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Abstract 
IA-32 Execution Layer (IA-32 EL) is a new 
technology that executes IA-32 applications on 
Intel® Itanium® processor family systems. 
Currently, support for IA-32 applications on 
Itanium-based platforms is achieved using 
hardware circuitry on the Itanium processors. 
This capability will be enhanced with IA-32 
EL—software that will ship with Itanium-based 
operating systems and will convert IA-32 
instructions into Itanium instructions via 
dynamic translation. In this paper, we describe 
aspects of the IA-32 Execution Layer 
technology, including the general two-phase 
translation architecture and the usage of a 
single translator for multiple operating 
systems. The paper provides details of some 
of the technical challenges such as precise 
exception, emulation of FP, MMX™, and Intel® 
Streaming SIMD Extension instructions, and 
misalignment handling. Finally, the paper 
presents some performance results. 

1. Introduction 
The Intel® Itanium® processor family (IPF) is 
primarily designed to provide leading performance 
and capabilities for 64-bit applications and 
operating systems (OSes). The ability to execute 
IA-32 applications is needed for flexibility and easy 
migration from existing IA-32 systems to Intel® 
Itanium® 2-based solutions. Primary, performance-
sensitive applications are encouraged to be ported 
to Itanium architecture, while secondary, non-
performance critical applications and applications 
or libraries where source code is not available, can 
continue to execute as IA-32 code. 
Currently, IA-32 support on IPF is available 
through hardware circuitry. IA-32 Execution Layer 
(IA-32 EL) is a new technology that provides the 
same capability, executing IA-32 applications on 
IPF through software.  IA-32 EL is dynamic binary 
translation software that translates IA-32 
instructions into Itanium instructions. IA-32 EL 
runs on both Windows* and Linux* operating 
systems and can accelerate IA-32 application 
performance compared to the existing hardware 
solution. Field tests verified IA-32 EL robustness 

and performance benefits when compared with the 
hardware circuitry. IA-32 EL handles all IA-32 user 
code binaries and does not rely on specific software 
conventions. IA-32 EL is a software-only solution 
requiring no special hardware assists. The main 
challenges were to provide hardware-level quality 
that correctly executes IA-32 applications, without 
compromising performance.  
IA-32 EL has the following characteristics: 
1. Aggressive dynamic information collection 

during the first translation phase and usage of 
that information for a second translation phase 

2. A single, OS-independent binary for translating 
IA-32 applications on multiple OSs 

3. A mechanism for precise exception handling 
This paper is organized as follows: Section 2 
describes the general architecture of IA-32 EL. 
Section 3 describes the IA-32 EL solution for 
providing one translator that runs on multiple, 
native Itanium-based OSes. Section 4 explores 
mechanisms for generating and maintaining a 
consistent IA-32 state, as required for providing 
precise exception handling and for enabling a 
debugger to run on top of the translator. Section 5 
focuses on several technological challenges faced in 
developing IA-32 EL, i.e. floating point, Intel® 
MMX™ technology, and Intel® Streaming SIMD 
Extensions (SSE) modeling, and misalignment 
handling. Section 6 discusses performance and 
examines benchmark data. 

2. Overview 
This section describes the general architecture of 
IA-32 EL. General background on binary 
translation technology is given toward the end of 
this paper in the “related work” section. [1, 2, 10, 
16, 18] 

General Architecture 
IA-32 EL is targeted for application-level translation 
only. Therefore, it runs on top of the native 64-bit 
operating system, like the FX!32* [6,8] and Hewlett 
Packard’s PA-RISC* translator [23], and unlike the 
Transmeta* code morphing software [7]. IA-32 EL 
is loaded to the same user space as the translated 
application and it operates in the user level only. The 
application image(s) and data remain unchanged, 
similar to their layout on the original IA-32 platform.  
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The translator is architected to work on multiple, 
native Itanium-based OSes. This ability is achieved 
by separating most of the translation engine and 
algorithms into an OS-independent module 
(BTGeneric), which interfaces with a small glue 
layer that is OS dependent (BTLib). These two 
components interact via a well-defined API. BTLib 
is responsible for providing all system services, 
such as memory allocations.  
IA-32 EL is a two-phase dynamic binary translator. 
It caches translations within the same process, but 
does not maintain them beyond the translated 
process. The first phase, cold code translation, is 
designed to be fast, with minimal optimizations 
and overhead and uses instrumentation to identify 
hotspots. The second phase, hot code translation, 
retranslates and further optimizes those hotspots. 
Cold code translation is done on a basic-block 
granularity, with 4-5 IA-32 instructions per block 
on average. Hot code translation is applied to hot 
traces on a hyper-block granularity, with about 20 
IA-32 instructions per block on average. The entire 
process is shown later on in Figure 2. 

