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Abstract

This SpecC language reference manual (LRM), version 2.0, defines the syntax and the
semantics of the SpecC language 2.0. This document is based on the SpecC LRM version
1.0, dated March 6, 2001. It has been modified and extended according to the results of
the work done by the SpecC language specification working group (LS-WG) of the SpecC
Technology Open Consortium (STOC).

The SpecC language is defined as extension of the ANSI-C programming language.
This document describes the syntax and semantics of the SpecC constructs that were added
to the ANSI-C language.

For each SpecC construct, its purpose, its syntax, and its semantics are defined. In addi-
tion, each SpecC construct is illustrated by an example. The SpecC execution semantics are
formally defined by use of a time interval formalism and an abstract simulation algorithm.

In the appendix, the complete SpecC grammar is included by use of an extended
Backus-Naur form (EBNF), and the contents of the SpecC standard library are defined.



CONTENTS



Chapter 1

Introduction

The SpecC language is a formal notation intended for the specification and design of digital
embedded systems, including hardware and software portions. Built on top of the ANSI-C
programming language, the SpecC language supports concepts essential for embedded sys-
tems design, including behavioral and structural hierarchy, concurrency, communication,
synchronization, state transitions, exception handling, and timing.

This document defines the syntax and the semantics of the SpecC language, version 2.0.
This version 2.0 is based on the SpecC LRM version 1.0 [7]. It incorporates the results of
the language specification working group (LS-WG) established by the SpecC Technology
Open Consortium (STOC).

Since the SpecC language is a true superset of the ANSI-C programming language, this
document only covers the language constructs not found in ANSI-C. For detailed informa-
tion about the syntax and semantics of ANSI-C, please refer to the ISO Standard ISO/IEC
9899 [1].

Chapter 2 defines the foundation, the types, the classes, the statements, and other con-
structs of the SpecC language. Chapter 3 then defines the execution semantics of the SpecC
language by use of a formal notation called time interval formalism. In addition, an abstract
simulation algorithm for SpecC program execution is given.

In Appendix A, the complete grammar of the SpecC language is included. Finally,
Appendix B defines the contents of the SpecC standard library.

3



4 CHAPTER 1. INTRODUCTION

1.1 Brief history of the SpecC language

The first version of the SpecC language was developed in 1997 at the University of
California, Irvine (UCI) [4]. While many concepts supported by the SpecC language
were new at that time, some concepts were based on previous research, for example, the
SpecCharts|[2, 3] language.

In the following years, research on system design with the SpecC language was intensi-
fied at UCI and early tools including a SpecC compiler and a simulator were implemented.
Highlights of this research have been published in the first book on SpecC, "SpecC: Speci-
fication Language and Methodology” [5], in 1999.

At the same time, the SpecC language gained world-wide acceptance in industry, reach-
ing a major milestone in the SpecC history, the foundation of the SpecC Technology Open
Consortium (STOC) in 1999 [10]. STOC was founded with the goal of promoting the
SpecC idea by standardizing the SpecC language and establishing design guidelines, indus-
try collaboration and interoperability among design tools, based on SpecC.

Since the foundation of STOC, a second book on SpecC, entitled "System Design: A
Practical Guide with SpecC” [8], was published and the SpecC technology advanced fur-
ther, driven by industrial and academic work in general, and by the formation of two STOC
working groups in particular, namely the case study (CS-WG) and language specification
working groups (LS-WG). As a result of the latter, the SpecC language was refined and
extended, leading to its second generation, SpecC 2.0.

This document defines the version 2.0 of the SpecC language standard approved by
STOC.

1.2 Contributors

This document is the result of the work of the language specification working group (LS-
WG) of STOC. The authors wish to thank all active members of this working group for
their fruitful discussions, their valuable contributions, and helpful suggestions.

At the time of approval of SpecC 2.0, the SpecC LS-WG consists of the following
members, listed in alphabetical order:

Yamada Akihiko, Dai Araki, Przemyslaw Bakowski, Ken-ichi Chiboshi, Rainer Doe-
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mer, Takashi Eda, Hans Eveking, Masahiro Fujita, Hiroshi Fukutomi, Daniel Gajski,

Rajesh Gupta, Tedd Hadley, Roger Hale, Alan Hu, Masato Igarashi, Masaki Ito,

Steven Johnson, Yamashiro Kenji, Tsuneo Kinoshita, Srivas Mandayam, George Milne,
Hiroshi Nakamura, Mike Olivarez, Alex Orailoglu, Sreeranga Rajan, Yoshisato Sakali,

Thanyapat Sakunkonchak, Komatsu Satoshi, Yamaguchi Suguru, Tanimoto Tadaaki,
Ishii Tadatoshi, Hiroaki Takada, litsuka Takayoshi, Shinsuke Tamura, Shibashita Tetsu,
Hiroyuki Tomiyama, Nakamura Toshihiko, Eugenio Villar, Wayne Wolf, Kodama Yuetsu.
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Chapter 2

SpecC Language

2.1 Foundation

The SpecC language is based on the ANSI-C programming language as defined in ISO
Standard ISO/IEC 9899 [1].

Unless specified otherwise in this document, the syntax and semantic rules specified for
ANSI-C are also valid for SpecC. Also, the SpecC constructs described in this document are
designed as straightforward extensions, to which the usual ANSI-C semantics are applied,
whenever possible.

2.1.1 Array assignment

In contrast to ANSI-C, the SpecC language allows the assignment of variables of array type.
Syntactically, such array assignment is specified in the same manner as basic variables are
assigned.

The assignment of a whole array is equivalent to the assignment of every element in the
source array to the element with the same index (or indices in case of multi-dimensional
arrays) in the target array.

For array assignments, the target and source arrays must have the same type and the
same dimensions. As the result of an array assignment, the target array will have the same
contents as the source array.

The result type of an array assignment operatioroid. This is in contrast to standard

7



8 CHAPTER 2. SPECC LANGUAGE

assignment operations where the result type is given by the type of the left argument. As a
consequence, an array assignment operation may not be used as a subexpression in another
expression (but only as an expression statement).

Example:
1 int a[10],
2 b[10];
3 double  ¢[3][3],
4 d[3][3],
5 e[3][3];
6
7 void f( void )
8 {
9 a = b; // array assignment
10 c = d; // array assignment
11 c[2] = d[1]; // sub —array assignment
12 /¢ = (d = e); // illegall
13 }

2.1.2 Variable initialization

In contrast to ANSI-C, the SpecC language initializes every variable that is statically de-
clared in the SpecC description. Unlesstatic variable has an explicit initializer specified
by the user, the variable is implicitly initialized with zero (while it would be uninitialized
in ANSI-C).

Variables defined in global scope without storage class specification are considered
static, as are variables defined in class scope.

Example:
1 int i =0, // explicitly initialized to 0
2 i2; // implicitly initialized to 0
3 char C; // implicitly initialized to ’ \ 000’
4 float f; // implicitly initialized to 0.0f
5 void *P; // implicitly initialized to 0 (NULL)
6 long I12]; // implicitly initialized to {ool }
7
8 void fct( void )
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9 {
10
11
12
13
14 }
15

int X;
static int Y;
/s

16 behavior B

17 {
18
19
20
21
22
23
24
25 }

bool b;
double d

3

void main( void )

{
}

/o

// uninitialized
// initialized to O

// initialized to false
// initialized to 0.0
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2.2 SpecC types

2.2.1 Boolean type

Purpose: Explicit representation of Boolean values
Synopsis:

basic _type _name =

| bool
constant =

| false

| true
Semantics:

(a) A Boolean value, of typbool, has one of two valuestue or false

(b) A Boolean value can be used to hold the result of logical and relational operations
(e.g.!, &&, <, >, ==, etc.).

(c) If converted (implicitly or explicitly) to an integer typerue becomes 1 anéhlse
becomes 0.

(d) A Boolean type cannot tegnedor unsigned

Example:
1 bool f( bool bl, int a)
2 {
3 bool b2;
4
5 if (bl == true )
6 { b2 =>b1l || (a > 0)
7 }
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8 else
9 { b2 = Ib1;
10 }
11 return (b2);
12 }

Notes:

i. The typeboolin SpecC is equivalent to the tyjp@ol in C++.

11
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2.2.2 Longlong type

Purpose: Representation of very large integer values

Synopsis:
decinteger I {decinteger  }[IL]IL]
octinteger I {octinteger  }[IL]ML]
hexinteger I {hexinteger  }ILJ[IL]
decinteger il {decinteger  }([uU]lL]L] J]|[®][319]))
octinteger {octinteger  }([uUJIL]IL] [[IL]iL]uu)
hexinteger .l {hexinteger  }(uUJL]IL] [[IL]iL]uu)
basic _type _name =

int

| long

| ...

| signed

| unsigned

basic _type _specifier =
basic _type _name
| basic _type _specifier basic _type _name

constant =

| integer

Semantics:

(&) An integer literal of typesigned long long intis specified with a suffiX, where the
suffix is case-insensitive.

(b) An integer literal of typaunsigned long long intis specified with a suffixill or llu,
where the suffix is case-insensitive.

(c) Thelong long int type is an integral data type for very large values. The number of
bits of the representation is equal to or higher than the number of bits of the repre-
sentation of théong int data type.
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(d) Thelong long int type can besignedor unsigned

(e) The usual type promotion and type conversion rules apply.

Example:
1 bool Boolean;
2
3 char Character;
4
5 unsigned char UCharacter;
6
7 short Short;
8
9 unsigned short UShort;
10
11 int Integer;
12
13 unsigned int Ulnteger;
14
15 long Long;
16
17 unsigned long ULong;
18
19 long long LongLong;
20
21
22 unsigned long long ULongLong;
23

Notes:

i. The example shows the standard integral types of the SpecC language and their typi-

cal storage sizes and value ranges.

/1 bit

// [false=0, true=1]

/8 bit, signed

/[ —128, 127]

/8 bit, unsigned

// [0, 255]

// 16 bit, signed

/[ —32768, 32767]

// 16 bit, unsigned

// [0, 65535]

// 32 bit, signed

/[ —2147483648, 2147483647]
// 32 bit, unsigned

/[0, 4294967295]

// 32 bit, signed

/[ —2147483648, 2147483647]
// 32 bit, unsigned

/[0, 4294967295]

// 64 bit, signed

/[ —9223372036854775808,
// 9223372036854775807]
// 64 bit, unsigned

// [0, 18446744073709551615]
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Purpose: Representation of bit vectors of arbitrary length

Synopsis:

bindigit [01]

binary {bindigit  }+
bitvector {binary }[bB]

bitvector _u

{binary  }([uU][bB]
basic _type _name =

| signed

| unsigned
| bit
| bit

[ constant
[ constant

constant =
| bitvector

| bitvector  _u

postfix  _expression =

| postfix _expression [ comma

| postfix _expression [ constant
constant _expression T

concat _expression =

cast _expression
| concat _expression '@’

Semantics:

_expression '’ constant
_expression

|[oB][uU])

_expression

_expression T
-expression

cast _expression

(@) Abitvectorbit]l : r] represents an integral data type of arbitrary bit length. The length
of a bit vector is determined by its left and right bounds, as follolesigth(bv) =

abgleft(bv) —rright(bv) 4+ 1).
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(b)

()

(d)

()
(f)

@

(h)

(i)

0)

In arithmetic operations, the bit indicated by the left bound represents the most-
significant bit (MSB), whereas the bit indicated by the right bound represents the
least-significant bit (LSB). Except for the bit slice and bit access operations (see
below), a bit vector is always normalized to the boufi@sgth— 1 : 0] before any
operation is performed with it. Also, the result type of a bit vector operation is al-
ways normalized tdlength—1 : O], wherelengthis determined by the operand with
the greatest bit vector length.

As a short-cut, the typleit[length is equivalent tdit(l : r], wherel = length—1 and
r=0.

The left and right bounds$,andr, of a bit vector are specified at the time of declara-
tion and must be constant expressions which can be evaluated to constants at compile
time. The same applies to thengthspecifier for the short declaration.

A bit vector is eithesignedor unsigned

A bit vector can be used as any other integral type in expressions and the usual
conversion and promotion rules apply. (For example, iypéas equivalent to type
bit[sizeofint)*8—1:0].)

Implicit promotion from @nsigned int, (unsigned long, or (unsigned long long

to bit vector is performed when necessary. Hereby, the resulting bit vector length
is determined from the number of bits of the source type (which is implementation
dependent).

Automatic conversion, such agnedunsignedextension or truncation, is supported
for bit vectors as with any other integral type.

Bit vector constants are noted as a sequence of zeros and ones immediately followed
by a suffixb or ub indicating thesigned or unsigned bit vector type, respectively.
The suffix is case-insensitive.

In addition to the standard C operations, a concatenation operation, noted as @, and a
slicing operation, noted gkb : rb], are available in SpecC (see lines 11 and 13 in the
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example). Both operations can be applied to bit vectors as well as to any other integral
type (which will then be implicitly converted to a bit vector of suitable length).

(k) The binary operator @, applied to two bit vectagleft argument) and (right
argument), results in the concatenatiora@indb. The result type is a bit vector with
bounds{length(a) +lengthlb) — 1 : Q].

(I) The unary postfix operatdtb : rb], applied to a bit vectoa, results in a bit slice o
where the left-most bit is specified by indbéxand the right-most bit is specified by
indexrb. Ib andrb must be constant expressions which can be evaluated to constants
at compile time. The result type is a bit vector with boufaisgIb —rb) +1: Q).

(m) The unary bit access operafbt (similar to the array access operator) is available as
a short-hand for accessing a single [bit b] of a bit vector. The result type of this
operation isunsigned bif0 : 0].

Example:
1 typedef bit [3:0] nibble _type;
2 nibble _type a;
3 unsigned bit [15:0] C;
4
5 void f(nibble _type b, bit [16:1] d)
6 {
7 a = 1101B; // bitvector assignment
8 ¢ = 1110001111100011ub;
9 c[7:4] = a; // bitslice assignment
10
11 b = c[2:5]; // bitvector slicing
12 c[0] = c[16]; // single bit access
13 d=a @b @ c[0:15]; // bitvector concatenation
14 b += 42 + a x 12; // arithmetic operations
15 d ="(b | 10101010B); // logic operations
16 }
Notes:

i. A bit vector can be thought of as a parameterized type whose bounds are defined with
the name of the type.



2.2. SPECCTYPES 17

ii. Bit vector bounds and bounds of bit vector slices are required to be constants at
compile time. As a result, the length of any bitvector expression is always known at
compile time. This enables an efficient implementation of bit vectors.

iii. Note that the index of the bit access operatandgrequired to be a constant. A single
bit access always yields the bourifs 0], so there is no need for a constant index.

iv. Since bit vectors are fully integrated into the integral data types, there is typically no
need for explicit type casting in any operations involving bitvectors. Thus, bit vectors
may be used just as integers.

v. Note that, depending on the given bounds, bit slicing can reverse the order of the bits
in the result.

vi. Special port mapping rules apply to ports of bitvector type, see Section 2.3.5.
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2.2.4 Long double type

Purpose: Representation of high-precision floating point values

Synopsis:

digit 0 -9

integer {digit }+

exponent [eE]l+  —]? {integer }

fraction {integer }

floatl {integer }"." {fraction }?( {exponent })?
float2 """ {fraction }( {exponent })?
float3 {integer }{exponent }

floating {floatl }|{float2 }|{float3 }
float f {floating  }[fF]

float I {floating  }[IL]

basic type _name =
| long
| double

basic _type _specifier =
basic _type _name
| basic _type _specifier basic _type _name

constant =

| floating

Semantics:

(a) Afloating point literal can be attached the suffigpecifying it as typéong double
The suffix is case-insensitive.

(b) Thelong doubledata type is a floating point type with a high-precision representa-
tion. Its precision is equal to or higher than the precision ofdihieble data type.

(c) The usual promotion and conversion rules apply.
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Example:
1 float Float; // 32 bit
2 double Double; // 64 bit
3 long double LongDouble; // 96 bit
Notes:

i. The example shows the standard floating point types of the SpecC language and their
typical storage sizes.

ii. The typelong doublein SpecC is equivalent to the tyjpeng doublein C++.
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2.2.5 Eventtype

Purpose: Basic mechanism for synchronization and exception handling

Synopsis:

basic _type _name =
| event

wait _statement =
wait paren _event list
| wait paren _and_event list

notify  _statement =
notify  paren _event list '}
| notifyone paren _event list '}

exception =
trap paren _event list  compound _statement
| interrupt paren _event list compound _statement

paren _event list =

event _list
| 'C event _list )
event ist =
event _identifier
| event _list ’; event _identifier
| event ist * ||' event _identifier

paren _and_event _ist =
and _event _list
| 'C and _event list )

and _event _ist =
event _identifier '&&’ event _identifier
| and_event list '&& event _identifier

clock _specifier =
event _list

sensitivity dist _opt =
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<nothing >
| event _list

Semantics:

(a) Theeventtype is a special type that enables SpecC to support exception handling
and synchronization of concurrently executing behaviors.

(b) Theeventtype must not be combined with any other type, type modifier or type
qualifier. It must not be used as a member of any composite or aggregate type.

(c) An event doesiot have a value. Therefore, an event must not be used in any expres-
sion.

(d) Events can only be used with theit, notify andnotifyone statements (see the ex-
ample and Section 2.4.6), with tlwy -trap -interrupt statement (see Section 2.4.7),
with the buffered type (see Section 2.2.7), or with thiemd statement (see Sec-
tion 2.4.5).

