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Abstract A recent work [7] proposed an adaptive, non-uniform cache

architecture (NUCA) to manage large on-chip caches. By

exploiting the variation in access time across subarrays, NUCA
'allows fast access to close subarrays while retaining slow
access to far subarrays. NUCA pioneered the concept of place-
ment based on the access time of the selected block. Fre-
guently-accessed data is placed in subarrays closer to the

Wire delays continue to grow as the dominant component of
latency for large caches. A recent work proposed an adaptive
non-uniform cache architecture (NUCA) to manage large, on-
chip caches. By exploiting the variation in access time across
widely-spaced subarrays, NUCA allows fast access to close

subarrays while retaining slow access to far subarrays. While o cessor while infrequently-accessed data is placed farther.
the idea of NUCA is attractive, NUCA does not employ design ™ \yjje the idea of non-uniform access is attractive, NUCA's
choices commonly used in large caches, such as sequential taggesign choices have the following problems. To understand the
data access for low power. Moreover, NUCA couples data hohiems, we make the key observation that large caches are
placement with tag placement foregoing the flexibility of data implemented significantly differently than small caches.

placement and replacement that is possible in a non-uniform (1) Tag search:While small caches probe the tag and data
access cache. Consequently, NUCA can place only a few bIOCI(%rrays in parallel, large, lower-level caches often probe the tag

within a givgn cache §et in the fastest subarrays, and mUStarray first, and then access only the matching data way [3, 14].
employ a high-bandwidth switched network to swap blocks ggcayse the tag array latency is much smaller than the data

within the cache for high performance. In this paper, we pro- 4y |atency in large caches and because parallel access results
pose theNonuniform access witRReplacementndPlacement , considerably high energy [3, 9], the small increase in overall

udng Distance associativity” cache, or NURAPID, which ,.ceqq time due to sequential tag-data access is more than offset
leverages sequential tag-data access to decouple data placey, yhe |arge savings in energy. Although intended for large
ment from tag ple_lcer_nent. Distance assom_atlwty, the placement arjevel caches, NUCA does not use sequential tag-data
of data at a certain distance (and latency), is separated from set 5 cosq: instead it either does a parallel (multicast) search of the

associativity, the placement of tags within a set. This decou-Ways (albeit sometimes a subset of the ways), or searches the
pling enables NURAPID to place flexibly the vast majority of \5ys sequentially, accessibgthtag and data, from the closest
frequently-accessed data in the fastest subarrays, with fewer, e tarthest. Because the entire tag array is smaller than even
swaps than NUCA. Distance associativity fundamenta_lly one data way, sequential tag-data access is more energy-effi-
changes the trade-offs made by NUCA's best-performing ient than sequential way search if the matching data is not
design, resulting in higher performance and substantially ¢4,nq in the first way (e.g., if the data is found in the second

lower cache energy. A one-por;r)ed, non-banked NURApl?Way, sequential way accesses two tag ways and two data ways,
cache improves performance by 3% on average 'and up t0.15 Awhile sequential tag-data accesses the entire tag array once and
compared to a multi-banked NUCA with an infinite-bandwidth .o 4ata way).

switched network, while reducing L2 cache energy by 77%. NUCAs tag layout adds to the energy inefficiencies of

searching for the matching block. NUCA's tag array is distrib-
uted throughout the cache along with the data array. Conse-
fquently, searching for the matching block requires traversing an

CMOS scaling trends are leading to greater numbers of _ . . -
. . . ) o . switched network, which consumes substantial energy and
smaller transistors in a single chip but a relative increase in.

. L . internal bandwidth.
wire delays. The availability of transistors leads to large, on- ernal bandwid

chip caches. While small, fast, L1 caches remain close to the ro(zgszlscbe mﬁ?}:ci\/?: rterﬁrigslset f:\%lgf gﬁgegﬁ\]’;ﬁgg%
processor, L2 or L3 (i.e., lower level) caches use many SRAM prop y )

subarrays spread out throughout the chip and connecte aches) artificiallycouplesdata placement with tag placement;

through long wires. Increasing wire delays will continue to he position in the tag arrajmplies the position in the data

. array. This coupling means that NUCA can place only a small
grow as the dominant latency component for these caches. The . .

. . number of ways of each set in the fastdstance-group(d-
access time of conventional lower-level caches has been the

. ) roup), which we define as a collection of data subarrays all of
longest access time of all subarrays, but such uniform access , .
. . - - : which are at the same latency from the processor. For example,
fails to exploit the difference in latencies among subarrays.
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in a 16-way set-associative NUCA cache, this number may beTherefore, we do not need to swap blocks in and out of d-
two — i.e., two specific ways of each set may be in the fastestgroups as often as NUCA. Though our larger d-groups may be
d-group. As long as the frequently-accessed ways within a setslower than NUCA's smaller d-groups, the reduction in swaps
are fewer than this number, their access is fast. However, if amore than offsets the longer latency. This reduction in data
“hot” set has more frequently-accessed ways, the accesses anmovement combined with elimination of parallel tag searches
not all fast, even though the fastest d-group is large enough toreduces bandwidth demand, obviating NUCA's multiple banks
hold all the ways of the set. To mitigate this problem, NUCA and switched network mentioned in problem (4).

uses a policy of promoting frequently-accessed blocks from  In solving these problems, this paper shows that distance
slower to faster d-groups, by swapping the ways within a set. associativity fundamentallychanges the trade-offs made by
These swaps are energy-hungry and also consume substantidNUCA's best-performing design, resulting in higher perfor-
internal bandwidth. mance and substantially lower energy.

(3) Data Array Layout: While [7] considered several d- While sequential tag-data access and non-uniform access
group sizes, the best design choice for NUCA was to divide the are not new, the novel contributions of this paper are:
cache into many, small d-groups (e.g., many 64-KB d-groups) e Our leverage of sequential tag-data access to introduce the
to provide a fine granularity of access times. In conventional concept of distance associativity.
large caches, the bits of individual cache blocks are spread oves  Oyr strategy of using a few, large d-groups.
many subarrays for area efficiency, and hard- and soft-error tol-,
erance. While [7] does not consider error tolerance, doing so
would require a NUCA cache block to be spread over only one
d-group to achieve the same latency for all the bits in the block.
Unfortunately, NUCA's design choice of small d-groups would
constrain the spread to only a few small subarrays while con-
ventional caches spread the bits over a much larger space (e.g.,
the 135 subarrays making up the 3-MB L3 in Itanium Il [14]).

