
Beating in-order stalls with “flea-flicker”∗two-pass pipelining

Ronald D. Barnes Erik M. Nystrom John W. Sias
Sanjay J. Patel Nacho Navarro Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

{rdbarnes, nystrom, sias, sjp, nacho, hwu}@crhc.uiuc.edu

Abstract

Accommodating the uncertain latency of load instructions
is one of the most vexing problems in in-order microarchi-
tecture design and compiler development. Compilers can
generate schedules with a high degree of instruction-level
parallelism but cannot effectively accommodate unantici-
pated latencies; incorporating traditional out-of-order exe-
cution into the microarchitecture hides some of this latency
but redundantly performs work done by the compiler and
adds additional pipeline stages. Although effective tech-
niques, such as prefetching and threading, have been pro-
posed to deal with anticipable, long-latency misses, the
shorter, more diffuse stalls due to difficult-to-anticipate,
first- or second-level misses are less easily hidden on in-
order architectures. This paper addresses this problem
by proposing a microarchitectural technique, referred to
as two-pass pipelining, wherein the program executes on
two in-order back-end pipelines coupled by a queue. The
“advance” pipeline executes instructions greedily, without
stalling on unanticipated latency dependences (executing
independent instructions while otherwise blocking instruc-
tions are deferred). The “backup” pipeline allows con-
current resolution of instructions that were deferred in the
other pipeline, resulting in the absorption of shorter misses
and the overlap of longer ones. This paper argues that this
design is both achievable and a good use of transistor re-
sources and shows results indicating that it can deliver sig-
nificant speedups for in-order processor designs.

1 Introduction

Modern instruction set architectures offer the compiler sev-
eral features supporting the enhancement of instruction-
level parallelism and the generation of aggressive sched-
ules for wide issue processors. Large register files grant the
compiler broad computation restructuring ability needed
to overlap the execution latency of instructions. Explicit

∗In American football, the flea-flicker offense tries to catch the de-
fense off guard with the addition of a forward pass to a lateral pass play.
Defenders covering the ball carrier thus miss the tackle and, hopefully, the
ensuing play.

control speculation features allow the compiler to miti-
gate control dependences, further increasing static schedul-
ing freedom. Predication enables the compiler to optimize
program decision and to overlap independent control con-
structs while minimizing code growth. In the absence of
unanticipated run-time delays such as cache miss-induced
stalls, the compiler can effectively utilize execution re-
sources, overlap execution latencies, and work around exe-
cution constraints [1]. For example, we have measured that,
when run-time stall cycles are discounted, the Intel refer-
ence compiler can achieve an average throughput of 2.5 in-
structions per cycle (IPC) across SPECint2000 benchmarks
for a 1.0GHz Itanium 2 processor.

Run-time stall cycles of various types prolong the execu-
tion of the compiler-generated schedule, in the noted exam-
ple reducing throughput to 1.3IPC. This paper focuses on
the majority of those stall cycles—those that arise due to a
load instruction missing in the data cache, when a load’s re-
sult does not arrive in time for consumption by its consumer
instruction, triggering an interlock. Cache miss stall cycles
are significant in the current generation of microprocessors
and are expected to increase as the gap between processor
and memory speeds continues to grow [2]. Achieving high
performance in any processor design requires that they be
mitigated effectively.

There are two important issues with data stall cycles.
First, the run-time occurrence of data cache misses is in
general hard to predict at compile time. Compilers can at-
tempt to schedule instructions according to their expected
cache miss latency; such strategies, however, fail to capital-
ize on cache hits and can over-stress critical resources such
as machine registers. Second, when a data stall arises, it is
desirable to overlap the data stall cycles with other data stall
cycles as well as computing cycles. This requires the abil-
ity to defer the execution of an instruction waiting for its
data while allowing other load and compute instructions to
proceed. Contemporary out-of-order designs rely on reg-
ister renaming, dynamic scheduling, and large instruction
windows to provide such concurrency.

