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Abstract— We investigate the combination of distributed ge-
ographic routing with transmission power control for energy
efficient delivery of information in multihop wireless networks.
Using realistic models for wireless channel fading as well as radio
modulation and encoding, we first show that the optimal power
control strategy over a given link should set the transmission
power to achieve a special signal-to-noise ratio (SNR) constant
that can be computed using an elegant characteristic equation.
Counter-intuitively, for typical radios, this corresponds to an
optimal operating point of SNR that lies in the transitional region
(where packet error rates are non-negligible). We then propose a
local power efficiency metric for distributed routing such that at
each step the transmitter picks as the next hop the neighbor for
which this metric is maximized. Through extensive simulations,
we compare the performance of the proposed algorithm and
globally optimal routing algorithms. We show that in randomly
deployed 2-D networks, the combination of this local metric
for routing with optimal power control has close performances,
in terms of average power consumption under different node
density settings and physical transmission power limits, to the
best strategy using global network link state information. In
particular, when electronic power is relatively low, the proposed
algorithm can provide up to six times reduction in power usage
compared to channel-unaware routing algorithms.

I. INTRODUCTION

Geographic routing protocols are of essential importance to
sensor networks because they can exploit available localiza-
tion information to provide low-overhead and highly scalable
routing and querying. Several recent studies have stressed
the importance of looking at realistic link conditions and
incorporating them explicitly into the design of wireless ad-
hoc and sensor network routing protocols [1]. In particular,
as shown by Seada, Zuniga, et al. [2], the use of an appro-
priate local metric (the product of packet reception rate and
distance improvement) can significantly enhance the delivery
rate and energy efficiency performance of a greedy geographic
forwarding.

In this paper we consider the cross-layer optimization of
two key elements that significantly impact energy efficiency
of delivery: (a) the selection of the appropriate link to use
in forwarding a packet (i.e., the routing decision) and (b) the
setting of the transmission power for transmitting a packet
on that link (i.e., the power control decision). The general
approach we take is to derive the optimal transmission power
setting on an ARQ-enabled link that minimizes the average
power needed for successful delivery. Each packet is then
forwarded by a node to the next hop that maximizes a

local link metric for power-efficiency, which incorporates the
optimal link transmission power setting. We take into account
a realistic wireless link model that incorporates both path loss
and multi-path fading effects as well as radio modulation and
encoding characteristics.

Thus the main focus of this paper is to examine how the
energy efficiency of geographic routing can be enhanced using
power control under realistic wireless conditions. Specific key
contributions of this paper can be summarized as follows:

• We derive the optimal ARQ-based link transmission
power setting as the one that satisfies a special SNR
constant that can be very easily computed through an
elegant characteristic equation.

• We show that, somewhat counter-intuitively, the optimal
SNR constant typically corresponds to an optimal packet
reception rate at the receiver that is high, but not arbi-
trarily close to 100%.

• We show that, particularly when electronic power costs
are low, combining routing with power control can pro-
vide up to six times savings in energy compared to fixed
power routing.

• We propose a new local metric for geographic routing:
the ratio of the product of the packet reception rate and
distance improvement to the total power expense for a
single packet transmission.

• We show that distributed geographic routing using this
local metric can provide close performance compared
to the best routing strategy that utilizes global link-state
information.

One important assumption made in this paper is that, to be
able to utilize channel conditions for performance improve-
ment, we focus on networks with relatively stable wireless
channels. It is a practical assumption when a wireless network
is in an isolated remote environment with either slow-moving
or no mobility events. When a sending node tries to measure
channel parameters, such as multi-path fading factor or noise
level, to its neighboring nodes, we assume these channel
parameters remain unchanged for time periods longer than
the typical packet transmission time. We assume these channel
parameters are obtainable by exchanging control messages or
overhearing [5] [6].

The rest of the paper is organized as follows: Section
II gives a review of research literature related to routing
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and power control mechanisms in wireless networks. The
framework of the network model is introduced in Section III.
Optimal power control for single-hop reliable transmissions is
defined and analyzed in Section IV. In Section V, the joint
distributed routing and power control mechanism as well as
the corresponding local metric for routing is proposed. The
optimal-static route in linear networks, as a baseline scenario
compared with our proposed algorithm, is analyzed as well.
Extensive simulations on both linear networks and general 2-
D networks are given in Section VI. Section VII presents our
concluding comments.

II. RELATED WORK

Recent experimental research has revealed how drastically
link conditions in realistic wireless networks vary from the
ideal disk model [3]–[6]. In particular, Zhao and Govin-
dan [4] and Woo et al. [5] identified the existence of a
gray area/transitional region that is characterized by high link
quality variance and asymmetric links. Zuniga and Krishna-
machari [7] provide an analysis of this transitional region using
a log-normal multi-path fading model. Our work is motivated
by this line of research which has also made it clear that is
essential to incorporate the realistic link models into the design
and evaluation of routing protocols [1]. DeCouto et al. [6] and
Woo et al. [5] independently proposed the ETX/MET metric
which tries to find a route such that the total expected number
of retransmissions due to packet drops is minimized.

Geographic routing protocols (see survey in [9]) are of
essential importance to wireless sensor networks. They make
use of available localization information, and can provide a
significant reduction of complexity and overhead. While there
has been prior research on preventing dead-ends in geographic
routing through face-routing techniques (e.g. [8]), we assume
in this work that the density is sufficiently high that greedy
geographic forwarding is sufficient to ensure end-to-end deliv-
ery. Based on the realistic channel modeling, Seada, Zuniga, et
al. [2] look into the issue of power-aware greedy geographic
forwarding. That work assumes a fixed transmission power and
focuses on mechanisms for making routing decisions based on
channel estimations in static environments. In this paper, we
take a crucial step further to incorporate transmission power
control. As we shall show, this can provide great savings in
energy.