Cold Code Translation 
Cold code is generated at basic-block granularity. 
However, simple analysis is done on neighboring 
blocks (1-20 basic blocks) for better code 
generation, as shown in Figure 1. The analysis starts 
from the current instruction pointer (IP). It includes 
decoding, building a flow graph, computing the 
liveness of IA-32 EFlags bits, and tracking floating 
point (FP) stack changes between blocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1-Cold Code Translation 

This process enables the translator to eliminate 
redundant IA-32 EFlags updates and speeds up FP 
code, as described in chapter 5. The analysis is 
followed by code generation of few basic blocks 
only. (Unexecuted blocks are never generated.) 
Code generation is accelerated by using prepared 
translation templates for each IA-32 instruction 
variant. These templates are patched according to the 
instruction parameters and environmental factors. 
The templates are carefully hand optimized to use 
the best Itanium instruction sequences. 
Cold blocks contain instrumentation to collect 
information that is later used for hot translation. The 
instrumentation includes a basic-block use counter, 
an edge counter for blocks ending with conditional 
or indirect branches, and misalignment detection. 
This is different than most existing dynamic 
systems, which perform such instrumentation during 
interpretation [3, 6, 7, 9, 21, 23]. Examples of 
instrumentation in translated code are given in [4, 
22]. Others [5, 17] suggest using hardware for the 
same purpose. The advantage of adding the 
instrumentation in cold blocks is that it provides 
more precise information for later use, since cold 
blocks can run longer than interpreted code and still 
maintain low overhead.  
Translated blocks usually jump directly from one 
block to another. Blocks ending with indirect 
branches that are not predicted use a fast lookup 
table to find the branch target. In cases where a 
block jumps to an address that has not been 
translated yet, the initial generated code contains a 
branch to the translator code which is later patched 
to generate a direct branch between the blocks.  
Several variants of cold blocks can exist to handle 
special cases, including FP exceptions, self-
modifying code (SMC), and others. Cold blocks may 
be recycled due to garbage-collection, unloading of a 
library, or SMC detection1. 

Hot Code Translation 
When the use-counter in a block reaches the heating 
threshold, the instrumentation code of that block 
triggers the registration of the block as an 
optimization candidate by branching out to a special 
entry in the translator. When enough blocks have 
registered or one block has registered twice, an 
optimization session (hot code translation) starts. 
This algorithm enables evaluation of several hot 
blocks at once, and thus uses more educated merging 
and splitting decisions. On the other hand, blocks 

