SpecC Design Environment

Abstraction Levels

- Requirements (attributes + constraints)
- Specification (untimed)
- Architecture (execution delays)
- Communication (timed)
- Implementation (cycle-accurate: RTL+IS)
- Gate Level (sub-cycle delays)
- Layout (continuous time)
- Manufacturing (real time)
Validation Levels

- Requirements (attributes + constraints)
 - Specification (untimed)
 - Architecture (execution delays)
 - Communication (timed)
 - Implementation (cycle-accurate: RTL+IS)
 - Gate Level (sub-cycle delays)
 - Layout (continuous time)
 - Manufacturing (real time)

- Functionality
 - Structure
 - Protocols
 - Performance
 - Clock cycle
 - Spacing

SpecC Scope

- Requirements (attributes + constraints)
 - Specification (untimed)
 - Architecture (execution delays)
 - Communication (timed)
 - Implementation (cycle-accurate: RTL+IS)
 - Gate Level (sub-cycle delays)
 - Layout (continuous time)
 - Manufacturing (real time)

- Specification (SW+HW)
 - VHDL
 - Verilog (HW)
 - EDIF
 - GDS II
 - Masks
SpecC Methodology

- 4 models
- 4 databases
- 3 refinements
- 2 flows
- 1 language
- “0” effort

SpecC Refinement

Capture

Specification model

Arch. refinement

Architecture model

Comm. refinement

Communication model

Impl. refinement

Implementation model
Refinement User Interface (RUI)

- Algorithm selection
- Browsing
- Spec. optimization
- Allocation
- Beh. partitioning
- Scheduling / RTOS
- Protocol selection
- Channel partitioning
- Arbitration
- Cycle scheduling
- Protocol scheduling
- SW assembly

Capture

Specification model

- Arch. refinement
- Architecture model

Communication model

- Comm. refinement
- Communication model

Specification model

- Impl. refinement
- Implementation model

User Feedback

- Algorithm selection
- Browsing
- Spec. optimization
- Allocation
- Beh. partitioning
- Scheduling / RTOS
- Protocol selection
- Channel partitioning
- Arbitration
- Cycle scheduling
- Protocol scheduling
- SW assembly

Capture

Profiling

Profiling data

Arch. refinement

Architecture model

Estimation

Architecture model

Estimation results

Comm. refinement

Communication model

Estimation

Communication model

Estimation results

Impl. refinement

Implementation model

Implementation model
Conclusions

- **SpecC methodology fits a new paradigm**
 - SW = HW = SOC = Embedded System

- **SpecC methodology enabling technology**
 - e-Design
 - IP trading
 - SW/HW co-design
 - Mass customization

- **4 SpecC engines**
 - Modeling
 - Refinement
 - Exploration
 - Synthesis