(4) Bandwidth: To support parallel tag searches and fast
swaps, NUCA's best design assumes a multi-banked cache and
a complicated, high-bandwidth switched network among the
subarrays of the cache ([7] considered a non-banked design . . .
without the switched network, but found that design inferior). In Section 2 we discuss NURAPID caches. In Sect|on_3_, we
While the bandwidth demand due to NUCA's tag searches angdiscuss layout of large caches into subarrays for area efficiency
swaps is artificial, the real bandwidth demand from the CPU is and fault tolerange and the floorplgn concepts behind d-groups.
filtered by L1 caches and MSHRs. As such, the real demand for>€ction 4 describes our experimental methodology ~and
lower-level cache bandwidth is usually low and does not justify Section 5 our reS:uItS. In Section 6 we discuss related work. We
the complexity of multibanking and a switched network. conclude in Section 7.

To address problem (1) we use a sequential tag-data accesi Distance Associativit
with a centralized tag array which is placed close to the proces- y

sor. To address problem (2), we make the key observation that . .
seguential tag-data access creates a new opportunityciou- We propose the Non-uniform access witrReplacement
And Placement uUsg Distance associativity” cache, or

ple data placement from tag placement. Because sequential ta%uRAPID As shown in Figure 1, NURAPID divides the data

data access probes the tag array first, the exact location in the . . . .
. . . P arrays into several d-groups, with different access latencies.
data array may be determined even if there is no implicit cou-

pling between tag and data locations. This decoupling enablesUpon a cache access, the tag array is accessed before the data

. 2L . - array (sequential tag-data access as discussed in Section 1.)
distance associativitywhich allows a completely flexible : -
. .. The decoupling of placement in the two arrays allows blocks
choice of d-groups for data placement, as opposed to NUCAs_ . . o
S . . within a set to be placed within the same d-group, such as
set-associativity-restricted placement. Hence, unlike NUCA, all : . .
. blocks A and B in the figure, or different d-groups, such as
the ways of a hot set may be placed in the fastest d-group. To

. g blocks C and D. Distance associativity is a data placement flex-
allow the working set to migrate to the fastest d-group, we swap ., ... ;
. L ibility and should not be confused with tag placement and the
data out of d-groups based distance replacementithin the . . L S
_ A index-to-set mapping of set associativity. We maintain conven-
d-group, although eviction from the cache is still basediata . AT .
o tional set associativity in the tag array and manage distance
replacementvithin the set.

. ssociativity separately.
To address problem (3), we use a few, large d-groups instead” ) . ; i . )
of NUCA's many, small d-groups. Our large (e.g. 2-MB) d- We first discuss distance-associative (d-a) placement and

groups retain the area-efficiency and fault-tolerance advantage:';mplementatlon' Then we explain replacement in NURAPID. In

of spreadina cache blocks over manv subarravs. Because of the'" discussion of placement and replacement, we contrast our
'SP g¢ y ys. be %esign to the dynamic-NUCA (D-NUCA, not to be confused
higher capacity of our large d-groups and our flexible place-

ment, the pressure on our fastest d-group is significantly Iower.Wlth d-groups) scheme, the best-performing policy proposed in

Our distance-placement and distance-replacement poli-
cies. Because our policies require fewer swaps, our cache
has 61% fewer d-group accesses than NUCA.

Over 15 SPEC2K applications, our one-ported, non-
banked cache improves performance by 3% on average
and up to 15% over a multi-banked NUCA with an infi-
nite-bandwidth switched network, while consuming 77%
less dynamic cache energy. Our cache reduces processor
energy-delay by 7% compared to both a conventional
cache and NUCA.
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frame # Data Arrays fastest d-group without demoting a member of the same set to a
N-way Set-Associative 0 slower d-group. This policy makes the initial accesses to a

Tag Array 1[A, sep way, ?1 block .fas.t,. and allows many blocks in a hot set (up to the set
set# way-0 ... way-(n-1) 3 associativity of the tag ar.ra.y), to be placed in the fastest d-
- 5 group. This change in the initial placement is one of the funda-
0|Atag 9 frMy| -+ |Brag IR M| kB, sep wayy.1 |5 mental changes in design choices afforded by distance associa-
1 o tivity, as mentioned in Section 1.
2 0 -5 Distance associativity is implemented by introducinfpa
. 1D, seg wayy1 || ward pointer completely decoupling distance placement from
3|Crag 9P fiMg) ... |Dtag 91 frmy Slg tag array placement. A forward pointer, which allows an entry
)
Ny

7 ;

in the tag array to point to an arbitrary position within the data

Forward pointer sn_Jbarrays, is a_dded for each entry in the tag array as shown in
from tag to data 0[cC, set wayp Figure 1. The figure shows a tag array with forward pointers for
N blocks (e.g., block A has a forward pointer to d-grgéame,).
Reverse pointer / s A tag match occurs in the same way as in a conventional set-
from data to tag - g,V associative cache with sequential tag-data access. However, the
k o

successful tag match now returns the hit signal and a forward
FIGURE 1: NuRAPID cache. pointer which is used to look up the data array. Because the tag

[7]. We then discuss bandwidth and timing issues. Finally, we &ray outputs the forward pointer in parallel with the tag, the

discuss optimizations and implementation simplifications for ©nly minimal impact on access speed is that the tag array is a

NURAPID. little wider than usual. While the tag match is still set associa-
tive (i.e., in an n-way cache, only n blocks within a set may be
2.1 Distance-Associative Placement present in the tag array), the data array is fully distance associa-

