
Using Interaction Costs for Microarchitectural Bottleneck Analysis

Brian A. Fields1 Rastislav Bodı́k1 Mark D. Hill2 Chris J. Newburn3

1University of California-Berkeley 2University of Wisconsin-Madison 3Intel Corporation

Abstract

Attacking bottlenecks in modern processors is difficult
because many microarchitectural events overlap with
each other. This parallelism makes it difficult to both
(a) assign a cost to an event (e.g., to one of two overlap-
ping cache misses) and (b) assign blame for each cycle
(e.g., for a cycle where many, overlapping resources are
active). This paper introduces a new model for under-
standing event costs to facilitate processor design and
optimization.

First, we observe that everything in a machine (in-
structions, hardware structures, events) can interact in
only one of two ways (in parallel or serially). We
quantify these interactions by defining interaction cost,
which can be zero (independent, no interaction), posi-
tive (parallel), or negative (serial).

Second, we illustrate the value of using interaction
costs in processor design and optimization.

Finally, we propose performance-monitoring hard-
ware for measuring interaction costs that is suitable for
modern processors.

1 Introduction

Modern microprocessors achieve much of their perfor-
mance through rigorous exploitation of fine-grain paral-
lelism. The key dilemma caused by this parallelism is,
Which event are we to blame for a cycle that experienced
two (or more) simultaneous events (for example, when a
window stall and a multiplication occurred simultane-
ously)? Clearly, both of these events must be optimized
to remove the cycle, but how do we express this fact in a
performance breakdown?

Another view of the overlap dilemma is to ask, What
performance monitoring hardware can I add to my pro-
cessor to answer these questions? Counting events,
event latencies, or both also fails to capture overlap.

This paper argues that if we could answer the above
questions without losing track of the microarchitectural
parallelism, we would help the designer to resize just
the right queue, predict the most critical dependence,
or, conversely, economically reduce the sizes of non-
bottleneck resources, saving area and energy. In short,
we could build more balanced machines, where no re-
source is waiting on another.

We answer these questions with performance analy-

sis that is simple, yet powerful enough to make sense
out of simultaneous bottlenecks in complex machines.
A bottleneck is any set of events that contribute to ex-
ecution time, while the cost of a bottleneck is simply
the speedup obtained from idealizing the bottleneck’s
events. How events are grouped into a set depends on
the application of the analysis. For example, a software
prefetching optimization might consider the set of events
consisting of all cache misses from a single static load,
while hardware designers might focus on all events per-
taining to a resource (e.g., all branch mispredictions).

Cost is a powerful metric because it reveals how
much an optimization helps before further improvement
is stopped by a secondary bottleneck. Moreover, events
with cost zero may be good targets for “de-optimization”
(e.g., making a queue smaller without affecting perfor-
mance).

This standard notion of cost, of course, tells us noth-
ing about our simultaneous bottlenecks, as illustrated by
the fact that the cost of each of two completely parallel
cache misses is zero. As the first contribution of our pa-
per, we define interaction cost (icost) which reveals how
two (or more) events interact in a (parallel) microexecu-
tion. Specifically, interaction cost of two events a and
b is the difference in speedup between idealizing both
together (cost(a, b)) and the sum of idealizing them in-
dividually: icost(a, b) def= cost(a, b)−cost(a)−cost(b).
That is, interaction cost quantifies the cycles that can be
removed only by optimizing both events together. Anal-
ogously, we can define the interaction cost between sets
of events (e.g., all cache misses interacting with all ALU
operations) by replacing a and b with sets of events.

The second contribution of our paper is to explore the
utility of interaction cost for everyday design practice.
We find that, somewhat surprisingly, interaction costs
can be zero (e.g., for two independent cache misses),
positive (e.g., for two parallel cache misses), and even
negative (e.g., for two cache misses in series with each
other but in parallel with other events).

A zero interaction cost between two (sets of) events
implies that we can design and evaluate optimizations
for the two in isolation, as the events are independent:
optimizing one will not change the cost of the other.

A parallel interaction (i.e., positive icost) reveals
that events overlap, which implies that there is speedup
which can be gained only by optimizing both events
(e.g., two cache misses that completely overlap).

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

A serial interaction (i.e., negative icost) means that
two events are in series with each other, but also in par-
allel with some other event. It thus reveals that com-
pletely optimizing both events is not worthwhile; rather,
one should target either only one or both partially. Serial
interaction gives the designer flexibility to attack what is
easiest to improve and eschew optimizing structures that
are already too big, power-hungry, or complex.

Costs and interaction costs are most useful in practice
if they can be efficiently measured in both simulation
and hardware (e.g., with an extension to performance
counters). They can obviously be computed by running
many idealized and unidealized simulations. This ap-
proach, however, requires 2n simulations for n events or
resources, which may be too expensive if n is large.

For greater efficiency, we perform manipulations on
a microexecution dependence graph as an alternative to
complete resimulation. This graph is similar to the one
used in previous work [11,12,37]. It captures both archi-
tectural dependencies (e.g., data dependencies) and mi-
croarchitectural events (e.g., branch mispredictions).

Finally, to measure interaction costs on real hardware
running “live” workloads, we show, as our third contri-
bution, how hardware can sample an execution in suffi-
cient detail to construct a statistically representative mi-
croarchitecture graph. We call this hardware a shotgun
profiler, because of its similarity to shotgun genome se-
quencing [14]. The profiler has low complexity (of the
order of ProfileMe [9]) and is suitable not only for mea-
suring interaction costs, but also for accurately comput-
ing the simple individual costs. Thus, it may serve as an
alternative to the current hard-to-interpret performance
counters.

2 Icost: Unifying notion of performance analysis

As motivated in the introduction, determining the costs
and interaction costs of events is essential to many forms
of performance analysis. By defining interaction costs,
this section deals with the effects of microarchitectural
parallelism on the cost of events. To achieve uniform
analysis, we use the term event to refer to any stall cause,
whether due to data dependences, resource constraints,
or microarchitectural events.

2.1 Cost

Intuitively, the cost of an event is not its execution la-
tency, but its contribution to the overall execution time
of the program. Equivalently, the cost is the execution
time decrease obtained if the event is idealized. Table 1
lists how some events can be idealized. Let e be an event,
t be base execution time (nothing idealized), and t(e) be
execution time with e idealized. We formally define the
cost of e, cost(e) as

cost(e)
def
= t − t(e)

The cost of an event can be naturally generalized to
an aggregate cost of a set of dynamic events S. This

Event type How to idealize in a simulator
Icache, Dcache misses Turn misses into hits
ALU operation Give ALU zero cycle latency
Fetch,Issue,Commit BW Use infinite BW
Branch mispredict Turn mispredicts into correct preds
Instruction window Use infinite window

Table 1: Idealizing events. Listed are techniques to idealize
a few of the events studied in this paper. Due to practical con-
straints (finite memory), we approximate an infinite window
by using one that is twenty times larger than the baseline.

allows us to compute, for example, the cost of a cache as
the total speedup when all cache misses are idealized.

