPECCTYPES 31

2.2.8 Time type

Purpose: Representation of time

Synopsis:

waitfor _statement =
waitfor time '’}

constraint =
range ' any _name ’; any _name '} time _opt ’; time opt’y

clock _specifier =

| constant

| 1(1 time 1)1
time _opt =

<nothing >

| time
time =

constant _expression

Semantics:

(&) The time type represents the type of time. Time is not an explicit type. It is an
implementation dependent integral type (for examptesigned long long in).

(b) The time type is used with theaitfor statement (see Section 2.4.8), with thege
statement in thdo-timing statement (see Section 2.4.9), and as a possible clock spec-
ifier in the buffered type (see Section 2.2.7) afgind statement (see Section 2.4.5).

Example:
1 event SystemClock;
2 const long long CycleTime = 10; // 10ns = 100MHz
431 void ClockDriver(void)
2 while (true)

32 CHAPTER 2. SPECC LANGUAGE

{ notify SystemClock;
waitfor (CycleTime);

}

O © o N

Notes:

i. Note that the physical unit of the time type is not defined by the SpecC language.
Instead, users should follow a general convention to use the same time unit (such as
nano seconds) in all designs and tools in order to simplify integration and interoper-
ability.

2.3. SPECC CLASSES 33
2.3 SpecC classes

2.3.1 Behavior class

Purpose: Representation of active objects; container for computation

Synopsis:

behavior _declaration =
behavior _specifier port _list _opt implements _interface _opt

behavior _definition =
behavior _specifier port _list _opt implements _interface _opt
"{" internal _definition dist opt’ } Y

behavior _specifier =
behavior identifier

implements interface _opt =

<nothing >

| implements interface ist
interface list =

interface _name

| interface ist ’; interface -name
primary _expression =

| this
Semantics:

(&) Abehavioris a class for encapsulation of computation.

(b) A behavior declaration is a class declaration that consists of an optional set of ports
and an optional set of implemented interfaces.

(c) A behavior is compatible with another behavior if and only if the number and the
types of the behavior ports and the lists of implemented interfaces match.

34

(d)

(e)

(f)

@

(h)

CHAPTER 2. SPECC LANGUAGE

A behavior definition contains a behavior body which consists of an optional set
of local variable declarations and/or definitions, an optional set of behavior and/or
channel instantiations, an optional set of method declarations and/or definitions, and
a mandatorynainmethod declaration or definition.

Through its ports, a behavior can communicate with other behaviors or channels.
This is described in detail in Section 2.3.4.

If specified, themplementskeyword declares the list of interfaces (see Section 2.3.3)
that are implemented by the behavior. All the methods of all the listed interfaces
must be implemented as methods in the behavior body. Only these methods, and
the mandatorymain method, can be called from outside the behavior (via suitable
interfaces). All other methods are private to the behavior.

A behavior definition (a behavior with a body) requires that all listed implemented
interfaces are previously fully defined (not only declared).

A behavior that implements an interface can refer back to itself by use dhithe
keyword. this can only be used within the scope of the behavior body. The type of
this is the behavior typethis can be passed as an argument to a function or method.
In this case, the type of the argument whibls is assigned to, must be an interface
type implemented by the behavior.

(i) A behavior can instantiate other behaviors or channels. This is described in detail in

Section 2.3.5.

() The mainmethod of a behavior is called whenever an instantiated behavior is exe-

(k)

cuted. The completion of th@ain method determines the completion of the execu-
tion of the behavior.

As a short cut, thenain method of a behavior can be called by a statement that
consists of only a behavior instance name. For a behavior instanbe statement
b; is equivalent to the statememimain();

(D A SpecC program starts with the execution of theinmethod of theMain behavior.

2.3. SPECC CLASSES 35

Example:
1 behavior B (in int pl, out int p2)
2 {
3 int a, b;
4
5 int f(int Xx)
6 {
7 return (X x X);
8 }
9
10 void main(void)
11 {
12 = pl,; // read data from input port
13 = f(a) // compute
14 p = b; // output result to output port
15 }
16 };
Notes:

i. The example shows a simple leaf behaBoFor typical composite behaviors, please
refer to Sections 2.4.1t0 2.4.7.

ii. Local variables and methods, such asb, andf in the example, can be used to
describe the functionality of a behavior. The actual functionality of the behavior is
determined by the execution of msain method.

iii. Declarations of behaviors are sufficient to determine compatibility of the behaviors.
The behavior body is not needed for this. This is important for reuse of IP and "plug-
and-play”.

iv. In contrast to members aftruct or union definitions, the members of a behavior
cannot be accessed from the outside, unless through the implemented interfaces. Note
also that only the behavior methods can be made accessable through interfaces, not
the variables.

v. A behavior is called a composite behavior if it contains instantiations of other behav-
iors. Otherwise, it is called a leaf behavior.

