RELEASE NOTES: SpecC Language Reference Manual, Version 2.0 (COctober 31, 2002)

Thi s SpecC Language Reference Manual (LRM version 2.0 is based on
t he previous version, SpecC LRM V1.0, dated March 6, 2001

The follow ng nodifications have been applied:

* the abstract, the introduction and the references have been extended
and updat ed

* the |ist of nenbers of the | anguage specification working group (LS-W5
has been added to the contributors section

* a new appendi x B has been added with a description of the standard
SpecC library; for now, the library consists of:
- APl to the sinulation engine (which always was there but never had been
docunented so far)
- SpecC standard channels (new y added as di scussed under synchronization
see bel ow)

* in the SpecC | anguage definition (chapter 2), nany sections have been
clearified and updated, some were conpletely rewitten; also, the witing
style and the English have been inproved; finally, the exanpl es have
been fixed so that they actually contain valid SpecC code

* the SpecC syntax and gramar have been updated to reflect all changes
i ntroduced with SpecC version 2.0; in particular, the follow ng new
keywor ds have been added:

- 'fsmd’ (see section 2.4.5)
- 'signal’ (see section 2.2.6)
"buffered’” (see section 2.2.7)
- 'rising’ (see sections 2.2.6, 2.4.5)
- 'falling (see sections 2.2.6, 2.4.5)
- fix (reserved for future fixed-point data type, section A 1.5)

* Atomicity / Preenptive execution senmantics

[voting item 1 / discussion item1.1]

- chapter 3 about SpecC execution semantics based on tinme interva
formali sm has been added; al so, several notes have been added
to appropriate sections that there is no atomicity guarantee
for any SpecC execution and preenptive execution is possible

* Mutual excl usion
[voting item 2 / discussion item 1. 2]
- the nutual exclusive execution of code in channels by use of
an inplicit nutex in each channel instance has been added
(see section 2.3.2, rule (j) and notes viii. through xiii.)

* Synchroni zati on semantics
[votlng item 3 / discussion item 1. 3]
chapter 3 defining the time interval formalism has been added
- the new section 3.5 addresses synchroni zation in SpecC execution senmantics
- in addition, section 3.6 describes an abstract sinulation algorithm
- finally, appendix B.2 has been added with a description of the SpecC
standard channel library

* Exception handl ers
[voting item 4 / discussion item1.4]
- the description of exception handling has been nodified to all ow
exceptions to occur at any tinme and place, non-determninistically chosen
(see section 2.4.7, rule (d) and note i.)

* Fi xed-poi nt data type
[voting item5 / discussion item 2.1]
- since the introduction of a fixed-point data type has been agreed upon
but is postponed for a later version of SpecC, only the new keyword 'fix’
has been added to the reserved keywords in section A 1.5

* Di stinguishing notified events
[voting item 6 / discussion item 2. 2]
- although no real change was required, an explaining sentence has been
added to the notes in Section 2.4.6

* AND conditions for event wait statenent
[voting item 7 / discussion item 2. 3]
- extended the SpecC grammar to allow AND operator for 'wait’ statenents
- for consistency, the OR operator has been added also for "wait’ statenents
(with the sane semantics as the old comma operator)
- added/nodified the rules for the semantics of 'wait’ and added
two explaining notes (see rules 2.4.6 (d) and (e), and notes i. and ii.)

* Sinplify the notation of par/pipe/try statenent

[voting item 8 / discussion item 2. 4]

- a short cut for the notation of behavior 'main’ calls has been added
to the rules for behaviors (see rule 2.3.1(k))

- now the statenent "b;" is equivalent to the statenent "b.main();"

- note that this feature does not require any change in the granmar
because it syntactically falls into the grammar rul es of expressions

- as a consequence, these short-cuts are allowed anywhere in the code,
not only within the 'par’, 'pipe’, '"try' -"trap’ -'interrupt’ constructs

- in order to point out the usefulness of this short-cut, appropriate
not es have been added to the descriptions of sequential execution and
the "par’, 'pipe’ and 'try -'trap -'interrupt’ statements

* Local method function call in FSM st at enent

[votlng item9 / discussion item 2. 6]
extended the grammar of the 'fsm construct such that a conmpound
statement with local code is allowed between the state nanme and the col on

- note that the original syntax described in the voting proposal is very
anbi guous and cl ashes with regul ar conpound statenents; therefore,
a different syntax/grammar needed to be sel ected

- note that this syntax also has the advantage that it keeps the state code
and state transistions clearly separated by the col on

- the rules of the 'fsni statenent have been adjusted and extended in order
to acconodate the option of |local states (see section 2.4.4)

* Extension of persistent annotation
[voting item 10 / discussion item 2.7]
- extended the SpecC grammar to all ow conposite annotations
- reworked, clarified and extended the description of annotations
and the exanple accordingly (see section 2.5.2)

* Modeling RTL in SpecC

[vot|ng item 11 / discussion item 3.1]

added keymords and extended the SpecC gr anmar to support
"signal’ and 'buffered data types, 'rising’ and 'falling’ operators

on signals, and the 'fsnd’ construct

- added section 2.2.6 defining 'signal’ data types, plus an exanple

- added section 2.2.7 defining 'buffered” data types, plus an exanple

- added section 2.4.5 defining the 'fsnd’ construct, plus an exanple

- note that sone changes to the original voting proposal were necessary
in order to have a non-anbi guous syntax and granmar

- the keywords 'rising’ and 'falling’ have been introduced in order
to avoid anbiguities regarding the sensitivity to val ue changes of signals

- the inplicit infinite loop of the 'fsnd’ statenent has been dropped
because it is not necessary and woul d prohibit conposite FSMDs

- asynchronous reset has been refined to an explicit reset signal which
al so can be specified for 'buffered variables (the original proposa
using the "trap’ keyword was ambi guous and not i npl enent abl e)

* finally, numerous small changes, adjustnents and clarifications
have been applied to the docunent

For any kind of feedback, bug reports or other suggestions,
t he authors can be reached best by emmil:

Rai ner Doener <doemrer @ecs. uci . edu>
Andreas Cerstlauer <gerstl @ecs. uci.edu>
Dani el Gj ski <gaj ski @ecs. uci . edu>

Best regards,

Rai ner Doener, Novenber 1, 2002.