Observing the idealizations of Table 1 clarifies why
this definition of cost is useful. A compiler seeking
to prefetch load instructions would want to know how
much execution time would improve if all dynamic cache
misses from a single static load were idealized to hits. A
hardware value predictor would want to know the im-
provement from idealizing particular data dependences.
Finally, an architect considering enhancements to the in-
struction window would like to know how much such
enhancements could improve performance.

2.2 Interaction Cost

While knowing the costs of individual events is use-
ful, they are not always sufficient to drive optimization
decisions. For instance, two completely parallel cache
misses (c1 and c2) both have cost of zero (cost(c1)
= cost(c2) = 0), since idealizing one would leave the
overall critical path length unchanged. Nevertheless,
prefetching both loads may have substantial benefit.

Similar scenarios occur with analyses for making mi-
croarchitectural design decisions. For instance, an archi-
tect may find, via idealization, that the cost of cache load
ports is low, suggesting it is not worthwhile to make the
cache dual-ported. The reality may be, however, that if
the instruction window is also enlarged, increasing cache
bandwidth could provide significant gain.

Essentially, the problem is that measuring the cost
of individual events is only useful for determining “how
critical” a single event is. In other words, standard cost
gives no information about the content of “secondary”
critical paths. While quantifying all secondary paths may
seem a daunting task, we show below how to get a han-
dle on the problem by measuring interactions between
individual event costs.

Consider, for instance, the above example of the
two cache misses. While the cost of the individual
cache misses are zero, the aggregate cost of both cache
misses, obtained by measuring the execution time re-
duction from idealizing both c1 and c2 simultaneously,
would be large. By knowing this aggregate cost, denoted
cost({c1, c2}), the program optimizer would know that
while prefetching only one load would give little benefit,
prefetching both would give significant benefit. We term
this phenomenon, where cost({c1, c2}) > cost(c1) +
cost(c2), a parallel interaction.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Figure 1: Correctly reporting breakdowns. (a) The traditional method for reporting breakdowns does not accurately account
for all execution cycles, since it attempts to assign blame for each cycle to a single event when sometimes multiple events are
simultaneously responsible. We propose a new method that uses interaction costs, discussed in Section 2.2. In our method, each
category corresponds to an interaction cost of a set of “base” categories. (b) One possible compact visualization of this breakdown
is shown. Here the positive interaction costs cause the stacked-bar chart to extend above 100%, but this is offset by negative
interactions – which are plotted below the axis.

Perhaps less intuitively, it is also possible for the op-
posite parallelism-induced effect to occur, where
cost({c1, c2}) < cost(c1) + cost(c2). One example is
if two dependent cache misses, each with 100 cycle la-
tency, both occurred in parallel with 100 cycles of ALU
operations. In this situation, prefetching both provides
no more benefit than prefetching either one alone, im-
plying that a program optimizer would save overhead
by performing only one prefetch. We call this phe-
nomenon a serial interaction, since the two interacting
cache misses occur in series.

In summary, for two events e1 and e2:

cost({e1, e2})= cost(e1) + cost(e2) ⇔ Independent

cost({e1, e2})> cost(e1) + cost(e2) ⇔ Parallel Interaction

cost({e1, e2})< cost(e1) + cost(e2) ⇔ Serial Interaction

As our paper empirically shows, interactions are
common phenomena (after all, there is potential for in-
teraction any time two events occur simultaneously). To
inform the optimizer (automatic or human) of the “de-
gree” of interaction, we define interaction cost. Let e1

and e2 be two events and cost({e1, e2}) be the aggre-
gate cost of both events. Then, the interaction cost of
e1 and e2, denoted icost({e1, e2}), is defined as the dif-
ference between the aggregate cost of the two events and
the sum of their individual costs:

icost({e1, e2}) def
= cost({e1, e2}) − cost(e1) − cost(e2)

Thus, for a parallel interaction, icost({e1, e2}) is the

number of extra cycles an optimization that targets both
events, instead of just one, could ever hope to benefit. In
contrast, for a serial interaction, icost({e1, e2}) would
be negative, reducing the expectation for performance
improvement from targeting both events.

The interaction cost of two sets of events, S1 and S2,
is defined similarly, by replacing e1 and e2 with S1 and
S2 in the above equation. Moreover, the interaction cost
of more than two events (or sets) can be defined recur-
sively. Formally, let P(U) \ U denote the proper power
set of a set of events U (i.e., all subsets of U except for
U itself). Then the interaction cost of U is defined as
the cost of U minus the interaction cost of each proper
subset of U :

icost({})def
= 0

icost(U)
def
= cost(U) −

∑

V ∈P(U)\U

icost(V)

Finally, if U is the set of all events in an execution it
follows that total execution time always equals the sum
of the icosts for the powerset of U . This implies that
completely accounting for execution time requires all in-
teraction costs to be considered.

Interaction cost is a valuable tool for analyzing par-
allelism in out-of-order processors (and, potentially, par-
allel systems in general). Guiding load-prefetching deci-
sions is only one example. The next section describes
how to use interaction costs to construct parallelism-
aware performance breakdowns, useful in making archi-
tectural design decisions.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

New addition Description
New nodes Expands the nodes per instruction from three (D for “dispatch into window”, E for “execute”,

and C for “committing”) to five (adding R representing “ready to execute” and P representing
“completed execution”) to provide us with the granularity to model new constraints, which
are modeled as edges.

Modeling of fetch/commit BW Explicit modeling of fetch and commit bandwidth with dependence edges (as opposed to
implicitly, with latency placed on DD and CC edges). Specifically, the new model places
edges from Di to Di+fbw and Ci to Ci+cbw , where fbw (cbw) are the maximum number
of instructions that can be fetched (committed) in a given cycle. This new model does
a better job at modeling the effect of an idealization since the new edges are guaranteed to
have the same latency before and after the idealization.

Cache-block sharing Modeling of cache-block sharing between loads by placing an edge from the P node of
any cache-missing load a to the P node of any subsequent load instruction b that accesses the
same cache line. This dependence prevents instruction b from completing execution until the
cache miss is serviced by a. In this way, we accurately model the effect of partial cache misses:
if a is sped up due to an idealization, b may effectively change from a partial miss into a hit.

Table 2: New additions to graph model over previous work [11, 12, 37].

name constraint modeled edge
DD In-order dispatch Di−1 → Di

FBW Finite fetch bandwidth Di−fbw → Di where fbw is the maximum no. of insts. fetched in a cycle
CD Finite re-order buffer Ci−w → Di w = size of the re-order buffer
PD Control dependence Pi−1 → Di inserted if i− 1 is a mispredicted branch
DR Execution follows dispatch Di → Ri

PR Data dependences Pj → Ri inserted if instruction j produces an operand of i
RE Execute after ready Ri → Ei

EP Complete after execute Ei → Pi

PP Cache-line sharing Pj → Pi inserted if inst. j produces cache miss to block loaded by i
PC Commit follows completion Pi → Ci

CC In-order commit Ci−1 → Ci

CBW Commit BW Ci−cbw → Ci where cbw is the maximum no. of insts. committed in a cycle

Table 3: Constraints captured by the out-of-order processor performance model. The meaning of the nodes are as follows: D,
instruction dispatch into window; R, all data operands ready but waiting on functional unit; E, executing; P , completed execution;
C, committing. The constraints correspond to dependence edges in the graph. Operations are represented by latencies on the edges.
An example instance of the dependence graph is shown in Figure 2.

