

Synergies Between Intrinsic and Synaptic Plasticity Mechanisms

Jochen Triesch

Frankfurt Institute for Advanced Studies <u>http://fias.uni-frankfurt.de</u>

Telluride, 2007-07-11

FIAS Frankfurt Institute for Advanced Studies

- basic theoretical research in physics, chemistry, biology, neuroscience, and computer science
- Frankfurt International Graduate School for Science
- ~110 people and growing

UNIVERSITÄT FRANKFURT AM MAIN

http://fias.uni-frankfurt.de

Different "Perspectives" on the Brain

Perspective A: The brain is a computation device. It finds solutions to certain computational problems. Sometimes these solutions are only approximate. ("top-down, computational (functional) view")

Perspective B: The brain is a complex dynamical system with many non-linearly interacting parts. The behavior emerging from these interactions is often difficult to predict ("bottom-up, physical view")

Forms of Neuronal Plasticity

- long-term potentiation (LTP) and depression (LTD) of synapses;
 modeled as Hebbian learning rules
- spike-timing-dependent plasticity (STDP); relation to LTP/LTD
- homeostatic synaptic scaling
- short term facilitation and depression of synapses
- modulation of synaptic plasticity by neuromodulators; reinforcement learning, attention
- adult neurogenesis
- short-term neuronal adaptation
- intrinsic plasticity IP

...

What is Intrinsic Plasticity (IP)?

- not only synapses are plastic, but also soma (and dendrites) change properties through modification of voltage-gated channels [review in Zhang&Linden, 2003]
- changes in neuron's frequency-current (f-I) curve
- found across large number of organisms and brain areas;
 multiple time scales [e.g. van Welie et al., 2004]
- some evidence consistent with idea of *homeostasis*: may keep activity level in desired regime [Desai *et al.*, 1999]

Intrinsic Plasticity Example

 after activity deprivation, cultured pyramidal cells are more excitable [Desai *et al.*, 1999]

Adapted from Yang Dan:

"sparse" coding of natural stimuli

- sparse codes are efficient way of representing sensory information [Barlow 1989; Földiak, 1995; Field, 1994, Olshausen&Field, 1996; Bell&Sejnowski, 1997; Rao&Ballard, 1999...]
- [Baddeley et al., 1997]: neurons in visual cortex of cat and monkey have close to exponential activity distributions (lifetime sparseness): maximize entropy for fixed energy consumption: "energy efficient coding"

Could intrinsic plasticity contribute to efficient coding? [Stemmler&Koch, 1999]

How does it interact with synaptic plasticity?

The right level of abstraction?

"Essentially, all models are wrong, but some are useful." George E. P. Box

"Make everything as simple as possible, but not simpler." Albert Einstein

Simplest kind of model:

$$y = S(\mathbf{w}^T \mathbf{x}) = S(h)$$

A Simple Model of Intrinsic Plasticity

Idea: use parametric sigmoid nonlinearity, two adjustable parameters $a \in \Re^{>0}, b \in \Re$

$$y = S_{ab}(h) = \frac{1}{1 + \exp(-(ah+b))}$$

Effect of varying *a* and *b*: change shape of sigmoid

Excursion: Kullback-Leibler Divergence (relative entropy)

• Concept from information theory measuring how different two probability distributions f_a and f_b are:

$$d(f_a \| f_b) \equiv \int f_a(y) \log\left(\frac{f_a(y)}{f_b(y)}\right) dy$$

- Properties:
 - $d(f_a||f_b) \ge 0$ and $d(f_a||f_b)=0$ if and only if $f_a=f_b$, i.e., if the two distributions are the same, their KLdivergence is zero otherwise it's bigger
 - $d(f_a||f_b)$ in general is not equal to $d(f_b||f_a)$ (*i.e.* d(.||.) is *not a metric*)

Learning Rule for IP

Gradient rule: consider Kullback-Leibler divergence between activity distribution and desired exponential of mean μ :

$$D = d\left(f_{y} \| f_{\exp}^{\mu}\right) = \int f_{y}(y) \log\left(\frac{f_{y}(y)}{\frac{1}{\mu} \exp\left(\frac{-y}{\mu}\right)}\right) dy$$
$$= -H(y) + \frac{1}{\mu}E(y) + \log\mu$$

H(y) and E(y) depend on sigmoid parameters a,b. Stochastic gradient descent rule for a,b to minimize D:

$$\Delta a = \eta \left(a^{-1} + h - \left(2 + \mu^{-1} \right) hy + \mu^{-1} hy^2 \right)$$

$$\Delta b = \eta \left(1 - \left(2 + \mu^{-1} \right) y + \mu^{-1} hy^2 \right)$$

this rule is strictly local !

Example 1: Gaussian input *h* to the transfer function

Example 2: uniform input h to the transfer function

distribution of h

Example 3: exponential input h to the transfer function

distribution of h

Example 4: Recovery from "sensory deprivation"

Combination with Hebbian Learning

Question: [Triesch, NIPS 2005; Neural Comp., 2007] What is the interaction of Hebbian synaptic plasticity and intrinsic plasticity?