Example:

int d;
event e;

void send( int x)

{
d = x;
notify  e;

O ~NO UL WN P

}

10 int receive( void )
1 {

12 wait  e;

13 return (d);

14 }

©

Notes:
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i. The example shows a very primitive communication scheme synchronized by the use
of an event.

ii. Since areventdoes not have any value, it cannot transport any message. If a message
needs to be sent together withewent asignal (see Section 2.2.6) @hannel (see
Section 2.3.2) is probably the better choice for modeling the communication.
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2.2.6 Signal type

Purpose: Representation of busses and wires

Synopsis:

default _declaring ist =

| signal _class declaration qualifier list  identifier _declarator
initializer opt

| signal _class type _qualifier Jlist  identifier _declarator
initializer opt

declaring  list =

| signal _class declaration  _specifier declarator initializer _opt
| signal _class type _specifier declarator initializer _opt

port _declaration =
port _direction signal _class _opt parameter _declaration

signal _class _opt =
<nothing >
| signal _class

signal _class =
signal

event _identifier =

identifier
| edge selector identifier
| identifier edge _selector

edge _selector =
rising
| falling

Semantics:

(2) Thesignal type class defines an implicit composite type for the representation of
wires or busses between concurrent behaviors.
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(b) Thesignaltype class can be specified for ordinary or composite types. It must not be
specified for areventtype or abuffered type class.

(c) Thesignaltype class must not be used as a member of any composite or aggregate
type.

(d) A variable ofsignal type is implicitly composed of an event, a current and a new
value.

(e) A signal can be used wherever an event is expected. In this case, the event of the
signal is accessed implicitly.

() An event carried by a signal can be filtered by use of eitherrigiag or falling
operator. Arising or falling operator must not be applied to a pure event.

(g) Therising operator filters out all events that do not represent a rising edge of the
signal. A rising edge of the signal is defined as the signal value changing from a zero
(current) value to a non-zero (new) value.

(h) Thefalling operator filters out all events that do not represent a falling edge of the
signal. A falling edge of the signal is defined as the signal value changing from a
non-zero (current) value to a zero (new) value.

(i) Therising or falling operator must only be used with read accesses to the event of a
signal. These operators must not be used witmthtdy or notifyone statements.

() A signal can be used in an expression. For every read access, implicitly the current
value of the signal is read. For every write access, implicitly the new value of the
signal is written.

(k) The event of a signal is implicitly notified with every write access to the signal.

() Atthe time the event of a signal is delivered, the current value of the signal is updated
with the new value.

Example:



2.2. SPECCTYPES 25

1 behavior B1(in signal bit [16] a,
2 in  signal bit [16] b,
3 out signal bit [16] c)
4 {
5 void main( void )
6 {
7 while (true )
8 {
9 wait a, b;
10 c=a+b
11 }
12 1
13 };
14
15 behavior B2(in signal bit [1] CLK,
16 in signal bit [16] a,
17 in  signal bit [16] b,
18 out signal bit [16] ¢)
19 {
20 void main( void )
21
22 while (true )
23 {
24 wait CLK rising ;
25 c=a+b
26 }
27 1
28 };
Notes:

i. A variable of type classignal can be viewed as a composite variable which contains

an event, a current value and a new value. Whenever the signal is used in place of an
event, such as with theait or notify statements, the event of the signal is accessed.
On the other hand, if the signal is accessed in any expression, the current value is
used for read access, and the new value is used for write access.

ii. Any assignment to a signal will write to the new value and also notify the event of

the signal. Then, the new value will be copied to the current value at the time the
notified event is delivered. Thus, the signal will be updated (with a slight delay) and
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any behaviors waiting for the update of the signal will be notified about the arrival of
a new value.

iii. A signal can also be viewed ashaiffered variable with a built-in clock event (and

no reset condition).

Since a signal can be used whenever an event is expected, a signal can also be used
with thewait andnotify statements (see the example and Section 2.4.6), or with the
try -trap-interrupt statement (see Section 2.4.7). In these casesisihg or falling
operators can be used conveniently to react only to the rising or falling edges of the
signal.

The example shows two behaviddd and B2 which add the values given at their
input portsa andb and write the result to their output part B1is modeled as a
combinatorial component. It reacts immediately to any change of the input values.
B2, on the other hand, is modeled as a sequential component. It recomputes its output
only at the rising edge of theLK input port.
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2.2.7 Buffered type

Purpose: Representation of clocked storage components

Synopsis:

default _declaring ist =

| signal _class declaration qualifier list  identifier _declarator
initializer opt

| signal _class type _qualifier Jlist identifier _declarator
initializer opt

declaring  list =

| signal _class declaration  _specifier declarator initializer _opt
| signal _class type _specifier declarator initializer _opt

port _declaration =
port _direction signal _class _opt parameter _declaration

| ...

signal _class _opt =
<nothing >
| signal _class

signal _class =

| buffered
| buffered [ clock  _specifier T
| buffered [ clock  _specifier '} reset signal _opt 7T

clock _specifier =
event _list
| constant
| 'C time )

event _ist =
event _identifier
| event _ist ’; event _identifier
| event ist * ||' event _identifier

event _identifier =
identifier
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| edge selector identifier
| identifier edge _selector

edge _selector =
rising
| falling

time =
constant _expression

reset _signal _opt =
<nothing >
| identifier
| ' identifier

Semantics:

(a) Thebuffered type class defines an implicit composite type for the representation of
clocked storage components such as registers, register files, or memories.

(b) Thebuffered type class can be specified for ordinary or composite types. It must not
be specified for aeventtype or asignal type class.

(c) Thebuffered type class must not be used as a member of any composite or aggregate
type.

(d) A variable ofbuffered type is implicitly composed of a current and a new value.

(e) A buffered variable can be used in an expression. For every read access, implicitly
the current value of the buffered variable is read. For every write access, implicitly
the new value of the buffered variable is written.

() The clock specifier of a buffered variable determines the internal or external clock
that updates the variable. An external clock is specified by an explicit event list. An
internal clock is specified by a time period given as a constant or constant expression.
The internal clock is an implicit periodic task that notifies update events in a periodic
fashion, where the periodic delay is given by the specified time period.

(g) Atthe time a clock event (internal or external) is received at the buffered variable, its
current value is updated with the new value, unless a reset signal is asserted.
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(h)

If specified, the reset signal of the buffered variable defines an asynchronous reset
of the variable. At any time it is asserted, the asynchronous reset signal resets the
buffered variable to its initial value. The initial value is determined by the specified
initializer for the variable. If no initializer is specified, the initial value defaults to
zero.

(i) The asynchronous reset signal must be specified as a variablgnal type class.

Optionally, the reset signal may be negated, which is specified by the !-operator.

(0 Anasynchronous reset is asserted whenever the value of the specified reset signal be-

(k)

comes non-zero. For a negated reset signal, an asynchronous reset is asserted when-
ever the value of the specified reset signal becomes zero.

As long as an asynchronous reset signal is asserted for a buffered variable, the vari-
able will contain its initial value. No value update will take place.

Example:
1 signal unsigned bit [1] CLK = 0,
2 RST = 1;
3 buffered [CLK rising ; 'RST] bit [16] Regl = 10,
4 Reg2 = 20;
5
6 void Swap(void )
7 {
8 Regl = Reg2;
9 Reg2 = Regl,
10 wait CLK rising ;
11 }
12
13 void Reset( void )
14
15 RST = 0;
16 waitfor 10;
17 RST = 1;
18 }

Notes:
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A variable of type classuffered can be viewed as a composite variable which con-
tains a current value and a new value. Whenever the buffered variable is accessed in
any expression, the current value is used for read access, and the new value is used
for write access.

ii. Any assignment to a buffered variable will write to the new value. The new value will

be copied to the current value at the time a clock event is notified. In other words, the
buffered variable will be updated with a delay of one clock cycle.

iii. An asynchronous reset signal can be specified to reset the buffered variable to its

Vi.

initial value. As soon and as long as the specified reset signal is asserted, the buffered
variable will have its initial value.

The example shows two buffered variabReglandReg2which represent registers
driven by the rising edge of a clock. Also, the registers have an asynchronous reset
condition which is active low.

The functionSwapin the example demonstrates how the contents of the registers can
be exchanged at a clock event.

The functionResetasserts the reset signal for the registers for a period of 10 time
units, resetting the registers to their initial values of 10 and 20.
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2.2.8 Time type

Purpose: Representation of time

Synopsis:

waitfor _statement =
waitfor  time '’}

constraint =
range ' any _name ’; any _name '} time _opt ’; time opt’y

clock _specifier =

| constant

| 1(1 time 1)1
time _opt =

<nothing >

| time
time =

constant _expression

Semantics:

(&) The time type represents the type of time. Time is not an explicit type. It is an
implementation dependent integral type (for examptesigned long long in).

(b) The time type is used with theaitfor statement (see Section 2.4.8), with thege
statement in thdo-timing statement (see Section 2.4.9), and as a possible clock spec-
ifier in the buffered type (see Section 2.2.7) afgind statement (see Section 2.4.5).

Example:
1 event SystemClock;
2 const long long CycleTime = 10; // 10ns = 100MHz
431 void ClockDriver(  void )
2 while (true )
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{ notify  SystemClock;
waitfor (CycleTime);

}

O © o N

Notes:

i. Note that the physical unit of the time type is not defined by the SpecC language.
Instead, users should follow a general convention to use the same time unit (such as
nano seconds) in all designs and tools in order to simplify integration and interoper-
ability.
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2.3 SpecC classes

2.3.1 Behavior class

Purpose: Representation of active objects; container for computation

Synopsis:

behavior _declaration =
behavior _specifier port _list _opt implements _interface _opt

behavior _definition =
behavior _specifier port _list _opt implements _interface  _opt
"{" internal  _definition dist  opt’ } Y

behavior _specifier =
behavior identifier

implements interface  _opt =

<nothing >

| implements interface  ist
interface  list =

interface  _name

| interface  ist ’; interface -name
primary _expression =

| this
Semantics:

(&) Abehavioris a class for encapsulation of computation.

(b) A behavior declaration is a class declaration that consists of an optional set of ports
and an optional set of implemented interfaces.

(c) A behavior is compatible with another behavior if and only if the number and the
types of the behavior ports and the lists of implemented interfaces match.



34

(d)

(e)

(f)

@

(h)

CHAPTER 2. SPECC LANGUAGE

A behavior definition contains a behavior body which consists of an optional set
of local variable declarations and/or definitions, an optional set of behavior and/or
channel instantiations, an optional set of method declarations and/or definitions, and
a mandatorynainmethod declaration or definition.

Through its ports, a behavior can communicate with other behaviors or channels.
This is described in detail in Section 2.3.4.

If specified, themplementskeyword declares the list of interfaces (see Section 2.3.3)
that are implemented by the behavior. All the methods of all the listed interfaces
must be implemented as methods in the behavior body. Only these methods, and
the mandatorymain method, can be called from outside the behavior (via suitable
interfaces). All other methods are private to the behavior.

A behavior definition (a behavior with a body) requires that all listed implemented
interfaces are previously fully defined (not only declared).

A behavior that implements an interface can refer back to itself by use dhithe
keyword. this can only be used within the scope of the behavior body. The type of
this is the behavior typethis can be passed as an argument to a function or method.
In this case, the type of the argument whibls is assigned to, must be an interface
type implemented by the behavior.

(i) A behavior can instantiate other behaviors or channels. This is described in detail in

Section 2.3.5.

() The mainmethod of a behavior is called whenever an instantiated behavior is exe-

(k)

cuted. The completion of th@ain method determines the completion of the execu-
tion of the behavior.

As a short cut, thenain method of a behavior can be called by a statement that
consists of only a behavior instance name. For a behavior instanbe statement
b; is equivalent to the statememimain();

(D A SpecC program starts with the execution of theinmethod of theMain behavior.
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Example:
1 behavior B (in int pl, out int p2)
2 {
3 int a, b;
4
5 int  f( int Xx)
6 {
7 return (X x X);
8 }
9
10 void main( void )
11 {
12 = pl,; // read data from input port
13 = f(a) // compute
14 p = b; // output result to output port
15 }
16 };
Notes:

i. The example shows a simple leaf behaBoFor typical composite behaviors, please
refer to Sections 2.4.1t0 2.4.7.

ii. Local variables and methods, such asb, andf in the example, can be used to
describe the functionality of a behavior. The actual functionality of the behavior is
determined by the execution of msain method.

iii. Declarations of behaviors are sufficient to determine compatibility of the behaviors.
The behavior body is not needed for this. This is important for reuse of IP and "plug-
and-play”.

iv. In contrast to members aftruct or union definitions, the members of a behavior
cannot be accessed from the outside, unless through the implemented interfaces. Note
also that only the behavior methods can be made accessable through interfaces, not
the variables.

v. A behavior is called a composite behavior if it contains instantiations of other behav-
iors. Otherwise, it is called a leaf behavior.



36

Vi,

CHAPTER 2. SPECC LANGUAGE

Please note that, althoughain andMain are recognized by the SpecC compiler as
names denoting the start of the program and start of a behavior, these names are not
keywords of the SpecC language.

vii. The behaviorMain usually is a composite behavior containing the test bench of the

viii.

design as well as the instantiation of the actual design under test.

Implemented interfaces are rarely used with behaviors. However, they are useful for
communication schemes that involve call-backs. For example, in a call-back commu-
nication, a connected channel implementing a communication protocol can call-back
methods provided by the behavior that is calling the channel. In order to enable the
channel to call-back the behavior, the channel needs to have a "pointer” to the be-
havior. This pointer is passed to the communication method in the channel as an
argument of interface type. This argument is supplied by the behavior implementing
the call-back by use of thilis keyword.

. Note that the type athis is a class in SpecC, not a pointer to a class as in C++.
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2.3.2 Channel class

37

Purpose: Representation of passive objects; container for communication

Synopsis:

channel _declaration =
channel _specifier port _list _opt implements _interface

channel _definition =
channel _specifier port _list _opt implements _interface
"{" internal  _definition dist  opt’ } Y

channel _specifier =
channel identifier

implements interface  _opt =
<nothing >
| implements interface  list
interface  list =

interfface  _name
| interface  ist ’, interface -name

Semantics:

(@) A channelis a class for encapsulation of communication.

(b) A channel declaration is a class declaration that consists of an optional set of ports

and an optional set of implemented interfaces.

(c) A channel is compatible with another channel if and only if the number and the types

opt

_opt

of the channel ports and the lists of implemented interfaces match.

(d) Achannel definition contains a channel body which consists of an optional set of local
variable declarations and/or definitions, an optional set of behavior and/or channel

instantiations, and an optional set of method declarations and/or definitions.

(e) Through its ports, a channel can communicate with other behaviors or channels. This

is described in detail in Section 2.3.4.
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If specified, themplementskeyword declares the list of interfaces (see Section 2.3.3)
that are implemented by the channel. All the methods of all the listed interfaces must
be implemented as methods in the channel body. Only these methods can be called
from outside the channel (via suitable interfaces). All other methods are private to
the channel.

A channel definition (a channel with a body) requires that all listed implemented
interfaces are previously fully defined (not only declared).

A channel that implements an interface can refer back to itself by use dhithe
keyword. this can only be used within the scope of the channel body. The type of
this is the channel typethis can be passed as an argument to a function or method.
In this case, the type of the argument whibls is assigned to, must be an interface
type implemented by the channel.

(i) A channel can instantiate other behaviors or channels. This is described in detail in

Section 2.3.5.

() For each instance of a channel, the channel methods are mutually exclusive in their
execution. Implicitly, each channel instance has a mutex associated with it that the
calling thread acquires before and releases after the execution of any method of the
channel instance. Further, all mutexes a thread has acquired from any channel in-
stances are implicitly released before and re-acquired after the executionwé#ny
andwaitfor statements.

Example:

1
2
3
4
5
6
7
8
9
0

1

interface |

void send( int );
int receive( void );

h

channel C implements |

{
int d;
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11
12
13
14
15
16
17
18
19
20

void send( int x)

{
}

int receive( void )

d = x;

return (d);

b

Notes:

Vi.

The example shows the definition of an interfdcthat specifiesendand receive
methods. A channél implements the interfadeby providing a (very simple) imple-
mentation of thesendandreceivemethods by use of an encapsulated integer variable
d.

. In terms of communication, the methods of a channel specify the communication

protocol, whereas the variables of a channel resemble the communication media.

A channel is called a hierarchical channel if it contains instantiations of other chan-
nels. Otherwise, it is called a leaf channel. A channel is called a wrapper if it instan-
tiates one or more behaviors.

Declarations of channels are sufficient to determine compatibility of the channels.
The channel body is not needed. This is important for reuse of IP and "plug-and-

play”.

In contrast to members dftruct or union definitions, the members of a channel
cannot be accessed from the outside, unless through the implemented interfaces. Note
also that only the channel methods can be made accessable through interfaces, not the
variables.

For hierarchical communication schemes that involve call-backs, a lower level chan-
nel can call-back methods provided by a higher-level channel that called the lower-
level channel. Here, the higher-level channel passes a handle to himself as an ar-
gument to the lower-level channel by use of this keyword. Then, the lower-level
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channel can in turn call-back methods implemented by the higher-level channel. Note
thatthis can only be passed as an argument if the argument is of an interface type
that is implemented bthis channel.

Note that the type ofhis is a class in SpecC, not a pointer to a class as in C++.

Note that for safe communication among concurrent threads, the access to the com-
munication variables encapsulated in channels must typically be protected such that
no two methods access the same variables at the same time. This protection is guar-
anteed by the mutex that is implicitly associated with each channel instance. In other

words, the required protection of the shared resources in channels is automatically

built-in with each channel instance.