tive in that any number of blocks within a set may be placed in
The key to a successful memory system, whether a conven-a d-group.
tional cache hierarchy, D-NUCA, or NURAPID, is to place fre-
quently-accessed data where it may be accessed quickly. A2.2 Distance-Associative Replacement
conventional cache hierarchy attempts to meet this goal by ) )
placing recently accessed data in the fastest level (or all levels ~We establish a novel replacement policy for NURAPID that
when inclusion is maintained). complements the use of d-groups. Conventional caches are con-
To meet this goal, D-NUCA “screens” cache blocks to cerned only with data replacement, defined as the choice of
determine if they merit placement in the fastest d-group by ini- Which block to evict from the cache. Distance associativity
tially placing a block in the slowest d-group and then moving it adds a new dimension, dlstanc.e replacement, which coqcerns
to faster d-groups after additional accesses. (in D-NUCA terms, the replacement of a far block with a closer one. The key differ-
a d-group consists of the ways within a bank-set having the 8nce between data replacement and distance replacement is that
same latency.) This conservative screening process is necessafAta replacement involves evicting a block from the cache. Dis-
because space in the fastest d-group is quite limited. Unfortu-f@nce replacemenioes not evict any block from the cachert
nately, this conservative initial placement policy is costly in instéad swaps blocks within the cache. Conventional caches
both performance and energy. D-NUCA's placement policy couple replacement in the tag array to replacement in the data
requires that initial accesses are slow, and the repeated promo@Tay; it does not make sense in a conventional cache to replace
tion operations for a block cause high-energy swaps. data_l in one way with data from another, because all ways are
It would seem that initially placing a block in the fastest d- €duivalent. _
group (instead of the slowest) might alleviate both the perfor- ~ Because D-NUCASs tag and data placement are coupled, its
mance and energy problems for D-NUCA. However, this initial data replacement and distance replacemen_t poI|C|e_s are also
placement policy would require demoting a frequently- coupled. Both forms o_f replacement occur Wllhln.a single set,
accessed block within the same set to a slower d-group upornd both are accomplished by swapping blocks in a cache set
every cache miss. The tendency of individual sets to be “hot” that are in d-groups of adjacent-latencies. We call this policy
with many accesses to many ways over a short period makedubble replacement because it is like a bubble sort; frequently-
such a policy undesirable. In fact, [7] evaluates such an initial accessed blocks bubble toward the fastest set. Fo.r data replace-
placement policy and concludes that it is less effective. The set-Ment, bubble replacement means that D-NUCA evicts the block
associativity-coupled placement in D-NUCA makes space in N the slowest way of t_he set. The evicted block may not be the
the fastest d-group too valuable to “risk” on a block that may be set's LRU block. For distance replacement, bubble replacement
accessed only a few times. means that blocks must bubble all the way from the slowest to
NURAPID, in contrast to D-NUCA, can place blocks from fastest set before having fast access time, and vice-versa before
any number of ways within a set in any d-group. Because of €Viction. o
this flexibility, NURAPID can placell new cache blocks in the In contrast, NURAPID uses a completely flexible distance
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N-way Set-Associative Data Arrays N-way Set-Associative Data Arrays
frame # frame #
Tag Array o Tag Array o
0 = 0 =
set gvay-0 way-1 4| B, setway, |© set # Way-0 way-1 1| A sepway; |2
(@] (@]
0 Ziag 9PIfIMy| ... |5 S 0 Arag 9T frmy| - | 5
[=N
1 |Btag 9rpp frmy| 4 g 1 |Bag 9rpy frmy) . §
0 o |8 o |8
1 3 5 | (1) Aistobe initially placed in 1 3 5
Aoy |2 f5 | 0 | Bseivan |2 (&
Selected for data replacement (2) Z'is evicted from cache by
0 ~ conventional data replacement. 0 ~
o o
. = (3) B is selected to demote to =
Selected for demotion 1 % by distance replacement . B’s 1 %
2 S v B’s forward pointer updated. 2 S v
FIGURE 2: NURAPID replacement. (left) Before (4) A is placed in set 0 and distance-
placing block A. (right) After placing block A. group O.

replacement policy that is independent of data replacement. Inlocates the tag entry for each block. Figure 1 and Figure 2 show
distance replacement, when a block needs to be placed in othe reverse pointer for a block X as “sefy;". Each data frame
migrated to a d-group, another block currently in that d-group contains a reverse pointer that can point to any location within
is moved to a slower d-groupyen if the concerned blocks are the tag array, just as the forward pointer can point to any loca-
not in the same seDistance replacement has the advantage of tion within the data array. In Figure 2, we use B’s reverse
selecting the block to demote from among a large d-group (e.g.,pointer to locate the tag entry for block B and update B’s for-
a d-group may be 2-MB) while D-NUCA'’s choice is limited to  ward pointer. Much like the forward pointer, the data array out-
selecting from among the much smaller set (e.g., an 16-way orputs the reverse pointer in parallel with the data, the only
32-way set). Of course, data replacement is still necessary inminimal impact on access speed is that the data array is a little
NuRAPID (i.e., evicting data from the cache, not just a d- wider than usual.
group). However NURAPID completely decouples distance  The demotion is complete when block B is moved into the
replacement from data replacement. Consequently, the specifiempty frame (vacated by block Z) in d-group 1. If there had not
data replacement policy (e.g., LRU, random) maydiféerent been an empty frame in d-group 1, then distance replacement
from the specific distance-replacement policy, as described inwould have created space for block B within d-group 1 by
Section 2.4.2. demoting another block to d-group 2. Howewarno time does
We illustrate our distance replacement by means of andistance replacement evict a block from the cacbleon a
example in Figure 2. The cache has 3 d-groups, and d-group Gcache miss, conventional data replacement evicts a block from
is the fastest. A cache miss has occurred, and block-A is to bethe cache, creating an empty frame within some d-group. If the
placed in the cache. First, space must be created in the tag arragmpty frame is in d-group 0, which will occur if all members of
within the set for block A; therefore a block from As set, say a setare in d-group 0, the new block simply occupies that frame
block Z, is evicted from the cache using conventional data with no demotions necessary. If the evicted block was in a
replacement. This data replacement creates an empty frameslower d-group, demotions occur d-group by d-group until an
somewhere within one of the d-groups; in our example it hap- empty frame is filled by a demoted block. Once an empty frame
pens to be d-group 1. is filled, no additional demotions are necessary. In the worst
According to our placement policy (Section 2.1), the new case, where the block is evicted from the slowest of n d-groups,
block A is to be placed in d-group 0. Therefore, unless there is n-1 demotions will be required.
an empty frame within d-group 0, an existing block in d-group
0 must be replaced. Our distance replacement chooses a blocR.3 Distance-Associative Bandwidth and Timing
within d-group 0, which may or may not be in the same set as
block A. In the example, block B, a member of another set, is ~ The reduction in swaps for NURAPID compared to D-
chosen for demotion to d-group 1. NUCA significantly reduces bandwidth requirements. To pro-
Our policy chooses block B for distance replacement, but to Vide high bandwidth and allow many tag searches and swaps to
demote B to d_group 1’ we must update the forward pointer for occur Simultaneously, D-NUCA needS a multi'banked CaChe
block B to point to its new location. To do so, we must find the With full-fledged switched network among d-groups ([7] con-
tag entry for block B. In a conventional cache, the data array Siders designs without multibanking and network, and found
does not provide an explicit pointer to the tag array because thethem to be inferior). In contrast, NURAPID uses only one port
two are coupled and the mapping is implied. and is not banked, permitting only one operation to occur at a
To provide the location of the tag entry in the decoupled time. For example, any outstanding swaps must complete
NuRAP|D, we introduce geverse po|ntew|th|n the frame that before a new access is initiated. In Section 5.4 we show that
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because of greatly-reduced swaps and elimination of parallel (b)
tag searches, NURAPID’s performance is not hindered by the ——
reduced bandwidth. Thus, distance associativity fundamentally . .
changes the trade-offs by removing the artificial high-band- — processor | S«
width needs of D-NUCA, as mentioned in Section 1. . ;”
16 —
2.4 Optimizations and Simplifications d-group
— 2mB| 2
In this section, we discuss optimizations and simplifications d-group %‘*’
for NURAPID. These techniques reduce energy and hardware — 3 ©
complexity and improve NURAPID performance. (processor core) A
2.4.1 Distance Placement and Distance Replacement FIGURE 3: (a) NUCA 128 16-KB subarra
The distance placement and distance replacement policies distance-group
discussed in Section 2.1 and Section 2.2 assume that blocks are layout. (b) Example
I . floorplan for
initially placed into the fastest d-group and then demoted by  NURAPID.

distance replacement. Blocks were paamotedrom a slow to ~_ @
fast d-group. We call thisdemotion-onlypolicy.

