
Abstract
With increasing clock frequencies and silicon integra-

tion, power aware computing has become a critical concern
in the design of embedded processors and systems-on-chip.
One of the more effective and widely used methods for power-
aware computing is dynamic voltage scaling (DVS). In order
to obtain the maximum power savings from DVS, it is essen-
tial to scale the supply voltage as low as possible while ensur-
ing correct operation of the processor. The critical voltage is
chosen such that under a worst-case scenario of process and
environmental variations, the processor always operates cor-
rectly. However, this approach leads to a very conservative
supply voltage since such a worst-case combination of differ-
ent variabilities will be very rare. In this paper, we propose a
new approach to DVS, called Razor, based on dynamic detec-
tion and correction of circuit timing errors. The key idea of
Razor is to tune the supply voltage by monitoring the error
rate during circuit operation, thereby eliminating the need for
voltage margins and exploiting the data dependence of circuit
delay. A Razor flip-flop is introduced that double-samples
pipeline stage values, once with a fast clock and again with a
time-borrowing delayed clock. A metastability-tolerant com-
parator then validates latch values sampled with the fast
clock. In the event of a timing error, a modified pipeline mis-
peculation recovery mechanism restores correct program
state. A prototype Razor pipeline was designed in 0.18 µm
technology and was analyzed. Razor energy overheads dur-
ing normal operation are limited to 3.1%. Analyses of a full-
custom multiplier and a SPICE-level Kogge-Stone adder
model reveal that substantial energy savings are possible for
these devices (up to 64.2%) with little impact on performance
due to error recovery (less than 3%).

1 Introduction
A critical concern for embedded systems is the need to

deliver high levels of performance given ever-diminishing
power budgets. This is evident in the evolution of the mobile
phone: in the last 7 years mobile phones have shown a 50X
improvement in talk-time per gram of battery1, while at the
same time taking on new computational tasks that only
recently appeared on desktop computers, such as 3D graph-
ics, audio/video, internet access, and gaming. As the breadth
of applications for these devices widens, a single operating
point is no longer sufficient to efficiently meet their process-
ing and power consumption requirements. For example,

MPEG video playback requires an order-of-magnitude higher
performance than playing MP3s. However, running at the
performance level necessary for video is energy-inefficient
for audio. The gap between high performance and low power
can be bridged through the use of dynamic voltage scaling
(DVS) [16], where periods of low processor utilization are
exploited by lowering the clock frequency to the minimum
required level, allowing corresponding reduction in the sup-
ply voltage. Since dynamic energy scales quadratically with
supply voltage, significant reduction in energy use can be
obtained [14].

Enabling systems to run at multiple frequency and volt-
age levels is a challenging process and requires characteriza-
tion of the processor to ensure that its operation remains
correct at the required operating points. The minimum possi-
ble supply voltage that results in correct operation is referred
to as the critical supply voltage. The critical supply voltage
must be sufficient to ensure correct operation in the face of a
number of environmental and process related variabilities that
can impact circuit performance. These include unexpected
voltage drops in the power supply network, temperature fluc-
tuations, gate-length and doping concentration variations,
cross-coupling noise, etc. These variabilities may be data
dependent, meaning that they exhibit their worst-case impact
on circuit performance only under certain instruction and data
sequences, and are composed of both local and global compo-
nents. For instance, local process variations will impact spe-
cific regions of the die in different and independent ways,
while global process variation impacts the circuit perfor-
mance of the entire die and creates variation from one die to
the next. Similarly, temperature and supply drop have local
and global components, while cross-coupling noise is a pre-
dominantly local effect.

To ensure correct operation under all possible variations,
a conservative supply voltage is typically selected at design-
time using corner analysis. Hence, margins are added to the
critical voltage to account for uncertainty in the circuit mod-
els and to account for the worst-case combination of variabil-
ities. However, such a worst-case combination of variabilities
may be very rare or even impossible in a particular instance
of a chip making this approach overly conservative. And,
with process scaling, the environmental and process variabili-
ties are expected to increase, worsening the required voltage
margins.

To allow for more aggressive power reduction, the sup-
ply voltage can be tuned to an individual processor chip using
embedded inverter delay chains [5]. The delay of the inverter
chain is used as a prediction of the critical path delay of the
circuit and the supply voltage is tuned during processor oper-
ation to meet a predetermined delay through the inverter-

1. Comparison of standard configurations of Nokia 232 and Ericsson
T68 phones.

Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation

 Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham,

Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner1, and Trevor Mudge

Advanced Computer Architecture Lab
The University of Michigan

1301 Beal Ave
Ann Arbor, MI 48109

razor@eecs.umich.edu

ARM Ltd 1
110 Fulbourn Road

Cambridge, UK CB1 9NJ
krisztian.flautner@arm.com

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

chain. This approach to DVS has the advantage that it dynam-
ically adjusts the operating voltage to account for global vari-
ations in supply voltage drop, temperature fluctuation, and
process variations. However, it cannot account for local varia-
tions, such as local supply voltage drops, intra-die process
variations, and cross-coupled noise, and therefore requires the
addition of safety margins to the critical voltage. Also, the
delay of an inverter chain does not scale with voltage and
temperature in the same way as the delays of the critical paths
of the actual design, which can contain complex gates and
pass-transistor logic, which again necessitate extra voltage
safety margins. In future technologies, the local component of
environmental and process variation is expected to become
more prominent and, as noted in [6], the sensitivity of circuit
performance to these variations is higher at lower operating
voltages, thereby increasing the necessary margins and reduc-
ing the scope for energy savings.

In this paper, we propose a new approach to DVS,
referred to as Razor, which is based on dynamic detection and
correction of speed path failures in digital designs. The key
idea of Razor is to tune the supply voltage by monitoring the
error rate during operation. Since this error detection provides
in-situ monitoring of the actual circuit delay, it accounts for
both global and local delay variations and does not suffer
from voltage scaling disparities. It therefore eliminates the
need for voltage margins that are necessary for “always-cor-
rect” circuit operation in traditional designs. In addition, a
key feature of Razor is that operation at sub-critical supply
voltages does not constitute a catastrophic failure, but instead
represents a trade-off between the power penalty incurred
from error correction against additional power savings
obtained from operating at a lower supply voltage.

It was previously observed that circuit delay is strongly
data dependent, and only exhibits its worst-case delay for
very specific instruction and data sequences [24]. From this it
can be conjectured that for moderately sub-critical supply
voltages only a few critical instructions will fail, while a
majority of instructions will continue to operate correctly.
Our hardware measurements and circuit simulation studies
support this conjecture and demonstrate that the circuit opera-
tion degrades gracefully for sub-critical supply voltages,
showing a gradual increase in the error rate. The proposed
Razor approach automatically exploits this data-dependence
of circuit delay by tuning the supply voltage to obtain a small,
but non-zero error rate. It was found that if the error rate is
maintained sufficiently low, the power overhead from error
correction is minimal, while substantial power savings are
obtained due to operating the circuit at a lower supply volt-
age. Note that as the processor executes different sets of
instructions, the supply voltage automatically adjusts to the
delay characteristics of the executed instruction sequence,
lowering the supply voltage for instruction sequences with
many non-critical instructions, and raising the supply voltage
for instruction sequences that are more delay intensive.

We propose a combination of circuit and architectural
techniques for low cost in-situ error detection and correction
of delay failures. At the circuit level, each delay-critical flip-
flop is augmented with a so-called shadow latch which is
controlled using a delayed clock. The operating voltage is
constrained such that the worst-case delay is guaranteed to
meet the shadow latch setup time, even though the main flip-
flop could fail. By comparing the values latched by the flip-
flop and the shadow latch, a delay error in the main flip-flop
is detected. The value in the shadow latch, which is guaran-
teed to be correct, is then utilized to correct the delay failure.
We present several architectural solutions for error correction,
ranging from simple clock gating to more sophisticated
mechanisms that augment the existing mispeculation recov-
ery infrastructure.

The proposed Razor technique was implemented in a
prototype 64-bit Alpha processor design. This prototype
implementation was used to obtain a realistic prediction of
the power overhead for in-situ error correction and detection.
We also studied the error-rate trends for datapath components
using both circuit-level simulation as well as silicon measure-
ments of a full-custom multiplier block. Architectural simula-
tions were then performed to analyze the overall throughput
and power characteristics of Razor based DVS for different
benchmark test programs. We demonstrate that on average,
Razor reduced simulated power consumption by more than
40%, compared to traditional design-time DVS and delay-
chain based approaches.