                                                           
1 Writable page translations include code for 
detecting possible changes from the code used for 
translation.  
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belonging to tight loops will not wait too long due to 
the second-registration trigger. About 5-10% of the 
cold blocks reach the heating threshold2. 
The first step in hot block translation is to select a 
trace of IA-32 basic blocks that compose a hyper 
block – single entry, multiple exits. This selection is 
based on the use and edge counter information 
collected during the cold code run of those blocks. 
Predication can be used to include both sides of 
if...then… and if…then…else… structures 
as part of the linear trace, according to profitability 
estimations3. If a loop is identified, it may be 
unrolled. Only about 6% of the hot blocks suffer 
from a premature exit (with no special penalty).  
Next, the original IA-32 code is decoded and 
analyzed again. Decoded information is not 
maintained from the cold translation. Here, unlike 
the fast encoding using binary templates during cold-
code generation, each instruction generates 
associated Intermediate Language data structures 
(ILs). The ILs represent the target machine 
instructions and are contained in a linked-list. The 
precompiled binary templates and the IL-generation 
are derived from the same template source code. 
These templates are written in a special language for 
easier maintenance and validation. 
During the IL generation phase, the translator does 
the following optimizations and preparations:  
1. Adds misalignment avoidance code to memory 
accesses that were detected by instrumentation as 
being prone to misalignment (see section 5).  
2. Tracks IA-32 addresses and their values. 
Eliminates redundant compound address expressions 
typical in IA-32 code, such as 
[offset + base + index * scale]. 
3. Tracks information about values in registers and 
uses it for simplifying the translation.  
4. Eliminates EFlags generation using techniques 
similar to those used in cold-code generation. 
5. Analyzes FP stack flow and Intel® Streaming 
SIMD Extensions (SSE) format conversions. See 
more in section 5 below. 
6. Performs other FP optimizations, such as register 
allocation and FXCHG elimination (see chapter 5 for 
more details). 
The translator scans the resulting IL list to build a 
data-dependency graph. It removes dead ILs and 
marks those ILs needed for side-exits only as 
“sideway ILs”. The translator computes weights and 
attaches them to individual ILs to signify the relative 
importance of scheduling them early. Peepholes, 
using dependency information, eliminate additional

                                                           
2 It heavily depends on the application workload. 
3 See [10] for similar considerations 
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instructions. 
Next, the scheduler reorders the instructions in the 
hot block. ILs are ordered and bundled according to 
architectural and microarchitectural limitations. For 
better reordering, the translator uses:  
•  Register renaming4 for anti-dependencies 

elimination and for atomicity (state recovery) 
support. 

•  Control and data speculation based on 
hardware speculation mechanism and software 
techniques, as detailed in Section 4.  

The translator builds recovery information that is 
used in case of exception or interruption. Sideways 
ILs are scheduled outside the main block unless they 
can be incorporated efficiently in one of the bundles 
of the main trace.  
Finally, the encoded block with its information is 
placed in the translation cache and connected to its 
predecessors.  
Overall, hot code translation overhead per IA-32 
instruction is about 20 times more than cold-code 
translation overhead per instruction. 

3. Interaction with the 
Operating System (OS) 

As an application-level binary translator, IA-32 EL 
runs above the 64-bit OS in the application 
program’s virtual space and privilege level. 
Currently IA-32 EL supports Windows and Linux 
OSes for Itanium-based platforms. The configuration 
capabilities of these OSes allow assigning IA-32 EL 
as the execution vehicle for 32-bit applications, 
which makes it completely transparent for the end 
user. Once loaded and initialized, IA-32 EL gets 
control from the OS in order to run the 32-bit code 
of the application within the same virtual address 
space. IA-32 EL uses the native OS for multiple 
functions, such as acquiring system resources 
(memory, synchronization objects, etc.), executing 
32-bit system calls issued by the IA-32 application, 
signal handling, exceptions and other system 
notifications.  
To simplify re-hosting of IA-32 EL on multiple OS 
platforms and to reduce its validation cost, IA-32 EL 
was architected as two components: a major OS-
independent component called BTGeneric and a thin 
(about 1% of the IA-32 EL image) OS abstraction 
layer called BTLib. 
The OS interface is made via the OS abstraction 
layer only, which is the only OS-specific 
component of IA-32 EL. In other words, any 
                                                           
4 IA-32 Execution Layer allocates the entire 96-
register stack. The translated code operates in the 
same frame except for very rare function calls. 

system request from a BTGeneric component goes 
through an OS-generic interface to BTLib, which in 
turn passes it to the underlying OS. Each OS 
requires its own implementation of BTLib to be 
supported by IA-32 EL. 
BTGeneric is implemented in a separate binary 
module. The same binary module format is used for 
all platforms. BTLib loads the BTGeneric module 
at application launch time. 
The interface between BTLib and BTGeneric 
(BTOS API) is defined on the binary level and 
excludes any compiler and OS dependences. This is 
a bi-directional protocol, implemented partly by 
BTLib and partly by BTGeneric. For example, as 
shown in Figure 3, when the translation engine 
needs a memory block to store translated code, it 
calls a BTOS API function for memory allocation. 
This function, implemented by BTLib, redirects the 
memory allocation request to the corresponding OS 
function. On the other hand, when an exception 
occurs in the translated code, the OS calls an 
exception handler in BTLib, which in turn calls a 
BTOS API function implemented by BTGeneric 
and requests a consistent IA-32 state corresponding 
to the faulty instruction. 
Special attention was devoted to versioning control 
between the two components: BTLib and 
BTGeneric. Taking into account future 
modifications and extensions to BTOS API, as well 
as backward compatibility issues, IA-32 EL uses its 
proprietary protocol to ensure that BTLib and 
BTGeneric versions match each other. 
 