36

Vi,

CHAPTER 2. SPECC LANGUAGE

Please note that, althoughain andMain are recognized by the SpecC compiler as
names denoting the start of the program and start of a behavior, these names are not
keywords of the SpecC language.

vii. The behaviorMain usually is a composite behavior containing the test bench of the

viii.

design as well as the instantiation of the actual design under test.

Implemented interfaces are rarely used with behaviors. However, they are useful for
communication schemes that involve call-backs. For example, in a call-back commu-
nication, a connected channel implementing a communication protocol can call-back
methods provided by the behavior that is calling the channel. In order to enable the
channel to call-back the behavior, the channel needs to have a "pointer” to the be-
havior. This pointer is passed to the communication method in the channel as an
argument of interface type. This argument is supplied by the behavior implementing
the call-back by use of thilis keyword.

. Note that the type athis is a class in SpecC, not a pointer to a class as in C++.

2.3. SPECC CLASSES

2.3.2 Channel class

37

Purpose: Representation of passive objects; container for communication

Synopsis:

channel _declaration =
channel _specifier port _list _opt implements _interface

channel _definition =
channel _specifier port _list _opt implements _interface
"{" internal _definition dist opt’ } Y

channel _specifier =
channel identifier

implements interface _opt =
<nothing >
| implements interface list
interface list =

interfface _name
| interface ist ’, interface -name

Semantics:

(@) A channelis a class for encapsulation of communication.

(b) A channel declaration is a class declaration that consists of an optional set of ports

and an optional set of implemented interfaces.

(c) A channel is compatible with another channel if and only if the number and the types

opt

_opt

of the channel ports and the lists of implemented interfaces match.

(d) Achannel definition contains a channel body which consists of an optional set of local
variable declarations and/or definitions, an optional set of behavior and/or channel

instantiations, and an optional set of method declarations and/or definitions.

(e) Through its ports, a channel can communicate with other behaviors or channels. This

is described in detail in Section 2.3.4.

38

(f)

@

(h)

CHAPTER 2. SPECC LANGUAGE

If specified, themplementskeyword declares the list of interfaces (see Section 2.3.3)
that are implemented by the channel. All the methods of all the listed interfaces must
be implemented as methods in the channel body. Only these methods can be called
from outside the channel (via suitable interfaces). All other methods are private to
the channel.

A channel definition (a channel with a body) requires that all listed implemented
interfaces are previously fully defined (not only declared).

A channel that implements an interface can refer back to itself by use dhithe
keyword. this can only be used within the scope of the channel body. The type of
this is the channel typethis can be passed as an argument to a function or method.
In this case, the type of the argument whibls is assigned to, must be an interface
type implemented by the channel.

(i) A channel can instantiate other behaviors or channels. This is described in detail in

Section 2.3.5.

() For each instance of a channel, the channel methods are mutually exclusive in their
execution. Implicitly, each channel instance has a mutex associated with it that the
calling thread acquires before and releases after the execution of any method of the
channel instance. Further, all mutexes a thread has acquired from any channel in-
stances are implicitly released before and re-acquired after the executionwé#ny
andwaitfor statements.

Example:

1
2
3
4
5
6
7
8
9
0

1

interface |

void send(int);
int receive(void);

h

channel C implements |

{
int d;

2.3. SPECC CLASSES 39

11
12
13
14
15
16
17
18
19
20

void send(int x)

{
}

int receive(void)

d = x;

return (d);

b

Notes:

Vi.

The example shows the definition of an interfdcthat specifiesendand receive
methods. A channél implements the interfadeby providing a (very simple) imple-
mentation of thesendandreceivemethods by use of an encapsulated integer variable
d.

. In terms of communication, the methods of a channel specify the communication

protocol, whereas the variables of a channel resemble the communication media.

A channel is called a hierarchical channel if it contains instantiations of other chan-
nels. Otherwise, it is called a leaf channel. A channel is called a wrapper if it instan-
tiates one or more behaviors.

Declarations of channels are sufficient to determine compatibility of the channels.
The channel body is not needed. This is important for reuse of IP and "plug-and-

play”.

In contrast to members dftruct or union definitions, the members of a channel
cannot be accessed from the outside, unless through the implemented interfaces. Note
also that only the channel methods can be made accessable through interfaces, not the
variables.

