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Different “Perspectives” on the BrainDifferent “Perspectives” on the Brain

Perspective A: The brain is a computation device. It finds solutions to 
certain computational problems. Sometimes these solutions are only 
approximate. (“top-down, computational (functional) view”)

Perspective B: The brain is a complex dynamical system with many 
non-linearly interacting parts. The behavior emerging from these 
interactions is often difficult to predict (“bottom-up, physical view”)
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Forms of Neuronal PlasticityForms of Neuronal Plasticity

• long-term potentiation (LTP) and depression (LTD) of synapses; 
modeled as Hebbian learning rules

• spike-timing-dependent plasticity (STDP); relation to LTP/LTD

• homeostatic synaptic scaling

• short term facilitation and depression of synapses

• modulation of synaptic plasticity by neuromodulators; 
reinforcement learning, attention

• adult neurogenesis

• short-term neuronal adaptation

• intrinsic plasticity IP

• …
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What is Intrinsic Plasticity (IP)?What is Intrinsic Plasticity (IP)?

• not only synapses are plastic, but also soma (and 
dendrites) change properties through modification of 
voltage-gated channels [review in Zhang&Linden, 2003]

• changes in neuron’s frequency-current (f-I) curve

• found across large number of organisms and brain areas; 
multiple time scales [e.g. van Welie et al., 2004]

• some evidence consistent with idea of homeostasis: may 
keep activity level in desired regime [Desai et al., 1999]
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Intrinsic Plasticity ExampleIntrinsic Plasticity Example
• after activity deprivation, cultured pyramidal cells are 

more excitable [Desai et al., 1999]
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Adapted from Yang Dan:

“sparse” coding of
natural stimuli
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Sensory CodingSensory Coding
• sparse codes are efficient way of representing sensory 

information [Barlow 1989; Földiak, 1995; Field, 1994, 
Olshausen&Field, 1996; Bell&Sejnowski, 1997; Rao&Ballard, 1999…]

• [Baddeley et al., 1997]: neurons in visual cortex of cat and 
monkey have close to exponential activity distributions 
(lifetime sparseness); maximize entropy for fixed 
energy consumption: “energy efficient coding”

Could intrinsic plasticity
contribute to efficient coding?
[Stemmler&Koch, 1999]

How does it interact with 
synaptic plasticity?
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“Make everything as simple as possible, but not simpler.”
Albert Einstein

“Essentially, all models are wrong, but some are useful.”
George E. P. Box

The right level of abstraction?The right level of abstraction?

Simplest kind of model:
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A Simple Model of Intrinsic PlasticityA Simple Model of Intrinsic Plasticity
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Idea: use parametric sigmoid nonlinearity,
two adjustable parameters

Effect of varying a and b: change shape of sigmoid

( )( )bah
hSy ab +−+
==

exp1
1)(

b
sh

it
s 

le
ft

/r
ig

ht

a
ch

an
ge

s 
sl

op
e

ℜ∈ℜ∈ > ba  ,0 y

…x

w

+ h



Jochen Triesch 11

Excursion: Excursion: KullbackKullback--LeiblerLeibler Divergence Divergence 
(relative entropy)(relative entropy)

• Concept from information theory measuring how 
different two probability distributions fa andfb are:

• Properties:
• d(fa||fb) ≥ 0 and d(fa||fb)=0 if and only if fa=fb, i.e., if 

the two distributions are the same, their KL-
divergence is zero otherwise it’s bigger

• d(fa||fb) in general is not equal to d(fb||fa) (i.e. d(.||.) 
is not a metric)
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Learning Rule for IPLearning Rule for IP
Gradient rule: consider Kullback-Leibler divergence between 
activity distribution and desired exponential of mean µ :

H(y) and E(y) depend on sigmoid parameters a,b.
Stochastic gradient descent rule for a,b to minimize D :
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Example 1: Gaussian input h to the transfer function

distribution of h

activation fct.: learned, optimal
activity y
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Example 2: uniform input h to the transfer function

distribution of h

activation fct.: learned, optimal
activity y
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Example 3: exponential input h to the transfer function

distribution of h

activation fct.: learned, optimal
activity y
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Example 4: Recovery from “sensory deprivation”
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Combination with Combination with HebbianHebbian LearningLearning
Question: [Triesch, NIPS 2005; Neural Comp., 2007]

What is the interaction of Hebbian synaptic plasticity 
and intrinsic plasticity?