4. Precise IA-32 State Support 
without Performance Penalty 
 
A single IA-32 instruction is usually represented in 
the translated code by more than one Itanium 
instruction. However, if an exception occurs, it 
becomes necessary to regenerate a consistent and 
precise IA-32 state for the point of exception, based 
on the actual Itanium architecture state at that point. 
This IA-32 state is required for at least two reasons: 
•  For proper exception/unwinding handling by 

the OS. 
•  When execution resumes from the start of the 

IA-32 instruction, some or all of IA-32 state 
may have been changed by the exception 
handler. 

The problem is more complex for optimized (hot) 
code. In hot code, instructions originating from the 
translation of different IA-32 instructions are inter-
mixed. Other works [14,15] focus on lazy state 
reconstruction using different techniques. This  

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) 
0-7695-2043-X/03 $17.00 © 2003 IEEE 



 

 

 

 

 

 

 
 
 
 
Figure 3: Interaction of IA-32 EL with the Operating System during A) process initialization, B) 
translation, C) execution of an IA-32 system call, D) exception handling. 

section describes how IA-32 EL maintains 
atomicity and precise exceptions in cold and hot 
code. 

Exception Handling  
During execution of the translated code, all 
exceptions are native (IPF) code exceptions. These 
exceptions are different than in the IA-32 code: the 
IP is different; the exception code can be different; 
and the registers involved are 64-bit registers. Once 
an exception is raised in the translated code, the OS 
calls IA-32 EL before passing the exception 
notification to the IA-32 application itself. IA-32 
EL filters out exceptions that refer to the translated 
code and converts the Itanium architecture state 
information into the corresponding IA-32 state. The 
resulting state is then used to simulate the 
corresponding IA-32 application exception handler. 
As part of this first-time handling, exception code 
may be modified by the handler to match the 
exception that should have occurred in the IA-32 
code. In some cases, the exception must be 
nullified, or prevented from further escalation to the 
IA-32 application exception handler, because no 
IA-32 exception should have occurred at this point 
in the original code.  
One such example is where the original code is 
running with masked FP exceptions and the 

translated code requires unmasking the exceptions 
to support SSE unmasked exceptions5. 

IA-32 State Reconstruction for Cold 
Code 
Cold code translation needs to guarantee that, on 
any exception, the original IA-32 state can be 
generated correctly. To achieve that, each IA-32 
instruction is translated in such a way that its IA-32 
state change happens only after executing the last 
Itanium instruction that can fault e.g. memory and 
floating-point instructions. Consider the pseudo-
code in Table-1. 
In addition, at the beginning of every such 
sequence, IA-32 EL saves the IA-32 IP and some 
additional information into a dedicated 64-bit 
register, called the “IA-32 state register”. Upon 
receiving an exception and locating its source in the 
cold code, the IA-32 state register is used to map to 
the IA-32 IP. IA-32 state information is readily 
available in their “canonic” locations, since no IA-
32 state update occurs until the last potentially 
faulty instruction has been executed. Note that this 
process is not needed for non-faulty IA-32 
instructions. The overhead of IA-32 state register 
updates is negligible both in terms of time and code 

                                                           
5 IA-32 supports separate masking for FP and SSE 
code, unlike Itanium architecture. 
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Table 1. In the correct code, r.esp is updated after the memory store is updated. In the incorrect 
code, r.esp is updated before the memory store. 

size. 

IA-32 State Reconstruction for Hot 
Code 
Reconstructing the IA-32 state in hot code is a 
significantly bigger challenge for two reasons:  
•  

In hot code, Itanium instructions originating 
from different IA-32 instructions are usually 
inter-mixed, and the IA-32 state (registers) is 
often represented by other registers (for 
example, in case of register renaming). As a 
result, exceptions in hot code may appear in an 
incorrect order and redundant exceptions may 
occur. 