. Whenever a thread is about to execute a method provided by a channel instance, the

thread has to acquire the mutex of the channel instance first, in order to ensure that no
other thread is executing any code from the same channel instance. After acquiring
the mutex, the thread can execute the channel method. When done, the thread must
release the mutex again in order to allow other threads to use the same channel.

. Furthermore, releasing the channel mutex befonai or waitfor statement is im-

portant in order to ensure a deadlock-free execution. Otherwise, a thread may be
waiting for notification by another thread which is blocked because it cannot acquire
the mutex owned by the waiting thread.

Note that acquiring and releasing of channel mutexes is implicit. That is, it is handled
automatically by the simulator or refinement tools. There is no need for the user to
worry about this.

Note that the implicit mutex in a channel instance is not necessarily required to be
present in an implementation. For example, in a non-preemptive simulation algorithm
that always executes only one thread at a time, no conflict in running two threads in
the methods of a channel instance is possible. Thus, no explicit mutex is required in
this case.

Note that the mutual exclusion in executing methods of channel instances does not
imply that the methods are executed in non-preemptive (atomic) manner. That is, a
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thread executing a channel method is not guaranteed to be not interrupted by other
threads. However, it will not be interrupted by any thread that is executing any
method of the same channel instance, unless, of course, it is waiting for an event
(at await statement) or waiting for simulation time increase (atatfor statement).
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2.3.3 Interface class

Purpose: Representation of interfaces between behaviors and channels; container for in-
terface method declarations

Synopsis:

interface  _declaration =
interface  _specifier ’;’

interface  _definition =
interface  _specifier ’ {" internal  _declaraton  ist _opt’ }'

interface  _specifier =
interface identifier

internal  _declaration  _ist _opt =
<nothing >
| internal  _declaration
| internal  declaration  list internal  _declaration

internal  _declaration =
declaration
| note _definition

Semantics:

(&) Aninterface is a class that contains declarations of methods which are implemented
in channels or behaviors. Via an interface, a class can call methods provided by
another class thatplementsthe interface.

(b) An interface declaration consists of the keywaortdrface followed by its name.

(c) An interface definition contains an interface body which consists of an optional set
of method declarations. No variable declarations or definitions, no behavior or chan-
nel instantiations, and no method definitions must be contained in the scope of an
interface body.

(d) An interface is a type that may be used for behavior or channel ports, or for function
or method arguments. An interface cannot be instantiated.
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(e) A port of interface type must be mapped onto a behavior or channel instance (see
Section 2.3.5) thamplementsthe interface.

() An argument of interface type must be initialized thys within the scope of a behav-
ior (see Section 2.3.1) or channel (see Section 2.3.2jitiiementsthe interface.

(g) A port or argument of interface type can be used to call a method declared by the
interface. The actual method definition called by such an interface call is determined
by the mapping of the interface port or argument.

Example:
1 interface I
2 {
3 void send( int Xx);
4 int receive( void );
5}
6
7 channel C implements |,
8
9 behavior BI1(l i)
10 {
11 void main( void )
12
13 i.send(42);
14 }
15 };
16
17 behavior B2
18 {
19 C C;
20 B1 Db(c);
21
22 void main( void )
23
24 b.main();
25 }
26 };

Notes:
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Interfaces provide a flexible way of communication between behaviors and channels.
By use of interfaces, both behaviors and channels become easily interchangeable with
compatible components ("plug-and-play”).

ii. Typically, there are many channels (or behaviors) which implement an interface. Be-

cause each channel (or behavior) is required to provide an implementation for all
methods declared in the interface, any one of these channels (or behaviors) may be
used in a mapping of a port of the interface type. Thus, the implementation of the
interface methods (typically a communication protocol) can be easily exchanged, just
by mapping the interface port to a compatible channel (or behavior) instance.

iii. The example shows amterface | which declares aendand areceivemethod as

a simple communication protocol. The chan@eimplements the interfack (even
though the actual implementation in the channel body is not shown), so it may be
used as a mapping for the interface.

BehaviorB1 in the example has a parbf the interface typé. Via this port,B1 can
call the methods provided hyas is shown in line 13 where tsendmethod is called.

BehaviorB2 shows an instance of the channelC in line 19. Then in line 20, a
behaviorb of type Bl is instantiated and its port is mapped onto the chaonBlote
that the port is of interface tyde which is implemented by the chanr@l
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2.3.4 Ports

Purpose: Representation of communication ports

Synopsis:

port _list _opt =
<nothing >
)
| 'C port  list )
list =

port _declaration

| port _list '}

port
port _declaration
_declaration =

port _direction
| interface

port
signal
_parameter

class _opt parameter

_direction =
<nothing >
| in
| out
| inout

port

interface _parameter =
interface  _name

| interfface  _name identifier

Semantics:

45

_declaration

(a) Behavior and channel classes have a list of ports through which they communicate.
These ports are defined with the declaration of the behavior or channel they are at-

tached to (similar as function parameters are defined with a function declaration).

(b) A port can be one of two types: standard or interface type.

(c) A standard type port is of any SpecC type. In addition, a port direction may be
specified as a port type modifier which restricts the way the port can be accessed and

connected.
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(d) The port direction can bi@, out, orinout. If unspecified, the port direction defaults
to inout.

(e) Anin port allows only read access from within the class scope, and only write access
from the outside.

() An out port allows only write access from within the class scope, and only read
access from the outside.

(g) Aninout port may be accessed bidirectionally.

(h) For a port of event or signal type, read access is performedimitatrap, or inter-
rupt statement on the event, or when used as clock specifier, sensitivity list or reset
condition with thefsmd statement obuffered data type. Write access is performed
by anotify or notifyone statement on the port.

() An interface type port allows to call the methods provided by the interface class. An
interface type port must not have any port direction.

Example:

1 behavior B(in int pl, out int p2, in event clk);
2
3 interface l;
4
5

channel C(inout bool f) implements I,

Notes:

i. The example shows a behaviBmwith an input porfpl, an output porp2, and a clock
input portclk.

ii. The channelC has a bidirectional poft
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2.3.5 Class instantiation and port mapping

Purpose: Structural hierarchy and connectivity of behaviors and channels

Synopsis:

instance _declaring list =
behavior _or channel instance _declarator
| instance _declaring ist '/ instance  _declarator

behavior _or _channel =
behavior _name
| channel _name

instance _declarator =
identifier port _mapping Jist _opt

port _mapping list _opt =
<nothing >
| 'C port _mapping list °)

port _mapping _list =
port _mapping -opt
| port _mapping _list '’ port _mapping _opt

port _mapping opt =
<nothing >
| port _mapping

port _mapping =
bit _slice
| port _mapping '@ bit _slice

bit _slice =
constant
| ’( constant _expression )’
| identifier
| identifier T constant _expression '’ constant _expression T
| identifier T constant _expression T

Semantics:
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Structural hierarchy is described by child behaviors and/or child channels instantiated
as components inside compound behaviors and channels.

Connectivity is described by the mapping of the ports of child behaviors and/or child
channels.

At class instantiation, a port mapping list defines the mapping for each port of the
class. The number of ports must match the number of mappings in the port mapping
list. If there are no ports, then no port mapping list must be specified.

A port mapping maps a port of the instantiated class onto a constant, variable, port or
instance of suitable type, or is left open.

A constant port mapping is only allowed for ports with port direciion Unless a
constant literal is specified directly, a constant expression in parenthesis is evaluated
to a constant at compile time. The type of the constant must be convertable to the

port type.

(H An open port mapping is only allowed for ports with port directiout.

@

(h)

(i)

For a port mapping to a variable, the variable type must match the type of the port.
The port direction is not considered part of the port type in this matching.

For a port mapping to a port of the parent class, the types (without port direction) of
both ports must match. For the port direction, an instance port with direictioan

only be mapped onto a class port with directianor inout. An instance port with
directionout can only be mapped onto a class port with direction or inout. An
instance port with directiomout can only be mapped onto a class port with direction
inout.

For a port mapping to an instance, the port must be of interface type and the class of
the instance must implement the interface.

() A port of bit vector type can be mapped onto a list of concatenated bit slices. In

this case, the mapping rules listed above apply accordingly for each single bit of the
bitvector.
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(k) Concatenation and bit slicing must not be used for port mappings of non-bitvector

49

type.
Example:
1 interface I { };
2 channel C (inout bool f) implements |;
3 behavior B1 (in int pl, out bit [7:0] p2, in event  clk);
4 behavior B2 (i, out event clk);
5 behavior Adder8( in bit [8 a, in bit [8] b, in bit [1] carry _in,
6 out bit [8] sum, out bit [1] carry _out);
7
8 behavior B (bit [7:0] busi, bit [15:0] bus2)
9 {
10 bool ;
11 int i;
12 event ;
13 bit [8] a;
14
15 C c (b);
16 Bl bl(i, busl, e);
17 B2 b2(c, e);
18 Adder8 a8(a, // mapping onto variable
19 busl, // mapping onto port
20 0Ob, // mapping onto constant
21 bus2[7:0], // mapping onto bit slice
22 ); // open mapping
23
24 void main( void )
25 {
26 bl.main();
27 b2.main();
28 a8.main();
29 }
30 }
Notes:

i. The example shows four class instantiations. In line 15, an insiaatehannelC is
instantiated. Its only port of typeool is mapped onto the Boolean varialbe



50 CHAPTER 2. SPECC LANGUAGE

ii. Inline 16, a behaviobl of type Blis instantiated. Its input poflis mapped onto
the variable, whereas the output pgo2 is mapped onto the class ptsl Finally,
the clock portclk is mapped onto the eveat

ii. Inline 17, an instancé?2 is defined as 82 type behavior. Its ports are mapped onto
the channet and evene.

iv. In line 18, an addemn8 is instantiated. The left input is mapped onto variadle
whereas the right input is mapped onto dars1(line 19). In line 20, the carry input
is connected to zero (hardwired to GND). The output is mapped onto the lower bits
of bus2in line 21. Finally in line 22, the carry output is left open (i.e. it is unused).

v. Note that the rules for mapping instance ports onto class ports ensure that a class port
can only be accessed in its specified direction.
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2.4 SpecC statements

2.4.1 Sequential execution

Purpose: Representation of sequential control flow

Synopsis:

compound _statement =

) {1 ) }1

| * {" declaration dist* ¥

| ' {" statement list’' }

| * {" declaration Jlist statement list’' }

statement list =
statement
| statement list statement
| statement list note  _definition

statement =
labeled _statement
| compound _statement
| expression _statement
| selection _statement
| iteration  _statement
| jump _statement
| spec _c_statement

spec _c_statement =

concurrent  _statement
| fsm _statement

| fsmd _statement

| exception _statement
| timing _statement

| wait _statement

| waitfor _statement

| notify _statement

Semantics:

(a) Sequential execution and control flow is represented by the same statements as in
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ANSI-C. In particular, the following statements can be usiéehen-else switch-
casedefault, for, while, do-while, goto, break, continue, return .

(b) Sequential execution can be organized hierarchically by use of function calls, and by

calls to non-private methods of behavior and channel instances.

Example:
1 behavior B;
2
3 behavior B_seq( void )
4 {
5 B bl, b2, b3;
6
7 void main( void )
8 {
9 bl.main();
10 b2.main();
11 b3.main();
12 }
13 };
Notes:

The example shows the trivial case of sequential, unconditional execution of three
child behaviorspl, b2 andb3.

Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).
With the short notation, the three statements in lines 9 through 11 of the example can
be reduced th1; b2; b3
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2.4.2 Concurrent execution

Purpose: Representation of concurrency

Synopsis:

concurrent  _statement =
par compound _statement

compound _statement =

1{! 1 }1

| * {" declaration dist* ¥

| ' {" statement list’' }

| ' {" declaration Jlist  statement list’ }

statement list =
statement
| statement list statement

Semantics:
(8) Thepar statement specifies concurrent execution.

(b) Every statement in the compound statement block following#rekeyword forms
a new thread of control that is executed concurrently.

(c) The execution of the concurrent threads is defined by the time interval formalism
described in Section 3.3.

(d) An abstract simulation algorithm for the semantics of concurrency is specified in
Section 3.6. This algorithm represents one valid implementation of concurrency.
Other valid implementations may exist.

(e) The execution of thear statement completes when each thread of control has fin-
ished its execution.

(H The statements in the compound statement block aftgeah&eyword are restricted
to calls tomainmethods of behaviors. No other statement type is allowed.
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Example:

1 behavior B;

2
3 behavior B_par( void )
4 {
5 B bl, b2, b3;
6
7 void main( void )
8
9 par { bl.main();
10 b2.main();
11 b3.main();
12 }
13 }
14 };

Notes:

i. Concurrent threads may be executed truly in parallel, or portion-wise sequentially,
where the order and size of the portions is undefined. No assumptions about the
order of execution, the use of preemptive or non-preemptive execution, or any atomic
execution must be made. These are undefined for the SpecC language.

ii. A sequential simulator may choose any order of execution for the concurrent threads,
including interleaved (preemptive) execution.

iii. For simulation, typically a dynamic scheduler decides the order and interleaving of
the execution of the concurrent threads. That is, the scheduler always executes only
one thread at a time and decides when to suspend and when to resume a thread de-
pending on simulation time advance, synchronization points, and/or time outs.

iv. Note that, because the execution of concurrent theads is essentially undefined, explicit
synchronization (see Section 2.4.6) and explicit mutual exclusion (see Section 2.3.2)
are necessary in order to make concurrent threads cooperate safely.

v. The example shows the concurrent execution of three child behddpb? andb3.
The compound behavid8_par finishes wherbl, b2 and b3 have completed their
execution.
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vi. Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).
With the short notation, thpar statement in the example can be reducepaig{b1;
b2; b3}.
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2.4.3 Pipelined execution

Purpose: Explicit representation of pipelining

Synopsis:
storage class =

| piped

| storage class piped
concurrent  _statement =

| pipe compound _ _statement
| pipe ’'( comma _expression
'’ comma _expression

compound _statement =

oy

_opt ;' comma
_opt ')’ compound

CHAPTER 2. SPECC LANGUAGE

_expression  _opt

_statement

| * {" declaration dist* ¥

| ' {" statement list’ }

| ' {" declaration Jlist  statement list’' }
statement list =

statement

| statement list statement
Semantics:

(&) Thepipe statement specifies execution in pipelined manner, a special form of con-

current execution.

(b) Every statement in the compound statement block followingpthe keyword rep-

resents a pipeline stage. Each pipeline stage forms a new thread of control that is

executed concurrently.

(c) The execution of the concurrent threads is defined by the time interval formalism

described in Section 3.3.
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(d)

(€)

(f)

(9)

(h)

An abstract simulation algorithm for the semantics of concurrency is specified in
Section 3.6. This algorithm represents one valid implementation of concurrency.
Other valid implementations may exist.

The optional set of arguments to thipe statement specifies the number of pipeline
iterations. The first argument expression serves as an initializer and is evaluated
once at the beginning of the pipeline execution. The second expression represents
the iteration condition which is evaluated at the beginning of each pipeline iteration.
While the iteration condition evaluates taue, the pipeline executes the pipeline
stages, otherwise the pipeline is flushed andpipe statement terminates. The third
expression is evaluated once after each iteration.

If no arguments are specified for tipdpe statement, the first and third arguments
default to empty expressions, and the iteration condition defautta¢o

Thepipe statement executes thepipeline stages in three phases. In the first phase,
the pipeline is filled and, in the-th iteration, only the firsh pipeline stages are exe-
cuted concurrently, wheme< N. Then, in the second phase, MlIpipeline stages are
executed concurrently in each iteration. As soon as the iteration condition evaluates
to false during the first or second phase, the third phase flushes the pipeline by exe-
cutingn— 1 more iterations. In then-th last iteration, only then last pipeline stages

are executed concurrently. After the pipeline has been flushegipleestatement
terminates.

Unless aborted through an exception (see Section 2.4.§ighstatement executes
each pipeline stage for the same number of times.

(i) The statements in the compound statement block afteyitrekeyword are restricted

)

to calls tomainmethods of behaviors. No other statement type is allowed.

Variables used by pipeline stages, which are declared in a non-global scope visible
from apipe statement, can be declared of storage cfapsd. A piped variable
represents a buffer between pipeline stages that operates in first-in-first-out (FIFO)
order.
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(k) Write accesses tpiped variables store data in the first stage of the FIFO buffer.
Read accesses read data from the last stage of the FIFO buffer. If a port of a behavior
instance that represents a pipeline stage is mapped qgpifzed variable, the port
must be of directiorin or out.

() The piped storage class can be specified multiple times with a variable declaration.
The numbem of piped keywords specifies the number- 1 of stages in the FIFO
buffer.

(m) Variables withpiped storage class, that are in visible scope fromige statement,
are synchronized with thgipe statement. After each iteration of the pipeline, the
data stored impiped variables is shifted by one stage in the FIFO.

Example:
1 behavior B(in int pl, out int p2);
2
3 behavior B_pipe( in int a, out int b)
4 {
5 int X;
6 piped int Y;
7 B bl(a, x),
8 b2(x, y),
9 b3(y, b);
10
11 void main( void )
12 {int i
13 pipe (i=0;i <10;i++)
14 { bl.main();
15 b2.main();
16 b3.main();
17 1
18 1
19 };

Notes:

i. The arguments of thpipe statement are basically the same as the arguments of the
for statement. Also, the execution op@e statement basically resembles the exe-
cution of afor loop, except that the loop body is organized concurrently in pipeline
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fashion. Note also that, if the arguments of fiipe statement are unspecified, the
pipe statement acts as an endless loop (it does not terminate), the same way as the
for statement without arguments.

ii. The threads in apipe statement represent pipeline stages and are executed in
pipelined fashion. Basically, each pipeline stage runs concurrently to the others, but
works on different sets of data. Hepped variables can be used as buffers between
the pipeline stages that are automatically updated with every iteration.

iii. The example shows a pipeline behavigpipe consisting of three stages represented
by the behavior instancdsl, b2 andb3. In the first iteration, onlybl is executed.
Whenb1lfinishes, the second iteration starts dnrichndb2 are executed concurrently.