While there is extensive prior work on power control,
most of it focuses on topology control, the main purpose of
which is to reduce interference and enhance spatial reuse.
Kleinrock [20] identifies the optimal transmission radius to
maximize network capacity in multi-access networks. Takagi
and Kleinrock [21] find the optimal transmission radii to
maximize the packet forward progress in several multi-access
schemes. Hou and Li [22] present a model showing that
throughput and forward progress can be improved by adjusting
transmission power. Other papers provide desirable global
connectivity properties with low energy utilization (e.g. [10],
[11], [23]).

Different from the earlier approach, in this paper our main
goal is to emphasize the necessity to consider a more realistic
communication model, and design a joint power control and
routing scheme from that point of view. Power control in this
paper aims to achieve energy efficiency rather than improve
throughput. Therefore our model is more suitable for networks
with stringent energy constraint but low data rates, such as
sensor networks. Here we assume the interference is resolved
by some MAC sleep/wakeup scheduling schemes (e.g., [24]),
which are orthogonal to this work and can be used in con-
junction with our algorithm to reduce the overall energy and
extend network lifetime.

There has also been some work examining the combination
of power control with routing (e.g. [12], [13]). However, nearly
all of these works assume an idealized wireless channel model
unlike our work. Son et al. [14] do present an extensive
experimental analysis of power control and propose a tech-
nique for combining it with black listing to provide reliable
routing. However, they do not address the issue of cross-layer
optimization for energy efficiency.

Another approach to energy efficiency in wireless sensor
network routing is to develop power-aware metrics that take
into account residual battery levels in order to extend network
lifetimes by providing load balancing [15], [16]. The technique
we propose in this work may be combined with power-aware
metrics for load-balanced maximum lifetime routing.

While we use sophisticated models for wireless environ-
ments and radio characteristics, we should note one real-world
effect that is not incorporated explicitly in our work. We
assume, as in standard communication theory, that there is
a perfect one-to-one, monotone mapping from SNR to packet
reception rate depending on the modulation scheme. A recent
experimental study [17] shows that in practice this mapping
can show high variance depending on the node hardware.
However, our approach can be modified to take this into
account either by pre-characterizing the curve for each pair
of transmit-receiver nodes or by using a more conservative
setting of higher transmission power than needed as per the
derived expression.

III. FORMULATION OF NETWORK MODELS

A. Energy Model

The goal of power control is to find the minimum power
needed for internal operations and communications of wireless
devices. To characterize it, first we define the energy model.
We define the power consumption of a wireless device is the
sum of transmission and electronic power. Electronic power
is the power needed for on-board circuits to operate when
preparing for packet transmissions. Note that the reception
power is practically not negligible because it is generally of
the same order as the transmission power. In this paper, we
assume either all nodes are always listening to potential packet
receptions, or there are some sleep scheduling algorithms op-
erating such that all nodes start listening to receiving channels
only when necessary. In the former case, the reception power
dissipation is constant; in the latter case, reception power can



be viewed as proportional to the transmission power. Therefore
minimizing transmission power is equivalent to minimizing the
sum of transmission and reception power. This proportionality
between the transmission and reception power holds when we
consider the aggregation of power expenditure of all nodes in
the network; it may not hold for any particular node.

B. Channel, Modulation, and Encoding Model

The joint power control and routing scheme proposed in
this paper depends on the relationship between transmission
power and packet reception rate, which are modeled by
channel, modulation, and encoding schemes in physical layer.
We specify these models as following: When electromagnetic
signals propagate via wireless links, their strength will suffer
from decays. Moreover, they also exhibit spatial and temporal
variations. To model this phenomenon, we use one of the most
common models — log-normal multi-path fading model [18]:

PL(d)dB = PL(d̂)dB + 10 γ log10(
d

d̂
) + XdB

σ (1)

Where PL(d)dB is the power loss after the signal propagates
through distance d, PL(d̂)dB is the power loss at the reference
distance d̂, γ is the path loss exponent, and XdB

σ , a Gaussian
random variable with mean zero and variance σ2, models the
multi-path fading effect between a transmitter-receiver pair 1.
Then the reception power P dB

recv is equal to the transmitting
power P dB

trans minus the path loss PL(d)dB : P dB
recv = P dB

trans−
PL(d)dB . The Signal-to-Noise Ratio (SNR) at the receiver end
is:

SNRdB = P dB
recv −NdB (2)

Modulation is a mapping from SNR to bit error rate. In
order to facilitate the analysis and bring insight on good
power control and routing mechanisms, we take non-coherent
FSK [19] as an example throughout the paper, due to its simple
mathematical form. For non-coherent FSK, the bit error rate
is given by:

Pe =
1
2

exp− 1
2 SNR (3)

Encoding schemes influence packet reception rate because they
add redundant error correction bits to a packet. In this paper,
we use NRZ encoding in our modeling. We define F (with
unit of bytes) to be the size of a packet after being encoded by
NRZ. We assume bit errors occur independently. The packet
reception rate prr is:

prr = (1 − Pe)8F = (1 − 1
2

exp− 1
2 SNR)8F (4)

IV. OPTIMAL POWER CONTROL FOR SINGLE-HOP

RELIABLE TRANSMISSION

One of the characteristics of wireless communications is
the high bit error rate compared to traditional wired networks.
Packets are corrupted and retransmitted more often in wireless
environments. Naturally power control should accommodate

1Many variables used in this paper are referred with both units of dB and
Watt. For clarification, we put a superscript dB on a variable if its unit is dB;
a power variable without superscript dB is in Watts.

this concern. As a result the optimum transmission power on a
given link should be the minimum power needed for a success-
ful transmission, which may include multiple retransmissions.
With ARQ, number of transmissions needed for a successful
one can be modeled as a geometric random variable. In this
paper, we characterize the optimal power consumption for
reliable transmissions by the minimum average power needed
on either a given link or an end-to-end path between a source-
sink pair, i.e., the long-term behavior of power dissipation
over a wireless channel or a specific route. And we define
the optimal transmission power to be the minimum expected
transmission power needed for reliable information delivery in
wireless networks.