2.3 Applying icost: Parallelism-aware Breakdowns

A performance breakdown of a microexecution an-
swers the question, “how much do particular processor
resources contribute to overall execution time?” Stated
another way, a breakdown is a function that maps each
cycle of execution to the events that are responsible for
it. By allocating cycles among base categories of events
(e.g., cache misses, ALU latencies, and the rest), a break-
down accounts for all cycles in the execution.

Traditional performance breakdowns (a.k.a., CPI
breakdowns) map each cycle of execution delay to ex-
actly one cause. This is fundamentally not possible in
an out-of-order processor, because sometimes multiple
causes are to blame for a cycle. As a result, a traditional
breakdown cannot accurately account for all cycles.

We improve traditional breakdowns by providing in-
formation about secondary critical paths. This approach
enables an architect to determine when improving mul-
tiple resources will yield more benefit than an individ-
ual resource. Our solution is to have an explicit inter-
action category for each possible overlap among base
categories. For example, if the base categories are data-
cache misses (dmiss), alu operations (alu), and branch
mispredicts (bmisp), then there would be four interac-
tion categories: dmiss+alu, dmiss+bmisp, alu+bmisp,

dmiss+alu+bmisp. Each category would correspond to
an interaction cost, similar to the example of Figure 1.
With this representation, it is possible for a breakdown
to account for all execution time. Also, while a table
is sufficient to completely report a breakdown, graphical
visualizations could also be used, such as the stacked-bar
chart in Figure 1b.

3 Measuring cost on a dependence graph

Computing all costs and interaction costs for n sets
(classes) of events can be done via 2n simulations. Even
if only interaction pairs are measured, a quadratic num-
ber of simulations is required. Thus, a more efficient
methodology than simulation is desired. Besides this,
running multiple idealized simulations may not be pos-
sible for performance analysis on real hardware.

Our solution is to determine the effect of an ideal-
ization without actually performing the idealization. We
do this with a dependence-graph model of the microexe-
cution where all the important events and resource con-
straints are modeled as latency-labeled edges. Then, for
each idealization, we only need to alter a bottleneck’s
edges: by changing their latencies or by removing them.

The dependence graph model. For our purposes, the
graph model should meet two requirements: (1) idealiz-

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Figure 2: An instance of the dependence-graph model from Table 3. The dependence graph represents a sequence of dynamic
instructions, assuming a machine with a four-instruction ROB and two-wide fetch/commit bandwidth. The dashed arrow shows how
some load access EP edges and CD window edges are in series and, thus, have the potential to interact serially (see Section 4.1).
Note that some other EP and CD edges are in parallel, thus there is also potential for parallel interaction between loads and the
finite window constraint.

ing on the graph should give the same speedup as in the
simulator and (2) the analysis should be reasonably ef-
ficient. We used a model that provides a level of detail
that reasonably meets both requirements (see Section 6
for an empirical assessment of its accuracy and the end
of Section 4 for a discussion of efficiency). The model
modestly refines previous work [11,12,37] in three ways,
as discussed in Table 2. Table 3 describes the nodes and
edges; and Figure 2 shows an instance of the model on a
sample code snippet.

Measuring cost using the graph. We compute inter-
action cost with the same post-mortem algorithm that
was used to compute individual event cost in Tune,
et al. [37]. Their algorithm works by comparing the
critical-path lengths of the baseline and idealized graphs
– with some optimizations for efficiency. It can be used
because, as you recall from Section 2.2, the interac-
tion cost of two events icost(a, b) is computed from sev-
eral simple cost measurements: cost(a, b), cost(a), and
cost(b). In general, the icost of n events can be computed
with 2n − 1 cost measurements.

4 Icost Tutorial: Optimizing a long pipeline

Several recent studies have found significant perfor-
mance improvements possible by increasing the length
of the processor pipeline. The improvement comes
from increased clock frequency, but this improvement
is unfortunately offset by the increasing latency of
performance-critical loops. A loop is a feedback path in
the pipeline, where the result of one stage is needed by
an earlier stage. Three of the most critical loops include:
(i) the latency of a level-one data cache access, (ii) the la-
tency to issue back-to-back operations (the issue-wakeup

loop), and (iii) branch mispredictions [2, 15, 17, 31].
In this section, we present a tutorial on using inter-

action costs, by showing how they can quickly provide
insights into processors with long pipelines. Interaction
costs show us how to mitigate the performance impact
of critical loops. Finally, we compare our icost analysis
conclusions to those of a conventional sensitivity study.

4.1 The level-one data cache access loop

Let’s assume that the circuit designers optimized the
level-one data cache access as much as possible, but
nonetheless the latency was higher than expected, say
four cycles instead of the typical one or two. The ques-
tion now is: What is the most effective way to change
the microarchitecture to mitigate the effect of the high
latency? Would it help to: (a) enlarge the branch predic-
tor; (b) increase the number of load ports; (c) increase
the data cache size; or (d) increase the fetch bandwidth?
Certainly these changes will reduce the cost of each of
these resources (if they were on the critical path), but
will they also reduce the cost of data cache accesses?

In our case study, before computing the interaction
costs, we hypothesized what the outcome of the analysis
could be, which amounted to predictions of where serial
interactions would occur. If a class of microarchitectural
events serially interact with data-cache accesses, attack-
ing that resource will also help “hide” the data-cache la-
tency, thereby reducing its performance cost.

We thought data dependences between data-cache
missing loads or ALU operations with data-cache ac-
cesses (level-one hits) might cause such a serial inter-
action. Another possibility would be an interaction be-
tween branch mispredicts and data-cache accesses, since
loads often feed branches. It was difficult, however, to

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Category bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr
dl1 22.2 24.2 18.2 13.5 18.3 30.5 7.7 19.0 31.6 19.4 28.8 19.7
win 16.4 15.1 15.7 41.0 13.6 23.0 4.2 17.3 4.4 25.1 47.1 23.2
bw 4.4 8.0 7.7 2.8 8.2 5.7 0.5 2.9 8.6 3.9 5.3 5.8

bmisp 41.0 28.6 15.8 12.3 26.3 25.8 26.9 16.5 38.0 24.1 1.9 24.9
dmiss 23.8 7.1 0.7 23.5 26.3 7.7 81.0 32.9 1.4 34.4 21.8 33.7

shortalu 9.9 11.4 5.4 13.8 5.1 20.4 1.4 19.7 7.3 7.8 4.9 7.6
longalu 0.3 0.9 11.8 5.6 0.4 0.7 0.0 0.1 0.8 4.2 1.6 3.6

imiss 0.0 0.7 7.8 0.7 2.2 0.1 0.0 0.1 5.2 0.0 2.8 0.0
dl1+win -5.2 -10.5 -6.8 -6.0 -4.2 -15.3 -0.2 -6.1 -4.3 -4.1 -27.6 -5.7
dl1+bw 5.6 9.9 8.1 2.8 10.0 6.0 0.3 4.9 9.6 1.5 17.6 1.8

dl1+bmisp -10.8 -5.4 -4.9 -2.9 -7.0 -3.4 -2.4 -2.8 -7.6 -6.5 -0.2 -4.6
dl1+dmiss -0.7 -1.2 -0.4 -0.4 -1.4 -0.4 -0.5 -1.4 -0.2 -1.3 -1.8 -2.5

dl1+shortalu -4.1 -4.3 -1.0 -0.2 -1.6 -8.2 -0.1 -3.6 -1.4 -0.3 -4.0 -1.3
dl1+longalu -0.3 0.1 -0.3 0.1 -0.3 -0.4 0.0 -0.0 -0.7 0.0 -1.3 -0.3

dl1+imiss 0.0 0.0 0.8 0.1 0.3 0.0 0.0 0.0 1.0 0.0 0.4 0.0
Other -2.5 15.4 21.4 -6.7 3.8 7.8 -18.8 0.5 6.3 -8.2 2.7 -5.9
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(a) CPI contribution breakdown (in percent) with four-cycle level-one cache.