In the third iteration, afteb1 andb2 have completedy3is executed in parallel with

bl andb2 Every following iteration executes the same way as the third iteration,
until the iteration condition<10 becomes false. Theb2 andb3 are executed con-
currently one more time, and finally onb8 is executed once.

iv. In the examplex is a standard variable connectid (pipeline stage 1) wittb2
(stage 2). This variable is n@iped, in other words, every access from stage 1 is
immediately visible in stage 2. On the other hand, varigitdennectingp2 andb3is
piped. Data computed by behavid2 and stored iry is available for processing by
b3in the next pipeline iteration whei? already produces new data.

v. Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).
With the short notation, thgipe statement in the example can be reducegipe(i =
0;i < 10;i ++){b1; b2; b3}.
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2.4.4 Abstract finite state machine execution

Purpose: Explicit representation of abstract finite state machines

Synopsis:
fsm _statement =
fsm 7 {1 L }1
| fsm ' { transition dist” ¥
transition dist =
transition
| transition dist  transition
transition =
state
| state cond _branch list
| state 1:1 L {1 L }1
| state '’ {" cond _branch list’ }
state =
identifier
| identifier compound _statement
cond branch ist =
cond _branch
| cond branch list cond _branch
cond _branch =
if ’( comma _expression 'y goto identifier ’;
| goto identifier
| if '(C comma _expression )’ break ;
| break 7
Semantics:

(a) Finite state machine (FSM) execution is a special form of sequential execution which

allows the explicit specification of states, state transitions and hierarchy.

(b) Thefsm statement consists of a list of states and a list of state transitions from each
state. The states are represented by either local compound statements or behavior

instances.
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()

(d)

()

(f)

(9)

(h)

A local state in the FSM is specified by a compound statement block placed between
the state label and the colon that separates the state from its transitions to the next
state.

If a state is specified locally by a compound statement block, then no behavior must
be instantiated within the visible scope of tisen statement where the instance name
matches the name of the state.

A non-local state in the FSM is specified by a behavior that is instantiated within the
visible scope of thésm statement where the instance name matches the name of the
state.

If a state is specified non-locally by a behavior instantiated within the visible scope
of the fsm statement where the instance name matches the name of the state, then
no compound statement must be specified between the state label and the colon that
separates the state from its transitions to the next state.

A state transition is a triplécurrent state condition next staté. Thecurrentstate

and thenext stateare specified in the form of labels and denote local states or behav-
ior instances of the same name. At the time of a transitioncainelitionis evaluated

to determine whether the transition is taken, or not.

Each state must be listed exactly once in the transition listcasrant_state

() The transitionconditionis optional. If unspecified, theonditiondefaults tarue.

() The nextstateis specified as a label denoting a state offfm, or as dreak state-

(k)

ment. Thebreak statement terminates the execution offdra statement.

The execution of &sm statement starts with the execution of the state that is listed
first in the transition list.

() A non-local state in thésm is executed by an implicit call of theain method of

the behavior instance denoted by therent statelabel. The execution of the state
terminates with the completion of teain method.
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(m) A local state in thdsm is executed by the execution of the statements in the local
compound statement block. The execution of the state terminates with the completion
of the compound statement.

(n) After a state is executed, the transitions listed with the state determine the next state
to be executed. For this, tlhenditionsof the transitions are evaluated in the specified
order and the firstonditionthat evaluates tobue determines the next state, which is
then immediately executed.

(o) If none of the conditions evaluates troie, the next state defaults to the following
state listed in thdsm. After the last state of th&sm, the next state defaults to the
termination of thdsm statement.

Example:
1 behavior B;

3 behavior B_fsm(in int a, in int b)

41
B bl b2, b3;

void main( void )

{
9 fsm{ bl: {if (b < 0) break;
10 if (b >=0) goto b2
12 b2: if (@ > 0) goto bl
goto bg3;

15 b3: break ;

[y
N
S ] -

18 }
19 };

Notes:

i. Note that both, abstract Mealy-type (sensitive to the current state and the current in-
put) and abstract Moore-type (sensitive only to the current state) finite state machines,
can be modeled with thism statement.
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ii. Note that hierarchical FSMs can be specified by use of |ésal statements in the
states of the parent FSM.

ii. Note that in contrast to thésmd statement, thésm statement represents an abstract
FSM whose states can be hierarchical. Also,fime statement transitions to the next
state immediately on the completion of the current state, wheredsrtitestatement
transitions to the next state on the event of a specified clock.

iv. Note that the transition section of tliem statement does not allow arbitrary state-
ments. The SpecC grammar limits the state transitions to well-defined triples.

v. The default transitions of thEsm statement are similar to the default control flow
within a switch statement whereasestatements are not terminated blgraak state-
ment.

vi. The example shows a behaviBrfsmthat models a finite state machine with three
statedl, b2 andb3. All the states are defined non-locally by behavior instances.
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2.4.5 Finite state machine with datapath

Purpose: Explicit representation of a finite state machine with datapath (FSMD)

Synopsis:

fsmd _statement =
fsmd '( fsmd _head ') fsmd _body

fsmd _head =
clock _specifier
| clock _specifier ;' sensitivity list _opt
| clock _specifier ’; sensitivity dist  _opt 'y reset _signal _opt

clock _specifier =
event _list
| constant
| 'C time )

sensitivity dist  _opt =
<nothing >
| event _list

reset signal _opt =
<nothing >
| identifier
| I’ identifier

event _ist =
event _identifier
| event _list ’; event _identifier
| event list ' || event _identifier

event _identifier =

identifier
| edge _selector identifier
| identifier edge _selector

edge _selector =
rising
| falling

time =
constant _expression
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fsmd _body =
1{1 1 }1 . .
| * {" declaration dist* ¥
| " { reset _state ' }
| ' {" declaration dlist  reset _state ' }
| ' {" default _action’ }
| ' {" declaration Jlist  default _action’ }
| " {" reset _state default action © }
| * {" declaration list reset _state default action” }
| ' {" fsmd _state list’ }'
| *{" declaration Jlist  fsmd _state _list ’
| ' {" reset _state fsmd state _ist’ }
| * {" declaration dlist reset _state fsmd _state .ist’ @}
| ' {’ default _action fsmd state .ist’' }
| * {" declaration Jlist  default _action fsmd _state list’ }
| ' {" reset _state default action fsmd _state list © }
| ' {" declaration list  reset _state default -action  fsmd _state
reset _state =
if ' comma _expression ’)" action
default _action =
action
fsmd _state _list =
fsmd _state
| fsmd _state list fsmd _state
fsmd _state =
identifier -or _typedef _name '’  action
action =
) {1 ) }1 . .
| * {" declaration dist* ¥
| " { rtl _statement ist’ }’
| * {" declaration list rtl _statement _list © }
rtl _statement _list =
rl _statement
| il _statement _list ril _Statement
| rtl _statement _list note  _definition
rtl _statement =
rtl _labeled _statement

65

list ’
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| rtl _compound _statement
| expression _statement

| rtl _selection _statement
| il jump _statement

rtl _labeled _statement =
case constant _expression "’ rtl _Statement
| default "' rtl _statement

rtl  _compound _statement =

) {1 ) }1

| *{" declaration dist '}

| *{" tl _statement _list’' }

| * {" declaration list rtl _statement _list © }

rtl _selection _statement =

if ’( comma _expression ') rtl _statement
| if ’'C comma _expression ') rtl _Statement else rtl _statement
| switch (" comma _expression ’) rtl _statement

rtl  _jump _statement =
goto identifier _or _typedef _name ’;
| break 7

Semantics:

(@) The fsmd statement explicitly represents a finite state machine with datapath
(FSMD).

(b) Thefsmd statement consists of a header and a body. fShwl header defines the
clock, sensitivity and asynchronous reset signal of the FSMD f3ine body defines
the states and state transitions of the FSMD.

(c) The clock of the FSMD is defined with the clock specifier. The clock specifier de-
termines the internal or external clock that triggers the state transitions of the FSMD.
An external clock is specified by an explicit event list. An internal clock is specified
by a time period given as a constant or constant expression. The internal clock is
an implicit periodic task that notifies clock events in a periodic fashion, where the
periodic delay is given by the specified time period.
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(d)

()

(f)

(9)

(h)

At the time a clock event (internal or external) is received by the FSMD, a state
transition takes place and the current state is updated to the next state. Also, the
actions associated with the new current state are executed, unless a synchronous or
asynchronous reset is asserted.

If specified, the sensitivity list of thismd statement defines additional events upon
which the actions associated with the current state are executed again, unless a syn-
chronous or asynchronous reset is asserted. No state transition takes place for events
in the sensitivity list, unless clock events occur at the same time.

If specified, the reset signal of tHemd statement defines an asynchronous reset of
the FSMD. At any time it is asserted, the asynchronous reset signal resets the current
state of the FSMD to the initial state. The initial state of the FSMD is the first regular
state listed in thésmd body.

The asynchronous reset signal must be specified as a variabignal type class.
Optionally, the reset signal may be negated, which is specified by the !-operator.

An asynchronous reset is asserted whenever the value of the specified reset signal be-
comes non-zero. For a negated reset signal, an asynchronous reset is asserted when-
ever the value of the specified reset signal becomes zero.

() As long as an asynchronous reset signal is asserted, the FSMD will stay in its initial

state. No state transition will take place.

() The fsmd body consists of an optional declaration list, an optional reset state, an

(k)

()

optional default action block, and an optional list of FSMD states.

If specified, the declaration list in tfemd body defines variables representing the
wires, busses, registers, etc. of the FSMD.

If specified, the reset state in tf@md body defines a synchronous reset of the FSMD.

A synchronous reset of the FSMD is asserted if the reset condition specifiedfat the
statement evaluates tnue at the occurence of a clock event. In this case, only the
action block of the reset state is executed. No default actions and no regular state are
executed.
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(m) If specified, the default action block in tfemd body defines default actions that are
executed before every regular state.

(n) The list of regular states in thismd body defines the states of the FSMD. Each
FSMD state must be labeled with a unique name and must be listed exactly once in
the state list.

(o) The actions associated with each FSMD state are limited to valid register transfers
or state transitions. Register transfers are specified by conditional or unconditional
assignment expressions.

(p) State transitions are specified by conditional or unconditigo&b or break state-
ments. Agoto statement specifies the transition to the next state in the FSMD, where
the specified label must match a state label defined irfistinel statement. Areak
statement terminates the execution offdrad statement.

(g) If no state transition is executed in a state, the next state defaults to the current state.

20

Example:
1 behavior B(in signal bit [ 1] CLK,
2 in  signal bit [ 1] RST,
3 in  signal bit [32] a,
4 in  signal bit [32] b,
5 out signal bit [32] s)
6 {
7 void main( void )
8
9 fsmd (CLK falling )
10
11 buffered [CLK falling ] bit [32] sum, tmp;
12
13 if (RST) { sum = 0;
14 goto SI1;
15 }
16 { s = sum;
17 }
18 S1: { tmp = a x b;
19 goto S2;
}
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21
22
23
24
25
26

S2 : { sum += tmp;
goto S1;
}

}
}
h

Notes:

The specification of thesmd statement is based on the RTL semantics draft standard
as defined by Accellera [6].

. Note that in contrast to thism statement, thé&smd statement represents a controller

at the register transfer level (RTL) which is driving a data path. The FSMD states
contain the register transfers performed by the datapath. Alsdsihe statement
transitions to the next state on the event of a specified clock, wherefststate-
ment transitions immediately upon the completion of the current state.

iii. Thefsmd statement can be understood as a loop where in each iteration a specified set

of statements, called a state, is executed. Each loop iteration is called a clock cycle.
Each cycle basically starts with an impligiit statement on an external clock event

or with an implicitwaitfor statement representing an internal clock, as indicated by
the clock specifier.

Note that an external FSMD clock may be specified as a simple eventefrent
CLK;) or as a signal (i.esignal bit[1] CLK;). The former reflects an abstract clock,
whereas the latter models a very specific clock with explicit hi (1) and lo (0) phases.
Moreover, by specifying a list of events and/or signals for the clock specifier, the
FSMD may be driven by multiple clocks.

Note that both Mealy-type (sensitive to the current state and the current input) and
Moore-type (sensitive only to the current state) finite state machines can be modeled
with the fsmd statement. Both types are easily identified by the existence or non-
existence of the sensitivity list. If a sensitivity list is specified, témad represents a
Mealy machine, otherwise a Moore machine.
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Note that the clock specifier and the reset signal offthed statement are specified

the same way as the clock specifier and the asynchronous reset sigrialftérad
variable (see Section 2.2.7). In fact, the implicit state register of the FSMD can be
seen as a buffered variable for which the clock specifier and reset signal are taken
from thefsmd header.

The fsmd body starts with a list of declarations of local variables. These variables
represent registers and wires inside the FSMD, or simply uninterpreted variables, as
defined by the Accellera RTL semantics (see [6]).

The optional reset state in tHemd body represents a synchronous reset of the FSMD.
The specified reset condition is checked at the beginning of every clock cycle. If it
evaluates tarue, a reset cycle is executed.

. The optional set of default actions will be executed first in every state, but take effect

only if the assignments are not overwritten within the same clock cycle. This can be
used to assign default values to registers and ports so that these assignments don't
have to be repeated in every state when the registers and ports are not used. On the
other hand, in those states that actually do use the registers and ports, the default
assignments can be easily overwritten by specific assignments.

. As with thefsm statement, the states in tf@emd statement are identified by state

labels and transitions among these states are specified as conditional or unconditional
goto statements. Also, for exiting the FSMDbeeak statement is used. However, if

no state transition is executed, the next state defaults to the current statdsmthe
statement (whereas it defaults to the following state infshestatement).

Note that the body of thésmd statement does not allow arbitrary statements. The
SpecC grammar limits the actions and state transitions to well-defined register trans-
fers. In particular, the state actions may include expression statements, such as as-
signments and function calls, selection statements, suithaaslswitch statements,

and state transitions by use géto andbreak. However, loop statements, such as

for, while anddo loops, behavioral hierarchy, such@ar, pipe andfsm statements,
exceptions, such asy, interrupt andtrap, timing statements, such ae-timing
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and waitfor, and synchronization, such agit, notify and notifyone, arenot al-
lowed in any state because these do not represent valid register transfers according to
the semantics of a FSMD.

Note that a large FSMD can be specified by use of multfphad statements which
are executed sequentially, possibly under control of a top-kswelstatement.

The example shows a behavi@& modeling a simple finite state machine with data
path by use of thésmd statement. The component has a clock input @uK, a
reset input porRST two data input porta andb, and a data output post

The FSMD in the example is a synchronous component, executing a new state with
every falling edge of the clock sign@lLK. It also has a synchronous reset which is
activated if the reset poRSTis set to hi.

Internally, the example FSMD uses two registausnandtmpwhich are clocked the
same way as the FSMD.

In stateS1, the FSMD computes the product of its input patandb and stores the
result in registetmp. Next in stateS2 the value otmpis accumulated in the register
sum

Note that the default assignment in line 16 in every state makes the value stored in
registersumavailable at the output post Thus, the componer acts as a multiply-
accumulator (MAC) unit which takes two clock cycles for each computation.
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2.4.6 Synchronization

Purpose: Representation of synchronization

Synopsis:

wait _statement =
wait paren _event list }
| wait paren _and_event _list

notify  _statement =
notify — paren _event list
| notifyone  paren _event ist '}

paren _event list =

event _list
| 'C event _list )
event ist =
event _identifier
| event ist )} event _identifier
| event ist * ||' event _identifier

paren _and_event _ist =
and _event _list
| 'C and _event ist )’

and _event _ist =
event _identifier '&&’' event _identifier
| and_event list '&& event _identifier

event _identifier =

identifier
| edge _selector identifier
| identifier edge _selector

edge _selector =
rising
| falling

Semantics:

(a) Synchronization of concurrent threads of execution is specified byadkie notify
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(b)

()

(d)

()

and notifyone statements which operate by the use of events (see Section 2.2.5) or
signals (see Section 2.2.6).

The semantics of synchronization of concurrent threads are defined by use of the time
interval formalism described in Section 3.5.

An abstract simulation algorithm for the synchronization semantics is specified in
Section 3.6. This algorithm represents one valid implementation of the synchroniza-
tion semantics. Other valid implementations may exist.

The wait statement, where a single event is specified as an argument or a list of
events separated by comma or logical{0y i§ specified as argument, suspends the
current thread from execution until at least one of the events specified as arguments
is notified. Then, the thread becomes active again and resumes its execution.

Thewait statement, where a list of events separated by logical-and (&&) is specified
as argument, suspends the current thread from execution until all of the events spec-
ified as arguments are notified, regardless of the order of the notification. Then, the
thread becomes active again and resumes its execution.

(H The notify statement triggers the events specified as arguments so that all threads,

(9)

which are currently waiting on any of these events, are notified. If there is no thread
waiting or sensitive to the notified events at the time of the execution ofidkigy
statement, then the statement has no effect.