The channel, modulation, and encoding model given in the
previous section relate the transmission power to the packet
reception rate. Assume bit error occurs inpedendently, and a
packet is retransmitted according to some timeout or ARQ
scheme if it fails in its previous attempt. Assume the cost of
the timeout or ARQ scheme is negligible. Then the expected
power to reliably transmit a packet on a given link is:

Ptrans + Pelec

prr
=

10
P dB

trans
10 + Pelec

(1 − 1
2 exp− 1

2 SNR)8F
(5)

Where Ptrans and Pelec are transmission and electronic power
for a single transmission, respectively. The prr is derived
according to non-coherent FSK modulation and NRZ encoding
scheme. By (2),

SNRdB = P dB
trans − PL(d)dB −NdB (6)

= P dB
trans − 10γ log10 d−XdB

σ −NdB (7)

−(PL(d̂) − 10γ log10 d̂)

Change the unit from dB to Watt 2:

SNR = SNR(P dB
trans) =

10P dB
trans/10

CXσN
d−γ (8)

Where the constant C � 10(PL(d̂)−10γ log d̂)/10. Minimizing
(5) over P dB

trans gives us the optimum power consumption
for reliable transmissions over a single link. To think of it
in another way, we note that minimizing (5) is equivalent to
maximizing its reciprocal:

g(P dB
trans) � prr

Ptrans + Pelec
(9)

=
(1 − 1

2 exp− 1
2 SNR)8F

10
P dB

trans
10 + Pelec

(10)

The physical meaning of the reciprocal function g(P dB
trans)

is the expected number of packets that can be successfully
transmitted by spending one unit of power. In other words,
it provides an indication of power efficiency, i.e., minimizing
the required power for reliable transmissions is equivalent to
maximizing the power efficiency. To maximize (10), expand
the numerator of (10) using binomial theorem, take a derivative

2SNR � 10SNRdB/10, Xσ � 10XdB
σ /10, and N � 10NdB/10



of g(·) with respect to P dB
trans, and set the derivative to zero

we get the following characteristic equation:

A

2
− 4FA ln(A) +

2FA
CXσNdγ

Pelec = 1 (11)

Where A � exp− 1
2 SNR (since SNR ≥ 0, A ∈ [0, 1]), and

F is the size of a packet. Let the set Λ be the collection
of all solutions to (11). By optimization theory, the optimal
point A∗ maximizing the function g(P dB

trans) must lie in the
union of the set Λ and boundary points of A. A∗ can be easily
calculated by numerical approaches ((11) is transcendental and
may not have closed form solutions). Note that if the electronic
power is negligible, the optimal point A∗ only depends on the
packet size. Therefore given the packet size, the optimal A∗

is a fixed special value. It implies that there exists a power-
efficient operating point of SNR which we always want to
achieve by allocating a certain level of transmission power,
no matter how the values of inter-node distance d, log-normal
multi-path fading factor Xσ , and thermal noise N would
change spatially and temporally. It results in an optimal power
allocation policy:

fixed-SNR policy for optimal power control:
Define the optimal power to be the minimum
expected power for reliable transmissions. Assume
electronic power dissipation is negligible. Let
a transmitter-receiver pair, the corresponding
inter-node distance, and modulation and encoding
scheme be all given. After the measurement or
prediction of Xσ and N of the wireless channel
between the transmitter and the receiver, allocation
of transmission power to satisfy the desired
snr∗ = −2 ln(A∗) can minimize the required
power of reliable packet relay.

According to this policy, the optimal SNR snr∗ is fixed.
Then the optimal bit error rate P ∗

e and the optimal packet
reception rate prr∗ are also fixed. Finally, by (8), the op-
timal transmission power of one transmission attempt for a
transmitter-receiver pair with inter-node distance d is given
as:

P ∗
trans = C snr∗ Xσ N dγ (12)

The optimal transmission power for reliable transmissions is:

P ∗
trans

prr∗
=

C snr∗ Xσ N

prr∗
dγ (13)

To give an example, let Pelec = 0, F = 100. By solving
(11), the optimum A∗ is 0.00031, SNR∗ ≈ 16.16, P ∗

e =
A/2 = 0.000155, and prr∗ = (1 − P ∗

e )800 ≈ 0.8838. There-
fore to achieve the optimal power consumption, we should
allocate the transmission power to satisfy SNR = 16.16. The
packet reception rate would be 0.8838, a number is high but
not close to one. It implies that once the fixed-SNR policy is
obeyed, transmitting packets leading to the 0.8838 throughput
at every hop is most power-efficient. It also implies the most
power-efficient operating point of SNR should lie within the
transitional region [7]. It suggests the need to incorporate

transitional region modeling when designing future power-
aware network protocols.

By (11), if electronic power is not negligible, the SNR lead-
ing to the most power-efficient packet delivery is a function of
channel conditions, distance to the next hop, electronic power,
and the packet size. If we consider a stable network envi-
ronment with no mobility events, the channel parameters and
distance to the next hop are considered relatively constant. In
this case, for a transmitting node of which the electronic power
is known from hardware specification, the fixed-SNR policy
for optimal power control still holds. But each transmitter-
receiver pair will have different optimal SNR value.