The remainder of this paper is organized as follows. In
Section 2, we present the implementation of Razor, providing
a detailed description of both the proposed circuit and archi-
tectural techniques. In Section 3, we discuss the simulation
framework for Razor-based DVS and present error rate stud-
ies and our simulation results. In Section 4 we present a
detailed survey of prior work in DVS. Finally, in Section 5,
we draw our conclusions.

2 Razor Error Detection/Correction
Razor relies on a combination of architectural and circuit

level techniques for efficient error detection and correction of
delay path failures. The concept of Razor is illustrated in Fig-
ure 1(a) for a pipeline stage. Each flip-flop in the design is
augmented with a so-called shadow latch which is controlled
by a delayed clock. We illustrate the operation of a Razor flip-
flop in Figure 1(b). In clock cycle 1, the combinational logic
L1 meets the setup time by the rising edge of the clock and
both the main flip-flop and the shadow latch will latch the
correct data. In this case, the error signal at the output of the
XOR gate remains low and the operation of the pipeline is
unaltered.

In cycle 2 in Figure 1(b), we show an example of the
operation when the combinational logic exceeds the intended
delay due to sub-critical voltage scaling. In this case, the data
is not latched by the main flip-flop, but since the shadow-

Figure 1. Pipeline augmented with Razor latches and control lines.

(a) (b)

clock

instr 1

clock_d

D

Error

Q

instr 2

instr 1 instr 2

cycle 1 cycle 2 cycle 3 cycle 4

clock

instr 1

clock_d

D

Error

Q

instr 2

instr 1 instr 2

cycle 1 cycle 2 cycle 3 cycle 4

Error_L

Error
comparator

RAZOR FF

clk_del

Main
Flip-Flop

clk

Shadow
Latch

Q1D1Logic Stage

L1
0
1

Logic Stage

L2
Error_L

Error
comparator

RAZOR FF

clk_del

Main
Flip-Flop

clk

Shadow
Latch

Q1D1Logic Stage

L1

Logic Stage

L1
0
1

Logic Stage

L2

Logic Stage

L2

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

latch operates using a delayed clock, it successfully latches
the data some time in cycle 3. To guarantee that the shadow
latch will always latch the input data correctly, the allowable
operating voltage is constrained at design time such that
under worst-case conditions, the logic delay does not exceed
the setup time of the shadow latch. By comparing the valid
data of the shadow latch with the data in the main flip-flop, an
error signal is then generated in cycle 3 and in the subsequent
cycle, cycle 4, the valid data in the shadow latch is restored
into the main flip-flop and becomes available to the next
pipeline stage L2. Note that the local error signals Error_l are
OR’ed together to ensure that the data in all flip-flops is
restored even when only one of the Razor flip-flops generates
an error.

If an error occurs in pipeline stage L1 in a particular
clock cycle, the data in L2 in the following clock cycle is
incorrect and must be flushed from the pipeline using one of
the pipeline control methods described in Section 2.2. How-
ever, since the shadow latch contains the correct output data
of pipeline stage L1, the instruction does not need to be re-
executed through this failing stage. Thus, a key feature of
Razor is that if an instruction fails in a particular pipeline
stage it is re-executed through the following pipeline stage,
while incurring a one cycle penalty. The proposed approach
therefore guarantees forward progress of a failing instruc-
tion, which is essential to avoid the perpetual failure of an
instruction at a particular stage in the pipeline.

In addition to invalidating the data in the following pipe-
line stage, an error must also stall the preceding pipeline
stages while the shadow latch data is restored into the main
flip-flops. A number of different methods, such as clock gat-
ing or flushing the instruction in the preceding stages, were
examined to accomplish this and are discussed in Section 2.2.
The proposed approach also raises a number of circuit related
issues. The Razor flip-flop must be constructed such that the
power and delay overhead is minimized. Also, the presence
of the delayed clock introduces a new short-path constraint in
the design. And finally, allowing the setup time of the main
flip-flop to be exceeded raises the possibility of meta-stabil-
ity. These issues are discussed in more detail in Section 2.1.
In the proposed Razor based DVS approach, the error signal
is used to tune the supply voltage to its optimal value. In Sec-
tion 2.3, we therefore discuss different algorithms to control
the supply voltage based on the observed error rate.

In general, maximum power savings is obtained from
Razor technology when it is applied to all parts of a micropro-
cessor design. To accomplish this, we identify three distinct
design challenges. The first design challenge, and the focus of
this paper, is the detection and recovery of timing errors in
combinational logic contained within pipeline datapaths, e.g.,
adders, shifters, and decode logic. The second design chal-
lenge is the application of Razor to on-chip SRAM structures.
In SRAM structures, such as register files and caches, it is
necessary to introduce Razor-compatible sense amplifiers and
support for fast non-speculative stores. The third challenge is
the use of Razor on pipeline control logic to restore correct
program execution in the presence of incorrect control deci-
sions.

For the sake of brevity and clarity, the focus of this paper
is limited to the first design challenge, which is the use of
Razor on combinational logic blocks contained within the
pipeline datapaths. We therefore apply Razor to a simple
embedded processor which utilizes an in-order pipeline with
simple control and small caches. In such a processor, control
logic and SRAM structures remain error-free, even at the
worst-case frequency and voltage and do not require Razor
technology. However, to effectively apply Razor in large
microprocessor designs with large caches and complex con-
trol logic, it will be necessary to apply Razor technology to
all parts of the design. Therefore, in concert with the effort

presented in this paper, we are developing Razor-compatible
memory structures based on bit-line sampling and architec-
tural modifications for reduced typical-case latency. For con-
trol logic, we are developing techniques to checkpoint control
state to enable control logic recovery. These additional devel-
opments will be presented in future reports.

2.1 Circuit-level implementation issues
A key requirement for Razor based DVS is that during

error-free operation, the delay and power overhead due to the
error detection and correction circuitry is minimal. Other-
wise, the power gain from more aggressive voltage scaling is
overcome by the power overhead due to the presence of the
error detection and correction circuitry. In addition, the over-
head of performing an error correction must also be mini-
mized to enable efficient operation at moderate error rates. A
number of methods were applied to reduce the power and
delay overhead of the Razor flip-flop, shown in Figure 1. The
multiplexer at the input the razor flip-flop results in a signifi-
cant delay and power overhead, and was therefore moved to
the feedback path of the master latch of the main flip-flop, as
shown in Figure 2. Hence, it introduces only a slight increase
in the capacitive loading of the critical path and has minimal
impact on the performance and power of the design.

The power overhead of Razor is also reduced by the fact
that in most cycles, the input of a flip-flop will not transition
and only the power overhead from switching the delayed
clock is incurred. To further minimize this additional clock
power, the delayed clock is locally generated, reducing its
routing capacitance. If the delayed clock is delayed by half
the clock cycle, it can be derived by simply inverting the
main clock. Also, many non-critical flip-flops in the design
do not need Razor. If the maximum delay at the input of a
flip-flop is guaranteed to meet the required cycle time under
the worst-case sub-critical voltage, the flip-flop cannot fail
and does not need to be replaced with a Razor flip-flop. It was
found that in the prototype Alpha processor only 192 flip-
flops out of a total of 2408 required Razor, thereby signifi-
cantly reducing the power overhead of the Razor approach.
For this prototype processor, the total power overhead in error
free operation (due to Razor flip-flops) was found to be less
than 1%, while the delay overhead was negligible.

The use of a delayed clock at the shadow latch raises the
possibility that a short path in the combinational logic will
corrupt the data in the shadow latch. Figure 3 shows how a
short-path allows data launched at the start of a cycle to be
latched into the shadow latch, instead of the data launched
from the previous cycle. To prevent this corruption of the
shadow latch data, a minimum-path length constraint is added
at the input of each Razor flip-flop in the design. These mini-
mum-path constraints result in the addition of buffers during
logic synthesis to slow down fast paths and therefore intro-
duce a certain power overhead. Figure 3 shows that the mini-
mum-path constraint is equal to the clock delay tdelay plus the
hold time thold of the shadow latch (which is typically a small

Figure 2. Reduced overhead Razor flip-flop and meta-
stability detection circuits.

clk_b

clk

clk

clk_b

D Q

Error_L

Inv_n

clk_del

clk_del_b

Inv_p

Meta-stability detector

Error_L

Shadow Latch

clk_b

clk

clk

clk_b

D Q

Error_L

Inv_n

clk_del

clk_del_b

Inv_p

Meta-stability detector

Error_L

Shadow Latch

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

negative value). A large clock delay increases the severity of
the short path constraint and therefore increases the power
overhead due to the need for additional buffers. On the other
hand, a small clock delay reduces the margin between the
main flip-flop and the shadow latch, and hence reduces the
amount by which the supply voltage can be dropped below
the critical supply voltage. The clock delay therefore presents
a trade-off between the power overhead incurred from short-
path correction and the degree of possible power saving from
sub-critical voltage operation. In the prototype 64-bit Alpha
design, the clock delay was set at 1/2 the clock period. This
simplified the generation of the delayed clock while the short-
path constraints could still be easily met and resulted in a
power overhead (due to buffers) of less than 3%.