•  Hot blocks are composed of several IA-32 
basic blocks and may contain branches, loops, 
and predicated if then else code 
sequences. 

In order to support precise IA-32 state restoration 
and at the same time aggressively reorder 
instructions to produce optimized hot code, IA-32 
EL uses commit points. As opposed to a faulty 
instruction, a commit point is not an Itanium 
instruction, but a “barrier” enabling the translator to 
generate a consistent IA-32 state. The translator 
then does the following: 
1. Associates several faulty points in the code with 
a single commit point. 
2. Limits reordering between instructions belonging 
to different commit points. 
3. Requires that, within a single IA-32 instruction 
translation, the state update occurs after the last 
faulty IPF instruction, similar to cold code case. 
To minimize the impact of these limitations, IA-32 
EL associates as many faulty instructions as 
possible to a single commit point6. The first commit 
point is usually set at the beginning of the block, 
and is replaced only when the translator encounters 
an irreversible faulty instruction (memory store or 
branch), or can no longer preserve IA-32 state 
elements. The translator copies the original IA-32 
state changes into backup registers.  
Using commit points makes it possible to 
aggressively reorder the instructions, because 

                                                           
6 The translator sets one commit point per 10 native 
instructions on average. 

providing a consistent IA-32 state is required only 
at the very last faulty instruction in a group that 
refers to the same commit point. If an exception 
happens on any instruction that is located earlier, 
the translator ignores (nullifies) it and rolls forward 
until the last instruction in the group is reached. 

5. IA-32 Specific Optimizations 
IA-32 architecture has some unique characteristics 
that require special handling in order to achieve 
high performance, especially in areas where the 
target Itanium architecture differs significantly 
from IA-32 architecture. 

IA-32 FP, Intel® Streaming SIMD 
Extensions, and MMX™ Technology 
Emulation 
The IA-32 architecture and the Itanium architecture 
have a different floating point and MMX 
technology model. IA-32 FP instructions refer to 
eight 80-bit registers organized in an FP stack (see 
Figure 4), and the SSE instructions refer to eight 
128-bit XMM registers. The Itanium architecture 
supports both FP and SSE instructions using a flat 
register file of 128 82-bit registers. The IA-32 FP 
stack may contain empty or valid entries 
represented in a TAG register. All addressing of the 
FPU data registers is relative to the register on the 
top of the stack. The register number of the current 
top-of-stack register is stored in the TOP of Stack 
(TOS) field in the FPU status word. Load 
operations decrement TOS by one and load a value 
into the new top-of-stack register [ST(0)]. Store 
operations store the value from the current ST(0) 
register into memory and optionally increment TOS 
by one. Most operations access ST(0) as a source   
 
 
 
 
 
 
 
 
 
 

Figure 4. IA-32 FPU Stack 
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and destination operand. As a result, ST(X) is 
arotating register that is determined by TOS 
value.In addition, the eight IA-32 64-bit MMX 
registers are aliased to the significands of the eight 
FP stack registers in their initial positions. On 
Itanium processors, MMX instructions operate on 
integer registers. The differences between the 
architectures pose specific optimization challenges 
to the translator. This section focuses on three 
specific challenges: emulating the FP-stack, 
aliasing FP to MMX registers, and handling 
different XMM data formats. For more details, see 
[12, 13]. 
FP stack emulation is challenging for two reasons. 
First, mapping a rotating stack into static registers 
can result in many move operations whenever the 
TOS changes. An alternative approach [6] of 
modeling the FP-stack in memory has a high 
overhead because of the memory accesses. The 
second difficulty is the need to check the TAG 
word for each FP register access, in order to raise 
the appropriate FP-stack fault in case of a read or 
write from an invalid entry.  
The FP aliasing to MMX registers is difficult 
because the implementation of native register 
aliasing requires moving a value from an FP to an 
integer register (which models the corresponding 
MMX register) following every FP operation, and 
from an integer to FP register following every 
MMX instruction. Theses moves are extremely 
expensive, so another solution is required.  
The IA-32 instructions dealing with XMM registers 
may use four different data formats: packed-integer, 
packed-single, packed-double, and scalar. The 
corresponding representations in pairs of Itanium 
processor FP registers require conversions when 
moving between formats. Forcing each block to 
convert its eight XMM simulated registers into 
some arbitrary “canonical” format at the entry and 
exit of the block is very expensive. So a low 
overhead method is also needed in this case. 
IA-32 EL uses the following scheme to speed up 
such cases: Some speculative assumptions (listed 
below) are made in the body of each block, which 
enable aggressive optimizations. At the block’s 
head, a check is done to validate the assumptions 
made when the block was translated. If the check 
fails, the translator jumps to a correction code. 
Status updates at the end of the block enable the 
next blocks to carry their checks. 
For the stack emulation problem, IA-32 EL uses 
speculative assumptions that the TOS remains 
constant for all entrances to the same block, and 
that no stack exceptions occur. The block body 
translation benefits, since the mapping to Itanium 
processor FP registers is fixed, with no rotations or 