Thenotifyone statement triggers the events specified as arguments so that at most one
thread, which is currently waiting on any of these events, is notified. The thread is
non-deterministically chosen. If there is no thread waiting or sensitive to the notified
events at the time of the execution of thatifyone statement, then the statement has

no effect.

Example:

1 #include <stdio.h >

2
3

behavior A(out int X, out event e)



74 CHAPTER 2. SPECC LANGUAGE
4 {
5 void main( void )
6 {
7 X = 42;
8 notify  e;
°o }
10 };
11
12 behavior B(in int x, in event e)
13 {
14 void main( void )
15 {
16 wait (e);
17 printf("%d", X);
18 }
19 }
20
21 behavior Main
22 {
23 int X;
24 event e;
25 A a(x, e);
26 B b(x, e);
27
28 int  main( void )
29 { par { a.main();
30 b.main();
31 1
32 return (0);
33 }
34 };

Notes:

The wait statement operates with either or and semantics. If the events specified

for the wait statement are separated by comma or logicaldrtbenor semantics

are used and the notification of only one of the events is sufficient to resume the exe-
cution. On the other hand, if the events specified fontaé statement are separated

by logical-and (&&), thenand semantics are used and all of the events must be no-
tified in order to resume the execution. In the latter case, it does not matter in which
order the events are received.
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ii. Note that thewait statement witland semantics is equivalent to a set of paraieilit
statements where eaetait statement is waiting for a single event. The execution
resumes only if all events have been notified.

iii. The SpecC standard channel library described in Appendix B.2 contains many stan-
dard synchronization channels that can be used conveniently and safely. It is recom-
mended to use these standard channels whenever possible instead of the primitives
wait, notify, andnotifyone.

iv. Note that, when resuming execution fronwait statement due to a notified event,
thewait statement provides no information to determine which of the specified events
was actually notified. If such information is required, it must be supplied explicitly by
the event generator, for example, by setting a specific value in an additional variable,
or by using asignal (which includes a value) instead of the event (that does not carry
any value).

v. Notified events can be thought of as being collected until no active behavior is avail-
able any more for execution. Then, the set of notified events is delivered to the waiting
threads, activating those threads that are waiting on any of them. As a resulb-the
tify andnotifyone statements are guaranteed to reach all threads that are currently
waiting for the event, including active threads that will be waiting for the event as
their immediate next state.

vi. The example shows two parallel executing behavidrand B, whereA sends data
via x to B. To make sure thd reads the value of only afterA has produced i is
waiting for the eveneto be notified byA.

vii. Note that, regardless of the execution order of plae statement, the example will
correctly transfer the data fromto B and then terminate. The synchronization se-
mantics ensure that the event notified4is not lost.

viii. Note also that the synchronization semantics even allow for a thread to wake up itself.
For example, a thread executing the statement sequmtife e; wait €; will receive
the notified event himself and can continue its execution aftewtiestatement.
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2.4.7 Exception handling

Purpose: Representation of exception handling

Synopsis:

exception _statement =
try compound_statement exception _list _opt

exception _list _opt =
<nothing >
| exception list

exception list =
exception
| exception list exception

exception =
trap paren _event list  compound _statement
| interrupt paren _event list  compound _statement

paren _event list =

event _list
| 'C event _list )
event _ist =
event _identifier
| event ist ) event _identifier
| event list ’ || event _identifier

event _identifier =

identifier
| edge selector identifier
| identifier edge _selector

edge _selector =
rising
| falling

Semantics:

(&) Thetry-trap-interrupt statement represents two types of exception handling in the
regular control flow (specified biry), namely abortion (specified Byap) and in-
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(b)

()

(d)

(e)

(f)

(9)

(h)

terrupt (specified bynterrupt ). Exception handling operates by use of events (see
Section 2.2.5) or signals (see Section 2.2.6).

The execution of théry -trap-interrupt statement starts with the execution of the
compound statement block specified after tifye keyword. It terminates with the
completion of the execution of they block, or with the completion of the execution
of atrap handler.

Thetry keyword enables exception handling for the execution of the compound state-
ment block following thery keyword. Within atry block, a thread (and all its chil-
dren) is sensitive to all events specified with thep andinterrupt handlers.

When one or more events to which a thread is sensitive is notified, the execution of
the thread (and all its children) is immediately suspended and a correspdraing
orinterrupt handler is executed. The point of execution where a thread is suspended
due to an exception is chosen non-deterministically.

Within atry -trap-interrupt statement, thénterrupt andtrap handlers are priori-
tized in the order they are specified. Only the first specified exception, that matches
any of the notified events, is executed.

For hierarchically composetly -trap-interrupt statements, the outer (higher level)
exception handlers take priority over the inner (lower level) exception handlers.

An interrupt handler is executed upon notification of one or more events specified
as arguments to thiaterrupt keyword. After the execution of the compound state-
ment block corresponding to theterrupt handler, the suspended thread (and all its
children) of thetry block resumes its execution.

A trap handler is executed upon notification of one or more events specified as ar-
guments to theérap keyword. After the execution of the compound statement block
corresponding to theap handler, the execution of they -trap -interrupt statement
completes. The execution of the suspended thread (and all its children) wf the
block is aborted.
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() The statements in the compound statement blocks aftaryhérap andinterrupt
keywords are restricted to at most one call tmainmethod of a behavior. No other
statement type is allowed.

Example:

1 behavior B;

2
3 behavior B_except( in event el, in event e2)
4 {
5 B bl, b2, b3;
6
7 void main( void )
8 {
9 try { bl.main(); }
10 interrupt (el) { b2.main(); }
11 trap (e2) { b3.main(); }
12 }
13 }

Notes:

i. Inabehavior sensitive to exceptions, interrupts and/or traps can occur at any time and
at any place in the code. The point where the exception handler is called is chosen
in non-deterministic manner. Note that this non-determinism in exception handling
goes well along with the non-determinism in the concurrent execution semantics.

ii. Note that events are never stored or queued. Thus, an event targetediatstate-
ment of a thread that is currently interrupted or trapped, will not reach the suspended
wait statement. Also, an event triggering an exception handler with high priority will
not reach any exception handler with lower priority. In other words, in a hierarchy of
exception handlers, any set of simultaneously notified events will cause at most one
exception (the one with the highest priority) to be serviced.

iii. Note that sensitivity to exception events only applies totilyeblock, not to any of
the exception handlers. In other words, exception handlers cannot be interrupted or
aborted by themselves or by other exception handlers specified with thetgame
trap-interrupt statement.
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iv. The example shows a behaviBrexceptdemonstrating exception handling. When-
ever eventlis notified during the execution of behaviot, the execution ob1 will
be suspended and behavh is started. Then, wheb2 finishes, the execution of
behaviorbl is resumed right from the point where it was interrupted.

v. When an eveng2 occurs in the example during the execution of behatirthe
execution ofblis aborted and the abortion handk is started. Then, wheb3is
completed, the execution 8f exceptcompletes as well.

vi. Note that a short cut notation for calling behavior instances exists (see Section 2.3.1).
With the short notation, they -trap-interrupt statement in the example can be re-
duced tatry {b1;} interrupt (e1)b2;} trap (e2){b3;}.

vii. An abstract system reset can be modeled hyyatrap statement enclosed in an
infinite loop.
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2.4.8 Execution time

Purpose: Representation of execution time

Synopsis:

waitfor _statement =
waitfor  time '’}

time =

constant _expression

Semantics:
(a) Thewaitfor statement represents the concept of execution time in a SpecC program.

(b) The execution of thevaitfor statement with respect to other concurrent threads is
defined by the time interval formalism described in Section 3.4.

(c) An abstract simulation algorithm for the semanticsagiitfor is described in Sec-
tion 3.6. This algorithm represents one valid implementation of execution time. Other
valid implementations may exist.

(d) Thewaitfor statement suspends the current thread from execution for the specified
amount of time. After the specified amount of time has passed, the thread can resume
its execution.

(e) The argument specified for theitfor statement must be of type time, or must be
implicitly convertable to type time (see Section 2.2.8).

() The expression specified as argument for wadtfor statement is evaluated at the
time thewaitfor statement is reached.

(g) The evaluation of the argument of thaitfor statement must result in a non-negative
value.

(h) If, during the execution of avaitfor statement, a thread is interrupted (see Sec-
tion 2.4.7), then the total amount of execution time spent for the execution of the
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interrupt handler is added to the amount of time specified as argument tedite
for statement.

Example:
1 behavior B (out int i, out event e)
2 {
3 void main( void )
4 {
5 i = 0;
6 waitfor 10;
7
8 i =1;
9 notify  e;
10 waitfor 10;
11
12 /.
13 }
14 };
Notes:

. Execution time is logical time, in contrast to real time.
i. Sometimes execution time is also referred to as simulation time or execution delay.

iii. The waitfor statement is the only statement in SpecC whose execution results in an

increase of (simulation) time.

. Thewaitfor statement and theait statement are the only non-composite statements

in SpecC whose execution time can be greate than zero. All other statements execute
in zero time.

. Since time spent for the execution of interrupts is added to the amount specified in

the argument, the execution ofaaitfor statement takes at least the amount of time
specified in the argument, or longer.
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2.4.9 Timing constraints

Purpose: Representation of timing constraints

Synopsis:

timing _statement =
do compound _statement timing ' {' constraint dist  opt’ }

compound _statement =

) {1 ) }1

| ' {" declaration dist '}

| ' {’ statement list’' }

| * {" declaration dlist statement list’' }

statement list =
statement
| statement list statement

statement =
labeled _statement

labeled _statement =
identifier _or _typedef _name '  statement

constraint  _list _opt =
<nothing >
| constraint  ist

constraint  list =
constraint
| constraint  list  constraint

constraint =
range '( any _name ’; any _name '} time _opt ’; time opt’y

time _opt =
<nothing >
| time

time =
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constant _expression

Semantics:

(a) Thedo-timing statement specifies timing constraints on the execution of statements
in a compound statement block.

(b) Thedo-timing statement consists of a compound statement block containing a set of
labeled statements, and a setarige statements.

(c) A range statement specifies a timing constraint between a pair of labeled statements
denoted by the two labels specified as the first and second argument. The labels used
for arange statements must be defined within the compound statement block of the
do-timing statement where thenge statement is specified.

(d) Therange statement specifies the timing constraint by a minimum (third argument)
and maximum (forth argument) amount of time to be spent from the start of the
execution of the statement denoted by the first label to the start of the execution of
the statement denoted by the second label.

(e) The minimum and maximum times are specified as optional constant expressions of
type time. If specified, these values must be evaluatable to constants at compile time.

(f) If left unspecified, the minimum time value defaults to negative infinityo], the
maximum time value defaults to positive infinity-¢).

(g) The execution semantics of the compound statement block withirtianing state-
ment are the same as for any other compound statement block.

(h) For simulation, theange statements specified withdo-timing statement can be
used for timing validation at runtime. The way, a simulator performs this constraint
validation, is implementation dependent.

Example:
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1 channel C (
2 inout bit [16] ABus,
3 inout bit [ 8] DBus,
4 out bit [ 1] RMode,
5 out bit [ 1] WMode)
6 {
7 bit [8] ReadByte( bit [16] Address)
8 {
9 bit [7:0] MyData;
10
11 do { t1: { ABus = Address;
12 waitfor  (2);
13
14 t2: { RMode = 1; WMode = 0;
15 waitfor  (12);
16
17 t3: { waitfor (5);
18
19 t4: { MyData = DBus;
20 waitfor  (5);
21
22 t5: { ABus = 0;
23 waitfor  (2);
24 }
25 t6: { RMode = 0; WMode = 0;
26 waitfor  (10);
27
28 t7: {
29 }
30 }
31 timing
32 { range (t1; t2; O; );
33 range (t1; t3; 10; 20);
34 range (t2; t3; 10; 20);
35 range (t3; t4; O; );
36 range (t4; t5; O; );
37 range (t5; t7; 10; 20);
38 range (t6; t7; 5; 10);
39 1
40 return (MyData);
41 }
42 };

Notes:
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The semantics of a statemeaainge(l1, 12, min, max)is that the statement labelé&d
is to be executed at leastintime units before, but not more thamaxtime units later
than the statement label&tl

ii. Thedo-timing statement specifies constraints for the implementation (e.g. synthesis)

of the design model. These constraints can also be used for timing validation during
simulation of the model.

iii. For example, timing constraint validation can be performed as follows. During the

execution of the compound statement block, the simulation runtime system collects
time stamps at the execution of each timing label. The time stamps are then validated
by comparison with the specifigenge constraints and any violation of the specified
timings is reported to the user in form of a warning or error message.

Typically, it is best if the way a simulator implements timing validation can be con-
trolled by the user. The SpecC reference compiler and simulator, for example, imple-
mentrange statements by calling a functiascc range checkfor eachrange state-
ment. By default, the functionsccrange checkis provided automatically by the
simulator and will, if the constraints are not met, abort the simulation with a suitable
error message. However, the functistcrange checkcan also be defined by the
user, in which case he is fully in control of timing validation.

The example shows the specification of a read protocol for a static RAM. The timing
constraints specified with the protocol are listed in formasfge statements. In the
compound statement block, one valid instance of implementation of the protocol is
shown by thewaitfor statements which specify the execution time of each action in
the protocol.
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2.5 Other SpecC constructs

2.5.1 Libraries

Purpose: Representation and handling of design libraries

Synopsis:
import _definition =

import  string  _literal Jist 7y
string _literal list =

string

| string literal  _list  string
Semantics:

(a) Theimport declaration specifies the inclusion of an external design file into the cur-
rent design.

(b) The string argument of thenport declaration denotes the name of the design to be
included.

(c) The search for the denoted design file in the file system is implementation dependent.

(d) An imported design must be a valid SpecC program in itself. In particular, an im-
ported design cannot rely on declarations specified in the importing design.

(e) The format of an imported design file is implementation dependent.

() The declarations and definitions contained in an imported design are incorporated
into the current design as if they were specified in the current design itself. The usual
rules for redeclaration and redefinition of symbols apply.

(g) Theimport declaration can be hierarchical. An imported design can in turn contain
other imported designs.

(h) Theimport declaration can be used multiple times for the same design. In this case,
only the firstimport declaration is effective, all following ones are ignored.
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Example:
1 #include <sim.sh >
2 #include  <stdio.h >
3
4 import "i _send";
5 import "i _receive";
6 import "c _handshake";
7
8 import "c _semaphore”;

Notes:

i. In contrast to thefincludeconstruct inherited from the C language, thmport dec-
laration automatically avoids multiple inclusions of the same file. There is no need to
usettifdef's around a library file to avoid unwanted redefinitions.

ii. Theimport declaration is visible to the SpecC compiler and any tool. In particular,
it is not eliminated by the C preprocessor as#irecludeconstruct is. Thusmport
can be used by tools for code structuring purposes.

iii. The search for an import file typically involves appending a file suffix and searching
along a defined import path for the file name.

iv. The file format of import files typically includes plain SpecC source code and pre-
compiled binary files.



88 CHAPTER 2. SPECC LANGUAGE

2.5.2 Persistent annotation

Purpose: Persistent annotation at specific objects

Synopsis:
any _declaration =

.|“ note _definition
any _definition =

.|“ note _definition

note _definition =
note any_name '=" annotation ’;
| note any_name '’ any _name = annotation ’;

annotation =
constant _expression

| 1{1 i) }1
| ' {" annotation  list’ }
annotation  list =

annotation
| annotation  ist '’ annotation

any _name =
identifier
| typedef _name
| behavior _name
| channel _name
| interfface  _name

Semantics:

(&) Thenote definition attaches a persistent annotation globally to the design, or locally
to a specified symbol, label, or user-defined type.

(b) The annotation consists of a key and a value. The key is the name of the annotation
and identifies the annotation at its object. It is an error to define multiple annotations
with the same key at the same object.
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()

(d)

(e)

(f)

(9)

The annotation value is either a single or composite constant. Each constant can be of
any constant type or be a constant expression. For the latter, the constant expression
is evaluated to a constant at compile time.

Annotation keys have their own name space. There is no name conflict possible with
the name spaces of symbols, labels or named user-defined types.

In the first form, without an object specifier, the annotation is attached to the current
scope. Valid scopes are the global scope, the class scope, the function or method
scope, or the scope of a user-defined type.

In the second form, with an object specifier, the annotation is attached to the named
object. The object specifier preceeds the annotation key, separated by a dot.

The annotated object is searched by its name in the following order. First, if the
annotation is defined in function or method scope, the name is searched in the list of
defined labels. If not found, the name is searched among the symbols defined in the
current local scope, then among the named user-defined types in the current scope,
and finally among any symbols in visible scope. The annotation is attached to the
first match. Itis an error if no match is found.

Example:
1 /x C style comment, not persistent x/
2 // C++ style comment, not persistent
3
4 note Author = "Rainer  _Doemer";
5 note Date = {{ 2002, 05, 15 }, { 10, 47, 49 }};
6 note DateString = "Wed _May.15..10:47:49 _PDT.2002"
7
8 const int X = 42;
9 struct S {int a, b; float f; };
10
11 note x.Size = sizeof (x);
12 note S.Bits = sizeof (struct S) x 8;
13
14 behavior B(in int a, out int b)
15 {

[EnY
()]

note Version = 1.1;
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17

18 void main( void )

19 {

20 1: b =2 x @
21 waitfor  (10);
22 2: b =3 =« a
23

24 note NumOps = 3;
25 note [1.0pID = 1;
26 note 12.0pID = 3;
27 1

28 };

29 note B.Area = { 123.45, 67.89 }

Notes:

i. Derived from the C language, the SpecC language allows comments in the source
code to annotate the design description. In particular, SpecC supports the same com-
ment styles as C++, namely comments encloseff iand*/ delimiters as well as
comments aftet/ up to the end of the line (see lines 1 and 2 in the example above).

ii. Code comments are not persistent. This means, they will be eliminated in the prepro-
cessing step by the C preprocessor. Thus, comments are not visible to the compiler
or any tools and therefore cannot be used to store information beyond the language
specification.