Although these out-of-order execution mechanisms ef-
fectively hide data cache miss delays, they replicate, at
great expense, much work done by the compiler. Regis-

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

ter renaming duplicates the effort of compile-time regis-
ter allocation. Dynamic scheduling repeats the work of
the compile-time scheduler. These mechanisms incur ad-
ditional power consumption, add instruction pipeline la-
tency, reduce predictability of performance, complicate
EPIC feature implementation, and occupy substantial ad-
ditional chip real estate.

Attempting to exploit the efficiencies of EPIC compi-
lation and an in-order pipeline design while avoiding the
penalty of cache miss stalls, this paper proposes a new mi-
croarchitectural organization employing two in-order sub-
pipelines bridged by a first-in-first-out buffer (queue). The
“advance” sub-pipeline, referred to as the A-pipe, executes
all instructions speculatively without stalling. Instructions
dispatching without all of their input operands ready, rather
than incurring stalls, are suppressed, bypassing and writing
specially marked non-results to their consumers and desti-
nations. Other instructions execute normally. This propa-
gation of non-results in the A-pipe to identify instructions
affected by deferral is inspired by EPIC control speculation
work [3]. The “backup” sub-pipeline, the B-pipe, executes
instructions deferred in the A-pipe and incorporates all re-
sults in a consistent order. This two-pipe structure allows
cache miss latencies incurred in one pipe to overlap with in-
dependent execution and cache miss latencies in the other
while preserving in-order semantics in each.

This paper presents the design and evaluation of the flea-
flicker two-pass pipelining model. We argue that two-pass
pipelining effectively hides the latency of near cache ac-
cesses (such as hits in the L2 cache) and provides substan-
tial performance benefit while preserving the most impor-
tant characteristics of EPIC design. This argument is sup-
ported with simulations of SPEC95 and SPEC2000 bench-
marks that characterize the prevalence and effects of the
targeted latency events, demonstrate the effectiveness of the
proposed model in achieving concurrent execution through
these events, and inform the design decisions involved in
building two-pass systems.

2 Motivation and case study

Before elaborating on the proposed microarchitectural ex-
tensions, it is useful to delineate the opportunities we
hope to exploit with the help of a case study in a mod-
ern instruction-set architecture, the Intel Itanium Architec-
ture. The Itanium Architecture defines a medium in which
the compiler can produce an expression of program paral-
lelism suitable for execution on a particular machine. This
is achieved using a wide-word encoding technique in which
groups of instructions intended by the compiler to issue to-
gether in a single processor cycle are delimited explicitly
in the instruction encoding. Thus, the program encoding
generated by the compiler is not a general specification of

available parallelism, but rather a particular implementation
within that constraint. In Itanium, these groups are sep-
arated by variably-positioned “stop bits.” All instructions
within an “issue group” are essentially fused with respect
to dependence-checking [4]. If an issue group contains an
instruction whose operands are not ready, the entire group
and all groups behind it are stalled. This design accommo-
dates wide issue by reducing the complexity of the issue
logic, but introduces the likelihood of “artificial”1 depen-
dences between instructions of unanticipated latency and
instructions grouped with or subsequent to their consumers.

Not surprisingly, therefore, a large proportion of EPIC
execution time is spent stalled waiting for data cache misses
to return. When, for example, SPECint2000 is compiled
with a commercial reference compiler (Intel ecc v.7.0) at
a high level of optimization (-O3 -ipo -prof use) and ex-
ecuted on a 1.0GHz Itanium 2 processor with 3MB of L3
cache, 38% of execution cycles are consumed by data mem-
ory access-related stalls. Furthermore, depending on the
benchmark, between 10% and 95% of these stall cycles
are incurred due to accesses satisfied in the second-level
cache, despite its having a latency of only five cycles. As
suggested previously, the compiler’s carefully generated,
highly parallel schedule is being disrupted by the injection
of many, short, unanticipated memory latencies. The two-
pass design absorbs these events while allowing efficient
exploitation of the compiler’s generally good schedule.