In subcritical voltage operation, it is possible that the
data at the input of the main latch transitions at the same time
as the clock. This can give rise to meta-stability of the main
flip-flop, where the output voltage does not resolve to a defi-
nite high or low voltage, but instead hovers near Vdd/2 [4].
The danger of meta-stability is that different fan-out gates
may interpret this indeterminate voltage level as different
logic states, or may even enter a meta-stable state themselves.
It is important to note that, since the minimum sub-critical
voltage is constrained such that the setup time of the shadow
latch is always met, the shadow latch is stable and can not
exhibit meta-stability. However, if the main flip-flop is meta-
stable, it is impossible to determine if its latched value is cor-
rect or not using the XOR gate in Figure 2. Hence, we include
a meta-stability detector circuit in the Razor flip-flop which
detects the presence of a meta-stable voltage levels, as shown
in Figure 2. A detected meta-stability event is corrected the
same way as a regular delay failure, and results in the stable
and correct data value from the shadow latch being restored
in the main flip-flop. For simplicity, the meta-stability detec-
tor in Figure 2 is constructed using two inverter gates with
different skewed P/N ratios, such that they switch at different
voltage levels. If the two inverters interpret the result differ-
ently, the flip-flop voltage is not definitive and may be meta-
stable. Note that, any suitable comparator circuit could be uti-
lized and that these meta-stability events do not result in a
failure of the system but are corrected using the existing
Razor error correction infrastructure.

However, it is well known that complete system failure
due meta-stability to cannot be completely avoided and only
its probability of occurrence can be reduced to negligible lev-
els [4]. In the proposed Razor design, this manifests itself in
the small but finite probability that the error signal itself
becomes meta-stable. This could occur if the main flip-flop
output voltage was near the edge of the meta-stable voltage
range and, hence, the meta-stability detector was unable to
determine if a meta-stability event occurred or not. In this
case, the error signal will not resolve to a definite voltage
level and ambiguity will exist in the logic value of the error
signal, possibly causing a failure in the error correction mech-

anism. A standard approach to reduce the probability of such
an event to negligible levels is to double latch the signal.
However, this would delay the detection of an error in the
main flip-flop by one cycle, complicating the error recovery
mechanism. We therefore employ at the same time an addi-
tional mechanism to detect metastable error signals, where
the error signal is double latched using two skewed flip-flops.
The probability that the outputs of the second set of flip-flops
are meta-stable is hence reduced to a negligible level and by
comparing their output values, the presence of a meta-stable
error signal one cycle earlier can be reliably detected. Under
normal operation, the error signal will resolve to a definite
voltage level and the output values of the two skewed flip-
flops will match, indicating that the performed error correc-
tion was executed correctly. However, in the unlikely event
that the error signal is meta-stable, the outputs of the skewed
latches will differ in the subsequent clock cycle indicating
that the error correction was unsafe and could have failed. In
this case, a so called panic signal is generated, which requires
that the entire pipeline is flushed and restarted. In this case,
guaranteed forward progress is lost, and the supply voltage
level must be raised to avoid possible perpetual failure of the
same instruction. However, the possibility of a meta-stable
error signal is extremely small and does not constitute a sig-
nificant burden on the power and performance of the proces-
sor. Also, only one set of double latches is needed for each
pipeline stage, meaning that the power overhead during error-
free operation is negligible.

2.2 Pipeline error recovery mechanisms
The pipeline error recovery mechanism must guarantee

that, in the presence of Razor errors, register and memory
state is not corrupted with an incorrect value. In this section,
we highlight two possible approaches to implementing pipe-
line error recovery. The first is a simple but slow method
based on clock gating, while the second method is a much
more scalable technique based on counterflow pipelining.

Recovery using clock gating. Figure 4(a) illustrates a
simple approach to pipeline error recovery based on global
clock gating. In the event that any stage detects a Razor error,
the entire pipeline is stalled for one cycle by gating the next
global clock edge. The additional clock period allows every
stage to recompute its result using the Razor shadow latch as
input. Consequently, any previously forwarded errant values
will be replaced with the correct value from the Razor
shadow latch. Since all stages re-evaluate their result with the

Figure 3. Short Paths Constraints.

clock

clock_del

tdelay thold

Min. path delay

Min. Path Delay > tdelay + thold

intended path short path

clock

clock_del

tdelay thold

Min. path delay

Min. Path Delay > tdelay + thold

intended path short path

Figure 4. Pipeline recovery using global clock gating.
Figure a) shows the pipeline organization, Figure b)

illustrates the pipeline timing for a failure in the EX stage
of the pipeline. The “*” denotes a failed stage

computation.

IF

R
az

or
 F

F
R

az
or

 F
F ID

R
az

or
 F

F
R

az
or

 F
F EX

R
az

or
 F

F
R

az
or

 F
F MEM WB

(reg/mem)

error

recover recover recover

R
az

or
 F

F
R

az
or

 F
F

PCPC

recover

errorerror error

clock

Time (in cycles)

IF ID EX* MEM* WB

St
ab

iliz
er

 F
F

St
ab

iliz
er

 F
F

a)

b)

IF ID EX MEM WB

IF ID EX MEM WBstallIn
st

ru
ct

io
ns

IF ID EX MEMstall

Correct value
provided to MEM

MEM

Razor latch gets
correct EX value

ST

ST

ST

ST

ST

stall

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Razor shadow latch input, any number of errors can be toler-
ated in a single cycle and forward progress is guaranteed. If
all stages produce an error each cycle, the pipeline will con-
tinue to run, but at 1/2 the normal speed.

It is imperative that errant pipeline results not be written
to architected state before it has been validated by Razor.
Since validation of Razor values takes two additional cycles
(i.e., one for error detection and one for panic detection),
there must be two non-speculative stages between the last
Razor latch and the writeback (WB) stage. In our design,
memory accesses to the data cache are non-speculative,
hence, only one additional stage labeled ST for stabilize is
required before writeback (WB). The ST stage introduces an
additional level of register bypass. Since store instructions
must execute non-speculatively, they are performed in the
WB stage of the pipeline.

Figure 4(b) gives a pipeline timing diagram of a pipeline
recovery for an instruction that fails in the EX stage of the
pipeline. The first failed stage computation occurs in the 4th
cycle, when the second instruction computes an incorrect
result in the EX stage of the pipeline. This error is detected in
the 5th cycle, but only after the MEM stage has computed an
incorrect result using the errant value forward from the EX
stage. After the error is detected, a global clock stall occurs in
the 6th cycle, permitting the correct EX result in the Razor
shadow latch to be evaluated by the MEM stage. In the 7th
cycle, normal pipeline operation resumes.

Recovery using counterflow pipelining. In aggres-
sively clocked designs, it may not be possible to implement
global clock gating without significantly impacting processor
cycle time. Consequently, we have designed and imple-
mented a fully pipelined error recovery mechanism based on
counterflow pipelining techniques [19]. The approach, illus-
trated in Figure 5(a), places negligible timing constraints on
the baseline pipeline design at the expense of extending pipe-
line recovery over a few cycles. When a Razor error is
detected, two specific actions must be taken. First, the errant
stage computation following the failing Razor latch must be
nullified. This action is accomplished using the bubble signal,
which indicates to the next and subsequent stages that the
pipeline slot is empty. Second, the flush train is triggered by
asserting the stage ID of failing stage. In the following cycle,
the correct value from the Razor shadow latch data is injected
back into the pipeline, allowing the errant instruction to con-
tinue with its correct inputs. Additionally, the flush train
begins propagating the ID of the failing stage in the opposite
direction of instructions. At each stage visited by the active
flush train, the corresponding pipeline stage and the one
immediately preceding are replaced with a bubble. (Two
stages must be nullified to account for the twice relative
speed of the main pipeline.) When the flush ID reaches the
start of the pipeline, the flush control logic restarts the pipe-
line at the instruction following the errant instruction. In the
event that multiple stages experience errors in the same cycle,
all will initiate recovery but only the Razor error closest to
writeback (WB) will complete. Earlier recoveries will be
flushed by later ones.