Category gap gcc gzip mcf parser
shalu 37.0 13.1 39.2 3.3 38.2

win 46.5 12.5 13.0 4.0 18.3
bw 1.6 7.1 4.4 0.4 2.4

bmisp 8.0 26.3 24.0 27.4 13.7
dmiss 17.4 26.8 8.6 82.1 28.8

dl1 4.9 10.9 17.0 4.5 9.2
imiss 0.4 2.0 0.1 0.0 0.0
lgalu 4.8 0.5 0.6 -0.0 0.1

shalu+win -26.8 -2.2 -9.1 0.1 -12.9
shalu+bw 9.0 9.9 8.3 0.7 6.3

shalu+bmisp 1.0 -5.7 -5.4 -2.3 -1.2
shalu+dmiss 2.0 0.1 -1.2 0.4 -0.0

shalu+dl1 0.4 -2.4 -7.8 -0.2 -3.2
shalu+imiss 0.1 0.1 0.0 0.0 0.0
shalu+lgalu -1.6 -0.4 -0.5 0.0 -0.0

Other -4.7 1.4 8.8 -20.4 0.3
Total 100.0 100.0 100.0 100.0 100.0

gap gcc gzip mcf parser
bmisp 11.7 25.5 27.8 26.7 16.8

dl1 6.8 10.4 19.1 4.5 10.6
win 38.7 11.8 9.3 4.2 14.7
bw 3.8 12.8 8.0 0.5 4.0

dmiss 26.4 29.5 10.8 84.0 37.3
shalu 14.2 5.0 21.3 1.5 20.4
lgalu 6.0 0.3 0.8 0.0 0.1
imiss 0.8 2.5 0.1 0.0 0.1

bmisp+dl1 -1.7 -4.7 -2.4 -1.5 -1.8
bmisp+win 2.1 9.6 12.4 5.3 14.2

bmisp+bw -1.2 -1.2 -2.6 -0.2 -1.3
bmisp+dmiss 0.3 -1.3 -0.2 -16.4 -4.6

bmisp+shalu 0.4 -3.0 -3.7 -1.1 -0.7
bmisp+lgalu 0.3 0.0 0.3 -0.0 0.0
bmisp+imiss -0.2 -0.4 -0.0 -0.0 -0.0

Other -8.4 3.2 -1.0 -7.5 -9.8
Total 100.0 100.0 100.0 100.0 100.0

(b) Breakdown with two-cycle issue-wakeup loop. (c) Breakdown with 15-cycle branch mispredict loop.

Table 4: Breakdowns for optimizing a long pipeline. Interaction costs are presented here as a percent of execution time and were
calculated using the dependence graph in a simulator. The categories are: ’dl1’ → level-one data cache latency; ’win’ → instruction
window stalls; ’bw’ → processor bandwidth (fetch,issue,commit bandwidths); ’bmisp’ → branch mispredictions; ’dmiss’ → data-
cache misses; ’shalu’ → one-cycle integer operations; ’lgalu’ → multi-cycle integer and floating-point operations; and ’imiss’ →
instruction cache misses. Due to space constraints, only a subset of the SPECint benchmarks are shown for (b) and (c), but the
benchmarks shown are representative of the suite. Note that ’Other’, denoting the sum of all interaction costs not displayed, can be
negative since the interaction costs can be negative. The machine modeled is described in Section 6.

make predictions as to the magnitude of the interactions.
The results of the analysis is shown in Table 4a (simu-

lator parameters are in Table 6 in Section 6). For brevity,
the breakdown presents only those interaction costs that
involve data-cache accesses, labeled ’dl1’ in the table.
Notice first that data-cache accesses have a large cost,
typically contributing 15–25% of the execution time.

We see that some of our hypotheses were correct: for
instance, there are significant serial interactions between
data-cache accesses and ALU operations (dl1+shalu),
suggesting we could mitigate the long data-cache loop
by reducing ALU latency (perhaps through value predic-
tion [5, 19] or instruction reuse [30]).

We also notice, however, that the magnitude of the
interaction varies significantly across benchmarks. This
variability suggests that interaction costs could be use-
ful in workload characterization: their magnitude gives a
designer early insights into what optimizations would be

most suitable for the most important workloads.
However, other conclusions from the analysis were

not predicted beforehand. For example, it was hypoth-
esized that data dependences with data-cache misses
would cause a serial interaction with data-cache ac-
cesses. In reality, this interaction is very small: reducing
data-cache misses is unlikely to mitigate the effect of the
high latency data-cache loop.

We also see that the largest serial interaction for most
benchmarks is with instruction window stalls. Thus, per-
haps the most effective mitigation of the data-cache loop
would be to increase the size of the instruction window
— a result that may be difficult to predict before per-
forming the analysis.

4.2 The issue-wakeup and branch mispredict loops

We also performed the same analysis for the issue-
wakeup and branch misprediction loops. Due to space

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Figure 3: Speedup from increasing window size for differ-
ent level-one cache latencies. As predicted from the negative
interaction cost, increasing the window size has a larger bene-
fit when level-one cache latencies are larger.

constraints, we will not present all of the data; instead,
we only highlight the results of the analysis.

The issue-wakeup loop Suppose that a long pipeline
demanded a two-cycle issue-wakeup latency, instead of
the typical one. This will, of course, reduce perfor-
mance, since ALU operations will not be able to issue
back-to-back. Can we use serial interactions to deter-
mine how to mitigate the performance loss?

From the breakdown of Table 4b, we see significant
serial interactions between ALU operations and several
event classes: window stalls, branch mispredicts, and
level-one cache accesses. The most significant interac-
tion is, again, with window stalls; it is as large as −27%
for gap. Because of this negative interaction, increas-
ing the window size is more beneficial when the issue-
wakeup latency is higher. For instance, we found that
the speedup for gap when the window size is increased
from 64 to 128 is 12% if the issue-wakeup latency is one
and 18% if the latency is two, a difference of 50%.

The branch misprediction loop Finally, we consider
the branch misprediction loop. Can we modify the mi-
croarchitecture to reduce branch misprediction costs?
How about increasing the window size? Will that work
to reduce branch misprediction loop cost in the same way
it did for the other two loops?