Figure 1 shows an example from one of the most signif-
icant loops in the SPECint2000 benchmark with the most
pronounced data cache problems, 181.mcf. The figure, in
which each row constitutes one issue group and arrows in-
dicate data dependences, shows one loop iteration plus one
issue group from the next. In a typical EPIC machine, on
the indicated cache miss stall caused by the consumption
of r42 in group 1, all subsequent instructions (dotted box)
are prevented from issuing until the load is resolved, al-
though only those instructions enclosed in the solid box
are truly dependent on the cache miss. (Since the last of
these is a branch, the instructions subsequent to the branch
are, strictly speaking, control dependent on the cache miss,
but a prediction effectively breaks this control dependence.)
An out-of-order processor would begin the processing of
instructions such as the load in slot 3 of group 1 during
the miss latency, potentially overlapping multiple cache
misses. To achieve such economy here, however, the com-
piler must explicitly schedule the code in such a way as
to defer the stall (for example, by moving the consuming
add after the load in slot 3 of group 1). In general, the
compiler cannot anticipate statically which loads will miss
and when. A limited degree of dynamic execution could
easily overcome this problem, but too high a degree, in ad-

1These dependences are artificial in the sense that they would not be
observed in a dependence-graph based execution of the program’s instruc-
tions, as in an out-of-order microprocessor.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

adds r40 = 88, rr1

add rr0 = r42, rr0

cmp.le.unc p16 = rr0, r54

(p16) cmp.lt.unc p17 = r41, r51

adds r43 = 104, rr1

ld8 r40 = [r43]

ld8.s rr0 = [r40] cmp.ne.unc p18 = r0, r40

ld8 rr0 = [r45]

adds r45 = 40, r40

adds r44 = 112, rr0

ld8 r42 = [r44]

ld8.s rr2 = [r40]

sub r41 = 30, rr2

add rr2 = r41, r52 (p17) br.cond.dpnt .L142# (p18) br.wtop.sptk .L31#

STALL

MISS

adds r40 = 88, rr1 adds r43 = 104, rr1ld8 rr0 = [r45]ld8 r42 = [r44]

slot 0 slot 1 slot 2 slot 3 slot 4

0

1

2

3

4

Figure 1: Cache miss stall and artificial dependences

dition to unnecessarily complicating the design, would ren-
der an efficient implementation of EPIC features difficult to
achieve. Even register renaming, a standard assumption of
out-of-order design, very substantially complicates the im-
plementation of predicated execution, a fundamental fea-
ture of EPIC design [2].

Run-ahead pre-execution is one type of limited dynamic
execution mechanism, in which instructions subsequent
to the stalling instruction are executed during the stall to
prepare microarchitectural state for more efficient execu-
tion of future instructions. Initial experiments using our
baseline EPIC pipeline (see Section 4) and an idealized
checkpointing-based pre-execution mechanism (synthesiz-
ing the ideas proposed by Dundas [5] and Mutlu [6]) re-
vealed that a run-ahead approach could capitalize on near-
misses, if it could be implemented in a way that did not im-
pact the efficiency of the EPIC paradigm. We now present
an implementation that, we believe, most efficiently pro-
vides the benefits of run-ahead in an EPIC context.

3 The two-pass pipeline scheme

The proposed two-pass pipeline scheme is designed to al-
low, during the memory stall cycles observed in traditional
in-order pipelines, the productive processing of indepen-
dent instructions. Figure 2(a) shows a snapshot of instruc-
tions executing on a stylized representation of a general in-
order processor, such as Intel’s Itanium or Sun’s SPARC. In
the figure, the youngest instructions are at the left; each col-
umn represents an issue group. A dependence checker de-
termines if instructions have ready operands and are there-
fore ready to be dispatched to the execution engine. If
any instruction is found not to be ready, its entire issue
group is stalled. The darkened instructions in the depen-
dence checker and incoming instruction queue are depen-
dent on the stall, as indicated by arrows; the light-colored
instructions, on the other hand, are dataflow-independent
but nonetheless stymied by the machine’s issue group stall
granularity.