Simple Hebb rule with weight normalization:
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Result: The combination of intrinsic 
with Hebbian plasticity can result 
in the neuron discovering heavy-
tailed (interesting) directions in 
the input.
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IP+Hebb can support Independent Component Analysis (ICA)
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IntuitionIntuition
Limiting case:
• intrinsic plasticity much faster than Hebbian plasticity
• assume intrinsic plasticity achieves approximately 

exponential firing rate distribution before weight 
changes much
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Weight update is exponentially weighted sum of all the inputs.
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Illustration:
• consider neuron with two inputs
• Hebbian learning in linear unit wanders aimlessly
• Hebbian learning + IP discovers heavy-tailed direction
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The “Bars Problem” (nonThe “Bars Problem” (non--linear ICA)linear ICA)
[Földiak, 1990]:
• bars on R×R retina (horiz. & vert.)
• each shows up independently with

certain probability; ~22R patterns
• problem is to find the individual bars
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Is the time scale of IP important?Is the time scale of IP important?

fast IP slow IP

no IPAnswer: No, as long as it is 
present at all, it can be 
much faster or much 
slower than synaptic 
plasticity.
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Full Bars ProblemFull Bars Problem
• de-correlation mechanism [Butko&Triesch, Neurocomp. 2007]:

• “winning” unit learns in Hebbian fashion
• other units in anti-Hebbian fashion
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learning works reliably over a range of ß-values
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Learning Orientation MapsLearning Orientation Maps
• Hebb rule with additional center-surround gating around 

the most activated unit [Butko&Triesch, Neurocomp. 2007]:

• Nmap is a Mexican hat centered at most activated unit
• natural images (10x10 patches) of van Hateren database 
• preprocessing by whitening

whitening

center-
surround 
gating of 
learning
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15x15 units, 2.25 times overcomplete representation:

• network learns maps of oriented filters
• low average dependence between units (normalized 

mutual information measure, 3% of max.)



Jochen Triesch 27

Receptive fields, nonReceptive fields, non--linearity, linearity, 
and activity histogramsand activity histograms
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Generative Model of Natural ScenesGenerative Model of Natural Scenes
• joint work with Cornelius Weber [in revision]
• based on “Helmholtz machine” [Dayan et al., 1995; Hinton et 

al., 1995]
• exploits multiple time scales of plasticity
• model develops simple cell-like receptive fields
• offers explanation of tilt after-effect (TAE) as 

adaptive response to maintain efficient coding 
[Wainwright, 1999]
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“wake” phase:

“sleep” phase:
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Learned Receptive FieldsLearned Receptive Fields
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Tilt afterTilt after--effect (TAE)effect (TAE)

• after adapting to a grating for several seconds or 
minutes, nearby orientations are perceived as tilted 
away from the adapting orientation
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Tilt AfterTilt After--Effect in the ModelEffect in the Model

Adaptation phase:
• present gratings of same orientation but different 

phase to the network

• synaptic weights stay fixed, but a and/or b parameters 
are allowed to adapt according to IP learning rule

Test phase:
• present test gratings of varying orientations

• use population vector decoding to estimate “perceived 
orientation” of test gratings; plot change of orientation 
as a function of orientation difference between 
adaptation orientation and test orientation
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Tilt AfterTilt After--Effect ResultsEffect Results

• gain changes of the model (parameter a) produce good 
fit to TAE data from human subjects

• roughly logarithmic scaling with duration (as in humans)



Jochen Triesch 34

ConclusionsConclusions
• Different plasticity mechanisms may interact 

synergistically in the brain; emergence of interesting 
learning properties

• Combination of IP with Hebbian rules allows learning of 
efficient sensory codes (close ties to sparse coding, ICA)

• In order to understand cortical plasticity we have to study 
the interaction of different plasticity mechanisms

Current/Future work:
• learning hierarchical representations; inference
• optimal predictability, slowness, …
• IP in recurrent networks, “liquid computing” etc.
• IP for spiking model neurons, interaction with STDP
• relation to criticality, avalanches in recurrent networks?
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Thank you!Thank you!
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cognitive
robotics

modeling cognitive
development in 

infants models of 
plasticity 

and 
learning in 
cortical 
networks

computer vision visual 
psychophysics

Open positions: 1 postOpen positions: 1 post--doc, 1 PhD studentdoc, 1 PhD student
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