Figure 5(b) shows a pipeline timing diagram of a pipe-
lined recovery for an instruction that fails in the EX stage. As
in the previous example, the first failed stage computation
occurs in the 4th cycle, when the second instruction computes
an incorrect result in the EX stage of the pipeline. This error
is detected in the 5th cycle, causing a bubble to be propagated
out of the MEM stage and initiation of the flush train. The
instruction in the EX, ID and IF stages are flushed in the 6th,
7th and 8th cycles, respectively. Finally, the pipeline is
restarted after the errant instruction in cycle 9, after which
normal pipeline operation resumes.

In the event a panic signal is asserted, all pipeline state is
flushed and the pipeline is restarted immediately after the last

instruction to writeback. Panic situations complicate the guar-
antee of forward progress, as the delay in detecting the situa-
tion may result in the correct result being overwritten in the
Razor shadow latch. Consequently, after experiencing a
panic, the supply voltage is reset to a known-safe operating
level, and the pipeline is restarted. Once re-tuned, the errant
instruction should complete without errors as long as re-tun-
ing is prohibited until after this instruction completes.

A key requirement of the pipeline recovery control is
that it not fail under even the worst operating conditions (e.g.,
low voltage, high temperature and high process variation).
This requirement is met through a conservative design
approach that validates the timing of the error recovery cir-
cuits at the worst-case subcritical voltage.

2.3 Supply Voltage Control
Many of the parameters that affect voltage margin vary

over time. Temperature margins will track ambient tempera-
tures and can vary on-die with processing demands. Conse-
quently, to optimize energy conservation it is desirable to
introduce a voltage control system into the design. The volt-
age control system adjusts the supply voltage based on moni-
tored error rates. If the error rate is very low, it could indicate
circuit computation is finishing too quickly and voltage
should be lowered. Similarly, a low error rate could indicate
changes in the ambient environment (e.g., decreasing temper-
ature), giving additional opportunity to lower voltage.
Increasing error rates, on the other hand, indicate circuits are
not meeting clock period constraints and voltage should be
increased. The optimal error rate depends on a number of fac-
tors including the energy cost of error recovery and overall
performance requirements, but in general it is a small non-
zero error rate.

Figure 6 illustrates the Razor voltage control system.
The control systems works to maintain a constant error rate of
Eref. At regular intervals the error rate of the system is mea-
sured by resetting an error counter which is sampled after a
fixed period of time. The computed error rate of the sample
Esample is then subtracted from the reference error rate to pro-
duce the error rate differential Ediff. Ediff is the input to the
voltage control function, which sets the target voltage of the
voltage regulator. If Ediff is negative the system is experience
too many errors, and voltage should be increased. If Ediff is
positive the error rate is too low and voltage should be low-

Figure 5. Pipeline recovery using counterflow
pipelining. Figure a) shows the pipeline organization,

Figure b) illustrates the pipeline timing for a failure in the
EX stage of the pipeline. The “*” denotes a failed stage

computation.

recover

IF

Ra
zo

r F
F

Ra
zo

r F
F ID

Ra
zo

r F
F

Ra
zo

r F
F EX

Ra
zo

r F
F

Ra
zo

r F
F MEM

(read-only)
WB

(reg/mem)

error bubble

recover recover

Ra
zo

r F
F

Ra
zo

r F
F

St
ab

iliz
er

 F
F

St
ab

iliz
er

 F
F

PCPC

recover

flushID

bubble
error bubble

flushID

error bubble

flushIDFlush
Control

flushID

error

IF ID EX* MEM WB

a)

b)

IF ID EX MEM WB

IF ID flushEX

Time (in cycles)

In
st

ru
ct

io
ns

bubble

ST

ST

ST

flushID flushIFEX IF ID

Razor detects fault,
forwards bubble toward WB,

initiates flush toward IF
Pipeline flush

completes

IF ID IF

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

ered. The magnitude of Ediff indicates the degree to which the
system is “out of tune”.

While control of this system may seem simple on the
surface, it is complicated by the slow response time of the
voltage regulator. Typical commercial voltage regulators can
take 10’s of microseconds to adjust supply voltage by 100
mV. Consequently, if the controller reacts too fast or too
abruptly, the system could become unstable or go into oscilla-
tion. Moreover, an overly conservative control function that is
slow to react to changing system environments will reduce
the overall efficiency of the design. As a starting point, we
have implemented a proportional control system [15] which
adjusts supply voltage in proportion to the sampled Ediff. To
prevent the control system from over-reacting and potentially
placing the system in an unstable state, the error sample rate
is roughly equivalent to the minimum voltage step period.

3 Experimental Evaluation
3.1 Razor Pipeline Implementation

The proposed Razor error detection and correction
approach was implemented in a 64-bit Alpha processor. The
processor was implemented using a simple in-order pipeline
consisting of instruction fetch, instruction decode, execute,
and memory/writeback with 8 Kbytes of I-cache and D-

cache. The implementation details, as well as a die picture,
are shown below in Figure 7. The processor was implemented
using a 0.18 µm process and is expected to operate at 200
MHz. After careful performance analysis, it was found that
only the instruction decode and execute stages were critical at
the worst-case voltage and frequency settings and hence
required Razor flip-flops for their critical paths. Out of a total
of 2408 flip-flops in the design, 192 Razor flip-flops were
used. The clock for the Razor flip-flops was delayed by 1/2
the clock cycle from the system clock.

Power analysis was performed on the processor design,
using both gate level power simulations and SPICE to evalu-
ate the overhead of the error correction and detection circuits.
The total power consumption during error free operation is
expected to be 425 mW at 1.8 V at a clock frequency of 200
MHz. The energy consumption of the standard and Razor
flip-flops over one clock cycle in error free operation is listed
in Figure 7(a). Two values are shown for each flip-flop,
reflecting the cases when the latched data is changing
(switching) and is not changing (static). The total power over-
head due to the insertion of delay buffers to meet short-path
constraints in the design was simulated and is expect to be
12.2 mW. The total power overhead due to the presence of the
Razor error detection and correction circuitry in error-free

Figure 6. Supply Voltage Control System

Eref

Voltage
Control

Function
Σ.

.

.
Pipeline

reset

Vdd

Ediff = Eref - Esample

-

Esample

panic

Voltage
Regulator

Ediff error
signalsEref

Voltage
Control

Function
ΣΣ.

.

.
Pipeline

reset

Vdd

Ediff = Eref - Esample

-

Esample

panic

Voltage
Regulator

Ediff error
signals

Figure 7. Razor prototype implementation details and die photo.
(a) (b)

Technology node 0.18 µm

Voltage range 1.8 V to 1.2 V

Total number of logic gates 45,661

D-cache size 8 KBytes

I-cache size 8 KBytes

Die size 3 x 3.3 mm

Clock frequency 200 MHz

Clock delay 2.5 nS

Total number of flip-flops 2408

Number of Razor flip-flops 192

Total number of delay buffers 2498

Error free operation

 Total power 425 mW

 Standard FF energy (switching/static) 49 fJ / 95 fJ

 Razor FF energy (switching/static) 60 fJ / 160 fJ

 Total delay buffer power overhead 12.2 mW

% total power overhead 3.1%

Error correction and recovery overhead

 Energy per Razor FF per error event 210 fJ

 Total energy per error event 189 pJ

 Razor FF recovery overhead at 10% error rate 1%

D-Cache

IF ID EX

M
E

M

WB

Register FileI-Cache

3.3 mm

3 mm

D-Cache

IF ID EX

M
E

M

WB

Register FileI-Cache

3.3 mm

3 mm

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

operation is expected to be 3.1% of the total power. The final
three rows of the table show the power overhead due to error
detection and recovery. The energy required to detect an error
and restore the correct shadow latch data into the main flip-
flop was 210 fJ per error event for each Razor flip-flop. The
total energy to perform a single error detection and correction
event in the Alpha pipeline was 189 pJ, resulting in a power
overhead of approximately 1% of total power when operating
at a 10% error rate. Note that this error detection and correc-
tion power overhead does not include the overhead due to re-
execution of instructions that were flushed from the pipeline.
This additional power overhead is accounted for in the archi-
tectural simulations discussed in Sections 3.4 and 3.5.

3.2 Error rate analysis
Razor permits a microprocessor to tolerate circuit timing

errors, thereby permitting operation at a lower voltage at the
expense of decreased instruction throughput. As an initial
step in gauging the benefits of Razor technology, we empiri-
cally examined the error rate of an 18x18-bit multiplier block
contained within a high-density FPGA. In addition, we used
SPICE-level models to measure the error rates of an adder
over a range of voltages and workloads.