Disallowing promotions may be undesirable because a fre-2.4.3 Restricting Distance Associativity
guently-accessed block may become stuck in a slow d-group. Section 2.1 and Section 2.2 assume that the forward pointer
To prevent this problem, we propose two optimizations that add in the tag array may point to any arbitrary cache block within
promotions to the basic distance replacement policy describedany d-group, and that the reverse pointer may point to any arbi-
in Section 2.2. In aext-fastespromotion-policy, when a cache trary tag-array-entry. This complete flexibility may result in
block in any d-group other than the fastest is accessed, we proundesirably large forward and reverse pointers.
mote it to the next-fastest d-group (correspondingly demoting  For example, in an 8-MB cache with 128B blocks, 16-bit
the LRU-block in the faster d-group). While the next-fastest forward and reverse pointers would be required for complete
policy may seem similar to bubble replacement within cache flexibility. This amounts to 256-KB of pointers. While only a
sets in D-NUCA, it is key to note that our promotions and 3% overhead compared to the total cache size, such overhead
demotions occur within large d-groups, not cache sets. Anmay be undesirable in some situations. (For reference, the 51-
alternative is théastestpromotion policy. In this policy, whena  bit tag entries for this 64-bit-address cache are a 5% overhead.)
cache block in any d-group other than the fastest is accessed, There are two considerations for the size of the forward and
we promote it to the fastest d-group (correspondingly applying reverse pointers. The first is that as block sizes increase, the
distance replacement if demoting other blocks). In addition to size of the pointers (in addition to the size of the tag array) will
the demotion-only policy, we evaluate both promotion policies decrease. Large caches are trending toward larger block sizes.

in Section 5.2. The second is that the pointer overhead can be substantially
reduced by placing small restrictions on data placement within
2.4.2 Data- and Distance-Replacement Policies d-groups. If our example cache has 4 d-groups, and we restrict

For data replacement, we use conventional LRU to select anplacement of each block to 256 frames within each d-group, the
individual block from a set for eviction from the cache. Dis- pointer size is reduced to 10 bits. Because of the advantages of
tance replacement must be handled differently because dNuRaPID, we believe the pointer overhead is acceptable.
groups are large and contain many cache blocks (e.g., 16384
cache blocks in a 2-MB d-group). Tracking true-LRU among 3 Layout
thousands of cache blocks is not comparable to tracking LRU
among a handful of ways in a cache as in data replacement. In this section, we discuss the data-array layout of large
While using LRU as the selection policy for distance replace- caches, whether conventional, NUCA, or distance associative,
ment is desirable for performance, its implementation may be into many subarrays, and explain why using a small number of
too complex. The size of LRU hardware is of &(in the num- large d-groups for data is also desirable from a layout stand-
ber of elements being tracked [12]. point. (The tag array is small and is not relevant to this discus-

Approximate-LRU can reduce the complexity but still may sion.)
be undesirable for large d-groups. Random replacement pro-
vides a simpler alternative but risks accidental demotion of fre- 3.1 Conventional Data Array Floorplan and Circuitry

guently-accessed blocks. Promotion policies such as next- )
fastest and fastest, discussed in the previous subsection, com- Large caches are made up of many SRAM subarrays to opti-

pensate for these errors by re-promoting those blocks. |nMize for access time, area, and energy consumption. For exam-

Section 5.3.1 we show that using random replacement over trud’€; the 3-MB L3 cache in the Itanium Il consists of 135
LRU for distance replacement has minimal impact on the per- Subarrays that are laid out approximately in an L shape [14].

formance of NURAPID. The block address is divided into a row address, determining
Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) CSFK/[PUQTER
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which rows of which subarrays contain the block, and a column 3.2 NUCA Data Arrays

address, determining which columns of that row contain the

block. When the cache is accessed, portions of the block are Unfortunately the best-performing NUCA is not amenable

read from many subarrays. Because the columns of each blocko these large cache design considerations. While [7] considers

are spread among several subarrays, column muxes aréeveral d-group sizes, the best-performing NUCA uses a large

required to reassemble the output into a complete block. number of small d-groups. For example, the 8-MB, 16-way
There are several reasons for spreading individual blocksNUCA has 128, 64-KB d-groups, as shown in Figure 3(a).

among several subarrays. First, if each subarray row were toEach of the d-groups is limited to a small number of block

contain bits from only one block, then the address row decodersaddresses, has its own tag, and must be accessed independently,

would be required to pinpoint the exact location of the block meaning blocks cannot be distributed in subarrays across the

within a specific row of a specific subarray before choosing a small d-groups. This restriction violates the considerations dis-

subarray, and the output of the subarrays would be wires thatcussed in Section 3.1. For example, a spare subarray cannot be

contain no selection logic. From a circuit standpoint, such large shared across blocks in different d-groups in NUCA, because

decoders or muxes are undesirable. For example, it is preferal) the d-groups do not share common row addresses, and 2) the

ble to have a 5-to-1 decoder and 2, 2-to-1 muxes over a singled-groups may have different access latencies.

10-to-1 decoder. Placing the contents of several blocks in each

subarray row distributes the task of identifying a block’s loca- 3.3 NURAPID Cache Data Arrays

tion between the address row decoders and the output column ) o )
MUXeS. To exploit the variation in access time between close and far

Second, distributing blocks among subarrays facilitates useSubarrays while retaining the advantages of distributing data
of spare subarrays to compensate for defects caused by har@Mong several subarrays, NURAPID uses a few large d-groups
errors. Spare subarrays are often included in a design to protectin contrast to NUCAs numerous small d-groups). An example
against hard errors. The L3 cache in the Itanium Il contains 2 floorplan for an 8-MB, 8-way, NuRAPID with 4 d-groups is
spare subarrays out of a total of 135 [14]. During chip testing, Shown in Figure 3(b). Each d-group in NuRAPID contains
defective subarrays are identified and permanently unmappedn@ny more subarrays than those in NUCA. We use a typical L-
from the cache using on-die fuses. If the selection logic is Shaped floorplan for NURAPID with the processor core in the
spread between the address row decoders and the output Cogngccuplgd corner. It sh_o_uld be noted that distance associativ-
umn muxes as discussed above, row decoders may point to botfY S not tied to one specific floorplan; many floorplans are pos-
defective and non-defective subarrays. The correct data is statiSiPle but all will have many subarrays and substantial wire
cally selected (with permanent fuses) usiogly the column ~ delays toreach distant subarrays. _
muxes, avoiding interference with the more complex address  While the advantages from Section 3.1 are retained, the
row decoders. This configuration also allows many blocks (that 1279 d-groups will have longer latencies than the smaller d-
share common row addresses) to share a small number of spar@oups in NUCA. However, the access latency of distant subar-
subarrays. rays is dominated by the Iong wires bgtween the subarrays and