Persistent annotations specified by tloge definition do not have this problem. They
are visible to the compiler and tools and therefore can be conveniently use for storing
additional information that is not included in the SpecC code.

iii. As described above, persistent annotations can be attached to the current scope. This
way, global annotations (lines 4, 5 and 6 in the example), annotations at classes (line
16), annotations at methods (line 24), and annotations at user-defined types can be
defined.

iv. Alternatively, the object to be annotated can be named explicitly. In the example, this
style is used to define the annotations at variatflene 11), structureS(line 12), and
labelsll andI2 (lines 25 and 26).
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v. Annotation values may be plain or composite. This is similar to variable initializers
which also can be plain or composite. In the example, the annotBtt@Stringis a
plain string constant, whereas the annotafd@ie consists of a pair of lists denoting
the date (year, month, day) and time (hour, minute, second) separately.
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Chapter 3

SpecC Execution Semantics

The execution semantics of the SpecC language are defined by use of a time interval for-
malism [9] which is described in Section 3.1 through Section 3.5. For completeness, an
abstract simulation algorithm for the SpecC execution semantics is given in Section 3.6.

3.1 Time interval formalism

For each statemergtin a SpecC program, a time interv@lsar(s), Tend(S)) is defined,
whereTsart(S) and Teng(S) denote the start and end times, respectively, of the execution of
the statemens. For any time interval, the conditiofyat(S) < Tend(S) holds.

The execution tim&lgec Of a statemens is given by the length of the time interval,
Texed'S) = Tend(S) — Tstart(S). The execution time of any statement is always positive.

With the exception of thevait andwaitfor statements, the execution time of any state-
ment is an infinitesimal (very close to zero) number in terms of simulation time. Only the
wait andwaitfor statements, and composite statements that inclaie and/orwaitfor
statements as sub-statements, can have an execution time greater than one simulation time
unit.

93
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3.2 Sequential execution

Sequential execution of statements is defined by ordered time intervals that do not overlap.
Formally, for any sequence of statemef#s s, ... $), the following condition holds:

Vie{1,2,...,n—1}: Tend(S) < Tstart(Si+1)
For a sequentially composed statement, such as a function call or a call to a method
of a behavior or channel, the composite time interval includes all time intervals of the

sub-statements. In other words, the time intervals of all sub-statements lie within the time
interval of the composite statement.

Formally, for a composite statemehtonsisting of sub-statemerds s, . .. s, the fol-
lowing conditions hold¥i € {1,2,...,n} : Tstart(f) < Tstart(S) A Tend(S) < Tend( )

Note that sequential statements are not necessarily executed continuously. In particular,
gaps may exist between the end of one statement and the start of the following statement,
as well as between the start (end) of a composite statement and the start (end) of its sub-
statements. The presence and length of such gaps are non-deterministic.

Example: Figure 3.1 shows an example of a composite behd®itirat is composed of
the sequential execution of three child behavimrs andc.

b =

e— a =

foay

B ORI A,

R

Tstart(a) Tend(a) Tstart(b) Tend(b) Tstart(c) Tend(c) . time
Tstart(B) Tend(B)

Figure 3.1: Time interval example for sequential execution.

The time interval formalism for this example derives the following equations:

Tstart(B) < Tstart(8) < Tend(@) < Tstart(b) < Tend(b) < Tstart(€) < Tend(C) < Tend(B)
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3.3 Concurrent execution

Concurrent execution of statements, specified by eithep#ineor pipe statements, is de-
fined by time intervals that have the same start and end times asatl pipe statement,

respectively. In particular, the child behaviors invoked byaa or pipe statement begin
and terminate their execution at the same time.

Formally, for apar or pipe statemenfp that executes the child behavigps, p,... pn
concurrently, the following equations hold:

Vie {1,2,...,n}: Tetart(P) = Tstart(Pi) A Tend(Pi) = Tend(P)

Note that again a non-deterministic gap may exist between the start (end) time of a
concurrent child behavior and the start (end) time of its statements. Therefore, it is possible
but not necessary that the statements of concurrent child behaviors are actually executed in
parallel.

As a result, concurrent execution may be implemented truly in parallel, or by portion-
wise sequential execution where the order and size of the portions is undefined. This, in
particular, includes the possibility of using preemptive execution. No atomicity is guaran-
teed for the execution of any portion of concurrent code. In other words, except for the time
interval equations defined above, concurrent execution is non-deterministic.

Example: Figure 3.2 shows an example of a composite beha®itirat is composed of
the concurrent execution of two child behavierandb. The child behaviora andb in
turn consist of the statemerda& anda2, andbl andb2, respectively.

al—n:

a2—~:

e D1 |

~—— b2

i

ey

T

ETstart(al) Tend(al) E Tstart(a2) Tend(a2) .
: Tstart(bl) Tend(bl) Tstart(b2) Tend(b2) |
Tstart(B) Tend(B)

o
o

time

Figure 3.2: Time interval example for concurrent execution.
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The time interval formalism for this example derives the following equations:
Tstart(B) = Tstart(@) = Tetart(b)

Tend(B) = Tend(a) = Tend(b)

Tstart(B) < Tstart(al) < Tend(al) < Tstart(az) < Tend(az) < Tend(B)

Tstart(B) < Tstart(bl) < Tend(bl) < Tstart(bz) < Tend(bz) < Tend(B)

3.4 Simulation time

The concept of simulation time in SpecC is supported by the use afditor statement.
The execution of avaitfor statement suspends the current thread from further execution for
the amount of simulation time specified as an argument tavdifor statement.

For the time interval of avaitfor statementv with argumentd, the end timélgng(w) is
given by adding the specified deldyto the start timélgiar(w). Formally,

Tstart(W) +d < Teng(w)

In other words, the execution time ofvaaitfor statement is specified explicitly as its
argument which, as defined in Section 2.4.8, must be a non-negative, integral value of type
time. As such, the execution time ofaaitfor statement is not restricted to an infinitesimal
amount of time as for ordinary statements. Instead, it extends to an integral amount of
simulation time.

In case the execution ofwaitfor statement is interrupted due to activation of amy
terrupt handlers (see Section 2.4.7), then the execution time oivHidor statement is
prolonged by the amount of time serving the interrupts. More specifically, the total execu-
tion time dinterrupt SPENt in any interrupt handlers is added to the delayiment Specified
with thewaitfor statement. Formally] = dargument+ dinterrupt-

In summary, for awaitfor statementw with argumentd, whose execution starts at
simulation timet, the following equations hold:

t < Tstart(W) <t+1

t +d < Tend(W) < t+d+ 1 whered = dargument+ dinterrupt

Example: Figure 3.3 illustrates the relation between execution time and simulation time.
The example shows three sequential statemants and b, wherea andb are ordinary
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statements ands is awaitfor statement with argument 10. Further, the example assumes
that statemend is executed at simulation time 0.

©
;
}
o

time
11

T=0 T=1 T=10

\{

Figure 3.3: Time interval example for simulation time.

The time interval formalism for this example derives the following equations:
0 < Tstart(a) < Tend(@) < Tstart(w) < 1
10 < Tend(W) < Tetart(b) < Tena(b) < 11

3.5 Synchronization

In order for concurrent threads to be cooperative, the threads need to be synchronized at
points of communication. Synchronization of concurrent threads can be specified by use of
thenotify (or notifyone) andwait statements. As defined in Section 2.4.@at statement
suspends the current thread from further execution until a specified event is triggered by the
execution of anotify (or notifyone) statement.

In order to define this synchronization mechanism in terms of the time interval formal-
ism, a notify-wait pair(n,w) is defined as aotify (or notifyone) statement and a corre-
spondingwait statementv, where an event triggered by thetify (or notifyone) statement
n reaches thevait statementv.

Note that, whether or not an event triggered hyotify (or notifyone) statement actu-
ally reaches avait statement, is not defined within the time interval formalism. However,
in Section 3.6 one valid simulation algorithm is defined that determines how a valid notify-
wait pair is found.

Formally, the following equation holds for a notify-wait pair, w):

Tend(n) < Tena(w)
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Example: Figure 3.4 illustrates the time interval formalism for synchronization. The ex-
ample shows two concurrent threaalandb, wherea consists of the sequential statements
al,wanda2, andb consists of the sequential statemdritsn andb2. Further, the example
assumes thatl, a2, bl andb2 are ordinary statements, whereaandw are notify and
wait statements, respectively, that form a notify-wait pair.

~ al b= —— W

a2 =

‘*bl’i’

n P b2

|

1
|
1
I
1
1
|

>
time

Tend(n) <= Tend(w)

Figure 3.4: Time interval example for synchronization.

The time interval formalism for this example derives the following equations:
Tstart(al) < Tend(@l) < Tetart(W) < Tend(W) < Tstart(82) < Tend(a2)

Tstart(b1) < Tend(b1) < Tstart(N) < Tend(N) < Tstart(b2) < Tend(b2)

Tend(n) < Tend(w)

3.6 Abstract simulation algorithm

In order to summarize the execution semantics of the SpecC language, this section describes
an abstract simulation algorithm for SpecC programs.

The algorithm defined in the following is one valid implementation of the SpecC exe-
cution semantics. Other valid implementations may exist.

Definitions:

(&) The sefl represents the set of threads that are active during the program execution.
In the beginning,T contains only the root thredg,:.. Whentqo is completed, the
execution of the program terminates.

(b) The number of threads i changes during the program execution due to creation
of new threads and termination of completed threads. pdara(or pipe) statement,
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the specified concurrent child behaviors are added as threads \téhen the child
behaviors have completed their execution, they are taken dut of

(c) Atany time, each threade T belongs to exactly one subsetf More specifically,
T is composed of the three subs@ts.dy, Twait andTwaitfor Which do not overlap.

Formally, T = TreadyU Twait U Twait for, Where
Treadyﬂ Twait =0 A Twait N Twaitfor =0 A Treadyﬂ Twaitfor =0

In the beginningTready = {troot}, Twait = 0, Twaitfor = 0

(d) The seiN represents the set of notified events during the program execution. Events
notified bynotify statements are added kb Delivered or expired events are taken
out of N. In the beginningN = 0.

(e) The variabld,oy holds the current simulation time. In the beginnihgy, = 0.

(f) For each thread € Twaitfor, @ functiontyakeudt) determines the wakeup time of the
thread. The wakeup time is computed at the timea#tfor statement is reached. For
awaitfor statement with argumen, tyakeudt) = thow+ d.

Algorithm:
Step 1 : Start.
Step 2 : Select one threatl,n € Tready, €XECUtEyn.
Step 3 : At notify statement, add notified eventsNpgo to step 6.
Step 4 : At wait statement, movey, from Tready tO Twait, 9O to Step 6.
Step 5 : Atwaitfor statement, movgyn from Tready tO Twaitfor, 9O tO Step 6.
Step 6 : If Tready# O then go to step 2.
Step 7 : Move allt € Tyq;t Waiting for eventse € N t0 Tready
Step 8 : SetN=0.

Step 9 : If Tready# 0 then go to step 2.
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Step 11: Move allt € Tyaitfor Wheretyakeudt) = thow t0 Tready.

Step 12: If Tready # @ then go to step 2.

Step 13: Stop.

Notes:

The abstract simulation algorithm starts with Step 1. As defined above, all variables
are set to their initial valuesT = Tready = {troot}, Twait = 0, Twaitfor = 0, N = 0,

thow = 0.

i. In Step 2, one thread is chosen for execution out of all threads in the ready queue

Tready- Note that, at any time, this algorithm runs only one thread. This is a valid
choice for implementing the potential concurrency, as defined in Section 3.3.

A different implementation, that also would be valid according to Section 3.3, could
actually choose to execute some or even all threads digt4f,in parallel. However,

in this case care must be taken when accessing the variables of the algorithm because
those are shared among all the threads.

ii. In Step 3, events triggered byotify statements are collected k. Although not

Vi.

shown in the algorithm, events triggered hgtifyone statements would be handled
in a very similar manner.

In Step 4, threads executingveait statement are suspended from further execution
by putting them into the wait queURajt.

In Step Swaitfor statements are handled in the same fashion agditestatements in
Step 4. Threads executingnaitfor statement are suspended from further execution
by putting them into the waitfor queuR,aitfor- NOte that in this case a wakeup time
for the thread is computed so that it can be resumed after the specified time period.

Step 6 defines the innermost loop of the simulation algorithm, which is called the
synchronization cycle. This synchronization cycle ensures that all threads are exe-
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Vii.

cuted until they hit avait or waitfor statement. Only if no thread is available any
more for execution, Step 7 is reached.

In Step 7, all notified events are delivered to the waiting threads. Threads from the
wait queue, whose events were notified, are resumed. Other threads stay in the wait
queue.

Note that in this step also updatingsinal andbuffered variables would take place,
as well as exception handling. These tasks, however, are left out in the algorithm for
the reason of simplicity.

viii. In Step 8, the set of notified events is cleared. Events that could not be delivered in

Xi.

Step 7, expire at this point.

. Step 9 defines the second loop of the simulation algorithm. All the threads, that have

received events they were waiting for, can resume their execution.

. In Step 10 the simulation tintg, is updated. Itis increased by the minimum amount

of time that any threads in the waitfor queue still have to wait for.

In Step 11, the threads whose wakeup time has been reached, are enabled for execu-
tion again.

xii. Step 12 defines the outermost loop of the simulation algorithm. If any threads could

be awakened in Step 11, they can now resume their execution.

xiii. In Step 13, the simulation algorithm terminates. Note that at this point no thread is

available for further execution any more because both the ready qugueand the
waitfor queueTyaitfor are empty. The wait queuRyai;, however, still contains one

or more threads that are waiting for events, but since no other thread is available any
more to notify any events, the simulation is stuck in a deadlock situation and must
terminate.
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Appendix A

SpecC Grammar

In the following, the complete grammar of the SpecC language version 2.0 is listed in the
format of an extended Backus-Naur form (EBNF).

A.1 Lexical elements

A.1.1 Lexical rules

The following lexical rules are used to make up the definitions below.

delimiter [\ t\b\r]

newline A Nn\f\v]

whitespace {delimiter}+

ws {delimiter}x

ucletter [AZ]

Icletter [a2z]

letter ({ucletter}|{Icletter})
digit [0-9]

bindigit [01]

octdigit [0-7]

hexdigit [09a—FfA—F]

identifier ({ letter}|” _")({ letter }|{ digit }|" -") %)
integer {digit }+

binary {bindigit}+

decinteger [39]{ digit }x
octinteger "0 octdigit }x*
hexinteger "0"[xX]{ hexdigit}+

103
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decintegeru
octintegeru
hexintegeru
decintegetl
octintegerl
hexintegerl
decintegerul
octintegerul
hexintegerul
decintegetll
octintegerll
hexintegerll
decintegerull
octintegerull
hexintegerull
octchar
hexchar
exponent
fraction
floatl

float2

float3
floating
float_f
float_I
bitvector
bitvector.u

APPENDIX A. SPECC GRAMMAR

{decintegern[uU]

{octinteger}[uU]

{hexintegen[uU]

{decintegenIL]

{octinteger}[IL]

{hexintegen[IL]

{decinteger}([uU][IL] |[IL][uU])
{octinteger}([uU][IL] |[IL][uU])
{hexintegert([uUI[IL] |[IL][uU])
{decintegen[IL][IL]
{octinteger}[IL][IL]
{hexintegen[IL][IL]
{decinteger}([uU]J[IL]I[IL] |[IL][IL][uU])
{octinteger}([uUJ[ILI[IL] |[ILI[IL][uU])
{hexintegert([uUJ[IL]I[IL] |[IL][IL][uU])
A\\"{octdigit}{1, 3}

A\\x"{hexdigit}+

[eE][+]?{integer}

{integer}
{integer}”.” { fraction}?({ exponent)?
"."{fraction}({exponent)?
{integer}{exponent
{floatl}|{float2}|{float3}

{floating }[fF]

{floating }[IL]

{binary}[bB]

{binary}([uU][bB] |[bB][uU])

A.1.2 Comments

In addition to the standard C style comments, the SpecC language also supports C++ style
comments. Everything following two slash-characters is ignored until the end of the line.

"I+" <anything> "x/"
"[I" < anything> "\n”

/% ignore commentsx/
/+ ignore commentsx/
A.1.3 String and character constants

SpecC follows the standard C/C++ conventions for encoding character and string constants.
The following escape sequences are recognized:
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"\n” [+ newline (0x0a)x*/
"\ t” /x tabulator (0x09)x/
"\Vv” I+ vertical tabulator (OxOb )/
"\ b” /+ backspace (0x08 X/
"\r” /= carriage return (oxod }/
"\ f” /% form feed (0x0c) =/
"\a” I+ bell (0x07) =/
{octchar} /* octal encoded charactef/
{hexchan I+ hexadecimal encoded charactef

Strings are character sequences surrounded by quotation marks. Two subsequent
strings, only separated by whitespace, are concatenated, in other words, they are treated
the same way as one single string.

A.1.4 White space and preprocessor directives

White space in the source code is ignored. Preprocessor directives are handled by the C
preprocessorcpp) and are therefore eliminated from the SpecC source code when it is read
by the actual SpecC parser.