Earlier we assume the transmission power can be arbitrarily
chosen to meet the optimal SNR level. Practically, a physical
limitation of transmission power should be considered. In
this case, when trying to maximize the power efficiency
function g(P dB

trans), the additional limitation can be easily
met by putting an constraint on the range of A. The rest
of the derivations and conclusions remain the same. Finally,
the characteristic equation (11) is specific to non-coherent
FSK modulation and NRZ encoding schemes. In general, the
characteristic equation of SNR depends on different modu-
lation and encoding scheme. Since the only property of the
SNR−Pe mapping used to derive the characteristic equation
is differentiability, our framework is applicable to various
modulation schemes as long as the SNR − Pe relationship
satisfies differentiability.

V. LOCAL METRIC FOR DISTRIBUTED ROUTING WITH

POWER CONTROL

The previous section analyzes the optimum power needed
for reliable transmissions on a wireless link. For end-to-end
transmissions over multihop wireless networks, however, an
efficient transmission strategy not only includes optimal power
control, but also chooses a route with good channel conditions.
Therefore we explore an efficient joint power control and
routing strategy for end-to-end communications.

There are several assumptions of the network model made
here. First we assume the wireless network of interest is
relatively stable. When the state of a channel changes with
time, it changes in an identical and independently distributed
(i.i.d.) fashion; and channel conditions of all wireless links at
any time instant are assumed i.i.d.. The channel parameters
related to our work are multi-path shadowing factor Xσ and
thermal noise N . Since they have no obvious correlation with
the general network setup, it is reasonable to make i.i.d.
assumptions. Second, we assume every node knows its own
and all its neighbors’ geographical locations, by either GPS
services or cooperative ranging techniques. Third, we assume
no interference is experienced by all packet transmissions.

A. Local Metric

We define a novel local metric for the proposed algorithm:
Let a transmitter-receiver pair with inter-node distance d be
given. Assume the link parameters between the pair, such
as the multi-path fading factor Xσ and thermal noise at the
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Fig. 1. Projection of the hop distance onto the line toward the sink node

receiver end N , are known in advance by measurements.
According to Section III-B, the SNR and packet reception
rate can then be calculated. From Section IV, the minimum
expected power required can be calculated as well. We define
a local metric:

metric � prr∗ ·Dproj

P ∗
trans + Pelec

(14)

By (12) P ∗
trans is the optimal transmission power for one

transmission attempt, prr∗ is the optimal packet reception
rate, and Dproj is the virtual distance progress toward the
sink node — the length of the projection of the distance
vector between the transmitter and the next hop onto the line
formed by the transmitter and the sink (see Figure 1). In
linear networks, Dproj reduces to the distance between the
transmitter and the next hop. The local metric has a practical
meaning: It is the maximum expected transport capacity per
unit power consumption, an indication of power efficiency.
The corresponding power control and routing strategy is:

Joint Distributed Routing and Power Control
(JDRPC): for each transmitting node, choose one
of its neighbors such that the local metric given in
(14) is maximized. Then transmit packets according
to the fixed-SNR policy.

B. Optimal-Dynamic and Optimal-Static Routes

In order to analyze the performance of the algorithm, we
compare it with the globally optimal routing mechanisms. First
note that if channel conditions in a wireless network change
rapidly, it is impossible to find an optimal route between any
source-sink pair even with global knowledge of link state
information. It is because the best route found at the beginning
of a transmission is potentially no longer the best one when
the packet is along the way to the receiver. Therefore in
order to have well-defined notions of global-optimal route,
here and later in the simulation section, we assume channel
conditions remain fixed for the time duration of the end-to-end
transmission of one packet.

We consider two types of global-optimal routes in wireless
networks. One is the optimal-dynamic route, i.e., routes for
different packets can be different according to time-varying
link state information. The optimal-dynamic route for each
packet can be found by performing shortest-path mechanisms,
such as Dijkstra algorithm. Combining it with optimal power
control on every wireless link, it is easy to find the path

with minimum expected power consumption for the end-to-
end communication of a single packet. Note that here we
assume the problem of joint routing and optimal power control
can be separated, but still yield the optimal solution. It is a
reasonable assumption because we assume there is some MAC
layer scheduling mechanism taking care of interference issue;
therefore power consumption is independent among all hop-
by-hop transmissions. The optimal power of a route is the sum
of optimal power of all links along the route. Then finding the
route with the least total power is equivalent to finding the
shortest path where the metric is the optimal power on every
link.

The other type of global-optimal route is optimal-static
route, where we focus on the long-term behavior of routes
in wireless networks. In this case, we compare the perfor-
mance of two different routes in wireless networks by their
minimum expected power consumption averaged over random
link states; i.e., the time average of minimum expected power
consumption by transmitting a sequence of packets, that may
experience different wireless channel states along the same
route. We emphasize that there are two notions of average
power: expected power on a given link is due to imperfect
packet receptions and retransmissions, while time average of
expected power over a channel is due to time-varying channels.
If not comparing the performance of wireless routes by their
long-term behaviors, we will need a more refined probabilistic
model for channel states. Developing probabilistic arguments
for performance comparison of different routes will be both
too complicated and indefinite. As a result, we define the
optimal-static route between any source-sink pair to be the
route with minimum time average (over channel states) of ex-
pected (consider packet retransmissions) power consumption.

The optimal-dynamic route we consider in this paper is
constructed by Dijkstra algorithm. The optimal-static route,
however, depends on different electronic power setup and par-
ticular network topology. To reveal this issue, in the following
we derive the optimal-static route in a linear work as a function
of electronic power settings, considering all possible node
deployment strategies.