Third, distributing blocks among subarrays helps reduce the € core. Therefore, many similarly-distant subarrays may be
chance of data corruption due to soft errors caused by alphafombined into one d-group which shares a large number of
particle strikes. Large caches often contain extra subarrays fo?!0ck addresses, column muxes, and data blocks, without sig-
error-correcting-code (ECC). If error-corrected data is physi- Nificantly compromising access time.
cally spread among several subarrays, it is less likely that an Because d-groups in NURAPID are larger than those of

alpha particle strike will corrupt more bits than are protected by NUCA, latency of the fastest d-group in NUuRAPID will of
ECC. course be longer than that of the fastest d-group in NUCA.

However, we show in Section 5.4 that the impact of the longer
latency is more than offset by the reduction in swaps.
Table 1: System parameters.

Issue width 8 4 Methodology
RUU 64 entries Table 1 shows the base configuration for the simulated sys-
LSQ Size 32 entries tems. We perform all our simulations for 70 nm technology,
L1 i-cache 64K, 2-way, 32 byte blocks, 3 cycle with a clock frequency of 5 GHz. Our base configuration has a
hit, 1 port, pipelined 1-MB, 8-way L2 cache with 11-cycle latency, and an 8-MB, 8-
(1 d-cache 64K 2-way, 32 byte blocks, 3 cydle way L3 cache, with 43jcycle_latency. Both havg 128-B blocks.
hit, 1 port, pipelined, 8 MSHRs We use the same configuration for L2 and L3 in our base case
' as used by [7] in their comparison with multi-level cache.
Memory latency 130 cycles + 4 cycles per 8 bytes For NUCA evaluation, we assume an 8-MB, 16-way D-
Branch predictor 2-level, hybrid, 8K entries NUCA L2 cache with 8 d-groups per set. This configuration is
Mispredict penaltyl 9 cycles the same as the one mentioned as the optimal configuration in
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Table 2: Example cache energies in nJ. We extend Wattch [1] and SimpleScalar [2] running the
Alpha ISA to simulate an out-of-order processor with different

Operation Energy cache organizations and obtain performance and energy statis-
Tag + access: closest of 4, 2-MB d-groups 0.42 tics. Because Wattch assumes a conventional uniform-access
Tag + access: farthest of 4, 2-MB d-groups (includes routjng ) 3.3 cache, we cannot use the Wattch energy model for caches. We
Tag + access: closest of 8, 1-MB d-groups 0.40 modify Cacti as described above to derive the energy consump-

tion for D-NUCA, NuRAPID, and conventional caches, taking

Tag + access. farthest of 8, 1-MB d-groups (includes routing) 4.6 into account the wire energy to route cache blocks from distant

Tag + access: closest 64-KB NUCA d-group 0.18 locations. For D-NUCA, we assume that the switched network
Tag + access: other 64-KB NUCA d-groups (includes rout{ngd.18-4.0 switches consume zero energy. For NURAPID, we consider
Access 7-bit-per-entry, 16-way NUCA smart-search array] ~ 0.19 both access timand energy overhead of forward and reverse

pointers, and include this overhead in our calculations. We

replace the Wattch energy model for all caches with our Cacti-

[7]. We model contention for d-group access (i.e., bank conten-derived model. We show representative numbers in Table 2. For
tion in [7] terminology) and allow an infinite-bandwidth chan- all other processor components, we use the Wattch energy
nel (switched network) for D-NUCA in our simulations. model.

We allow swaps and cache accesses to proceed simulta- Table 3 summarizes the SPEC2K applications used in our
neously regardless of channel contention, giving a bandwidthsimulations and shows their base IPC. Because this paper
advantage to D-NUCA. D-NUCA uses a smart-search array, focuses on lower-level caches, we are primarily interested in
which caches partial tag bits. We allow infinite bandwidth for applications with substantial lower-level cache activity. We cat-
the smart-search array. We model the smart-search array in Degorize the applications into two classes as shown in Table 3-
NUCA by caching 7 bits from each tag, as recommended by high load and low load - based on the frequency of L2
[7]. We use the least significant tag bits to decrease the probaaccesses. We show results for a subset of the applications that
bility of false hits in the smart-search array. We obtain latencies focuses on high load. Out of the remaining SPEC2K applica-
for each D-NUCA d-group and smart-search array from [7].  tions, 3 are high-load and 8 are low-load. Their behavior is sim-

We assume an 8-MB, 8-way NURAPID L2 cache with 4 d- ilar to that of the applications shown.
groups. We assume an L-shaped floorplan for NURAPID, as  For each application, we use ref inputs, fast-forward 5 bil-
shown in Figure 3(b). We assume a one-ported NuRAPID lion instructions, and run for 5 billion instructions. During the
which allows only one access to occur at a time, so that anyfast-forward phase, we warm-up both L1 and L2 caches.
outstanding swaps amongst d-groups must complete before a
new access is initiated. We modify Cacti [11] to derive the 5 Results
access times and wire delays for each d-group in NURAPID.

Because Cacti is not generally used for monolithic large caches In Section 5.1, we show that the latencies for larger d-
(e.g., greater than 4 MB), we make the following modifications: groups in NURAPID are higher than the average latencies for
1) Treat each of our d-groups (one to four MB) as independentsmaller d-groups in D-NUCA. Section 5.2 demonstrates that
(although tagless) caches and optimize for size and access timgYuRAPID outperforms set-associative placement or an L2/L3
2) Account for the wire delay to reach each d-group based onhierarchy and that distance-replacement optimizations result in
the distance to route around any closer d-groups using the RG considerable improvement over NURAPID with demotion-
wire-delay models in Cacti; and 3) Optimize our unified tag only policy. In Section 5.3, we show that random distance
array for access time. replacement performs almost as well as true-LRU and that the
variation in number of d-groups in NURAPID has both perfor-

Tag + access: 2 ports of low-latency 64-KB 2-way L1 cache 0.57

Table 3: SPEC2K applications and L2 accesses o
per thousand instructions. Table 4: Cache latencies in cycles.