FPGA-based analysis. The multiplier experiments were
performed using a Xilinx XC2V250-F456-5 FPGA [25]. This
part was selected because it contains full-custom 18x18-bit
multiplier blocks, which permit the measurement of error
rates for a multiplier with minimal impact due to the overhead
of the FPGA routing fabric. Figure 8 illustrates the multiplier
circuit under test (shaded in the schematic) and accompany-
ing test harness. The multiplier circuit implements an 18-bit
by 18-bit multiplier, producing a 36-bit result each clock
cycle. During placement, synthesis was directed to foremost
optimize the performance of the fast multiplier pipeline. The
resulting placement is fairly efficient with the Xilinx static
timing analyzer (TRCE) indicating that 82% of the fast multi-
plier stage latency is in the custom multiplier block.

Each cycle, two 48-bit linear feedback shift registers
(LFSR) generate 18-bit uncorrelated random values, which
are sent to a fast multiplier pipeline, and in alternating cycles
to slow multiplier pipelines. The slow multiplier pipelines
take turns safely computing the fast pipeline’s results, using a
clock period that is twice as long as the fast multiplier pipe-
line. The empty stage after the fast multiplier stage (labeled
stabilize) allows potentially meta-stable results from the fast
multiplier time to stabilize before they are compared with the
known-correct slow multiplier results. A MUX on the output

of the slow multiplier pipelines selects the correct result to
compare against the stabilized output of the fast multiplier
pipeline. If the result of the fast pipeline does not match the
slow pipeline, an error counter is incremented. The perfor-
mance of the design was first analyzed with the Xilinx static
timing analyzer after back-propagation of FPGA interconnect
capacitance. The timing analyzer indicated that the fast multi-
plier stage could be clocked up to 83.5 MHz at 1.5 V and 85
C. At room temperature 27 C and 1.5 V, the timing analyzer
indicated that the design can run at 88.6 MHz. After the fast
multiplier, the next longest critical path in the design is the
40-bit error counter, which works up to 140 MHz. As a result,
we are confident that all errors experienced in these experi-
ments are localized to the fast multiplier pipeline circuits.

Figure 9 illustrates the relationship between voltage and
error rates for an 18x18-bit multiplier block running with ran-
dom input vectors at 90 MHz and 27 C. The error rates are
given as a percentage on a log scale. Also shown on the graph
are three additional design points, gauged using the Xilinx
static timing analyzer (TRCE). The zero-margin point is the
lowest voltage where the circuit operates error-free at 27 C.
The safety-margin point is the voltage at which the circuit
runs without errors at 27 C in 90% of the baseline clock
period (i.e., 10ns at 100 MHz). We would expect this to be
approximately the voltage margin required for delay-chain
tuning approaches, where voltage margins are necessary to
accommodate intra-die process and temperature variations.
Finally, the environmental-margin point is minimum voltage
required to run without errors at 90% of the baseline clock
period at the worst-case operating temperature of 85 C.

As shown in Figure 9, the multiplier circuit fails quite
gracefully, taking nearly 200 mV to go from the point of the
first error (1.54 V) to an error rate of 5% (1.34 V). Strikingly,
at 1.52 V the error rate is approximately one error every 20
seconds, or put another way, one error per 1.8 billion multiply
operations. The gradual rise in error rate is due to the depen-
dence between circuit inputs and evaluation latency. Initially,
only those changes in circuit inputs that require a complete
re-evaluation of the critical path results in a timing error. As
the voltage continues to drop, more and more internal multi-
plier circuit paths cannot complete within the clock cycle and
the error rate increases. Eventually, voltage drops to the point
where none of the circuit paths can complete in the clock
period, and the error rate reaches 100%. Clearly, if the pipe-
line can tolerate a small rate of multiplier errors, it can oper-
ate with a much lower supply voltage. For instance, at 1.36 V
the multiplier would complete 98.7% of all operations with-

Figure 8. Multiplier Experiment Test Bench and Circuit Under Test.

48
-b

it
LF

S
R

48
-b

it
LF

S
R

48
-b

it
LF

S
R

48
-b

it
LF

S
R

XX

XX

XX

clk/2

clk/2

clk clk

clk/2

clk/2

clk

!=

40
-b

it
E

rr
or

 C
ou

nt
er

40
-b

it
E

rr
or

 C
ou

nt
er

Slow Pipeline A

Slow Pipeline B

Fast Pipeline

clk/2

18

18

36

36

36

18x18

18x18

18x18

stabilize

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

out error, for a total energy savings (excluding error recovery)
of 22% over the zero-margin point, 30% over the safety-mar-
gin point, and 35% over the environmental-margin point.

SPICE-level analysis. To gain a deeper understanding
of the nature of circuit timing errors, a circuit-level design of
a 64-bit Kogge-Stone adder was implemented and analyzed.
A Kogge-Stone adder is a high-performance carry-prefix
adder used in a number of commercial microprocessor
designs [17]. The Kogge-Stone adder is implemented with the
TSMC 0.18 µm standard cell library. The capacitance and
resistance for cell interconnect was estimated based on stan-
dard cell dimensions and adder topology. The delay of the
standard cells were characterized for varied voltages, temper-
atures and fan-out. A similar delay characterization was per-
formed for interconnect with varied wire lengths. Using these
circuit-level characterizations, a high-performance C-level
timing model of the Kogge-Stone adder was implemented
and validated against SPICE simulations of the same baseline
model. We rely on a C-level model to increase the number of
sample vectors we can examine, and we integrated this model
into an architectural simulator to examine the performance of
the adder running with real programs. Comparing the C-
model to SPICE simulations (using HSPICE version 2001.2),
we found that the error for 50 random vectors never exceeded
10%. Using the C-level models, we then generate error rate
estimates using 32,000 sample vector sequences. At a given
frequency and voltage, the error rate is computed as the frac-
tion of sample vectors that do not complete within the clock
period.

Figure 10 shows the error rate of the Kogge-Stone adder,
as a function of voltage, for three 32,000 long input sequence
samples. For all experiments, error analysis was performed
assuming an 870 MHz clock and an ambient temperature of
27 C. The sample labeled random is a random input
sequence. The samples labeled ammp and bzip are adder
operations sampled from the SPEC2000 benchmarks with the
same name. The benchmark samples were generated by
instrumenting the SimpleScalar v3.0 simulator [2] such that
all instructions using the adder (e.g., adds, subtracts, loads,
stores) recorded their inputs. The benchmark samples are
taken in program execution order starting at the SimPoint
point of the execution, as specified by Sherwood et al. [18].

As shown in Figure 10, the random input, like for the
multiplier, demonstrates a gradual rise in the error rate with
decreasing voltage. We see a similar trend for the benchmark
samples analyzed. The error rates for the real program sam-
ples increase even more slowly at first than the random sam-

ple sequence. For instance, the ammp benchmark experiences
very few errors until 1.05 V, and bzip does not generate any
substantial error rates until 1.2 V. With real program samples,
the error rate tends to rise faster once errors do take hold,
even performing slightly worse than the random sequence at
lower voltages. However, at error rates that we would expect
to be easily tolerated (e.g., below 5%), the real program sam-
ples demonstrate substantially lower operating voltages than
the random sample sequence.

3.3 Simulator Framework and Benchmarks
The architectural simulators used in this paper are

derived from the SimpleScalar/Alpha version 3.0 tool set [2],
a suite of functional and timing simulation tools for the Alpha
AXP ISA. Simulation is execution-driven, including execu-
tion down any speculative path until the detection of a fault,
TLB miss, or branch misprediction. The baseline processor
modeled was a single-issue, in-order pipeline with the pipe-
line stages that are described in Section 3.1. The baseline
model was modified to simulate Razor error recovery with its
proper penalties. Furthermore, the detailed C-level Kogge-
Stone adder model was integrated into the execute stage,
where it was used to determine when voltage scaling intro-
duced adder timing errors.

To perform our evaluation, we collected results from 11
of the SPEC2000 benchmarks. All SPEC programs were
compiled for a Compaq Alpha AXP-21264 processor using
the Compaq C and Fortran compilers under the OSF/1 V4.0
operating system using full compiler optimization (-O4). The

Figure 9. Measured Error Rates for an 18x18-bit FPGA Multiplier Block at 90 MHz and 27 C.