C. Derivation of Optimal-Static Route

We consider a general linear network with N nodes
{n1, n2, n3, . . . , ns, . . . , nd, . . . , nN} located sequentially on
a line with arbitrary inter-node distances (see Figure 2). N can
be any integer greater than two. Let di > 0 be the inter-node
distance between node ni and ni+1, i ∈ {1, 2, 3, . . . , N − 1}.
Without loss of generality, assume ns is the source node of
interest, and nd is the intended destination node, s < d. All
other nodes potentially help to relay packets from ns to nd.
For simplicity, define the distance between ns and nd to be
Dsd. To take all possible static routing strategies into account,
we assume each node is able to transmit packets directly to
any other nodes in the network. Let {Xi,j(t)} represent the
random process of multi-path fading factor for link between
node ni and nj , i, j ∈ {1, 2, 3, . . . , N}, i �= j. For any given
t, {Xi,j(t)} is i.i.d. for all possible (ni, nj) pairs; for any
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(ni, nj) pair, {Xi,j(t)} is i.i.d. for all t. Assume {Ni(t)} is
the noise process observed at any node ni. Similarly, {Ni(t)}
is i.i.d. for all nodes at some time instant t and for all time
instants at some node ni.

Consider the pair of nodes (ni, ni+1) with inter-distance di,
multi-path fading factor Xi,i+1, and thermal noise Ni+1 at the
node ni+1. By (8), the optimal transmission power from ni to
ni+1 is:

P ∗
trans

prr∗
=

C snr∗

prr∗
Xi,i+1 Ni+1 dγ

i (15)

Where P ∗
trans is the optimal transmission power for a trans-

mission attempt from node ni to ni+1, snr∗ is the optimal
SNR according to the fixed-SNR policy, and prr∗ is the
corresponding optimal packet reception rate.

Theorem 1: The best route, minimizing the average end-
to-end power consumption, between a source-sink pair with
distance D and electronic power Pelec in linear networks is
hop-by-hop routing strictly toward the receiver, where all hops
traverse the same distance d with

d = min{D, γ

√
Pelec

(γ − 1)C snr∗E[XN ]
} (16)

Proof: Every route between ns and nd can be represented
as a walk along the line. We define a sequence {am}∞m=1 ∈
R

∞,
∑∞

i=1 ai = Dsd to represent the sequence of steps in
a walk, where am is the mth step of the walk, am > 0 and
am < 0 mean that the mth step goes forwards and backwards,
respectively; and |am| is the distance traversed by the mth

step, which must be the distance between some pair of nodes.
For example, the sequence of steps {−ds−1, ds−1 +ds,Dsd−
ds, 0, 0, 0, . . . , 0} represents the route ns → ns−1 → ns+1 →
nd (see Figure 3). Given some M > 0,M ∈ N. Consider a
walk {am}M

m=1 ∈ R
M ,

∑M
i=1 ai = Dsd representing a route

strictly using M hops between the source ns and the sink
nd with inter-node distance Dsd. The time average of optimal
power consumption of the walk is (15):

M
Pelec

prr∗ +
C snr∗E[XN ]

prr∗

M∑
m=1

|am|γ (17)

By applying Hölder inequality, the summation of the second

term in (17) can be lower bounded by:

Dsd = |
M∑

m=1

am| ≤
M∑

m=1

|am| ≤ (
M∑

m=1

|am|γ)
1
γ M1− 1

γ (18)

Dγ
sd

Mγ−1
≤

M∑
m=1

|am|γ (19)

The lower bound is achieved when a1 = a2 = . . . = aM =
Dsd/M , i.e., the minimum time average of optimal power
consumption is achieved when all M hops traverse the same
distance toward the sink node.

From above we know that the best node deployment policy
in the linear network is to place nodes uniformly between
the source-sink pair; and the optimal route is hop-by-hop
forwarding from the source to the sink. The time average
of end-to-end power consumption can be minimized over the
number of nodes to be put between the source-sink pair. Take
a derivative of (17) after substituting a1 = a2 = . . . = aM =
Dsd/M and set it to zero, the optimal M is:

M∗ = D γ

√
(γ − 1)C snr∗E[XN ]

Pelec
(20)

The optimal advance for each hop is then d∗ = D/M∗. Since
the maximal possible value of d∗ is D, we have:

d∗ = min{D, γ

√
Pelec

(γ − 1)C snr∗E[XN ]
} (21)

�
Given a typical range of Pelec, it is interesting that the opti-

mal distance a hop should traverse is a function of electronic
power — the larger the electronic power is, more preferable
it is to go longer hops — but independent of the distance be-
tween the source and the sink node. Furthermore, the optimal
number of hops M∗ in (20) may not be an integer. Practically,
the optimal number should be either M∗� or �M∗�. Since
we have considered all possible walks for the optimal route,
including those walks with backward transmissions, we don’t
make any assumptions regarding what the best static route
should be.

VI. PERFORMANCE EVALUATION OF JDRPC ALGORITHM

We evaluate the performance of JDRPC algorithm through
extensive Monte-Carlo simulations. We compare JDRPC with
static hop-by-hop routing, optimal-static routing, and optimal-
dynamic routing in linear networks. In 2-D networks, we com-
pare JDRPC algorithm with the optimal-dynamic routing and
two less intelligent routing algorithms: Fixed-transmission-
power routing and Distance-based routing. In this paper, we
use Dijkstra algorithm to implement the optimal-dynamic
routing.