The interaction costs in Table 4(c) reveal that the an-
swer is no. Instead of a serial interaction, there is a par-
allel interaction between branch mispredictions and win-
dow stalls. This parallel interaction tells us there are a
significant number of cycles that can be eliminated only
by optimizing both classes of events simultaneously. In
other words, reducing window stalls is not likely to sig-
nificantly reduce branch misprediction costs.

For a couple of benchmarks, mcf and parser, we do
see significant serial interactions with data cache misses
(dmiss), however. Intuitively, this effect is likely due to
cache-missing loads providing data that is used to deter-
mine a branch direction. Again, interaction costs help:
we can quantify the importance of this effect for partic-
ular workloads, even determining the static instructions

where it occurs, helping to guide prefetch optimizations.

4.3 Comparing with sensitivity study

A sensitivity study is an evaluation of one or more pro-
cessor parameters made by varying the parameters over
a range of values, usually through many simulations. In-
teraction costs can be viewed as a way to interpret the
data obtained from a sensitivity study. Regardless of
how they are computed, through multiple simulations
or graph analysis, interaction costs explain why perfor-
mance phenomena occur in a very concise way.

Let’s explore this relationship by validating that the
conclusions obtained from interaction-cost analysis and
conventional sensitivity studies are the same. We per-
form the comparison by using a corollary of the serial
interaction between the instruction window and load la-
tency (the main result of Section 4.1). As the load la-
tency becomes larger, increasing the size of the instruc-
tion window has increasing benefit. Since load latencies
and window stalls occur in series with each other (be-
cause EP edges are in series with CD edges, as can be
seen in Figure 2), increasing the latency of one will make
both more dominant on the critical path1.

Using this corollary, we performed the comparison
by running several simulations to observe the speedup
with increasing window size at different cache latencies
(see Figure 3). Indeed, the interaction costs correctly
predicted what the sensitivity study reveals: for instance,
50% greater speedup ((9-6)/6 x 100%) is obtained from
increasing the window size from 64 to 128 when the
data-cache latency is four instead of one.

From this example, we see the relationship between
the two types of analyses. A full sensitivity study pro-
vides more information, e.g., whether the curves in the
plot are concave or convex; but interaction costs provide
easier interpretation and concise communication of re-
sults. The interpretation is easy since the type and mag-
nitude of the icosts have well defined meanings. The
ease in communication comes from the ability to sum-
marize a large quantity of data very succinctly. For ex-
ample, the entire chart of Figure 3 can be summarized
by simply stating that the two resources interact serially.
Furthermore, due to the formulaic nature of interaction
cost, the interpretation is available automatically, with-
out the effort of a human analyst.

Summary. In this section, we showed that interaction
costs can help microarchitects. When the the dependence
graph is constructed by the simulator, architects can use
interaction-cost-based breakdowns as a standard output
of each simulation run. The overhead of building the
graph during simulation in our research prototype is ap-
proximately two-fold slowdown, which we did not find
overly burdensome. Using the same principles of sam-
pling that facilitate the profiling solution of Section 5,

1We performed this same style of validation for the two analyses of Sec-
tion 4.2 but do not present them due to space constraints.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Bit When to set to ’1’
1 Set to 1 if (1) taken branch or (2) load or store.

Reset to 0 if L2 dcache miss.
2 Set to 1 if (1) L1 or L2 icache miss, (2) L1 or L2 dcache miss,

or (3) tlb miss.

Table 5: Description of signature bits.

we found that the overhead could be reduced to approxi-
mately 10% without significantly impacting accuracy.

Perhaps even more exciting, however, is that all of
this analysis can also be performed on real, deployed
systems where resimulation and idealization is not an op-
tion. Hardware support for such analysis is the subject of
the next section.

5 Measuring cost in hardware: Shotgun profiling

The challenge faced by hardware performance profilers
is how to interpret their measurements, that is, how to
translate the observed latencies and event counts into
costs of bottlenecks (e.g., if n cache misses occur, what
percent of execution time should be blamed on cache
misses?). Our profiler solves these problems by con-
structing fragments of our dependence graph that can
be analyzed to compute interaction costs, just as if they
were constructed in a simulator. Due to limited space,
we describe the hardware algorithm without discussing
detailed design tradeoffs.

The difficulty is that measuring detailed latency and
dependence information for every dynamic instruction
would require prohibitively expensive hardware. Our so-
lution is to collect detailed information for only a sam-
pling of instructions, one instruction at a time (simi-
lar to ProfileMe [9]). Later, post-mortem, the graphs
of specific sequences of instructions are constructed by
fitting these samples together, making use of signature
bits. This approach of assembling a graph fragment from
random samples is similar to the technique of shotgun
genome sequencing [14], hence the name “shotgun” pro-
filer.

Our solution works because, just as there are rela-
tively few hot control-flow paths that comprise most of
the execution, there are also relatively few microexecu-
tion paths, at the level of abstraction which affects the
critical path. A microexecution path consists of con-
trol flow together with microarchitectural characteristics
(e.g., cache misses). In other words, we exploit a “local-
ity of microexecutions,” wherein the same microexecu-
tion paths recur many times during execution.

The profiler infrastructure consists of two compo-
nents: a hardware performance monitor infrastructure
and a post-mortem software graph construction algo-
rithm. Each component will be discussed in turn.

5.1 Hardware Performance Monitors

If hardware expense was no concern, we could build
graph fragments by collecting latency and dependence
information for every dynamic instruction. Instead, we

keep the hardware lightweight by collecting a relatively
small amount of information that is used to construct the
graph offline. We collect two types of samples:

• Signature Sample. A signature sample is long and
narrow, consisting of two signature bits for each
of the next 1000 dynamic instructions and a single
“start” PC. Signature bits help identify a particu-
lar microexecution path and are set as shown in Ta-
ble 5. The PC is of the first instruction that will ap-
pear in the graph (after a few instruction signature
prefix, described below).

• Detailed Sample. A detailed sample is short and
wide, consisting of latency and dependence infor-
mation for a single dynamic instruction. Further-
more, a sequence of signature bits before and after
the sampled instruction are collected. These will be
used to “match” the detailed samples to appropriate
segments of the signature trace. To minimize hard-
ware costs, detailed samples are collected sparsely
and for at most one dynamic instruction at a time.

See Figure 4a for an illustration of the two types of
samples. As each sample is taken, it is placed into a
small on-chip buffer. When the buffer fills, an interrupt is
raised and its contents are placed into a buffer in memory
(or disk) for later (post-mortem) analysis.

Complexity. The hardware needed for collecting the
detailed sample is similar to that proposed for the Alpha
ProfileMe [9], and most of the requirements are similar
to the support some current microprocessors already pro-
vide [7, 8]. The hardware for the signature bits is new,
but the cost seems reasonable since (i) two bits is a small
amount of information to maintain and (ii) they typically
indicate a processor stall, which makes setting them un-
likely to be on a time-critical circuit path.

5.2 The Software Graph Construction Algorithm

After samples have been collected via the hardware per-
formance monitors, software uses the information to
construct dependence graph fragments, which can then
be analyzed as if they were constructed in a simulator.
This offline analysis is relatively efficient since we do
not need to analyze the entire graph but only a relatively
small number of graph fragments.