For hierarchical communication schemes that involve call-backs, a lower level chan-
nel can call-back methods provided by a higher-level channel that called the lower-
level channel. Here, the higher-level channel passes a handle to himself as an ar-
gument to the lower-level channel by use of this keyword. Then, the lower-level

40

Vil.

viii.

Xi.

Xii.

Xiii.

CHAPTER 2. SPECC LANGUAGE

channel can in turn call-back methods implemented by the higher-level channel. Note
thatthis can only be passed as an argument if the argument is of an interface type
that is implemented bthis channel.

Note that the type ofhis is a class in SpecC, not a pointer to a class as in C++.

Note that for safe communication among concurrent threads, the access to the com-
munication variables encapsulated in channels must typically be protected such that
no two methods access the same variables at the same time. This protection is guar-
anteed by the mutex that is implicitly associated with each channel instance. In other

words, the required protection of the shared resources in channels is automatically

built-in with each channel instance.

. Whenever a thread is about to execute a method provided by a channel instance, the

thread has to acquire the mutex of the channel instance first, in order to ensure that no
other thread is executing any code from the same channel instance. After acquiring
the mutex, the thread can execute the channel method. When done, the thread must
release the mutex again in order to allow other threads to use the same channel.

. Furthermore, releasing the channel mutex befonai or waitfor statement is im-

portant in order to ensure a deadlock-free execution. Otherwise, a thread may be
waiting for notification by another thread which is blocked because it cannot acquire
the mutex owned by the waiting thread.

Note that acquiring and releasing of channel mutexes is implicit. That is, it is handled
automatically by the simulator or refinement tools. There is no need for the user to
worry about this.

Note that the implicit mutex in a channel instance is not necessarily required to be
present in an implementation. For example, in a non-preemptive simulation algorithm
that always executes only one thread at a time, no conflict in running two threads in
the methods of a channel instance is possible. Thus, no explicit mutex is required in
this case.

Note that the mutual exclusion in executing methods of channel instances does not
imply that the methods are executed in non-preemptive (atomic) manner. That is, a

2.3. SPECC CLASSES 41
thread executing a channel method is not guaranteed to be not interrupted by other
threads. However, it will not be interrupted by any thread that is executing any
method of the same channel instance, unless, of course, it is waiting for an event
(at await statement) or waiting for simulation time increase (atatfor statement).

42 CHAPTER 2. SPECC LANGUAGE

2.3.3 Interface class

Purpose: Representation of interfaces between behaviors and channels; container for in-
terface method declarations

Synopsis:

interface _declaration =
interface _specifier ’;’

interface _definition =
interface _specifier ’ {" internal _declaraton ist _opt’ }'

interface _specifier =
interface identifier

internal _declaration _ist _opt =
<nothing >
| internal _declaration
| internal declaration list internal _declaration

internal _declaration =
declaration
| note _definition

Semantics:

(&) Aninterface is a class that contains declarations of methods which are implemented
in channels or behaviors. Via an interface, a class can call methods provided by
another class thatplementsthe interface.

(b) An interface declaration consists of the keywaortdrface followed by its name.

(c) An interface definition contains an interface body which consists of an optional set
of method declarations. No variable declarations or definitions, no behavior or chan-
nel instantiations, and no method definitions must be contained in the scope of an
interface body.

(d) An interface is a type that may be used for behavior or channel ports, or for function
or method arguments. An interface cannot be instantiated.

2.3. SPECC CLASSES 43

(e) A port of interface type must be mapped onto a behavior or channel instance (see
Section 2.3.5) thamplementsthe interface.

() An argument of interface type must be initialized thys within the scope of a behav-
ior (see Section 2.3.1) or channel (see Section 2.3.2jitiiementsthe interface.

(g) A port or argument of interface type can be used to call a method declared by the
interface. The actual method definition called by such an interface call is determined
by the mapping of the interface port or argument.

Example:
1 interface I
2 {
3 void send(int Xx);
4 int receive(void);
5}
6
7 channel C implements |,
8
9 behavior BI1(l i)
10 {
11 void main(void)
12
13 i.send(42);
14 }
15 };
16
17 behavior B2
18 {
19 C C;
20 B1 Db(c);
21
22 void main(void)
23
24 b.main();
25 }
26 };

Notes:

44

CHAPTER 2. SPECC LANGUAGE

Interfaces provide a flexible way of communication between behaviors and channels.
By use of interfaces, both behaviors and channels become easily interchangeable with
compatible components ("plug-and-play”).

ii. Typically, there are many channels (or behaviors) which implement an interface. Be-

cause each channel (or behavior) is required to provide an implementation for all
methods declared in the interface, any one of these channels (or behaviors) may be
used in a mapping of a port of the interface type. Thus, the implementation of the
interface methods (typically a communication protocol) can be easily exchanged, just
by mapping the interface port to a compatible channel (or behavior) instance.

iii. The example shows amterface | which declares aendand areceivemethod as

a simple communication protocol. The chan@eimplements the interfack (even
though the actual implementation in the channel body is not shown), so it may be
used as a mapping for the interface.