memory overhead. The block head compares the 
actual TOS to the speculated one, and compares the 
TAG values to those required to keep stack 
operations correct. Static analysis at translation 
time marks stack entries that can be either empty or 
valid.  
When mismatches are detected, these recovery 
actions are taken: 
•  

On TOS mismatch, rotate register values. 
•  On TAG mismatch, rebuild a special block to 

catch the right stack fault. 
The speculation success rate observed in this case is 
excellent (99-100%). Compiled code in most cases 
maintains the same TOS and TAG at the entrance 
of a block.  
For the FP to MMX register aliasing problem, the 
speculative assumptions are as follows:  
1. If the block contains MMX instructions, the last 
executed FP or MMX instruction prior to entering 
the block was an MMX instruction. 
2. If the block contains FP instructions, the last 
executed FP or MMX instruction prior to entering 
the block was an FP instruction.  
Hence no integer-to-FP or FP-to-integer moves 
occur in the block itself. A single Boolean value 
check at the block head is enough to detect 
mismatches. 
When the check fails, the recovery code copies FP 
values to MMX registers or vice versa, and toggles 
the Boolean value. 
The speculation success rate observed in this case 
was also very close to 100%: MMX instructions 
and FP instructions are usually not mixed within 
the same computation area. 
For the multiple SSE formats problem, hot blocks 
try to adjust their input/output formats to each 
other, according to the order in which they were 
generated. The speculative assumption is that the 
format set by the previous block is the same as the 
one used by the current block, hence no further 
conversions are required in the beginning of the 
block. The block head compares the required 
formats for all XMM registers with the current run-
time status. If the check fails, the code exits the 
block to perform the relevant conversions. Again, 
the speculation success rate for this case is fairly 
good - only less than 0.2% operations required 
conversion as observed in the worst case among 
SPEC2000 benchmarks. 
FXCHG elimination is an optimization specific to 
the FP stack. The common IA-32 operations on FP 
stack are limited to the stack top. That forces the 
IA-32 compilers to do a lot of fxchg operations - 
swap two stack values. The limitation does not exist 
in the IPF register file; so IA-32 EL can handle the 
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fxchg as implicit renaming instead of generating 
copying instructions. 

Handling Misaligned Data Accesses 
The penalty for misaligned data accesses on the IA-
32 architecture is very low. Consequently, many 
IA-32 applications contain a significant number of 
misaligned data accesses. On the other hand, the 
penalty for misaligned data accesses on the Itanium 
architecture is very high, especially in cases where 
misalignment is handled by the OS rather than the 
hardware – such handling takes on the order of 
several thousand cycles. Taken together, these two 
facts lead to the conclusion that execution of an IA-
32 application on IA-32 EL, without avoiding data 
misalignments, can cause a significant performance 
cost. The same conclusion was drawn for FX!32 
[8]. On some applications, data misalignment 
detection and avoidance performed by IA-32 EL 
contributed to a significant speedup. For example 
one workload that initially took 1236 seconds to 
complete, completed after 133 seconds when 
adding misalignment detection and avoidance. This 
section describes the data misalignment detection 
and avoidance mechanism used by IA-32 EL. 
A simple method for detecting and avoiding data 
misalignments is to generate each data access with 
a test of the data address. In the case that the 
address is misaligned with respect to the access 
size, the access is done in parts. The following code 
shows an example of a two-byte load using this 
method: 
// test bit0 to see if address is
// 2byte aligned. Predicates p.mis
// and p.al set appropriately.
// Will use p.mis and p.al to predicate
// the following instructions
tbit p.mis,p.al = r.addr, 0
// 2 byte load if aligned
(p.al) ld2 r.val = [r.addr]
// if misaligned load each byte separately
(p.mis) ld1 r.val = [r.addr]
(p.mis) add r.addrH = 1, r.addr
(p.mis) ld1 r.valH = [r.addrH]
// combine the separately loaded bytes
(p.mis) dep r.val = r.valH, r.val, 8, 8