The algorithm works by first selecting a signature
sample at random, which serves as a “skeleton for the
graph to be built. (The random selection ensures each
signature sample is chosen with equal probability, which
naturally gives priority to hot microexecution paths.)
The goal of the algorithm is to fill in this skeleton with
detailed samples to form a latency-labeled dependence
graph. To accomplish this, an appropriate detailed sam-
ple is placed into the graph for each dynamic instruction
in the trace, where “appropriateness” is determined by
the PC and the signature bits.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

(a) Hardware performance monitors (b) Software graph construction

Figure 4: The profiler infrastructure consists of two parts. (a) Hardware performance monitors. Our hardware performance
monitors collect two types of samples: signature samples and detailed samples. For illustration, the figure shows one signature bit
per instruction and collection of the bits for two instructions before and after each detailed sample. For greater accuracy, our design
uses two signature bits per instruction (see Table 5) and collects signature bits for ten instructions before and after each detailed
sample (see Figure 5a). (b) Post-mortem software graph construction. The dependence graph is constructed by concatenating
detailed samples, so that the resulting graph is representative of the microexecution denoted by the signature sample.

For example, consider building the graph nodes for
the first instruction in the signature sample of Figure 4.
The first instruction has PC of 0x24, so we look up de-
tailed samples with this PC. Then, we select the detailed
sample whose signature bits (most closely) matches the
corresponding bits in the signature sample. (If no de-
tailed sample is found for the PC, which empirically hap-
pens less than 2% of the time, we infer everything pos-
sible from the binary and use default values for the un-
known latencies.) Finally, the nodes for this instruction
are constructed from the selected detailed sample.

Remember that a signature sample consists solely of
a start PC and the signature bits, i.e., to reduce hard-
ware costs the PCs of other instructions are not recorded.
Thus, we need to use some intelligence to infer the PC
of each dynamic instruction in the signature sample. For
direct conditional branches, we include the branch di-
rection in the signature bits and lookup the binary for
the target address. For indirect branches, we include the
branch target address in the detailed samples. The details
are described in the complete algorithm for constructing
a graph fragment in Figure 5a.

Note that some of the detailed information required
to build the graph does not need to be collected dynam-
ically from hardware. Instead, it can be inferred stati-
cally from the program binary and the machine parame-
ters (e.g., pipeline length). See Figure 5b for a listing of
how various dependences and latencies are collected.

6 Validating profiler accuracy

In this section, we measure the accuracy of our hardware
profiler described in the previous section. We evaluate
its accuracy by comparing the breakdowns it produces
with the more accurate breakdowns produced (i) from
full dependence graphs constructed in a simulator; and
(ii) from running multiple idealized simulations.

We find that the profiler’s accuracy is (on average)
within 9% of the full dependence graph analysis, and
within 11% of multiple simulations. The first error is
due to sampling and the (intended) simplicity of the sig-
nature used in the profiler. The difference between the
9% and 11% error is due to approximations in the de-
pendence graph (again, this is intended, for the sake of
graph complexity).

Methodology. We simulate the out-of-order processor
described in Figure 6, using the SPEC2000int suite (as
optimized Alpha binaries) with reference inputs. Our
simulator is built upon the SimpleScalar tool set [4]. We
skipped eight billion dynamic instructions and then per-
formed detailed timing simulation for 100 million.

We use the multiple-simulation approach as our base-
line. There is one simulation for each category in the
breakdown where the simulation idealizes the appropri-
ate set of event classes (see Table 1 in Section 2 for
examples of idealizations). Table 7 shows breakdowns
computed three ways for the same categories and ma-
chine configuration used in Table 4a. For the graph anal-

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

1. Randomly select a signature sample for the skeleton.
Call the starting PC in this sample the StartPC.

2. For each instruction i from StartPC to end of fragment
2a. Get from database all detailed samples with i’s PC.
2b. Select the detailed sample whose signature bits most closely

matches the portion of the signature sample 10 instruction
before i to 10 instructions after. The closeness of a match is
judged by the number of identical bits.

2c. Append sample’s nodes and edges to the graph (see Fig. 4).
2d. Determine PC of next instruction, i + 1 (call PC of i CurPC

and PC of i + 1 NextPC):
2d1. If i is not a branch, NextPC ← CurPC + 4
2d2. If i is a direct branch and signature bit 1 of i is 1,

Compute branch target and set NextPC equal to it
Else NextPC ← CurPC + 4

2d3. If i is a call, push target PC onto stack
For returns, pop stack (if nonempty) and set NextPC to
that PC

2d4. If i is an indirect branch, set NextPC equal to target PC in
detailed sample for i

2e. Check for inconsistency (see caption).

dep col latencies col
DD S icache misses, itlb misses D

FBW S constant latency (1 cycle) S
CD S constant latency (0 cycle) S
PD D branch recovery latency S
DR S constant pipeline latency S
PR reg: S, mem: D constant latency (0 cycle) S
RE S functional unit contention D
EP S Execution latency D
PP D constant latency (0 cycle) S
PC S constant pipeline latency S
CC S store BW contention D

CBW S constant latency (1 cycle) S

(a) Algorithm for constructing a graph fragment in software (b) How dependences and latencies are collected

Figure 5: Graph-construction algorithm and how latencies and dependences are collected. (a) Note that using the target
address in the detailed sample sometimes leads down a control path that is inconsistent with the signature sample (it is consistent
60–99% of the time). In these cases, we attempt to detect the inconsistency by looking for impossible signature bit settings. For
instance, if an instruction on the signature sample has its first bit set to 1, it should be a load, store, or branch. If the PC computed
by the algorithm does not correspond to one of these instruction types in the program binary, we know there is an inconsistency and
abort building that graph segment (since analyzing such a graph would lead to error in the results). We have found that 95-100%
of the errant graphs are indeed discarded using this technique. (b) ’D’ means the dependence or latency is collected dynamically;
’S’ stands for statically. Dependences and latencies that must be determined dynamically are measured in hardware (in the detailed
samples). Those that can be determined statically are inferred from the program binary or the machine description. Besides the
dynamic dependence and latency information, the target PC of indirect branches is also recorded in the detailed sample.

ysis in a simulator (fullgraph) and the profiler (profiler)
results are shown as absolute error relative to multiple
simulations (multisim).

Discussion. From the breakdown tables, we make two
observations. First, the profiler tracks the dependence-
graph analysis very closely, with average error of 9%.
Thus the approximations that lead to inexpensive hard-
ware profiling (e.g., sampling and incomplete latency
and dependence information) represent a good accuracy
versus complexity tradeoff.

Second, the profiler also tracks multiple simulations
closely, with an average error of 11%. Thus, our
dependence-graph model (described in Section 3) is a
reasonable approximation of the simulated processor.