{newline} I+ skip =/
{whitespacée /% skip =/

A.1.5 Keywords

The SpecC language recognizes the following ANSI-C keywords:

auto, break, case char, const continue, default, do, double, else enum, extern,
float, for, goto, if, int, long, register, return, short, signed sizeof static, struct, switch,
typedef, union, unsigned void, volatile, while.

In addition, the following SpecC keywords are recognized:

behavior, bit, bool, buffered, channel event, falling, false, fsm, fsmd, implements,
import, in, inout, interface, interrupt , note, notify, notifyone, out, par, pipe, piped,
range, rising, signal, this, timing, trap, true, try, wait, waitfor.

For future extensions, the following tokens are reserved. These keywords must not be
used as identifiers in any SpecC program.

and, and_eq, asm, bitand, bitor, catch, class compl, constcast delete dy-
namic_cast, explicit, export, friend, inline, mutable, namespace new, not, not_eq,
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operator, or, or_eq, private, protected, public, reinterpret _cast static_cast template,
throw, typeid, typename using, virtual , wchar_t, xor, xor _eq, fix.

A.1.6 Token with values
The following is a complete list of all tokens in the grammar that carry values.

identifier =
{identifier}

typedefname =
{identifier}

behaviorname =
{identifier}

channelname =
{identifier}

interfacename =
{identifier}

integer
decintegen

{ octinteger}

{ hexintegen

{ decintegeru}

{ octintegeru}

{ hexintegeru}

{ decintegerl }

{ octintegerl }

{ hexintegerl }

{ decintegerul }
{ octintegerul}
{ hexintegerul }
{ decintegerll }
{ octintegecrll }
{ hexintegerll }
{ decintegerull }
{ octintegecrull }
{ hexintegerull }

{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

floating =
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{floating}
| { float_f}
| { float_l}

character =
{charactet

string =
{string}

bitvector =
{bitvector}
| { bitvector.u}

A.2 Constants

constant =
integer

| floating

| character

| false

| true

| bitvector

| string_literal_list

string_literal_list =
string
| string_literal_list string

A.3 Expressions

primary_expression =
identifier
| constant
| ("’ commaexpression ')’
| this

postfix_expression =
primary_expression
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| postfix_expression ’'[’ commaexpression ']’

| postfix_expression '(’ ")’

| postfix_.expression '(’ argumenexpressionlist ')’

| postfix_.expression ’'.” membename

| postfix_expression ->' membername

| postfix_expression '++’

| postfix_expression ~—’

| postfix_expression ’'[’ constanexpression ':’
constantexpression ']’

membername =
identifier
| typedefor_classname

argumentexpressionlist =
assignmentexpression
| argumentexpressionlist ', assignmentexpression

unaryexpression =
postfix_.expression
| "++’ unary_expression
| "——" unary_expression
| unary.operator castexpression
| sizeof unaryexpression

| sizeof '(’ type_name ')’

unary.operator =
1&7
| 7 7

*
|!+l

castexpression =
unary.expression
| "(" type_name ')’ castexpression

concatexpression =
castexpression
| concatexpression '@ castexpression

multiplicative_expression =
concatexpression
| multiplicative_expression %’ concatexpression
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| multiplicative_expression '/’ concatexpression
| multiplicative_expression "%’ concakxpression

additive_expression =
multiplicative_expression
| additive_expression '+’ multiplicativeexpression
| additive_expression -’ multiplicative_expression

shift_expression =
additive_expression
| shift_expression &<’ additive_expression
| shift_expression >>' additive_expression

relationalexpression =
shift_expression
| relationalexpression X' shift_expression
| relationalexpression >’ shift_expression
| relationalexpression =" shift_expression
| relationalexpression >=' shift_expression

equality_expression =
relationalexpression
| equality.expression '==" relationalexpression
| equality.expression 'l=" relationalexpression

and.expression =
equality_expression
| and.expression '&’ equalityexpression

exclusiveor_expression =
and.expression
| exclusiveor_expression

andexpression

inclusive.or_expression =
exclusiveor_expression
| inclusive.or_expression |’ exclusive.or_expression

logical_and_expression =
inclusive.or_expression
| logical_.and.expression '&&’ inclusiveor_expression

logical_or_expression =
logical_-and.expression
| logical_or_expression ||’ logical_and.expression
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conditionalexpression =
logical_or_expression
| logical_-or_expression '?’ commaxpression
conditionalexpression

assignmentexpression =
conditionalexpression
| unary_expression assignmerdperator assignmenéxpression

assignmentoperator =

commaexpression =
assignmentexpression

| commaexpression ’,’ assignmenéxpression

constantexpression =
conditionalexpression

commaexpressionopt =
<nothing>
| commaexpression

A.4 Declarations

declaration =
sue.declarationspecifier ';’
| suetype_specifier ’;’

| declaringlist ’;
| defaultdeclaringlist ’;’

defaultdeclaringlist =
declarationqualifier_list identifier_.declarator initializeropt
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| type_qualifier_list identifier.declarator initializeropt

| defaultdeclaringlist ',’ identifier_declarator initializeropt

| signal-class declarationqualifier_list identifier.declarator
initializer_opt

| signal.class typequalifier_list identifier_.declarator
initializer_opt

declaring.list =
declarationspecifier declarator initializemopt
| type_.specifier declarator initializemopt
| declaringlist ’,” declarator initializeropt
| signal.class declaratiomspecifier declarator initializemopt
| signal.class typespecifier declarator initializermopt

signal.classopt =
<nothing>
| signal.class

signalclass =

signal

| buffered

| buffered '[' clock_specifier ']’

| buffered '[' clock_specifier ';’ resetsignalopt ']’

declarationspecifier =
basicdeclarationspecifier
| suedeclarationspecifier
| typedefdeclarationspecifier

type_specifier =
basictype.specifier
| suetype.specifier
| typedeftype_specifier

declarationqualifier_list =
storageclass
| type_qualifier_list storageclass
| declarationqualifier_list declarationqualifier

type_qualifier_list =
type_qualifier
| type_qualifier_list type_qualifier

declarationqualifier =
storageclass
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| type_qualifier

type_qualifier =
const
| volatile

basic.declarationspecifier =
declarationqualifier_list basictype_.name
| basictype_specifier storageclass
| basicdeclarationspecifier declarationqualifier
| basicdeclarationspecifier basictype_.name

basictype_specifier =
basictype_.name
| type_qualifier_list basictype.name
| basictype.specifier typequalifier
| basictype_specifier basictype_.name

sue.declarationspecifier =
declarationqualifier_list elaboratedtype_.name
| suetype_specifier storageclass
| suedeclarationspecifier declarationqualifier

suetype_specifier =
elaboratedtype_.name
| type_qualifier_list elaboratedtype_.name
| suetype._specifier typequalifier

typedefdeclarationspecifier =
typedeftype_specifier storageclass
| declarationqualifier_list typedefname
| typedefdeclarationspecifier declarationqualifier

typedeftype_specifier =
typedefname
| type_qualifier_list typedefname
| typedeftype_specifier typequalifier

storageclass =
typedef
| extern
| static
| auto
| register
| piped
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basictype_.name =
int
| char
| short
| long
| float
| double
| signed
| unsigned
| void
| bool
| bit '[' constantexpression ':' constanexpression
| bit '[' constantexpression ']’
| event

elaboratedtype_name =
aggregatename
| enumname

aggregatename =
aggregatekey '{’ memberdeclarationlist '}’
| aggregatekey identifieror_-typedeftname '{’
membercdeclarationlist '}’
| aggregatekey identifieror_typedefname

aggregatekey =
struct
| union

memberdeclarationlist =
memberdeclaration
| memberdeclarationlist memberdeclaration

memberdeclaration =
memberdeclaringlist ';’
| memberdefaultdeclaringlist ’;’
| note_definition

memberdefaultdeclaringlist =
type_qualifier_list memberidentifier_declarator

113

| memberdefaultdeclaringlist ', member.identifier_declarator

memberdeclaringlist =
type_specifier memberdeclarator
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| membecrdeclaringlist ',” member.declarator

memberdeclarator =
declarator bitfield_size opt
| bit_field_size

membercidentifier_declarator =
identifier.declarator bitfield_size_opt
| bit_field_size

bit_field_size_opt =
<nothing>
| bit_field_size

bit_field_size =
'’ constantexpression

enumname =
enum ' {’ enumeratorlist '}’
| enum identifier.or_typedefname '{' enumeratoclist '}’
| enum identifier.or_typedefname

enumeratorlist =
identifier.or_.typedefname enumeratavalue.opt

| enumeratorlist ',” identifier_or_typedefname
enumeratorvalue opt

enumeratorvalue.opt =
<nothing>

| '=" constantexpression

parametertype_list =
parameterlist
| parameterlist ', '...’

parameterlist =
parameterdeclaration

| parameterlist ',” parameterdeclaration
| interfaceparameter
| parameterlist ’,’ interface_parameter

parameterdeclaration =
declarationspecifier
| declarationspecifier abstracteclarator
| declarationspecifier identifiecdeclarator
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| declarationspecifier parametetypedefdeclarator
| declarationqualifier_list

| declarationqualifier_list abstractdeclarator
| declarationqualifier_list identifier.declarator
| type.specifier

| type_specifier abstracteclarator

| type_specifier identifiecdeclarator

| type_specifier parametetypedefdeclarator

| type_qualifier_list

| type_qualifier_list abstractdeclarator

| type_qualifier_list identifier_declarator

identifier.or_typedefname =
identifier
| typedefor_classname

type.name =
type_specifier
| type.specifier abstractdeclarator
| type_qualifier_list
| type_qualifier_list abstractdeclarator

initializer_opt =
<nothing>
| '=" initializer
initializer =
"{’ initializer_list '}’
| "{ initializer_list '," "}’
| constantexpression

initializer_list =

initializer
| initializer_list ', initializer
A.5 Classes

specc_definition =
import_.definition
| behaviordeclaration
| behaviordefinition
| channeldeclaration
| channeldefinition
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| interfacedeclaration
| interfacedefinition
| note_definition

import_definition =
import string_literal_list ;’

behaviordeclaration =
behaviorspecifier portlist_.opt implementsinterfaceopt ’;’

behaviordefinition =
behaviorspecifier portlist_opt implementsinterfaceopt
"{" internal_definition_list_opt '}’ ;'

behaviorspecifier =
behavior identifier

channeldeclaration =
channelspecifier portlist_opt implementsinterfaceopt ’;’

channeldefinition =
channelspecifier portlist_opt implementsinterfaceopt
"{" internal_definition_list_opt '}’ ';’

channelspecifier =
channel identifier

port_list_opt =

<nothing>

| )

| (" port_list ')’
port_list =

port_declaration

| port.list ’,” port_declaration

port.declaration =
port_direction signalclassopt parameterdeclaration
| interfaceparameter

port_direction =
<nothing>
| in
| out
| inout
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interface.parameter =
interfacename
| interfacename identifier

implementsinterfaceopt =
<nothing>
| implements interfacelist

interfacelist =
interfacename
| interfacelist ',” interface.-name

internal_definition_list_opt =
<nothing>
| internalLdefinition_list

internaldefinition_list =
internal_definition
| internalLdefinition_list internal.definition

internal_definition =
function_definition
| declaration
| instantiation
| note_definition

instantiation =
instancedeclaringlist ’;’

instancedeclaringlist =
behavioror_.channel instancedeclarator
| instancedeclaringlist ’,” instance.declarator

instancedeclarator =
identifier portmappinglist_opt
| typedefor_classname portmappinglist_opt

behavioror_.channel =
behaviorname
| channelname

port_mappinglist_opt =
<nothing>
| (" port_mappinglist ")’
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port_mappinglist =
port-mappingopt
| port_mappinglist ',” port_.mappingopt

port_mappingopt =
<nothing>
| port.mapping

portmapping =
bit_slice
| portmapping '@ bitslice

bit_slice =
constant
| (" constantexpression ')’
| identifier
| identifier '[' constantexpression ’':' constanexpression ']’

| identifier '[’ constantexpression ']’

interfacedeclaration =
interface.specifier ';’

interfacedefinition =
interface.specifier '{’ internal_declarationlist_opt '}’ ";’

interface.specifier =
interface identifier

internalLdeclarationlist_opt =
<nothing>
| internal.declarationlist

internal_declarationlist =
internalLdeclaration
| internal.declarationlist internaldeclaration

internalLdeclaration =
declaration
| note_definition

note_definition =
note any.name '=' annotation ’;’
| note any.name ’'.’ anyname ’'=' annotation ’;’
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annotation =
constantexpression

| "{’ annotationlist '}’

annotationlist =
annotation
| annotationlist ’,” annotation

typedefor_classname =
typedefname
| behaviotname
| channelname
| interfacename

any.name =
identifier
| typedefname
| behaviorname
| channelname
| interfacename

A.6 Statements

statement =
labeledstatement
| compoundstatement
| expressionstatement
| selectionstatement
| iterationstatement
| jump_statement
| specc_statement

labeledstatement =

identifier.or_.typedeftname ’':’ statement

| case constantexpression ’':' statement

| default ':’ statement
compoundstatement =

| '{' declarationlist '}’
| "{' statementlist '}’
| "{' declarationlist statementlist '}’

119
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declarationlist =
declaration
| declarationlist declaration
| note_definition
| declarationlist note_definition

statementlist =
statement
| statementlist statement
| statementlist note_definition

expressionstatement =
commaexpressionopt ’;’

selectionstatement =
if "(’ comma_,expression ')’ statement

. SPECC GRAMMAR

| if '(" comma,expression ')’ statementelse statement

| switch '(’ comma.expression ')’ statement

iterationstatement =
while (" comma_expressionopt ')’ statement
| do statementwhile '(’ comma.expression ')’

| for '(’ comma.expressionopt ';’ commaexpressionopt ’;’

commaexpressionopt ')’ statement

jump_statement =
goto identifier.or_typedefname '}’
| continue ’;’
| break ’;’
| return commaexpressionopt ’;’

specc.statement =

concurrentstatement
| fsm_statement

| fsmd._statement

| exceptionstatement
| timing_statement

| wait_statement

| waitfor_statement

| notify_statement

concurrenistatement =
par compoundstatement
| pipe compoundstatement
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| pipe '(’ comma.expressionopt ’;’ commaexpressionopt

;7 comma_expressionopt ')’ compoundstatement

fsm_statement =

me 1{1 i) }1

| fsm '{’ transition_list '}’
transition.list =

transition
| transitionlist transition

transition =

state '’

| state ':’ condbranchlist

| state "' {' '}’

| state "’ '{’ cond_branchlist '}’
state =

identifier

| identifier compoundstatement

cond.branchlist =
condbranch
| cond.branchlist condbranch

condbranch =
if "(" comma_,expression ')’ goto identifier ’;’
| goto identifier ’;’
| if '(" comma,expression ')’ break ’;’
| break ’;’

fsmd_statement =
fsmd '(° fsmd_head ')’ fsmdbody

fsmd.head =
clock_specifier
| clock_-specifier ’;’ sensitivity. list_opt
| clock_specifier ;' sensitivity_list_.opt ;' resetsignalopt

clock_specifier =
eventlist
| constant
| "(" time )’

sensitivity_list_opt =
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<nothing>
| eventlist

resetsignalopt =
<nothing>
| identifier
| '1” identifier

fsmd.body =
1{1 1}1

| '{' declarationlist '}’

| "{' resetstate '}’

| "{' declarationlist resetstate '}’

| *{’ default_action '}’

| "{’" declarationlist defaultaction '}’

| "{’ resetstate defaultaction '}’

| "{' declarationlist resetstate defaultaction '}’

| "{ fsmd_statelist '}’

| "{’ declarationlist fsmd.statelist '}’

| "{’ resetstate fsmdstatelist '}’

| "{’" declarationlist resetstate fsmdstatelist '}’

| '{' default.action fsmdstatelist "}’

| "{' declarationlist defaultaction fsmdstatelist "}’

| "{' resetstate defaultaction fsmdstatelist '}’

| "{’ declarationlist resetstate defaultaction fsmdstatelist '}’

resetstate =
if "(" comma_,expression ')’ action

defaultaction =
action

fsmd_statelist =
fsmd_state
| fsmd_statelist fsmd_state

fsmd_state =
identifier.or_.typedefname ’':’ action

action =
| "{’" declarationlist "}’
| *{" rtl_statementlist '}’
| "{' declarationlist rtl_statementlist '}’
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rtl_statementlist =
rtl_statement
| rtl_statementlist rtl_statement
| rtl_statementlist note.definition

rtl_statement =
rtl_labeledstatement
| rtl_compoundstatement
| expressionstatement
| rtl_selectionstatement
| rtl_jump_statement

rtl_labeledstatement =
case constantexpression ':’ rtlLstatement
| default ":" rtl _statement

rtl_compoundstatement =
| "{’" declarationlist '}’
| *{" rtl_statementlist '}’
| "{" declarationlist rtl_statementlist '}’

rtl_selectionstatement =
if "’ comma,expression ')’ rtLstatement
| if '(" commaexpression ')’ rtLstatement else rtl_statement
| switch '(’ comma.expression ')’ rtlLstatement

rtl_jump_statement =
goto identifier.or_typedefname ’;’
| break ’;’

exceptionstatement =
try compoundstatement exceptioist_opt

exceptionlist_opt =
<nothing>
| exceptionlist

exceptionlist =
exception
| exceptionlist exception

exception =
trap pareneventlist compoundstatement
| interrupt pareneventlist compoundstatement
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pareneventlist =
eventlist
| (" event_list ')’

eventlist =
eventidentifier
| eventlist ', event.identifier
| eventlist '||’ eventidentifier

parenand.eventlist =
and.eventlist
| (" and_eventlist ')’

and.eventlist =
eventidentifier '&&’ event_identifier
| and_eventlist '&&’ event_identifier

eventidentifier =
identifier
| edgeselector identifier
| identifier edgeselector

edgeselector =
rising
| falling

timing_statement =
do compoundstatementtiming '{' constraintlist_opt '}’

constraintlist_opt =
<nothing>
| constraintlist

constraintlist =
constraint
| constraintlist constraint

constraint =
range '(’ any_name ’;’ anyname ’;’ time.opt ’;’ time_opt ')’ '}’

time_opt =
<nothing>
| time
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time =
constantexpression

wait_statement =
wait pareneventlist ’;’

| wait parenandeventlist ’;’

waitfor_statement =
waitfor time ’;’

notify_statement =
notify pareneventlist ’;’

| notifyone pareneventlist ’;’