While this method avoids the misalignment penalty, 
it incurs significant overhead. Note that the FALSE 
predicated instructions do consume cycles. A 
method that is low in overhead and high in 
coverage was needed. 
The method used in IA-32 EL consists of three 
stages: 
1. Initially in cold blocks, all instructions that may 
have a misaligned access are lightly instrumented 
so that, if there is a misaligned access in the block, 
it branches out to the translator and the block is 
regenerated. Note that the instrumentation in this 

stage does not provide information on which 
specific access was misaligned. 
2. Regenerated cold blocks detect and avoid 
misalignments. They are more heavily instrumented 
to provide detailed misalignment information: 
which instructions had misaligned accesses and the 
type of misalignment. (For example, for 8-byte 
accesses, the translator indicates if the 
misalignment was of 1-byte or 4-byte granularity.) 
This enables a shorter misalignment avoidance 
sequence in hot blocks. The avoidance is achieved 
by generating possibly misaligned data accesses in 
the manner described in the 2-byte load example 
above.  
3. During hot code generation, the information from 
cold code is examined for each of the cold blocks 
that make up the hot block. Each instruction that is 
marked as misaligned is generated to detect and 
avoid misalignment, much in the manner described 
in the 2-byte load example above, but with some 
enhancements as follows: 
a. The addresses for which misalignment 

detections were generated in the hot block are 
tracked. If the current address of an access 
needs misalignment detection, and the address 
is equivalent to, with regard to misalignment, 
an address for which detection has already 
been done, the result of the earlier detection is 
used. (In the 2-byte load example, IA-32 EL 
uses the predicates that were set in the 
previous t-bit instruction.) 

b. The sequence of code that implements the 
access when the address is misaligned may be 
quite long. In this case, the scheduler moves 
all or part of these instructions outside the 
translated block code. (They will be branched 
to if needed and, after their execution, a 
branch will be done back into the block.) This 
is similar to how the scheduler handles 
sideway instructions. 

The mechanism described so far does not handle 
behavior changes that occur after the hot block is 
generated. Such changes are observed on some 
applications. To cope with misalignments that 
appear only after the optimized code is generated, 
the following actions occur in stage 3: Each 
instruction for which no misalignment has been 
observed, but is empirically considered to have 
significant danger of incurring misaligned access 
later on, is instrumented. The instrumentation is 
very light in this case. If a misalignment is detected, 
the block branches into the translator. IA-32 EL 
identifies the hot block in which the misalignment 
occurred. The identified block is discarded and 
information is recorded to specify that, when the 
hot block is regenerated, all such instructions 
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should be generated with misalignment detection 
and avoidance.  

6. Performance Results 
This section presents the performance results of IA-
32 EL translator. The measurements were 
performed on a 1GHz Itanium® 2 processor with 
3MB L3 cache and 2GB RAM. The results in this 
section refer to SPEC CPU2000* benchmarks [20] 
and Sysmark* 2002. The IA-32 binaries were 
compiled using the Intel® C++ Compiler 6.0 [19]. 
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Figure 5 - SPEC CPU2000* int scores for IA-32 
EL compared to native Itanium® processor 
performance. Native performance is equal to 
100%. 