7 Related Work

Previous work into microarchitectural performance anal-
ysis takes on many forms. Event counters and utilization
metrics [1,39] have become standard and, before out-of-
order processors, was all that was needed. When instruc-
tions are executed in parallel, however, simply counting
events is not enough to know their effect on execution
time. In response to the problems with counters, Pro-
fileMe [9] supports pair-wise sampling, where the laten-
cies and events of two simultaneously in-flight instruc-
tions are recorded. With these pair-wise samples, one

can determine the degree to which two instructions’ la-
tencies overlap in time. Also, the Pentium 4 [8,32] has a
limited ability to account for overlapping cache misses.
These performance monitoring facilities do not appear
amenable to computing a complete breakdown of exe-
cution time, however. We introduce interaction cost to
provide this level of interpretability.

There are several works that aim to interpret the par-
allelism of out-of-order processors through fetch [10,21]
and commit attribution [16, 20, 22, 24, 25, 35], and at
least one that combines attribution with some depen-
dence information [26]. In these approaches, specific
instructions and events are assigned blame for wasted
fetch bandwidth or commit bandwidth, respectively. We
have found these analyses do, indeed, accurately com-
pute the cost of certain classes of events, which was their
intended purpose. They have not been used to compute
interaction costs, however.

Several researchers have explored criticality and
slack, two useful metrics for exploiting the parallelism
in out-of-order processors [6,11–13,23,27–29,33,34,36,
37]. Our notion of interaction cost extends these works
by answering questions about nearly-critical paths, such
as (i) ”Which critical dependences are most important to
optimize?” and (ii) ”Which nearly critical dependences
should I optimize along with the critical ones?”

One of the above papers, by Tune et al. [37], was the

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Dynamically 64-entry instruction window, 6-way issue, 15-cycle pipeline, perfect memory disambiguation,
Scheduled Core fetch stops at second taken branch in a cycle.
Branch Prediction Combined bimodal (8k entry)/gshare (8k entry) predictor with an 8k meta predictor,

4K entry 2-way associative BTB, 64-entry return address stack.
Memory System 32KB 2-way associative L1 instruction and data (2 cycle latency) caches,

shared 1 MB 4-way associative 12-cycle latency L2 cache, 100-cycle memory latency,
128-entry DTLB; 64-entry ITLB, 30-cycle TLB miss handling latency.

Functional Units 6 Integer ALUs (1), 2 Integer MULT (3).
(latency) 4 Floating ALU (2), 2 Floating MULT/DIV (4/12), 3 LD/ST ports (2).

Table 6: Configuration of simulated processor.

gcc parser twolf
multisim fullgraph profiler multisim fullgraph profiler multisim fullgraph profiler

dl1 16.1 +2.2 +2.5 17.0 +2.0 +2.4 17.1 +2.4 +2.9
win 11.7 +1.9 -1.2 15.0 +2.3 -3.2 22.2 +2.9 -1.7
bw 10.8 -2.6 -1.4 3.5 -0.7 -0.4 4.4 -0.6 -0.2

bmisp 26.8 -0.5 -2.8 17.3 -0.8 -0.8 24.3 -0.2 -0.3
dmiss 25.3 +0.9 +2.5 32.5 +0.4 +0.6 34.2 +0.2 -0.6
shalu 4.7 +0.4 +0.8 18.3 +1.4 +2.8 8.0 -0.2 +1.6
lgalu 0.3 +0.0 +0.0 0.1 -0.0 +0.0 4.3 -0.1 +0.6
imiss 2.1 +0.0 -1.4 0.1 -0.0 -0.1 0.1 -0.0 -0.1

dl1+win -3.4 -0.8 -0.5 -5.1 -0.9 -0.1 -3.2 -0.9 -0.9
dl1+bw 10.4 -0.4 -1.1 5.7 -0.8 -1.6 1.8 -0.3 -0.7

dl1+bmisp -7.4 +0.3 +0.6 -2.2 -0.6 -0.8 -5.6 -0.9 -1.1
dl1+dmiss -1.2 -0.2 -0.2 -1.3 -0.0 +0.1 -0.4 -0.9 -0.6
dl1+shalu -1.5 -0.2 -0.7 -4.5 +0.9 -0.3 -0.8 +0.5 -0.3
dl1+lgalu -0.3 -0.0 +0.0 -0.0 +0.0 -0.0 -0.1 +0.1 -0.0
dl1+imiss 0.4 -0.1 -0.1 -0.0 +0.0 +0.0 -0.0 +0.0 +0.0

Table 7: Measuring accuracy of profiler. Validation was performed on the same CPI contribution breakdown and machine
model as in Table 4a (with results expressed in percent of the total CPI). Due to space constraints only three benchmarks are shown,
but they are representative of the rest of SPECint2000. For the fullgraph and profiler columns, the absolute error relative to multisim
is reported. The percent error per category between the profiler and the full dependence graph is computed as abs(profiler −
fullgraph)/(multisim + fullgraph), and the averages (excluding categories under 5%) are: 10% for gcc, 8% for parser, 9%
for twolf. The average error per category between the profiler and multiple simulations is computed as abs(profiler)/multisim,
and the averages are: 12% for gcc, 14% for parser, 9% for twolf. Overall, for the twelve SPECint2000 benchmarks, the average
error between the profiler and (i) the dependence graph is 9% (ii) multiple simulations is 11%.

first to use the dependence graph to compute the cost of
individual instructions in a simulator (we employ their
algorithm). The focus of our paper is on how the costs
of not only instructions but also machine resources in-
teract in an out-of-order processor. We also provide a
design for a hardware profiler, so that the analysis can be
performed on real systems.

The MACS model of Boyd and Davidson [3] assigns
blame for performance problems to one of four factors:
the machine, application, compiler-generated code, or
compiler scheduling. They accomplish this by idealizing
one factor at a time (to determine its cost). In compar-
ison to this work, we focus only on fine-grain microar-
chitectural events (as opposed to compiler decisions) and
introduce a methodology for measuring interactions.

Yi, et al. [38] use a Plackett and Burman design to
reduce the number of simulations required in a sensitiv-
ity study. However, their work does not quantify and
interpret specific interactions between events. Standard
allocation and analysis of variance (ANOVA) techniques
do, in fact, quantify these interactions [18]. ANOVA is
inadequate for our purposes, however, for two reasons:
(1) squaring of effects reduces their interpretability and
(2) no distinction is made between positive and negative
(parallel and serial) interactions.

8 Conclusion

The primary contribution of our work is establishing in-
teraction cost as a methodology for bottleneck analysis
in complex, modern microarchitectures. Interaction cost
permits one to account for all cycles of execution time,
even in an out-of-order processor, where instructions are
processed in parallel.

We have also provided a relatively inexpensive hard-
ware profiler design (close to the complexity of Pro-
fileMe [9]) that enables measuring interaction cost in real
systems. With this technology, not only microarchitects,
but also software engineers, compilers and dynamic op-
timizers can make use of the deeper understanding of
performance bottlenecks.