0.0000000%

0.0000001%

0.0000010%

0.0000100%
0.0001000%

0.0010000%

0.0100000%

0.1000000%

1.0000000%
10.0000000%

100.0000000%

1.141.181.221.261.301.341.381.421.461.501.541.581.621.661.701.741.78

Supply Voltage (V)

E
rr

or
 r

at
e

(l
og

 s
ca

le
)

random

Zero-margin
@ 1.54 V

Safety-margin
@ 1.63 V

Environmental-margin
@ 1.69 V

35% energy savings with 1.3% error

30% energy saving

22% saving

One error every ~20 seconds

0.0000000%

0.0000001%

0.0000010%

0.0000100%
0.0001000%

0.0010000%

0.0100000%

0.1000000%

1.0000000%
10.0000000%

100.0000000%

1.141.181.221.261.301.341.381.421.461.501.541.581.621.661.701.741.78

Supply Voltage (V)

E
rr

or
 r

at
e

(l
og

 s
ca

le
)

random

Zero-margin
@ 1.54 V

Safety-margin
@ 1.63 V

Environmental-margin
@ 1.69 V

35% energy savings with 1.3% error35% energy savings with 1.3% error

30% energy saving30% energy saving

22% saving22% saving

One error every ~20 seconds

Figure 10. Simulated Error Rates for a Kogge-Stone
Adder at 870 MHz and 27 C.

0.00%

0.01%

0.10%

1.00%

10.00%

100.00%

0.60.811.21.41.61.82

Supply Voltage

E
rr

or
 r

at
e

random

bzip

ammp

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

simulations were run for 100 million instructions using the
SPEC reference inputs. We used the SimPoint toolset’s Early
SimPoints to pinpoint program locations that were highly rep-
resentative of the entire program execution [18].

3.4 Energy Analysis for Fixed Voltage
Figure 11 illustrates qualitatively the relationship

between supply voltage, adder energy and pipeline through-
put. The total energy consumed by the adder (Eadder) is the
sum of the energy required to perform add operations (Eaddi-
tions) plus the energy required to recover the pipeline in the
event of an adder timing error (Erecovery). Moreover, there is a
fixed amount of energy overhead incurred to implement
Razor checking for the adder. This energy is consumed by the
shadow latches and comparison logic. A trade-off exists
between the adder and recovery energy components. When
supply voltage is decreased, the energy required to perform
addition operations is decreased, but fewer of these opera-
tions are able to complete within the clock period. As a result,
pipeline recovery is invoked more frequently with additional
energy expense. Energy for the adder (Eadder) is optimized
when any additional decrease in voltage results in an energy
savings that is smaller than the extra energy cost incurred by
more pipeline recoveries. The energy-optimal voltage varies

from program to program (and even within the phases of a
program) because pipeline error rate is heavily dependent on
the data values sent to the adder. These trade-offs are further
complicated under a pipeline performance constraint.
Decreasing voltage will incur additional pipeline errors,
which in turn decreases pipeline throughput (i.e., instructions
per cycle). Consequently, the program will take longer to exe-
cute. Under a performance constraint, the optimal voltage is
limited to the minimal energy that meets the performance
constraint.

Table 1 lists for each benchmark the energy-optimal sup-
ply voltage, average adder error rate, energy reduction, and
IPC reduction at the fixed energy-optimal voltage. The simu-
lations are performed by sweeping the voltage in 25 mV steps
from 1.8 V down to 0.6 V. The voltage remains fixed for the
entire simulation (i.e., each point on the graph is a different
simulation). All experiments are performed at 27 C and 870
MHz, the maximum speed at which the adder runs error-free
at room temperature (i.e., the zero-margin point). All Razor
energy estimates were made using RTL-level power analysis
of the Razor prototype physical design described in Section
3.1. The total energy of the Razor adder includes the energy
of the adder, Razor latch and check circuitry, and the total
pipeline recovery energy incurred when a Razor adder error is
detected. The Razor latches and error detection circuitry
increase adder energy by about 4.3%. Error recovery energy
is conservatively estimated at 18 times the cost of a single add
(at 1.8 V), based on a 6-cycle recovery sequence at typical
activity rates. It should be noted that the energy savings
reflect only that due to eliminating data-dependent delay mar-
gins. If comparisons were made to existing DVS techniques
that require safety margins (e.g., delay line speed detector) or
temperature margins (e.g., design-time DVS), the resulting
energy saving would be substantially higher. Table 1 also
shows the relative performance of the benchmark, given as
the IPC of the program with Razor timing speculation divided
by the IPC of a non-speculative pipeline. Since all the experi-

Table 1. Energy-Optimal Characteristics

Program
Optimal
Vdd

Error
Rate

% Energy
Reduced

% IPC
Reduced

bzip 1.1 0.31% 57.6% 0.70%

crafty 1.175 0.41% 50.5% 0.60%

eon 1.3 1.21% 34.4% 1.24%

gap 1.275 1.15% 30.1% 2.49%

gcc 1.375 1.62% 23.7% 1.47%

gzip 1.3 1.03% 35.6% 0.41%

mcf 1.175 0.67% 48.7% 0.00%

parser 1.2 0.61% 47.9% 0.29%

twolf 1.275 2.67% 30.7% 0.31%

vortex 1.3 0.53% 42.8% 0.14%

vpr 1.075 0.01% 64.2% 0.00%

Average 42.4%

Figure 11. The Qualitative Relationship Between
Supply Voltage, Energy and Pipeline Throughput (for

a fixed frequency).

Decreasing Supply Voltage

Energy

Energy of Adder
Operations, Eadditions

Energy of
Pipeline

Recovery,
Erecovery

Total Adder Energy,
Eadder = Eadditions + Erecovery

Optimal Eadder

Pipeline
Throughput

IPC

Energy of Adder
w/o Razor Support

Decreasing Supply Voltage

Energy

Energy of Adder
Operations, Eadditions

Energy of
Pipeline

Recovery,
Erecovery

Total Adder Energy,
Eadder = Eadditions + Erecovery

Optimal Eadder

Pipeline
Throughput

IPC

Energy of Adder
w/o Razor Support

Figure 12. Relative Adder Energy and Pipeline
Throughput for Simulated Benchmarks.

BZIP

0.31% Error Rate
0.3

0.5

0.7

0.9

1.1

1.3

1.5

0.6

0.6
75

0.75
0.8

25
0.9

0.9
75

1.05
1.1

25
1.2

1.2
75

1.35
1.4

25
1.5

1.5
75

1.65
1.7

25
1.8

Voltage

R
el

at
iv

e
IP

C
 a

n
d

 E
n

er
g

y

Rel Energy
Rel Performance

GCC

1.62% Error Rate

0.3

0.5

0.7

0.9

1.1

1.3

1.5

0.6

0.6
75

0.7
5

0.8
25

0.9

0.9
75

1.0
5

1.1
25

1.2

1.2
75

1.3
5

1.4
25

1.5

1.5
75

1.6
5

1.7
25

1.8

Voltage

R
el

at
iv

e
IP

C
 a

n
d

 E
n

er
g

y

Rel Energy
Rel Performance

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

ments are run at the same frequency, the change in IPC due to
pipeline recovery reflects true performance impacts. Figure
12 illustrates the relative energy and performance across the
entire supply voltage operating range, for the benchmarks
bzip and gcc.

It is important to note that the energy analysis presented
in this section only reflects the energy savings in the Razor
pipeline adder. We only consider the energy of the entire
Razor pipeline when an adder timing error occurs. In this
event, all activities (and pipeline energy) are directly attribut-
able to the Razor timing error, and thus must be counted
against Razor adder energy savings. In essence, this is the
adder energy savings one could expect if the adder were
given its own independently tunable voltage source. Total
energy reduction for the entire pipeline would only be the
same if the remaining components could scale their voltage to
the same degree without increasing the overall error rate.

Clearly, there is significant energy to be reclaimed by
running the adder at a low error rate. All of the benchmarks
experienced significant energy savings, ranging from 23.7%
to 64.2%. One particularly encouraging result is that error
rates and performance impacts are muted up to and slightly
past the energy-optimal voltage, after which error rates rise
very quickly. At the energy-optimal voltage point, the bench-
marks suffered at most a 2.49% reduction in pipeline perfor-
mance (due to recovery flushes). There appears to be little
trade-off in performance when fully exploiting adder energy
savings at subcritical voltages. While we have simulated volt-
ages down to 0.6V, our Razor prototype design is only capa-
ble of validating circuit timing down to 1.2 V. This constraint
will limit the energy savings of four of the benchmarks. Since
additional voltage scaling headroom exists, we are examining
techniques to further reduce voltage on future prototype
designs.