Benchmark/Typd IPCi Accesse* Benchmark/Typ{E IFC Accdsses Capacity 2 d-groups$4 d-groups| 8 d-groups| D-NUCA
igh Load NUuRAPID | NURAPID | NURAPID | (average)*
1st MB (fastest)|| 19 14 12 4-9 (7
applu/FP | 0.9 42 lucas/FP 05| 37 zs:j MB( astes!) I 1 19 9 12( )11
0 -
apsilFP 1.3 18 mcf/Int 0.2| 188 3 MB 19 8 20 12 15( 111
art/FpP 0.4| 107 mgrid/FP 11| 23 4[h VB 19 18 31 15-18 (17)
equake/FP | 0.7 39 parser/lnt | 1.1| 15 p—ve - - = 18'21 (20)
galgel/FP [ 0.9 28 perl/int 1.0 28 Py 3 35 32 21-24 (23)
geelint 13 28 twolf/Int 10| 25 2
7th MB 43 44 48 24-27 (26)
Low Load 8th MB (slowest| 43 44 49 27-31 (29
. s -
hzip2 1.7 9 wupwise/FP | 2.¢ 10 (slowe =
o 1o 3 *Because D-NUCA's 64-KB d-groups are smaller than 1 MB, we

report the latency range and average latency for each MB.
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a: Set-Associative-placement b Distance-Associative placement than our d-group latencies for three reasons. First, D-NUCA

[ caceh hits in d-groupl Il cache hits in d-group 2 uses parallel tag-data access, not sequential tag-data access.
VA cache hits in d-group 3 and d-group 4 Bl cache misses Second, D-NUCA has small d-groups that allow fast access to
= 10 the closest d-groups. Third, D-NUCA assumes a more aggres-
S g 08 sive, rectangular floorplan than the L-shaped floorplan we
S8 06 assume for our d-groups. However, in the next sections we will
2 & 04 show that in spite of longer latencies for large d-groups, the
gﬁ 0.2 placement and distance replacement policies in NuRAPID
0.0 - e allow it to outperform D-NUCA.
> & 2 XS 2 EL I J LS
NE i&*@S? S ®Q®°\’§° ¢ Q*o@«*i@@@@& 5.2 Placement and Replacement Policy Exploration
FIGURE 4: Distribution of group accesses for set -
associative and distance-associative placement. 5.2.1 Set-Associative vs. Distance-Associative Placement

In this section, we compare the performance of set-associa-
tive cache placement to decoupled, distance-associative place-
ment in a non-uniform cache. We expect distance-associative
placement to have a greater fraction of accesses to faster d-
groups than set-associative placement.

Our comparison uses an 8-MB 8-way cache with 4 2-MB d-
groups. (Although 8-way with 8 d-groups is simpler to under-

In this section, we compare latencies of NuRAPID and D- stand, we use 4 d-groups because it is the primary configuration
NUCA. For an 8-MB NuRAPID, we show configurations of 2 used throughout the results.) Because this design is an 8-way
4, and 8 d-groups. We expect configurations with a few large d- cache with 4 d-groups, in the set-associative-placement cache,

groups to have longer latencies than those with many, small g-each cache b_Iock can map.to.either of 2 frames within.each d-
groups. group. For distance-associative placement, the location of a

Table 4 shows cache latencies for the various configurations.c@che block can be anywhere within any d-group. While the

The nth row shows the access latency of the nth fastest (and€t-associative cache uses LRU replacement, NuRAPID uses
closest) megabyte. The first three columns show d-group con-LRU for d.ata replacement and random f'or'dlstance replace-
figurations for NURAPID. For example, the third and fourth Ment. To isolate the effects of set-associative and d-a place-
row of the 4-d-group column have the same latency because thdnent,both caches initially place blocks in the fastest d-group,

third and fourth row are in the same 2-MB d-group. The laten- demote replaced blocks to the next slower d-group, and use the

cies for NURAPID are derived from Cacti [11] cache latencies N€Xt-fastest promotion policy. (In the next subsection, we show
for various capacities and also include 8 cycles for the 8-way the next-fastest promotion policy is best.) This set-associative

tag latency. (Recall from Section 1 that NuRAPID uses sequen-cache is similar to D-NUCAS best design with bubble replace-
tial tag-data access.) ment but with initial placement in the fastest d-group.

As expected, the larger d-groups have longer access laten- Figure 4 shows the fraction of cache accesses to each d-

cies than smaller ones. For example the fastest 1-MB d-group9rOUP and the fraction of cache misses. The x-axis shows our

in the 8-d-group configuration has a latency of only 12 cycles, applications with the average on the right. The black portion of

compared to a latency of 19 cycles for the fastest d-group in the€ach stacked bar represents the misses in the L2 cache. For the
2-d-group configuration. set-associative cache, an average of 74% of accesses hit in the

Two other behaviors are worth noting. First, as the number first d-group. In contrast, the flexible placement policy of
of d-groups increases, the latency of the slowest megabyteNURAPID results in 86% of accesses hitting in the first d-
increases even as the latency of faster megabytes decreased/0UP. The set-associative cache also makes 8% of accesses to

This behavior occurs because small, far d-groups are placed ifhe 1ast 2 d-groups, substantially more than NuRAPID’s 2%.
remote locations on the floorplan. The second behavior is that1his experiment illustrates the benefits of decoupled distance-

when there are many d-groups, some have similar latency@SSociative placement.
because they fit into the floorplan at about the same distance.

The fourth column in Table 4 shows latencies for the 8-MB, ; . ,
16-way, D-NUCA which is divided into 128, 64-KB d-groups. In this section, we evaluate the performance of the distance
Because each megabyte in D-NUCA contains many d_groups,replacement policies explained in Section 2.4.1. We use 4 d-
we report both the range of latencies and average latency forgrolups of 2"\:8 eacr;]fngN;%AplD' W\f;‘-Vuse randorr]n d(;gtance
each megabyte to facilitate comparison to our d-groups. When'eplacement for each 2 -group. Ve expect the distance
reporting latencies for D-NUCA, we report the latencies for replacement optimizations to improve performance over the

: ; . demotiononly policy.
each megabyte regardless of set mapping (i.e., the first mega="""__ o .
gany g pping ! g Figure 5 shows the distribution of accesses to different d-

byte contains different numbers of ways in different sets). .
D-NUCA's latencies for fast and slow d-groups are lower groups as a percentage of total L2 accesses for demotion-only,
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mance and energy implications. Section 5.4 shows that
NUuRAPID outperforms D-NUCA in most applications and
consumes less energy than both D-NUCA and the L2/L3 hier-
archy.

