
SpecC Language Reference Manual
V1.0

Release Notes

The “SpecC Language Reference Manual V1.0” technically is based on the
contents of the “SpecC Language Reference Manual” published as UCI
Technical Report ICS-TR-98-13. However, it is authored and copyrighted by
Rainer Dömer, Andreas Gerstlauer, and Daniel Gajski. It is the intend of the
authors to donate this document to STOC for standardization.

The attached document is final. The following is a complete list of items
that, compared to the base document from UCI, have been changed,
improved and/or extended:

(1) Clarifications:
(i.e. issues that the initial LRM left open, that are now clearly defined)

(1a) type conversion and promotion has been explained in more detail; in
particular, the added SpecC types bit[], bool, long long, and
long double are converted and promoted in the same manner as
the standard ANSI-C types;

(1b) the types long long and long double (which are not part of
standard ANSI-C, but are supported by the GNU compiler) have been
explicitly defined; (in order for non-GNU compilers to be usable, the
SpecC frontend will insert required replacements, i.e. bit[63:0]
for long long, into the generated C++ code)

(1c) assignment of whole arrays (as supported by the GNU compiler, i.e.
int A[10], B[10]; A = B; is supported in SpecC, i.e. the
whole array is copied; (for non-GNU C++ compilers, the SpecC
frontend will insert the required memcopy() operations)

(1d) all static variables are initialized with 0 in SpecC, unless explicitly
initialized otherwise by the user (in ANSI-C, these would be

uninitialized); (the SpecC frontend will insert all implicit and explicit
initializers into the generated C++ code)

(1e) concatenation is noted as @, not as & (the latter was a typo in the old
LRM)

(1f) a minimal set of guarantees about the execution semantics of SpecC
programs has been added to specific constructs, such as
wait/notify, par, try-trap-interrupt; these execution
semantics clearly specify what guarantees are provided by the SpecC
language and what is implementation dependent (i.e. depends on the
simulation engine being used);

(1g) constants can be used in port mappings for in ports; in addition, out
ports can be left open in port mappings; (the user is no longer required
to create dummy variables and dummy mappings for these cases)

(1h) bit[8] is a valid short-cut for bit[7:0]

(2) SpecC LRM Fixes:
 (i.e. issues that used to have problems or limitations in the old LRM)

(2a) the delta keyword has been taken out; (it was unneeded and only
confusing)

(2b) the import statement has been made independent from the SIR file
format; instead, any implementation can choose whatever file format
for the imported description (i.e. the reference compiler will use
source code, the UCI compiler will use binary SIR files, VisualSpec
may choose to use XML files; for compatibility among different
compilers, every compiler should support source code as well);
advantages of import over #include are: automatic avoiding of
multiple inclusion, faster execution (no semantic check required for
precompiled files), visible to compiler (imported blocks can be treated
special by tools, i.e. IPs)

(2c) the pipe statement is extended for an optional exit condition that
will flush the pipeline and terminate the construct, i.e. pipe(i=0;
i<10; i++) { ... } will execute 10 iterations of the pipeline;

pipe(; ;) { ... } is the same as pipe{ ... }, whereas
the latter one is preserved for backward compatibility; (with the old
pipe statement, hierarchical composition was not possible)

(3) SpecC LRM Format:
(i.e. textual and formatting issues)

(3a) extended and improved explanation of the constructs, their semantics
and applying rules; (i.e. more text)

(3b) improved formatting and improved document structure (i.e. numbered
rules, improved hierarchy)

(3c) use of Backus-Naur-Form (BNF) instead of lex/yacc notation (making
the LRM independent from an implementation)

(3d) improved examples with more detailed explanation

Rainer Doemer, March 2001.