3.5 Energy Analysis for Dynamic Voltage Scaling
Reducing voltage to the energy-optimal fixed voltage

point will certainly improve the energy characteristics of a
system that employs Razor. In this section, we consider the
potential value of dynamically adjusting supply voltage to
workload characteristics. We perform these experiments by
engaging the proportional control system described in Section
2.3. For the simulated experiments, we assume a voltage reg-
ulator response time of 20 cycles per 1 mV. The control sys-
tem samples (and then resets) an error counter every 5000
cycles, and adjusts the voltage regular plus or minus 25 mV,
depending on the error rate differential. All simulations use a
target error rate of 1.5%, which was set based on the energy-
optimal error rates analyzed in the previous section.

Table 2 lists the adder energy reduction compared to a
non-Razor adder at the zero-margin voltage (1.8 V). Dynami-
cally adjusting voltage again results in substantial energy sav-
ings. Compared the fixed voltage experiments of the previous
section, about one half of the benchmarks see better energy
savings, and the other half has slightly worse energy savings.
With dynamic voltage scaling, most of the benchmarks ran
slower, although overall performance impacts were still
small, with the largest slowdown limited to just under 6%.
Figure 13 illustrates the change in error rate of the adder over
time and the voltage control systems response to the error rate
for the gcc and gap benchmarks. Overall, the results for the
proportional control system are mixed. Given that it repre-
sents a fairly unsophisticated class of control functions; fur-
ther investigations into supply voltage control will likely
yield additional energy savings.

4 Previous Work
Table 3 lists a number of prior proposals supporting

adaptive voltage and frequency scaling. With Design-Time
DVS, conservative design techniques are used to specify

“legal” voltage and frequency pairs that allow reliable opera-
tion of the processor under worst-case voltage, temperature,
and process conditions. Examples of systems that utilize this
approach are Intel’s x86 SpeedStep technology [10] and
Transmeta’s Longrun technology [20].

A Correlating VCO allows ambient margins to be elimi-
nated; examples of this design have been proposed by Burd
[3] and Gutnik [7]. The approach implements a voltage con-
trolled oscillator using a timing loop constructed to slightly
exceed the latency of the worst-case critical path in the
machine, plus process and safety margins. When supply volt-
age changes, the oscillator speed will automatically adjust to
match the fastest safe clock speed. It is important to note that
this approach cannot compensate for intra-die process and
temperature variations, IR drop, or noise. As a result, addi-
tional voltage margins (implemented with additional timing
loop delay) are required for safe operation.

A Delay Line Speed Detector is a device that models the
worst-case critical path of the system, plus a safety margin.
Examples of these devices have been proposed by Dhar [5]
and Uht [21]. Periodically, a signal transition is propagated
down a delay chain and sampled at the end of the current
clock cycle. If the signal transition does not propagate to the
end of the delay chain within the clock period, the system is
running too close to failure and frequency and/or voltage
must be adjusted. Since the delay chain fails prior to the core
circuitry, any failure detected in the delay chain will proceed
a core circuitry failing, assuming that the delay line is fre-
quently monitored and the system is adjusted promptly upon
detection of a delay line failure. To ensure that the delay line
fails first, it is necessary to add latency margins to accommo-
date intra-die process and temperature variations, IR drop and
noise. Unlike the Correlating VCO, it may be possible to put
multiple delay line speed detectors across the die and com-
bine their timing signals in an effort to mitigate intra-die pro-
cess and temperature variation. However, some variation is
inherently local (e.g., cross-coupling noise), thus some delay

Figure 13. Adder Error Rate and Voltage Controller
Response.

GCC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

S
u

p
p

ly
 V

o
lt

ag
e

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

E
rr

o
r

R
at

e

Voltage
Error Rate

G a p

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T im e

S
u

p
p

ly
 V

o
lt

ag
e

0.00%

3.00%

6.00%

9.00%

12.00%

15.00%

18.00%

21.00%

24.00%

27.00%

30.00%

E
rr

o
r

R
at

e

V o ltag e
E rro r R ate

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

margin will always be required. We have not seen the use of
multiple delay line detectors explored to date.

Kehl’s Triple-Latch Monitor is similar to the delay line
speed detector, but like Razor, utilizes in-situ circuit monitor-
ing [11]. Using this approach, all monitored system state is
captured using three latches, clocked in succession with a
small delay between each. The staggered latches provide
three closely spaced samples of a logic block’s value each
cycle. The value in the latest-clocked latch is assumed correct
and always forwarded to later logic. The system is considered
“tuned” when the first latch does not match the second and
third latch values, meaning that the logic transition was very
near the critical speed, but not dangerously close. If all
latches see the same value, the system is running too slowly
and should be sped up. If the first two latches see different
values than the last, then the system is running dangerously
fast and should be slowed down. Because of the in-situ nature
of this approach, it could conceivably adjust to intra-die pro-
cess and temperature variations. However, data-dependent
delay variations complicate Kehl’s approach. To avoid too
aggressively clocking the system, speedup evaluations must
be limited to tests on worst-cast latency vectors. Kehl sug-
gests that the system should periodically stop and test worst-
case vectors to determine if the system should be sped up.
[1] Circuit-level Speculation employs logic components that operate at two
speeds, a fast typical speed and a slower atypical multi-cycle speed. The
components are designed with typical usage in mind, which in all published
cases resulted in significantly favorable circuit speed due to shorter data-
dependent circuit paths. Two prior proposal of this nature include Liu’s fast
adder and scheduler designs [12] and Wolrich’s stutter adder [24]. Both fast
adder designs were optimized to perform short-distance carry propagation in
a single cycle, with longer carry propagations taking an additional cycle.
Liu’s circuit-speculative scheduler provided very fast access to a few instruc-
tions. If dependencies warranted wake-up of other instructions, multiple
cycles were required. Like Razor, circuit-level speculation benefits by
exploiting typical-case evaluation latency, which for most workloads is much
more favorable than worst-case latency. Unlike Razor however, circuit-level
speculation cannot adapt timing to changing workload or other margin fac-
tors such as temperature or process variation. Moreover, it is unclear how cir-
cuit-level timing speculation could be adapted to dynamic voltage scaling.

We are aware of three previous proposals that suggest
using rate-matched redundant hardware to allow subcritical
circuit operation. Uht’s TIMERTOL design methodology
couples an overclocked logic block with multiple safely
clocked blocks of the same logic [22]. By using multiple
check logic blocks, his approach can check all overclocked
computation with hardware blocks that are safely clocked.
Uht does not address the possibility of metastability in the

fast block’s output latches or the problem of recovering sys-
tem state after a timing error. Razor addresses both of these
issues and utilizes an implementation that is much less expen-
sive. Austin suggested that the DIVA checker could be over-
designed to validate computation from an overclocked core
processor [1], but the details of how this might be imple-
mented were not explored. Hegde and Shanbhag proposed the
use of algorithmic noise tolerance (ANT) to permit the opera-
tion of signal processing circuits at subcritical voltages [9].
They couple the signal processor with a rate-matched error
predictor that limits the additional noise incurred by errant
circuit computations. Using their approach, voltage can be
lowered to the extent that the application can tolerate addi-
tional noise in the signal processor output.

Our pipeline recovery mechanism is inspired from
Sproull’s work on asynchronous counterflow pipelines [19],
which was later adapted for synchronous systems by Miller
[13]. The basic idea of a counterflow pipeline is that instruc-
tion and control signals flow in a direction opposite to data
values. As such, global control is not necessary as all control
signals will eventually reach the appropriate point in the data-
path. We use a counterflow-style pipeline to implement low-
complexity recovery of the Razor pipeline in the event of a
circuit error.

Razor shares many of the benefits of asynchronous
designs, while mitigating many of their drawbacks. Asyn-
chronous systems eliminate the global clock and instead uti-
lize data-driven control to orchestrate system state changes
[8],[23]. The approach has long been held up as a promising
technique to improve system throughput and power. For
example, asynchronous designs readily adapt to data-depen-
dence, ambient and process variation. Unfortunately, the tech-
nique is not without drawbacks, including substantial
additional design complexity to deal with hazards and order-
ing of operations, and more complicated system testing.
While fundamentally a synchronous system, Razor can also
adapt to data-dependence, ambient and process variation.
Unlike asynchronous designs, Razor utilizes a traditional syn-
chronous design style using standard tools. An additional
detractor for the use of asynchronous logic is its non-deter-
ministic operation. Temperature variation, for instance, can
change the order of logic evaluation and state transitions,
making functional and electrical validation more challenging.
While Razor shares this non-determinism, we feel it will not
put undue burden on the verification process for two reasons.
First, non-determinism is limited to whether or not a stage of
the pipeline will produce an error. Bugs relating to the non-
deterministic nature of the Razor pipeline will be confined to
the error recovery machinery. Second, it should be possible to
provide verification-time buffering of stage error signals,
which would permit deterministic replay of non-deterministic
executions. This support would address any reproducibility
concerns during verification.