5.1 Cache Latencies

5.2.2 Distance Replacement Policy Exploration



a: Demotion-Only b: Next-Fastest c: Fastest

[ Group-1 accesses Il Group-2 accesses 71 Group-3 accesses Group-4 accesses Il Cache misses
1.0

0.8
0.6
04
0.2
0.0

Fraction of total
L2 accesses
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FIGURE 5: Distribution of group accesses for NURAPID policies.

next-fastest and fastest. The miss rates for NURAPID remain5.3 Design Sensitivity

the same for the three policies because, as mentioned in

Section 2.2, distance replacement does not cause evictions. In this section, we discuss the impact of distance replace-
Next-fastest and fastest result in more L2 hits to the nearestment policies and the number of d-groups on performance of

d-groups compared to demotion-only. On average, demotion NURAPID.

only, nextfastest and fastest result in 50%, 84% and 86% o

accesses to the first d-group respectively. Because demotiond-3.1 LRU approximation

only does not allow the demoted blocks to be promoted upon We compare the performance of random distance replace-

future accesses, frequently-accessed blocks often become studkent with true LRU. We do not show any graph here. The per-

in slower d-groups, thus decreasing the percentage of accessd§rmance gap between LRU and random distance replacement

to faster d-groups. Next-fastest and fastest solve this problem. is significant only for demotion-onlyA 4-d-group NURAPID,
Figure 6 compares the performance of different policies Using demotion-only and perfect-LRU has 64% first-group

with the baseline L2/L3 hierarchy. We also show the perfor- accesses on average. Random distance replacement has 54%

mance for an ideal case where every hitin NURAPID hits in the first d-group accesses on averagerandom policy increases

first d-group, resulting in a constant 14-cycle hit latency. The y- the chances of a frequently-accessed block being demoted.

axis shows the performance for demotion-only, next-fastest,Because demotion-only does not promote the blocks from

fastestand the ideal case relative to the base case performanceslower to faster d-groups, demoted blocks become stuck. In
The demotion-only policy performs slightly worse than the contrastrandom performs nearly as well as true-LRU for next-

base case, while the next-fastest and fastest policies outperfornfastest. On average, for next-fastesindom distance replace-

the base case and perform almost as well as the ideal case. Agient has 84% accesses in the first d-group. and LRU distance

shown in Figure 5, the percentage of accesses hitting in slowereplacement has 87% accesses in the first d-grBypgiving

d-groups for both next-fastest and fastest is snsal perfor- demoted blocks a chance to be promoted, the next-fastest pol-

mance near the ideal case is expected. On average, demotiorlCy compensates for errors in random distance replacement. For

only performs 0.3% worse as compared to the base case, anéhe remainder of the paper, all NURAPID results use random

the performance improvements for the next-fastest, fastest, andlistance replacement and next-fastest promotion policy.

ideal relative to the base case are?s,%.6%, and 7.9% respec- )

tively. On average, next-fastest and fastest perform within 98% 5-3.2 Number of distance-groups .

and 97% of the ideal case performance respectively. In this section, we compare results for NURAPID using 2, 4,
The next-fastest and fastest policies show more performance2nd 8 d-groups. We expect to see a performance trade-off

improvements for high-load applications than for low-load Petween the larger capacity of large, slow d-groups and the

applications. Both next-fastest and fastest show maximum!ower latency of small, fast d-groups. _

improvements for the high-load applicatiant. The distance Figure 7 shows the distribution of accesses to different d-

replacement optimizations distribute the large working set in

art in faster d-groups, resulting in 43% improvement for next-

fastest and 42% improvement for fast€3h average, next-fast-

est shows performance improvements of 6.9% and 1.7%, while %1.3 E E

fastest shows performance improvements of 6.6% and 1.3% for % 12F

the high-load and low-load applications respectively. Low-load 5

B Demotion-Only [ Next-Fastest [J Fastest W Ideal
14¢ ] B

2 : ) . L1it ]
applications provide less opportunity for a high-performance ©
L2 cache, lessening the effect of distance associativity on over- 10t E
all performace. & 09E Hl E
Because the next-fastest policy performs better than the fast- (g
est policy, we choose next-fastest as our optimal distance QQ\\\'QA} S ¥ & é’,%&fz? é,\&@ \@Q@& Q@\@? §» & géqé? ,3,";
| l dd how f T LKLY S F Y ELY E
replacement policy and do not show fastest any more. & ¥ ST v
High-Load Low-Load

FIGURE 6: Performance of NURAPID policies.

YF]',F.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) COMPUTER
0-7695-2043-X/03 $17.00 © 2003 IEEE SOCIETY



a: 2-d-group NuRAPID b: 4-d-group NuRAPID c: 8-d-group NuRAPID

10 [ D-group-1 accesses [Z2 Cache hits in d-group-2 and beyond Bl Cache misses
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FIGURE 7: Distribution of d-group accesses for NURAPIDs with 2,4 and 8 d-groups.

groups for 2-d-group, 4-d-group, and 8-d-group NURAPIDs. accesses are needed, the partial tag matches narrow the search.
The white portion of the stacked bars represent first-group Ss-performance uses the smart-search array to identify misses
accesses, the striped portion represents accesses to remainirgrly but still searches all d-groups. If no partial-tag-match
d-groups and black-portion represents misses. The bar for 4-d-occurs in the smart-search array, a miss can be initiated before
groups is the same as for next-fastest in Figure 5. accesses to the d-group tag arrays return. Recall also the infinite
On average, the 2, 4, and 8-d-group NURAPIDs have 90%, switched-network and smart-search bandwidth advantage we
85% and 77% accesses to the first d-group respectively. As thegive to D-NUCA (discussed in Section 4) and that D-NUCA is
capacity of individual d-groups decreases, the percentage ofmultibanked. In contrast, NURAPID is one-ported and non-
accesses to the fastest d-group also decreases. (Note that migsnked (Section 2.3).
rates are the same in all three cases because total cache capacity
is the same.) A substantial decrease in accesses to the fastest §-4.1 Performance
group occurs between 4 and 8 d-groups because many of our Figure 9 shows the performance comparison of 4-d-group
applications’ working sets do not fit in the 1-MB d-groups of and 8-d-group NuRAPIDs with D-NUCAs ss-performance
the 8-d-group NURAPID. In contrast, the decrease in accessegolicy. The black bars represent the performance of D-NUCA,
to the fastest d-group is smaller between 4 and 2 d-groups.  4-d-group NURAPID, and 8-d-group NuRAPID relative to the
Figure 8 shows the performance of 2, 4, and 8-d-group base case. The 4-d-group NURAPID and 8-d-group NUuRAPID
NuRAPIDs relative to the base case. The 4-d-group perfor- numbers are the same as those in Figure 8.
mance numbers are the same as the ones shown in Figure 6 for The 4-d-group and 8-d-group NuRAPIDs outperform D-
the next-fastest policy. The 2-d-group NURAPID shows only NUCA for most applications because the flexible placement
marginal improvement over the base case, whereas the 4- angolicy, reduced swaps, and elimination of ss-performance’s
8-d-group NURAPIDs significantly outperform the base case. parallel tag searches offset the longer latencies of the
On average, the 2-d-group, 4-d-group and 8-d-group NuRAP-NURAPID d-groups. The large bandwidth provided by the mul-
IDs perform 0.5%, 5.9% and 6.1% better than the base casdiple banks and switched network of D-NUCA is consumed by
respectively. The small increase in fastest-d-group accesses foboth frequent swaps and parallel tag searches on each access.
the 2-d-group NURAPID over the 4-d-group NURAPID does (We discuss swaps, which also relate to energy, in more detail
not offset the increased latency of the large, 4-MB d-groups.  in the next subsection.) The 4-d-group and 8-d-group NuRAP-
The 8-d-group results show that the higher latency of the IDs outperform D-NUCA by 2.9% and 3.0% respectively on
small d-groups does not offset their reduced capacity. Becauseverage and up to 15%. The performance improvement over the
the 8-d-group NURAPID has small, 1-MB d-groups, it incurs base case for D-NUCA, 4-d-group NuRAPID, and 8-d-group
2.2 times more swaps due to promotion compared to the 4-d-NURAPID are 2.9%, 5.9% and 6.0% respectively.
group NuRAPID, while performing only 0.2% better than the
4-d-group NURAPID. As we will see in the next section, the M 2 d-group A 4d-group O 8d-group
additional swaps substantially increase the energy of the 8-d- 14f ( ]
group NuRAPID.