A. Simulations on Linear Networks

Consider a linear network with 21 nodes
{n1, n2, . . . , n20, n21}. Let node n1 be the source node
generating packets destined for the sink node n21. We fix the
distance between the source and sink to be 200 meters. The
other 19 nodes are deployed between the source-sink pair;
inter-node distances are specified later. We assume all nodes
are able to adjust transmission power arbitrarily. Thus all
nodes can send packets directly to any other node, and allocate
optimal transmission power according to (12) for all possible
link state information. Both transmission and electronic power
are considered in the simulations. As mentioned in Section
IV, we assume channel conditions remain fixed during the
time period of the end-to-end transmission of every packet.
The strict assumption is needed only for the optical dynamic
route (derived by Dijkstra algorithm) to exist. But to be
comparable, the same channel assumption is applied to all
routing schemes. We note that JDRPC does not need such
a stringent channel setup; it works equally well as long
as the local channel information, potentially time-varying,
can be correctly captured (this part of simulation is omitted
for brevity). When channel states change, the multi-path
fading factor {Xi,j(t)} is i.i.d. with respect to t and different
channels (i, j); the thermal noise process {Ni(t)} is i.i.d.
with respect to t and different locations ni.

We consider two types of network topologies: random and
uniform node deployment, where intermediate nodes are de-
ployed randomly and uniformly between the source-sink pair,
respectively. In the randomized linear network, we compare
three routing strategies: Dijkstra, JDRPC, and hop-by-hop
static routing. The Dijkstra algorithm utilizes global knowl-
edge of channel state information to find the shortest end-
to-end path in terms of minimal expected power for reliable
transmissions. It is used as a baseline to show how good
JDRPC can be compared to the shortest path (in the expected
sense). JDRPC algorithm is well illustrated in Section V-A.
Again, this strategy is greedy in the sense that a node picks
its next hop, only based on local knowledge of all outgoing
channels, to maximize the transport capacity toward the sink
node per unit power. In hop-by-hop routing, a node always
transmits packets with optimal transmission power control to
the nearest neighbor toward the sink. Since by Theorem 1,
the optimal-static route is of uniform node deployment, we do
not consider it in randomized linear networks. We consider all
three routing strategies in the simulations on uniform-deployed
linear networks.

The simulation is repeated for 10000 iterations for each
routing strategy on each of the two topologies. For each
iteration, we pick i.i.d. realizations of Xi,j and Ni — Xi,j

is a normal random variable with mean 0 dB and variance
6.0 dB2, and Ni is Gaussian with mean −135 dB and variance
10 dB2. Non-coherent FSK modulation and NRZ encoding are
utilized. The path loss exponent is set to be 4.0. The encoded
packet size is fixed to be 100 bytes. Node locations are re-
assigned in each iteration for randomized linear networks.

TABLE I

COMPARISON OF ROUTING SCHEMES IN LINEAR NETWORKS

(a) Metrics for random deployment

Pelec
routing avg. end-to-end average
scheme power step size

10−1
Dijkstra 1.332 2.64
JDRPC 1.590 2.67

Hop-by-hop 2.812 1.0

10−3
Dijkstra 0.374 1.38
JDRPC 0.495 1.39

Hop-by-hop 0.662 1.0

10−5
Dijkstra 0.370 1.22
JDRPC 0.488 1.20

Hop-by-hop 0.659 1.0
(b) Metrics for uniform deployment

Pelec
routing avg. end-to-end average
scheme power step size

10−1

Dijkstra 1.172 2.52
JDRPC 1.351 2.52

Optimal static
1.4655 2.0

(10hops)
Hop-by-hop 2.207 1.0

10−3

Dijkstra 0.068 1.06
JDRPC 0.072 1.07

Optimal static
0.071 1.0

(hop-by-hop)

10−5

Dijkstra 0.047 1.05
JDRPC 0.048 1.06

optimal static
0.047 1.0

(hop-by-hop)

We also evaluate the performance of all routing strategies
under three different electronic power settings: 10−1, 10−3,
and 10−5 Watts, corresponding to extremely large to negligible
electronic power.

B. Simulation Results for Linear Networks

Table I shows the average end-to-end power consumption
and average step size for all routing strategies in different
electronic power settings and different network topologies. We
define step size as follows: We index the nodes on the line in
increasing order from the source to the sink, with the source
being 1 and the sink being 21. Step size of a hop is defined
as the difference between the indices of nodes on both ends
of the hop. Note that the average end-to-end power presented
in the tables are exact values, taking exact power expenditure
on retransmissions into account, not expected ones as derived
in the previous anlysis.

First we compare the average end-to-end power consump-
tion between Dijkstra and JDRPC algorithms in both network
topologies. For all electronic power settings, although JDRPC
is only based on local link state information, its average power
consumption is close to that of Dijkstra algorithm. In the
worst case, JDRPC uses about 30% of average power more
than Dijkstra algorithm when nodes are randomly deployed.
When the electronic power is low and nodes are uniformly
deployed, the performance of JDRPC is very close to that of
Dijkstra algorithm, the globally optimal one. Therefore JDRPC
should be a good candidate of distributed power-aware routing
algorithm in wireless networks.

Second, in both network topologies, we observe that as the
electronic power increases, the average step size of JDRPC



algorithm increases. It shows that JDRPC algorithm can adapt
to different electronic power settings by traversing appropriate
distance in each hop. On the contrary, the step size of hop-by-
hop routing is fixed to one. Therefore its performance degrades
serevely at high Pelec setting.

In the uniform-deployed network, we put optimal-static
routing into the comparison. By Equation (21), the distance of
one hop on the optimal-static route increases with electronic
power. In the simulation for Pelec = 10−5 and 10−3 Watt, the
optimal inter-node distance is so small that the optimal-static
routing reduces to hop-by-hop forwarding. For Pelec = 10−1

Watt, by the discussion at the end of Section V-C, the optimal-
static route is to go 10 hops uniformly from the source to the
sink.