Simple Hebb rule with weight normalization:

$$\Delta \mathbf{w} = \eta y \mathbf{x} = \eta S_{ab} \left(\mathbf{w}^T \mathbf{x} \right) \mathbf{x}$$

Result: The combination of intrinsic with Hebbian plasticity can result in the neuron discovering heavytailed (interesting) directions in the input.

IP+Hebb can support Independent Component Analysis (ICA)

Intuition

Limiting case:

- intrinsic plasticity much faster than Hebbian plasticity
- assume intrinsic plasticity achieves approximately exponential firing rate distribution before weight changes much

Consequence: $\langle \Delta \mathbf{w} \rangle = \eta \langle \mathcal{Y} \mathbf{x} \rangle$

Weight update is exponentially weighted sum of all the inputs.

Illustration:

- consider neuron with two inputs
- Hebbian learning in linear unit wanders aimlessly
- Hebbian learning + IP discovers heavy-tailed direction

The "Bars Problem" (non-linear ICA)

[Földiak, 1990]:

- bars on R×R retina (horiz. & vert.)
- each shows up independently with certain probability; ~2^{2R} patterns
- problem is to find the individual bars

Is the time scale of IP important?

Full Bars Problem

- de-correlation mechanism [Butko&Triesch, Neurocomp. 2007]:
 - "winning" unit learns in Hebbian fashion
 - other units in anti-Hebbian fashion

$$\Delta \mathbf{w}_{i} \stackrel{(a)}{=} \mathbf{x} y \mathcal{N}(y_{i}; \mathbf{y}) \qquad \qquad \mathcal{N}_{\text{bars}}(y_{i}; \mathbf{y}) = \begin{cases} 1: y_{i} = \max(\mathbf{y}) \\ -\beta: \text{else} \end{cases}$$

Best Bar: 11

Best Bar: 2

Best Bar: 10

Best Bar: 15

Best Bar: 5 Best Bar: 16

Best Bar: 17

Best Bar: 3

Best Bar: 9

Best Bar: 14

Best Bar: 7

Best Bar: 0

Best Bar: 0

Best Bar: 5

Best Bar: 12

Best Bar: 8

Best Bar: 19

Best Bar: 6

Best Bar: 3

Best Bar: 20

learning works reliably over a range of B-values

Learning Orientation Maps

 Hebb rule with additional center-surround gating around the most activated unit [Butko&Triesch, Neurocomp. 2007]:

$$\Delta \mathbf{w}_{i} \stackrel{(a)}{=} \mathbf{x} y \mathcal{N}(y_{i}; \mathbf{y}) \qquad \mathcal{N}_{\mathrm{map}}(y_{i}; \mathbf{y}) = \frac{1}{2\pi\sigma_{\mathrm{c}}^{2}} \exp\left(\frac{-d_{i}^{2}}{2\sigma_{\mathrm{c}}^{2}}\right) - \frac{1}{2\pi\sigma_{\mathrm{s}}^{2}} \exp\left(\frac{-d_{i}^{2}}{2\sigma_{\mathrm{s}}^{2}}\right)$$

- N_{map} is a Mexican hat centered at most activated unit
- natural images (10x10 patches) of van Hateren database
- preprocessing by whitening

15x15 units, 2.25 times overcomplete representation:

- network learns maps of oriented filters
- low average dependence between units (normalized mutual information measure, 3% of max.)

Generative Model of Natural Scenes

- joint work with Cornelius Weber [in revision]
- based on "Helmholtz machine" [Dayan et al., 1995; Hinton et al., 1995]
- exploits multiple time scales of plasticity
- model develops simple cell-like receptive fields
- offers explanation of tilt after-effect (TAE) as adaptive response to maintain efficient coding [Wainwright, 1999]

Learned Receptive Fields

Tilt after-effect (TAE)

 after adapting to a grating for several seconds or minutes, nearby orientations are perceived as tilted away from the adapting orientation

Tilt After-Effect in the Model

Adaptation phase:

- present gratings of same orientation but different phase to the network
- synaptic weights stay fixed, but a and/or b parameters are allowed to adapt according to IP learning rule

Test phase:

- present test gratings of varying orientations
- use population vector decoding to estimate "perceived orientation" of test gratings; plot change of orientation as a function of orientation difference between adaptation orientation and test orientation

Tilt After-Effect Results

- gain changes of the model (parameter a) produce good fit to TAE data from human subjects
- roughly logarithmic scaling with duration (as in humans)

Conclusions

- Different plasticity mechanisms may interact synergistically in the brain; emergence of interesting learning properties
- Combination of IP with Hebbian rules allows learning of efficient sensory codes (close ties to sparse coding, ICA)
- In order to understand cortical plasticity we have to study the *interaction* of different plasticity mechanisms

Current/Future work:

- learning hierarchical representations; inference
- optimal predictability, slowness, ...
- IP in recurrent networks, "liquid computing" etc.
- IP for spiking model neurons, interaction with STDP
- relation to criticality, avalanches in recurrent networks?

Thank you!

Open positions: 1 post-doc, 1 PhD student