(5]
S 13F E

©
5.4 Comparison with D-NUCA 12

S 11

In this section, we compare the performance and energy of 'ql>,

NUuRAPID and D-NUCA. For D-NUCA energy and perfor- &
mance, we use the ss-energy and ss-performance policiesﬁ 0.9
respectively, which were identified by [7] asparatelyoptimal 0.8
while we have aingledesign for NURAPID. Both of these pol-
icies use the smart search array mentioned in Section 4. Recall

1.0

that by default, D-NUCA searches for a cache blockweryd- High-Load Low-Load
group. Ss-energy accesses the smart search array while only  FIGURE 8: Performance of 2, 4, and 8-d-group
searching closest relevant d-group; if additional d-group NuRAPIDs.
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a: D-NUCA b: 4-d-group NURAPID  c: 8-d-group NuRAPID we show the average number of d-groups touched per cache

W Relative Performance (scale on left) (I Relative energy delay (scale on right) access. The bars represent cache energy (including the over-

2ol 110> heads discussed in Section 4) relative to the combined energy
820l | 1.o§ of the base L2 and L3 caches. We show both d-group accesses
S sl los3 and energy as their relationship is not. straightforward. (Fo'r
S5 los @ example, close and far q-groups have dnfferent access energies
Ll ||| ' ‘-'DJ due to wires as shown in Table 2, and in D-NUCA some d-
2 i i 0'45 group accesses do not return a block because a smart-search
% Ler i O'Z_g incorrectly targeted a d-group.) However, d-group accesses pro-
@ Lor 100= vide a guide to discussing energy comparisons. We expect

gi i 1 = NuRAPID to consume substantially less energy than D-NUCA

because of reduced d-group accesses and because D-NUCAs
placement policy causes many accesses to far, high-energy d-
groups.

High-Load Low-Load D-NUCA, 4-d-group, and 8-d-group NURAPIDs have an
FIGURE 9: Performance and energy-delay average of 3.1, 1.2, and 1.5 d-group accesses per cache access.
comparison of NURAPID and D-NUCA. The large difference between D-NUCA and NURAPID is due

For high-load applications, NuRAPID’s advantage is to reduced swaps required under the d-a placement policy. The
greater. The 4-d-group and 8-d-group NuRAPIDs outperform large reduction in d-group accesses for NURAPID dramatically
the base case by 6.9% and 7.1%, and D-NUCA by 3.1% andreduces bandwidth requirements, obviating the need for D-
3.3%. Low-load applications, with fewer L2 accesses, do not NUCAs switched network. The smaller reduction in accesses
benefit as much. An exceptionwaipwisewhich has little data ~ between the 4-d-group and 8-d-group NuRAPIDs occurs
reuse, preventing promotions (and fast accesses) in D-NUCA.because of reduced swaps. This reduction is due not to place-
For wupwisethe d-a placement policy allows the 4-d-group ment policy but rather to the 4-d-group NURAPID’s better cap-
NuRAPID to outperform D-NUCA by 6.1%. ture of the working-set, as described in Section 5.3.2. Relative

D-NUCA outperforms NuRAPID in four applications, to D-NUCA, the 4-d-group NURAPID performs particularly
applu, twolf perl, and bzip2 by 1.0%,2.9%, 2.7% and 2.9% well for applications shown in Section 5.2 to have the vast
respectivel. Applu, twolfand perl, despite being high-load majority of accesses to the fastest d-group and high L2 miss
applications, have small working sets, resulting in more fre- rates, such atucas, mgrid,and wupwise.For these applica-
guent fast accesses for D-NUCA. tions, D-NUCA's initial placement causes many swaps and

In [7] D-NUCA outperforms the base case by 9% for 70nm accesses to slow d-groups. In contrast, the 4-d-group NURAPID
technology compared to our value of 2.9%. However, for most initially places blocks in the fastest d-group, incurring few
applications those results were based on simulations runningswaps and accesses to slow d-groups.
only 200 million instructions which do not fill the 8-MB cache. When our energy models are applied, D-NUCA, the 4-d-
We run 5 billion instructions for all applications to simulate group NuRAPID, and the 8-d-group NURAPID have relative
cache activity more accurately. (We also ran simulations for the cache energies of 4.4, 0.96, and 1.81 compared to the base. The
same number of instructions as [7] and obtained results similar4-d-group NURAPID is clearly best. The many swaps required

to theirs.) to move blocks to the closest d-group greatly penalize D-
NUCA. To a lesser extent, swaps discussed earlier penalize the
5.4.2 Energy 8-d-group NURAPID, preventing net energy savings.

Figure 10 compares cache energy for the ss-energy D- Finally, considering both energy and performance we show
NUCA and the 4- and 8-d-group NURAPIDs. Below the bars, overall processorenergy-delayin the full-height bars of

El D-NUCA 4-d- group NURAPID [  8-d-group NuRAPID
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FIGURE 10: Cache energy comparison of NURAPID and D-NUCA.
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Figure 9. L2 energy is generally a small component of overall 3% on average and up to 15% while reducing L2 cache energy
processor energy (5%-10% or less), so we expect smallby 77%. NUuRAPID reduces processor energy-delay by 7%
changes in processor energy. Compared to the base case praompared to NUCA. The growth of wire delays in future tech-
cessor, D-NUCA, the 4-d-group NuRAPID, and the 8-d-group nologies makes NURAPID important for future processors.
NuRAPID have overall processor energy-delays of 1.0, 0.93,

and 0.94. The small performance advantage of D-NUCA is off- Acknowledgements
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