In general, when the electronic power is high (10−1

Watt), JDRPC and Dijkstra algorithm perform better than the
optimal-static route because the former two algorithms are able
to pick a route with better channel conditions; the optimal-
static route always follows the same route. When the electronic
power is negligible, JDRPC and Dijkstra algorithm give little
improvement because they prefer shorter hops as the optimal-
static route does. Note that the optimal-static route performs no
worse than hop-by-hop routing due to its capability to choose
a longer hop, especially when the electronic power is high.

Third, consider the average power consumption for hop-
by-hop routing in both network topologies. For all electronic
power settings, the average power consumption in the uniform-
deployed network is less than that of the randomized network,
consistent with the conclusion in Theorem 1 that uniform
forwarding is more preferable. The difference is particularly
pronounced for the scenario of low Pelec, in which transmis-
sion power dominates the total power consumption.

C. Simulations on 2-D networks

For 2-D scenario, we consider 100 nodes randomly de-
ployed in a square area of size 100 × 100 meter square. The
source and the sink node are fixed at two corners across the
diagonal of the square area. The setup for energy, channel,
modulation, and encoding model is the same as those in
the linear network. All simulations on 2-D networks are run
for 10000 iterations. For each iteration, node locations are
randomly re-assigned; Xσ for all links and N for all nodes
are re-assigned in an i.i.d. fashion.

We compare four different routing strategies: Dijkstra,
JDRPC, Fixed-transmission-power routing, and Distance-
based routing. Dijkstra and JDRPC algorithm are illustrated in
Section V-A. The Fixed-transmission-power routing allows a
sending node to choose the next hop in its local neighborhood
within the radius R to make the maximal progress toward
the sink. In simulations R is set to be 20 meters. Then it
allocates the fixed transmission power PT to each packet. PT

is set to be the optimal transmission power for a receiving
node R distance away with X = E[X] and N = E[N ]
because a transmitter tries to locate the next hop as near its
transmission boundary toward the sink as possible. Simulating
on this routing strategy is meant to emphasize the importance

TABLE II

COMPARISON OF ROUTING SCHEMES IN RANDOMIZED 2-D NETWORKS

(a) Average end-to-end power (Watt)
Pelec Dijkstra JDRPC Fixed power Distance-based
10−1 0.7360 0.8363 1.7772 1.8670
10−3 0.0505 0.0726 0.3886 0.1108
10−5 0.0306 0.0557 0.3677 0.0900

(b) Average hop count on end-to-end path
Pelec Dijkstra JDRPC Fixed power Distance-based
10−1 5.01 5.39 9.85 7.00
10−3 15.98 14.31 9.86 18.56
10−5 22.97 18.50 9.82 23.67

(c) Successful transmissions out of 10, 000 trials
Pelec Dijkstra JDRPC Fixed-power Distance-based
10−1 10,000 10,000 3,223 1,631
10−3 10,000 10,000 2,496 48
10−5 10,000 10,000 2,231 3

of having a power control mechanism along with routing in
wireless networks.

In Distance-based routing, we assume nodes are oblivious
of channel conditions. It finds the best end-to-end path with
the least expected end-to-end power consumption, utilizing
only the distance information between nodes. In (12), the
transmission power allocated on a link is P ∗

trans with X =
E[X] and N = E[N ], equivalent to using dγ as the link met-
ric. It demonstrates the inefficacy of allocating transmission
power based only on topological information. The inefficacy
is because time-varying channel conditions are not utilized in
making routing and power control decisions.

Fixed-transmission-power and Distance-based routing may
choose a link with extremely low packet reception rate due to
poor transmission power control decisions as they are unaware
of channel conditions. As a result, in the simulation we set a
retransmission threshold such that if packet retransmissions
fail on the same link consecutively for 30 times, the sender
will give up sending packets on the link and this iteration is
considered as a failed trial. For Dijkstra and JDRPC algorithm,
since transmission power is arbitrarily adjustable to achieve the
optimal packet reception rate for all possible link conditions,
successive transmission failures are not observed.

D. Simulation Result for 2-D Networks

1) Performance: Table II shows the average end-to-end
power consumption, average hop count, and the number of
successful end-to-end transmissions (out of 10000) for the
four routing schemes. First, for average power consumption,
JDRPC algorithm, which is only based on local link state infor-
mation, performs close to Dijkstra algorithm for all electronic
power settings. In addition, the advantage of JDRPC over
Dijkstra is that it only requires channel information to one-
hop neighbors. This information can be collected much faster
and more accurate compared to the global information needed
for Dijkstra algorithm. The ovevheard of computation and
communication is also reduced, making JDRPC a good power
control and routing algorithm. Fixed-transmission-power strat-
egy incurs much larger power consumption compared to
the former two schemes, due to its incapability to adapt to
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Fig. 4. Typical paths for four routing algorithms

channel conditions. The average power for Distance-based
routing is not meaningful because the proportion of successful
transmissions is too low (See Table II (c)). In general, when
Pelec is low, JDRPC can provide up to six times of reduction
in power usage, compared to Fixed-transmission-power and
Distance-based routing.

Second, we observe that in both Dijkstra and JDRPC,
the average hop count for end-to-end transmissions between
the same source-sink pair decreases as Pelec increases. This
matches the intuition in Equation (21) that as Pelec increases,
a transmitter will try to send packets across a longer dis-
tance to reduce the required number of transmissions. Fixed-
transmission-power routing is unable to adjust its transmission
range, causing average hop counts for different Pelec settings
to be roughly the same. Distance-based routing favors shorter
hops because it only takes distance information into considera-
tion when making routing decisions and adjusting transmission
power. Thus it has the largest average hop count among the
four schemes.