Figure 2(b) shows our proposed alternative. Here, when
an instruction is found not to be ready in the dependence
check, the processor, rather than stalling, marks the in-
struction and all dependent successors (as they arrive) as
deferred instructions. These are skipped by the first (A) ex-
ecution engine. Subsequent independent instructions, how-
ever, continue to execute in engine A. Deferred instruc-
tions are queued up for processing in the second (B) engine,
which does stall when operands are not ready. Between the
engines, instructions shown as blackened have begun exe-
cution; execution of the remaining instructions has been de-
ferred in the A engine due to unavailable operands. These
execute for the first time in the B engine, when their
operands are ready. The B engine also incorporates into
architectural state the results of instructions previously re-
solved in A. In the case of long- or undetermined-latency
instructions, such as loads, an instruction begun in the A
engine may not be finished executing when its results are
demanded in B; in this case, B must stall until the in-
struction completes. This situation is handled through the
coupling mechanism to be described in the next section.
This arrangement effectively separates the execution of the
program into two concurrently executing streams: an “ad-
vance” stream, comprised of instructions whose operands
are readily available at the first dispatch opportunity, and a
“backup” stream, encompassing the remainder. This sec-
tion describes the proposed pipeline scheme in detail, fo-
cusing on the management of the two streams to maintain
correctness as well as to maximize concurrency.

3.1 Basic mode of operation

Figure 3 shows a potential design of the proposed mech-
anism as applied to an architecture similar to Intel’s Ita-
nium2. The reader will note marked similarities between
the front end and architectural pipeline and the pipeline of

2Although the proposed pipeline scheme is described in the context of
implementing the Intel Itanium Architecture, it could be applied similarly
to other typically in-order architectures such as SPARC, ARM, and TI
C6x.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Dep
Checker

Execution
Engine

Front
End

Retired
Instructions

Incoming
Instructions

Execution stalled

Dep
Checker A

Execution
Engine A

Front
End

Incoming
Instructions

Load misses in cacheDependent instructions marked for deferral

Dep.
Checker B

Execution
Engine B

Retired
Instructions

Queued
Instructions

Dependent instructions

Instructions skipped in A
to be executed in B

Engine A operates without stalling by skipping unready ops
Engine B stalls as

necessary

Issue group

a)

b)

Load misses in cache Instruction

Load missing in
cache

Stall-dependent
instruction

Completed
instruction

Executing
instruction

Figure 2: Snapshot of execution: (a) original EPIC processor; (b) two-pass pipeline.

an Intel Itanium 2 microprocessor [4]. The remaining por-
tions of the figure show the additions necessary to imple-
ment the proposed two-pass pipeline scheme. The front end
portion (Instruction Pointer Generation, bundle ROTation,
bundle EXPansion, and instruction DECoding) prepares
instructions for execution on the several functional units of
the execution core.

The speculative pipeline in Figure 3, referred to as the
A-pipe, executes instructions on an issue group by issue
group basis. Operands are read from the register file or by-
pass network in the REGister read stage. An in-order ma-
chine stalls in this stage if the current issue group contains
instructions with unready operands, often as the result of
outstanding data cache misses. In a typical machine, these
stalls consume a large fraction of execution cycles. In the
proposed two-pass scheme, rather than stall on unready in-
structions, the REG stage continues to process subsequent
instructions by suppressing the deferred instructions and
their data dependent successors. Any subsequent, indepen-
dent instructions are allowed to execute (EXE), detect ex-
ceptions and mispredictions (DET), and write their register
results in the A-file (WRB).

The portion of Figure 3 referred to as the B-pipe com-
pletes the execution of those instructions deferred in the A-
pipe and integrates the execution results of both pipes into
architectural updates. The A and B pipes are largely de-
coupled (e.g. there are no bypassing paths between them),
contributing to the simplicity of this design. The B-pipe
stage DEQ receives incoming instructions from the Cou-

pling Queue (CQ), as shown in Figure 3. The coupling
queue receives decoded instructions as they proceed, in-
order, from the processor front end. When an instruction
is entered into CQ, an entry is reserved in the Coupling Re-
sult Store (CRS) for each of its results (including, for stores,
the value to be stored to memory). Instructions suppressed
in the A-pipe are marked as deferred in CQ and their cor-
responding CRS entries are marked as invalid. The B-pipe
completes the execution of these deferred instructions.