5 Conclusions
In this paper, we presented Razor, an error-tolerant

dynamic voltage scaling technology. The key advantage of
Razor over existing voltage scaling technologies is the use of
in-situ timing error detection and correction, permitting
increased energy reduction because voltage margins are com-
pletely eliminated. The Razor flip-flop was introduced as a
mechanism to double-sample pipeline stage values, once with
an aggressive fast clock and again with a delayed clock that
guarantees a reliable second sample. A metastability-tolerant
error detection circuit was described that validates all values
latched on the fast Razor clock. In the event of a timing error,
a modified pipeline flush mechanism restores the correct
stage value into the pipeline, flushes earlier instructions, and
restarts the next instruction after the errant computation.

Table 2. Simulated DVS Energy Savings

Program
% Energy
Reduced

% IPC
Reduced

bzip 54.5% 4.13%

crafty 54.8% 1.78%

eon 30.4% 0.78%

gap 12.9% 2.14%

gcc 31.3% 5.88%

gzip 44.6% 1.27%

mcf 36.9% 0.47%

parser 53.0% 1.94%

twolf 20.4% 0.06%

vortex 49.1% 1.07%

vpr 63.6% 1.66%

Average 41.0%

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

A prototype Razor pipeline was designed and analyzed.
We found that during normal (error-free) operation of the
pipeline, Razor error detection increases pipeline energy
demands by a modest 3.1%, compared to a non-Razor design
of the architecture. Energy requirements for error recovery
were much greater. We found that the energy required to fully
recover the pipeline after an adder timing error was about 18
times more expensive than the errant addition.

The error rates of real and simulated circuits were
explored in detail. A full-custom 18x18-bit FPGA multiplier
block confirmed that significant energy reductions are possi-
ble for real circuits, if small error rates can be tolerated. When
computing on random inputs at room temperature, the multi-
plier circuit consumed 17% less energy when all process and
temperature margins on voltage were eliminated. Continuing
to decrease voltage to the point where 1.3% of operations fail
consumes 35% less energy. Detailed analysis of a SPICE-
level Kogge-Stone adder model reveals that real program data
has more favorable error rates than random samples. Com-
pared to random inputs, real program inputs see similar error
rates at a voltage that is nearly 400 mV lower.

Architectural simulations were performed to gauge the
benefits of Razor DVS in the presence of potentially expen-
sive pipeline recoveries. Simulations at the fixed energy-opti-
mal voltage for each benchmark revealed that even with high
pipeline recovery costs (in terms of energy and performance)
a Razor adder operated with 42% less energy, while only
incurring at most a 2.5% reduction in pipeline throughput.
The introduction of a proportional voltage control system per-
formed nearly as well overall, suggesting that near energy-
optimal voltage points could be found automatically for indi-
vidual program. In some cases, the voltage control system
performed better than running with a fixed energy-optimal
voltage, suggesting that program energy demands are phasic.
It is likely that further improvement to the voltage control
system would render additional savings.

Looking ahead, there is much more ground to explore. In
mid-November 2003, we tape-out our prototype Razor pipe-
line design for MOSIS fabrication. A few months later, we
will have the first opportunity to analyze a complete Razor
pipeline design. To increase the scope of Razor, we have
begun exploring its application to memory structures and
pipeline control logic. Finally, there is a great opportunity to
“re-think” system design in the context of Razor. In particu-
lar, we want to investigate the design of functional units and
memory structures optimized for typical-case latency. These
new designs should have lower error rates, thereby creating
additional opportunity to lower energy demands.

References
[1] T. Austin, “DIVA: A Reliable Substrate for Deep Submicron Microarchi-
tecture Design,” 32nd Int’l Symposium on Microarchitecture, Nov. 1999.

[2] T. Austin, E. Larson, D. Ernst. SimpleScalar: an Infrastructure for Com-
puter System Modeling, IEEE Computer, 35 (2), February 2002.
[3] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A Dynamic Voltage
Scaled Microprocessor System,” International Solid-State Circuits Confer-
ence, Feb. 2000.
[4] W. Dally, J. Poulton, Digital System Engineering, Cambridge University
Press, 1998
[5] S. Dhar, D. Maksimovic, and B. Kranzen, “Closed-Loop Adaptive Volt-
age Scaling Controller For Standard-Cell ASICs,” 2002 Int’l Symposium on
Low Power Electronics and Design (ISLPED-2002), August 2002.
[6] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and Threshold Volt-
age Scaling for Low Power CMOS,” IEEE Journal of Solid-State Circuits, 32
(8), August 1997.
[7] V. Gutnik and A. Chandrakasan, “An Efficient Controller for Variable
Supply-Voltage Low Power Processing,” Symposium on VLSI Circuits, June
1996.
[8] S. Hauck, “Asynchronous Design Methodologies: An Overview,” Pro-
ceedings of the IEEE, 83 (1), January 1995.
[9] R. Hegde and N. Shanbhag, “Energy-efficient signal processing via algo-
rithmic noise-tolerance,” 1999 International Symposium on Low-Power
Electronics and Design (ISLPED-99), August 1999.
[10] Intel Corporation, “Intel SpeedStep Technology,” http://www.intel.com/
support/processors/ mobile/pentiumiii/ss.htm.
[11] T. Kehl, “Hardware Self-Tuning and Circuit Performance Monitoring,”
1993 Int’l Conference on Computer Design (ICCD-93), October 1993.
[12] T. Liu and S. Lu, “Performance Improvement with Circuit-Level Specu-
lation,” 33rd Annual International Symposium on Microarchitecture
(MICRO-33), December 2000.
[13] M. Miller, K. Janik and S.-L. Lu, “Non-Stalling Counterflow Microar-
chitecture,” 4th International Symposium on High Performance Computer
Architecture (HPCA-4), February 1998.
[14] T. Mudge. “Power: A first class design constraint,” Computer, vol. 34,
no. 4, April 2001, pp. 52-57.
[15] K. Ogata, “Modern Control Engineering,” 4th edition, Prentice Hall,
New Jersey, 2002.
[16] T. Pering, T. Burd, and R. Brodersen. “The Simulation and Evaluation
of Dynamic Voltage Scaling Algorithms.” Proceedings of Int’l Symposium on
Low Power Electronics and Design 1998, pp. 76-81, June 1998.
[17] J. Rabaey, “Digital Integrated Circuits,” Prentice Hall, 1996.
[18] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” 10th International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), October 2002.
[19] R. Sproull, I. Sutherland, and C. Molnar, “Counterflow Pipeline Proces-
sor Architecture,” Sun Microsystems Laboratories Inc. Technical Report
SMLI-TR-94-25, April 1994.
[20] Transmeta Corporation, “LongRun Power Management,” http://
www.transmeta.com/technology/architecture/longrun.html.
[21] A. Uht, “Uniprocessor Performance Enhancement Through Adaptive
Clock Frequency Control,” 2003 International Conference on Advances in
Infrastructure for e-Business, e-Education, e-Science, e-Medicine, and
Mobile Technologies on the Internet (SSGRR 2003w), January 2003.
[22] A. Uht, “Achieving Typical Delays in Synchronous Systems via Timing
Error Toleration,” University of Rhode Island TR-032000-0100, March 2000.
[23] S. Unger, “Asynchronous Sequential Switching Circuits,” New York:
Wiley-Interscience, John Wiley & Sons, Inc., 1969.
[24] G. Wolrich, E. McLellan, L. Harada, J. Montanaro, and R. Yodlowski,
“A High Performance Floating Point Coprocessor,” IEEE Journal of Solid-
State Circuits, 19 (5), October 1984.
[25] Xilinx Corporation, “Virtex-II Platform FPGA,” http://www.xil-
inx.com/products/tables/fpga.htm#v2

Table 3. Adaptive Voltage/Frequency Scaling Landscape.

Technique

Margin Eliminated?

Speculative?Data Process Environmental Safety

Design-time DVS [10][12] N N N N N

Correlating VCO [3][4] N N Y N N

Delay Line Speed Detector [13][21] N N Y N N

Triple-Latch Monitor [11] N Y Y N N

Circuit-Level Speculation [12][24] Y N N N Y

Razor Y Y Y Y Y

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