Third, Table II (c) shows that Dijkstra and JDRPC algorithm
have 100% successful end-to-end transmissions for all Pelec

settings. It is because they always try to transmit packets
over wireless links with better link conditions, and adjust
transmission power to achieve the optimal prr. Contrarily,
Fixed-transmission-power routing delivers less than 33% of
packets for all Pelec settings because it is likely to choose a
next hop with very poor link condition. We also observe that
Distance-based routing performs very poorly in packet success
rate because it makes routing decisions only by distance
information, ending up taking more hops with short distances.
Traversing across more hops with i.i.d. channels makes it
more likely pick poor links along the way, resulting in severe
packet losses. This indicates if the power-aware routing is only

based on distance information but not realistic channel condi-
tions, it may lead to disastrous network performance. Note
that although both Fixed-transmission-power and Distance-
based routing are oblivious of channel conditions, the former
outperforms the latter. It is because Fixed-transmission-power
routing uses larger hop distance R. If we chose a small R,
Fixed-transmission-power routing would perform as badly as
the Distance-based routing.

As a closer observation, we show typical paths taken by
the four routing strategies across the 2-D network in Figure 4.
Pelec is set to 10−3 Watt. In Figure 4(a), Dijkstra algorithm is
based on global knowledge of the network, making it able
to choose any path that leads to minimum expected end-
to-end power usage. JDRPC tends to choose its next hop
toward the sink, but its ability of making routing decisions
and adjusting transmission power to meet the optimal power
allocation criteria makes it perform closely to Dijkstra (Figure
4(b)). Contrarily, although Fixed-transmission-power routing
does its best by picking a farthest node near its power-
optimized transmission boundary, the scheme is unable to
adjust transmission power and make routing decisions ac-
cording to channel states. Figure 4(c) shows that Fixed-
transmission-power routing results in hop distances all close to
the designated radius R. Distance-based routing chooses short
hops and ignores channel conditions, as shown in Figure 4(d).
The latter two routing strategies perform poorly.

2) Restricted Adjustment for Transmission Power: Due to
the physical limits of power amplifying circuitry and the
antenna, transmission power cannot be adjusted arbitrarily.
Therefore any given node cannot always obey the fixed-SNR
policy for optimal power control. We apply this constraint to
nodes in the simulation and observe its impact on end-to-end
power cost.

This constraint can be modeled by changing the feasible
upper and lower boundaries of the parameter A (refer to (11)).
Instead of searching through the whole space from infinitely
large transmission power (SNR → ∞, A = 0) to infinitely
small one (SNR → 0, A = 1), we are restricted by choosing
A only within the range which physical device limits allow.
In the simulation we assume the tunable range of transmission
power of each node is between −15dB to −50dB. Pelec is
set to 10−3 Watt. Other parameters are the same as those
in the previous section. Intuitively, since transmission power
cannot be arbitrarily adjusted, a transmitter is not always able
to transmit packets efficiently either to a node far away or in
the presence of poor channel conditions. In the former case,
node density will play an important role because low node
density forces a transmitter more likely to transmit packets
with poor power efficiency to a long-distant node, resulting
in an increase of average power consumption. We simulate
Dijkstra, JDRPC, and Fixed-transmission-power algorithm in
randomized networks with various number of nodes deployed.
Figure 5 and 6 show the trend of average end-to-end power
cost and the number of successful end-to-end transmissions
for the three routing strategies, respectively. All results are
obtained from 10000 random-generated topologies.
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Figure 5 shows that for all three routing schemes, the
average power consumption increases as the node density
decreases. The reason is for each routing scheme, a transmitter
either has fewer neighbors as next-hop candidates, or suffers
from being unlikely to locate a neighbor with good channel
condition. An inspiring observation of Figure 5 is that for
various node densities, JDRPC algorithm performs close to
Dijkstra algorithm under the transmission power constraint,
and has a huge improvement compared to Fixed-transmission-
power routing. It suggests that JDRPC may perform very well
compared to the best routing possible practically.

Figure 6 shows that Dijkstra and JDRPC mechanism fail to
deliver packets for some end-to-end transmissions, especially
when node density is low. The count for successful end-to-
end transmissions decreases as the node density decreases. In
addition, the difference made by adding extra nodes is signif-
icant at low node density. But after some node density level
is reached, the marginal performance improvement by adding
nodes drops. Under high node density, every node is likely to
find a neighbor such that fixed-SNR policy for optimal power
control can be achieved even subject to transmission power
constraint, which may not be true under low node density.

VII. CONCLUSION

In this paper, we have proposed a local metric and the
corresponding joint power control and routing mechanism
in wireless networks. We have first shown that given the
electronic power setting and channel conditions, the optimal
power allocation over a given link needs to meet a special
SNR constant, which can be easily computed by an elegant
characteristic equation. Typically, the special SNR constant
leads to an optimal per-hop packet reception rate which is
high but not close to one. This suggests that the optimal

operating point for reliable packet delivery should lie in the
transitional region, which is rarely considered in previous
research literature. Based on the per-link optimal power con-
trol, we have proposed the JDRPC algorithm that utilizes a
simple local power-efficiency metric to choose the next hop.
Through simulations in linear and 2-D networks, it is shown
that JDRPC algorithm can achieve very low average power
consumption in different node density settings, compared with
the best global strategy possible. Furthermore, JDRPC can
provide a great reduction in power usage compared to channel-
unaware routing algorithms. We have also shown that JDRPC
algorithm also adapts to transmission power limitation of
wireless devices.

There are several future research directions to build on
this work. First, in this paper we only focus on relatively
stable networks. It would be interesting to consider networks
with dynamically changing channel conditions and mobility
events. Second, MAC schemes play an more important role
under high-traffic scenarios. It would be necessary to explicitly
design an efficient MAC scheme and incorporate it into the
algorithm design. Meanwhile, since the proposed scheme
only considers energy efficiency as the major performance
metric, it would be interesting to further consider throughput
improvement without the loss of energy efficiency.
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