For instance, feedback-directed compilers could fa-
vor prefetching cache misses that serially interact with
branch mispredicts. Performance-conscious software
engineers could identify the most important procedures
and instructions for optimization and determine why
the performance problems exist. Dynamic optimizers
could save power by intelligently reconfiguring hardware
structures. Finally, real workloads could be analyzed
on real hardware, such as large web servers running a
database.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Acknowledgements. We thank Mary Vernon, David Wood,
and Amir Roth for contributions to this work. We also thank
Sarita Adve, Bradford Beckmann, Mark Buxton, Jarrod Lewis,
David Mandelin, Milo Martin, Anat Shemer, Dan Sorin, Manu
Sridharan, Renju Thomas, Min Xu, and the anonymous reviewers
for comments on drafts of this paper. Finally, we thank the Wis-
consin Architecture affiliates for feedback on early presentations
of this work. This work was supported in part by National Sci-
ence Foundation grants (CCR–0326577, CCR–0324878, CCR–
0225610, EIA–0205286, CCR–0105721, EIA–0103670, EIA–
9971256, and CDA–9623632), an NSF CAREER award (CCR–
0093275), IBM Faculty Partnership Award, a Wisconsin Romnes
Fellowship, and donations from Intel, Microsoft, and Sun Mi-
crosystems. Hill’s sabbatical is partially supported by the Spanish
Secretaría de Estado de Educución y Universidades. Fields was
partially supported by NSF Graduate Research and Intel Founda-
tion Fellowships.

References
[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Hen-

zinger, S. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A.
Waldspurger, and W. E. Weihl. Continuous profiling: Where
have all the cycles gone? ACM Transactions on Computer Sys-
tems, Nov 1997.

[2] E. Borch, E. Tune, B. Manne, and J. Emer. Loose loops sink
chips. In 8th International Symposium on High-Performance
Computer Architecture, Feb 2002.

[3] E. L. Boyd and E. S. Davidson. Hierarchical performance mod-
eling with MACS: A case study of the Convex C-240. In 20th

International Symposium on Computer Architecture, May 1993.
[4] D. C. Burger and T. M. Austin. The simplescalar tool set, ver-

sion 2.0. Technical Report CS-TR-1997-1342, University of
Wisconsin, Madison, Jun 1997.

[5] B. Calder, G. Reinman, and D. Tullsen. Selective value predic-
tion. In 26th International Symposium on Computer Architec-
ture, May 1999.

[6] J. Casmira and D. Grunwald. Dynamic instruction scheduling
slack. In Kool Chips Workshop in conjunction with MICRO 33,
Dec 2000.

[7] Intel Corporation. Intel Itanium 2 processor reference manual
for software development and optimization. Apr 2003.

[8] Intel Corporation. Intel Pentium 4 processor manual. In
[http://developer.intel.com/design/pentium4/manuals/], 2003.

[9] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware support for instruction-level
profiling on out-of-order processors. In 30th International Sym-
posium on Microarchitecture, Dec 1997.

[10] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung,
S. J. Patel, and S. S. Lumetta. Performance characterization
of a hardware mechanism for dynamic optimization. In 34th

International Symposium on Microarchitecture, Dec 2001.
[11] B. Fields, R. Bodı́k, and M. D. Hill. Slack: Maximizing per-

formance under technological constraints. In 29th International
Symposium on Computer Architecture, May 2002.

[12] B. Fields, S. Rubin, and R. Bodı́k. Focusing processor policies
via critical-path prediction. In 28th International Symposium on
Computer Architecture, Jun 2001.

[13] B. R. Fisk and R. I. Bahar. The non-critical buffer: Using load
latency tolerance to improve data cache efficiency. Oct 1999.

[14] R. D. Fleischmann et al. Whole-genome random sequencing
and assembly of haemophilus-influenzae. Science, 269:496–
512, 1995.

[15] A. Hartstein and T. R. Puzak. The optimum pipeline depth for a
microprocessor. In 29th International Symposium on Computer
Architecture, 2002.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, Los
Altos, CA, 3rd edition, 2002.

[17] M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W.
Keckler, and P. Shivakumar. The optimal logic depth per
pipeline stage is 6 to 8 FO4 inverter delays. In 29th Interna-
tional Symposium on Computer Architecture, 2002.

[18] Raj Jain. The Art of Cumpter Systems Performance Analysis.
Wiley Professional Computing, 1991.

[19] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via
value prediction. In 29th International Symposium on Microar-
chitecture, Dec 1996.

[20] V. S. Pai, P. Ranganathan, and S. V. Adve. The impact
of instruction-level parallelism on multiprocessor performance
and simulation methodology. In 3rd International Symposium
on High Performance Computer Architecture, Feb 1997.

[21] S. Patel, M. Evers, and Y. Patt. Improving trace cache effective-
ness with branch promotion and trace packing. In 25th Interna-
tional Symposium on Computer Architecture, Jun 1998.

[22] R. Rajwar and J. R. Goodman. Speculative lock elision: En-
abling highly concurrent multithreaded execution. In 34th In-
ternational Symposium on Microarchitecture, December 2001.

[23] R. Rakvic, B. Black, D. Limaye, and J. P. Shen. Non-vital
loads. In 8th International Symposium on High-Performance
Computer Architecture, Feb 2002.

[24] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Bar-
roso. Performance of database workloads on shared-memory
systems with out-of-order processors. Oct 1998.

[25] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta. The impact of architectural trends on operating sys-
tem performance. In 15th Symposium on Operating Systems
Principles, Dec 1995.

[26] R. Sasanka, C. J. Hughes, and S. V. Adve. Joint local and global
hardware adaptations for energy. In 10th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, Oct 2002.

[27] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi,
S. Dwarkadas, and M.L. Scott. Energy-efficient processor de-
sign using multiple clock domains with dynamic voltage and
frequency scaling. In 8th International Symposium on High-
Performance Computer Architecture, Feb 2002.

[28] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power
with dynamic critical path information. In 34th International
Symposium on Microarchitecture, Dec 2001.

[29] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power
with dynamic critical path information. In 34th International
Symposium on Microarchitecture, Dec 2001.

[30] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction
reuse. In 24th International Symposium on Computer Archi-
tecture, 1997.

[31] E. Sprangle and D. Carmean. Increasing processor performance
by implementing deeper pipelines. In 29th International Sym-
posium on Computer Architecture, 2002.

[32] B. Sprunt. Pentium 4 performance-monitoring features. IEEE
Micro, Jul 2002.

[33] S. T. Srinivasan, R. Dz ching Ju, A. R. Lebeck, and C. Wilker-
son. Locality vs. criticality. In 28th International Symposium
on Computer Architecture, Jun 2001.

[34] S. T. Srinivasan and A. R. Lebeck. Load latency tolerance in
dynamically scheduled processors. In 31st International Sym-
posium on Microarchitecture, Nov 1998.

[35] J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and
Todd C. Mowry. A scalable approach to thread-level specula-
tion. In 27th International Symposium on Computer Architec-
ture, Jun 2000.

[36] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic pre-
diction of critical path instructions. In 7th International Sympo-
sium on High-Performance Computer Architecture, Jan 2001.

[37] E. Tune, D. Tullsen, and B. Calder. Quantifying instruction
criticality. In 11th International Conference on Parallel Archi-
tectures and Compilation Techniques, Sep 2002.

[38] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statistically rig-
orous approach for improving simulation methodology. In 9th

International Symposium on High Performance Computer Ar-
chitecture, Feb 2003.

[39] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance
analysis using the MIPS R10000 performance counters. In Su-
percomputing ’96, 1996.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