Figure 5 shows the relative SPEC CPU2000 score 
compared to native execution (higher is better) of 
highly optimized binaries generated by the Intel 
compiler for the Itanium 2 processor [19]. IA-32 
EL reaches performance level of 65% of the native 
performance on integer benchmarks. On mcf, 
performance is slightly higher than native 
performance due to the much smaller data footprint 
of the IA-32 version that use 32 bit data items as 
opposed to 64 bit data items used by the native 
version. 
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Figure 6 - Execution time distribution for 
translated SPEC CPU2000* applications. 
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Figure 7 – Same for Sysmark 2000*.  

Figure 6 shows the average (and typical) 
distribution of execution time for SPEC CPU2000 
applications. Note that hot trace selection was 
accurate, accounting for 95% of the execution time. 
The speedup is the result of running relatively 
efficient cold code, generated with minimal 
overhead, for long period of time with 
instrumentation. Translators using interpretation in 
the first phase need to move to hot code generation 
much earlier, and thus potentially collect less 
representative data. The accuracy of the 
instrumentation is especially critical for 
misalignment elimination. On such benchmarks, the 
hot code performance is 3X better than cold code, 
providing another indication of the accuracy of the 
hot traces selection and of the high potential of hot 
code optimizations. 

Figure 7 shows the average execution time 
distribution of Sysmark 2000 applications. The 
profile of the applications in this benchmark is 
different than SPEC CPU200 applications. The 
Sysmark 2000 applications are much bigger and 
their execution is spread more evenly. As a result 
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only 45% of the executed code is hot vs. 5% cold. 
The amount of translated code has an impact on the 
overhead. Notice that in this benchmark the 
applications spend a significant amount of time in 
the OS kernel and drivers. This code is not 
translated, executes natively on the machine, and is 
shared between translated and native code. 
Spending a significant amount of time in the kernel 
and drivers is a typical behavior of many Windows 
applications. Running that code natively on the 
Itanium architecture contributes to the performance. 
The idle time is large – 15% on average. This 
provides an opportunity for future work on utilizing 
this time and reducing the translation overhead. 
Figure 8 compares IA-32 EL performance with the 
performance on an IA-32 platform. The result of 
the floating-point benchmarks should be especially 
noted, taking into account the floating point 
modeling challenges described. The excellent, 
native floating-point performance of the Itanium 
processor family is a key contributor, together with 
the floating-point model and optimizations done in 
IA-32 EL. 
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Figure 8 - Relative performance of IA-32 EL 
running on a 1.5GHZ Itanium® 2 processor 
compared to a 1.6GHZ Xeon™ processor 
(higher is better). Sysmark* 2002 numbers refer 
to the Internet Content Creation part of the 
benchmark. 

Related Work 
Several recent publications, e.g. [4, 7], included a 
thorough review of other works related to dynamic 
binary translations: dynamic translators, dynamic 
optimizers, and related developments in hardware. 
A general classification of binary translators can be 
found at [2]. 
Other products in the field are Transmeta CMS [7], 
FX!32 [6], HP Aries [23], and the various Java and 
MRTE JIT translators; additional research 
frameworks are Dynamo [3,4] and DAISY [9].  
Transmeta CMS is a dynamic translator that 
emulates IA-32 on a VLIW HW that is not 
exposed. It runs beyond the IA-32 OS and hence 
emulates the entire architecture with full 
computability. FX!32 is a dynamic-static hybrid 
translator from IA-32 to Alpha architecture, with a 
lower level of compatibility (e.g., FP double 
precision emulation). HP Aries translates PA-RISC 
binaries to IPF, above HPUX* OS. Its hot-spots are 
optimized at the basic-block level. 
Optimizers like Dynamo, which translate to the 
same ISA, try to generate code that outperforms the 
originally compiled code. Translating to the same 
ISA, Dynamo can “bail-out” to native execution 
whenever the optimization turns out as ineffective. 
“Bailing out” is inapplicable for binary translators. 

Conclusions 
This paper presents the underlying technology of 
the IA-32 Execution Layer, a dynamic binary 
translation from IA-32 to IPF. Emphasis was given 
to some of the key features of the technology that 
contribute to its robustness and high performance. 
These features include precise exception 
implementation in the software, OS-independent 
architecture, floating point, MMX technology, and 
SSE modeling, and misalignment handling. 
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