BehaviorB1 in the example has a parbf the interface typé. Via this port,B1 can
call the methods provided hyas is shown in line 13 where tsendmethod is called.

BehaviorB2 shows an instance of the channelC in line 19. Then in line 20, a
behaviorb of type Bl is instantiated and its port is mapped onto the chaonBlote
that the port is of interface tyde which is implemented by the chanr@l

2.3. SPECC CLASSES

2.3.4 Ports

Purpose: Representation of communication ports

Synopsis:

port _list _opt =
<nothing >
)
| 'C port list)
list =

port _declaration

| port _list '}

port
port _declaration
_declaration =

port _direction
| interface

port
signal
_parameter

class _opt parameter

_direction =
<nothing >
| in
| out
| inout

port

interface _parameter =
interface _name

| interfface _name identifier

Semantics:

45

_declaration

(a) Behavior and channel classes have a list of ports through which they communicate.
These ports are defined with the declaration of the behavior or channel they are at-

tached to (similar as function parameters are defined with a function declaration).

(b) A port can be one of two types: standard or interface type.

(c) A standard type port is of any SpecC type. In addition, a port direction may be
specified as a port type modifier which restricts the way the port can be accessed and

connected.

46 CHAPTER 2. SPECC LANGUAGE

(d) The port direction can bi@, out, orinout. If unspecified, the port direction defaults
to inout.

(e) Anin port allows only read access from within the class scope, and only write access
from the outside.

() An out port allows only write access from within the class scope, and only read
access from the outside.

(g) Aninout port may be accessed bidirectionally.

(h) For a port of event or signal type, read access is performedimitatrap, or inter-
rupt statement on the event, or when used as clock specifier, sensitivity list or reset
condition with thefsmd statement obuffered data type. Write access is performed
by anotify or notifyone statement on the port.

() An interface type port allows to call the methods provided by the interface class. An
interface type port must not have any port direction.

Example:

1 behavior B(in int pl, out int p2, in event clk);
2
3 interface l;
4
5

channel C(inout bool f) implements I,

Notes:

i. The example shows a behaviBmwith an input porfpl, an output porp2, and a clock
input portclk.

ii. The channelC has a bidirectional poft

2.3. SPECC CLASSES 47

2.3.5 Class instantiation and port mapping

Purpose: Structural hierarchy and connectivity of behaviors and channels

Synopsis:

instance _declaring list =
behavior _or channel instance _declarator
| instance _declaring ist '/ instance _declarator

behavior _or _channel =
behavior _name
| channel _name

instance _declarator =
identifier port _mapping Jist _opt

port _mapping list _opt =
<nothing >
| 'C port _mapping list °)

port _mapping _list =
port _mapping -opt
| port _mapping _list '’ port _mapping _opt

port _mapping opt =
<nothing >
| port _mapping

port _mapping =
bit _slice
| port _mapping '@ bit _slice

bit _slice =
constant
| ’(constant _expression)’
| identifier
| identifier T constant _expression '’ constant _expression T
| identifier T constant _expression T

Semantics:

48

(@)

(b)

()

(d)

()

CHAPTER 2. SPECC LANGUAGE

Structural hierarchy is described by child behaviors and/or child channels instantiated
as components inside compound behaviors and channels.

Connectivity is described by the mapping of the ports of child behaviors and/or child
channels.

At class instantiation, a port mapping list defines the mapping for each port of the
class. The number of ports must match the number of mappings in the port mapping
list. If there are no ports, then no port mapping list must be specified.

A port mapping maps a port of the instantiated class onto a constant, variable, port or
instance of suitable type, or is left open.

A constant port mapping is only allowed for ports with port direciion Unless a
constant literal is specified directly, a constant expression in parenthesis is evaluated
to a constant at compile time. The type of the constant must be convertable to the

port type.

(H An open port mapping is only allowed for ports with port directiout.

@

(h)

(i)

For a port mapping to a variable, the variable type must match the type of the port.
The port direction is not considered part of the port type in this matching.

For a port mapping to a port of the parent class, the types (without port direction) of
both ports must