A.7 External definitions

translationunit =
<nothing>
| externaldefinition_list

externaldefinition_list =
externaldefinition
| externaldefinition_list externaldefinition

externaldefinition =
function_definition
| declaration
| specc._definition

function_definition =

identifier.declarator compoundtatement

| declarationspecifier declarator compounstatement

| type.specifier declarator compounstatement

| declarationqualifier_list identifier.declarator
compoundstatement

| type_qualifier_list identifier_declarator
compoundstatement

declarator =
identifier.declarator
| typedefdeclarator

typedefdeclarator =
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parentypedefdeclarator
| parametertypedefdeclarator

parametertypedefdeclarator =
typedefor_classname
| typedefor_classname postfixingabstractdeclarator
| cleantypedefdeclarator

cleantypedefdeclarator =

cleanpostfix_.typedefdeclarator

| '+«' parametertypedefdeclarator
| "+’ type_qualifier_list parametertypedefdeclarator
cleanpostfix_.typedefdeclarator =

"(" clean_typedefdeclarator ')’

| (" clean_typedefdeclarator ')’

postfixing.abstractdeclarator

parentypedefdeclarator =
parenpostfix_.typedefdeclarator
| %" (" simple_parentypedefdeclarator ')’
type_qualifier_list '(° simple_parentypedefdeclarator )’
paren.typedefdeclarator
type_qualifier_list parentypedefdeclarator

| 7 *
| 7 *
| 7 *
parenpostfix_.typedefdeclarator =

(" paren_typedefdeclarator ')’

| (" simple_parentypedefdeclarator

postfixing_.abstractdeclarator )’

| (" paren_.typedefdeclarator ')’

postfixing.abstractdeclarator

simple_parentypedefdeclarator =
typedefor_classname
| (" simple_parentypedefdeclarator ')’

identifier.declarator =
unary_.identifier_declarator
| parenidentifier.declarator

unary.identifier.declarator =
postfix_identifier.declarator
| '+’ identifier_declarator
| "+’ type_qualifier_list identifier.declarator
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postfix_identifier.declarator =
parenidentifier_declarator postfixingabstractdeclarator
| (" unary_identifier_.declarator ')’
| (" unary_identifier_.declarator ')’
postfixing.abstractdeclarator

parenidentifier_declarator =
identifier
| (" paren_identifier_.declarator ')’

abstractdeclarator =
unary.abstractdeclarator
| postfix_abstractdeclarator
| postfixing.abstractdeclarator

postfixing.abstractdeclarator =
array_abstractdeclarator
| 1(1 7)1

| (" parametertype_list ')’

array.abstractdeclarator =
1[1 1]1
| '[’ constantexpression ']’
| array.abstractdeclarator '[' constantexpression ']’

unary-abstractdeclarator =

| "+’ type_qualifier_list
| "+’ abstractdeclarator
" type_qualifier_list abstractdeclarator

postfix_abstractdeclarator =
"(’ unary_abstractdeclarator )’
| (" postfix_abstractdeclarator ')’
| (" postfixing_abstractdeclarator )’
| (" unary_abstractdeclarator ')’
postfixing.abstractdeclarator
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Appendix B

SpecC Standard Library

In addition to the standard library inherited from the ANSI-C language, the SpecC Refer-
ence Compiler (SCRC) includes a standard library that supports the handling of SpecC data
types. In addition, a set of standard channels is provided, covering popular synchronization,
resource management and communication methods.

At this time, the SpecC standard library described in this chapter is not yet approved by
the SpecC Technology Open Consortium (STOC) as part of the SpecC language. Therefore,
it is subject to change.

B.1 SpecC standard type and simulation library

In particular for simulation and test bench specification, the SpecC language supports a
simulation library whose application programming interface (API) is declared in the SpecC
header filessim.sh Via the API defined irsim.sh the current simulation time in the simulator
can be accessed. Alssim.shoffers APIs for the handling and conversion of the special
SpecC data types that are not supported by the standard library of the ANSI-C language.
The actual contents @im.share implementation dependent.
The following example osim.shshows the declarations that can be expected to be part
of any implementation of the SpecC simulation library.

Example of sim.sh
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/**********************************************************/
/% sim.sh: API for SpecC run —time simulation library x/
/**********************************************************/

#ifndef __SIM_SH
#define __SIM_SH

/ xxx type definitions sk sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok kok ok /

typedef unsigned long long sim _time; // simulation time

/ xxx exported functions ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok /

extern  sim _time now( // current simulation time
void );

extern const char xtime2str( // convert time to string
sim _time Time);

extern sim _time str2time( // convert string to time
const char *Str);

extern char x[12str( // conv. longlong to string
unsigned int base, /2 <= base <= 36
char xendptr, // last char in buff.
long long I); // long long value

extern char xUull2str( // conv. ulonglong to string
unsigned int base, /2 <= base <= 36
char xendptr, // last char in buff.
unsigned long long ull); // u. long long value

extern long long str2li( // conv. string to longlong
unsigned int base, /2 <= base <= 36
const char xStr); // string value

extern unsigned long long str2ull( // string to ulonglong
unsigned int base, // 2 <= base <= 36
const char *Str); // string value

extern char xbit2str( // convert bit to string
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46 unsigned int base, /2 <= base <= 36
47 char xendptr, // last char in buff.

48 ../ bitfl:r] b x/); // bit vector value

49

50 extern char xubit2str( // convert ubit to string

51 unsigned int base, /2 <= base <= 36
52 char xendptr, // last char in buff.

53 ... /x unsigned bitfl:r] b x/); // bit vector value

54

55 extern void str2bit( // convert string to bit

56 unsigned int base, /2 <= base <= 36
57 const char xStr, // string value

58 v /x bitfl:r] sbptr x/); // pointer to result

59

60 extern void str2ubit( // convert string to ubit

61 unsigned int base, // 2 <= base <= 36
62 const char xStr, // string value

63 ... /% unsigned bit[l:r] sbptr x/);

64

65 #endif /x __SIM_SH x/

66

67 /xxx EOF SIM.Sh %% %% % % % %k sk sk ok sk ok ok ok okok ok ok ok ok okok ok ok ko okok ok ok sk ok kokokok sk k ok kok /

Notes:

i. The SpecC simulation library is available through inclusion of the SpecC standard
header filesim.sh

ii. The typesim.timedefines the type of the simulation time. Since the actual represen-
tation of simulation time is implementation dependent, the sipetime should be
used for declaration of any variables of type time.

iii. The functionnowreturns the current simulation time.

iv. The functiongime2strandstr2timeconvert from simulation time to a text string, and
vice versa.

v. The functiondI2str andstr2ll convert fromsigned long long intto a text string, and
vice versa.

vi. The functionsull2str andstr2ull convert fromunsigned long long intto a text string,
and vice versa.
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vii. The functionsbit2str and str2bit convert from bit vector to a text string, and vice
versa.

viii. The functionsubit2str andstr2ubit convert from unsigned bit vector to a text string,
and vice versa.
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B.2 SpecC standard channel library

The SpecC standard channel library provides well-known mechanisms for synchronization,
resource management and communication.

The interfaces and channels listed in the following sections can be expected to be part
of any SpecC language implementation. Furthermore, each of these interfaces and channels
can be expected to be available iimport into any design, by using the interface or channel
name as argument to timport declaration.

B.2.1 Semaphore channel

Purpose: Protected access to shared resources

Synopsis:

interface i _semaphore

{
void release( void );
void acquire( void );
bool attempt( void );

b

channel c_semaphore( in const unsigned long C)
implements i _semaphore;

Semantics:

(a) Each thread must calcquire() before using a resource and cadlease()when the
resource is not used any more. Callirdease()without prior call toacquire() is
illegal.

(b) Calling acquire() multiple times in order to reserve multiple resources at the same
time is legal. However, a deadlock situation may occur if an insufficient number of
resources is available.

(c) release()may only be called as many timesasjuire()has been called.

(d) Callingacquire()may suspend the calling thread indefinitely.
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(e) Methodattempt()tries to aquire a resource without any waiting and returns imme-
diately with or without successattempt()returnsfalse if the resource could not be
acquired, andrue if the resource has successfully been acquired.

() A successfulattempt()must be followed by a call toelease() An unsuccessful
attempt()must not be followed by a call telease()

(g) If athread needs to obtain multiple resources at the same time, a global partial order
of obtaining the resources should be used, otherwise deadlock situations may occur.

(h) One channel instance is required for each set of shared resources.

() The number of available resources is given as an external count which must be spec-
ified at the time of the channel instantiation.
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B.2.2 Mutex channel

Purpose: Mutually exclusive access to a shared resource; binary semaphore

Synopsis:

interface i _semaphore

{
void release( void );
void acquire( void );
bool attempt( void );

h
channel c_mutex implements i _semaphore;
Semantics:

(a) Each thread must calcquire() before using a resource and cadlease()when the
resource is not used any more. Callirease()without prior call toacquire() is
illegal.

(b) Calling acquire() multiple times in order to reserve multiple resources at the same
time is legal. However, a deadlock situation may occur if an insufficient number of
resources is available.

(c) release()may only be called as many timesasjuire()has been called.
(d) Callingacquire()may suspend the calling thread indefinitely.

(e) Methodattempt()tries to aquire a resource without any waiting and returns imme-
diately with or without successattempt()returnsfalse if the resource could not be
acquired, andrue if the resource has successfully been acquired.

() A successfulattempt()must be followed by a call toelease() An unsuccessful
attempt()must not be followed by a call telease()

(g) If athread needs to obtain multiple resources at the same time, a global partial order
of obtaining the resources should be used, otherwise deadlock situations may occur.

(h) One channel instance is required for each mutex.



136 APPENDIX B. SPECC STANDARD LIBRARY

B.2.3 Critical section channel

Purpose: Protected access to a critical section

Synopsis:

interface i _critical _section

{

void enter( void );
void leave( void );

channel c _critical _section implements i _critical _section;
Semantics:

(a) Each thread must cahter()before entering the critical section and dakve()after
leaving the critical section.

(b) Callingleave()without prior call toenter()is illegal.

(c) Callingenter()twice withoutleave()in between is illegal.
(d) Callingleave()twice withoutenter()in between is illegal.
(e) Callingenter()may suspend the calling thread indefinitely.

() If athread needs to enter multiple critical sections at the same time, a global partial
order of entering the sections should be used, otherwise deadlock situations may
occur.

(g) One channel instance is required for each critical section.
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B.2.4 Barrier channel

Purpose: Barrier synchronization, rendezvous

Synopsis:
interface i _barrier

void barried void );

J*

channel c_barrier( in unsigned long N)
implements i _barrier;

Semantics:

(a) Each participating thread calbarrier() to synchronize with the other participating

threads at the barrier.

(b) A call tobarrier() will suspend the calling thread until all other participating threads
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have arrived at the barrier. Then, all participating treads resume their execution.

(c) Callingbarrier() may suspend the calling thread indefinitely.
(d) One channel instance is required for each barrier.

(e) Atthe time of barrier instantiation, the numibéof participating threads that use the

barrier is fixed.

() Exactly N threads must use the barrier. If less tidor more tharN threads use the

barrier, the behavior is undefined.
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B.2.5 Token channel

Purpose: Modeling Petri nets with consumers and producers

Synopsis:
interface i _consumer
{
void consume( unsigned long n);
b
interface i _producer
{
void produce( unsigned long n);
b
interface i _token
{
void produce( unsigned long n);
void consume( unsigned long n);
b
channel c_token implements i _producer, i _consumer, i _token;
Semantics:

(a) i_consumerepresents a consumer interface to a token channel as known from Petri
nets. Each connected thread acts as a consumer.

(b) i_producerrepresents a producer interface to a token channel as known from Petri
nets. Each connected thread acts as a producetr.

(c) i_tokenrepresents a general interface to a token channel as known from Petri nets.
Each connected thread may act as both, a consumer and/or producer.

(d) A consumer callsonsume(njo consumen tokens.

(e) A call to consume(will return immediately if the requested number of tokens is
already present, consuming those tokens.
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(H) A call to consume(will block the caller if not enough tokens are present, until a
sufficient number of tokens has been produced.

(g) Callingconsume(Jnay suspend the calling thread indefinitely.
(h) A producer callgproduce(n)to producen tokens.
(i) A call to produce()will produce the given number of tokens and immediately return.

(i) One token channel instance may be used multiple times and with multiple consumers
and/or producers.

(k) If used for production and consumption by the same thread, the thread may consume
its own tokens.
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B.2.6 Queue channel

Purpose: Type-less, fixed-size queue for use with any number of senders and receivers

Synopsis:
interface i _sender
{
void send( void xd, unsigned long 0);
b
interface i _receiver
{
void receive( void xd, unsigned long );
b
interface i _tranceiver
{
void send( void xd, unsigned long 0);
void receive( void xd, unsigned long );
b
channel c_queue( in const unsigned long size)
implements i _sender, i _receiver, i _tranceiver,
Semantics:

(a) Athread connected to the interfaceenderacts as a sender.
(b) A thread connected to the interfaiceeceiveracts as a receiver.

(c) A thread connected to the interfactranceiveracts as a tranceiver. In other words,
it may act as a sender, receiver, or both.

(d) A call tosend()sends out a packet of data to a connected channel.
(e) Callingsend()may suspend the calling thread indefinitely.
(f) A call to receive()receives a packet of data from a connected channel.

(g) Callingreceive()may suspend the calling thread indefinitely.
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(h) Data packets are typeless (represented by an array of bytes) and may vary in size for
separate calls teend()andreceive()

(i) The queue channeélqueueoperates in first-in-first-out (FIFO) mode.
() One channel instance is required for each queue.
(k) Multiple threads may use the same channel instance.

() The size (number of bytes) of the queue must be specified at the time of the channel
instantiation. The data packet size must not be larger than the specified size of the
queue.

(m) If different packet sizes are used with the same queue, a receiver may receive only
partial or multiple packets depending on the requested packet size.

(n) If insufficient space is available in the quesend()will suspend the calling thread
until sufficient space becomes available.

(o) Ifinsufficient data is available in the queueceive()will suspend the calling thread
until sufficient data becomes available.
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B.2.7 Handshake channel

Purpose: Safe one-way synchronization between a sender and a receiver

Synopsis:
interface i _receive
{
void receive( void );
b
interface i _send
{
void send( void );
b
channel c_handshake implements i _send, i _receive;
Semantics:

() A thread connected to the interfaceendacts as a sender.
(b) Athread connected to the interfaiceeceiveacts as a receiver.
(c) A call toreceive()lets the receiver wait for a handshake from the sender.

(d) If ahandshake is present at the timeeafeive() the call toreceive()will immediately
return.

(e) If no handshake is present at the timeraxdeive() the calling thread is suspended
until the sender sends the handshake. Then, the receiver will resume its execution.

() Calling receive()may suspend the calling thread indefinitely.

(g9) A calltosend()sends a handshake to the receiver. If the receiver is waiting at the time
of thesend() it will wake up and resume its execution. Otherwise, the handshake is
stored until the receiver calteceive()

(h) Callingsend()will not suspend the calling thread.
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() The behavior is undefined gend()is called successively without any calls e
ceive()

() Only one sender and one receiver may use the channel at any time. Otherwise, the
behavior is undefined.
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B.2.8 Double handshake channel

Purpose: 2-way handshake channel for type-less data transfer from a sender to a receiver

Synopsis:
interface i _sender
{

void send( void =xd, unsigned long I);
b
interface i _receiver
{

void receive( void «d, unsigned long I);
b
channel c_double _handshake implements i _sender, i _receiver,
Semantics:

() A thread connected to the interfaceenderacts as a sender.

(b) Athread connected to the interfaiceeceiveracts as a receiver.

(c) A call tosend()sends out a packet of data to a connected channel.

(d) Callingsend()may suspend the calling thread indefinitely.

(e) A call toreceive()receives a packet of data from a connected channel.
() Calling receive()may suspend the calling thread indefinitely.

(g) Data packets are typeless (represented by an array of bytes) and may vary in size for
separate calls teend()andreceive()

(h) The channet_doublehandshakeoperates in rendezvous fashion. A callsend()
will suspend the sender until the receiver cafiseive() and vice versa. When both
communicating parties are ready, data is transferred from the sender to the receiver
and both can resume their execution.



B.2. SPECC STANDARD CHANNEL LIBRARY 145

(i) Exactly one receiver and one sender thread may use the same channel instance. If
used by more than one sender or receiver, the behavior of the channel is undefined.

()) The same channel instance may be used multiple times in order to transfer multiple
data packets from the sender to the receiver.

(k) If different packet sizes are used with the same channel, the user has to ensure that
the data size of the sender always matches the data size expected by the receiver. Itis
an error if the sizes in a transaction don’t match.
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