When, on the other hand, instructions complete nor-
mally in the A-pipe, their results are written both to the
A-file (if the target register has not been reused) and to
the CRS. These “precomputed” values are incorporated in
the merge (MRG) stage of the B-pipe, to be bypassed to
other B-pipe instructions and written into the architectural
B-file as appropriate. Scoreboarding on CRS entries han-
dles “dangling dependences” due to instructions that begin
in the the A-pipe but are not complete when they reach the
B-pipe through the coupling queue. These instructions are
allowed to dispatch in the B-pipe, but with scoreboarded
destinations, to be unblocked when results arrive from the
A-pipe. Through this mechanism, the need to re-execute
(in the B-pipe) instructions successfully pre-executed (or
even pre-started) in the A-pipe is relieved. This has two ef-
fects: first, it reduces pressure on critical resources such as
the memory subsystem interface; second, since these pre-
executed instructions are free of input dependences when
they arrive in the B-pipe, an opportunity for height reduc-
tion optimizations is created. In one simulated design, the

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

IPG ROT

In
s

tr
uc

tio
n

B
u

ffe
r

EXP DEC REG EXE DET WRB

Bypass

Speculative
Register File

“A-file”

Coupling Queue

L2
TLB

L2
WRB

L2
PIPE

Bypass

Architectural
Register File

“B-file”

L2
TLB

L2
WRB

L2
PIPE

FP1
FP

WRB
FP

PIPE

DynID
ALATSpeculative

Store Buffer

Front End A-pipe B-pipe

Update Queue

Reg Value DynID

Value V S DynID

Shared front end

Speculative “Advance” pipe

Architectural “Backup” pipe

Coupling mechanisms

Coupling
Result
Store

REG
EXE

DET WRB
MRG

DEQ

Figure 3: Two-pass pipeline design.

B-pipe dispatch logic re-groups (but does not reorder) in-
structions as they are dequeued, so that adjacent, indepen-
dent instruction groups available at the end of the queue
issue together, as machine resources allow. The experi-
mental results (Section 4) indicate the potential benefit of
instruction regrouping by removing stop bits rendered un-
necessary by instruction pre-execution.

As an example of the concurrency exposed by the two-
pass technique, Figure 4 shows four successive stages of
execution of the code of Figure 1 on the two-pass system.
Instructions flow in vertical issue groups from the front end
on the left into the A-pipe and coupling queue, and then
into the B-pipe. In Figure 4(a), a load issues in the A-pipe
and misses in the first-level cache. In (b), a dependent in-
struction dispatches in the A-pipe. Since its operands are
not ready, it is deferred and marked as such in the queue. A
typical EPIC pipeline would have stalled issue rather than
dispatch this instruction. In (c), an additional dependent in-
struction is marked and a second cache miss occurs in the
A-pipe. The concurrent processing of the two misses is en-
abled by the two-pass system. Finally, in (d), two groups
have retired from the A-pipe and re-execution has begun
in the B-pipe. Many pre-executed instructions assume the
values produced in the A-pipe, as propagated through the
coupling result store. The original cache miss, on the other
hand, is still being resolved, and the inherited dependence
causes a stall of the B-pipe. During this event, provided
there is room in the coupling queue and result store, the
A-pipe is still free to continue pre-executing independent
instructions.

The coupling queue plays the important role of allowing
instructions to wait for their operands without blocking the
A-pipe. Based on empirical observations, the queue size
was set to 64 instructions. The results were not particularly
sensitive to reasonable variations in this parameter.

3.2 Critical design issues

Ensuring correctness and efficiency in the two-pass design
requires the careful consideration of a number of issues.
Chief among these is the fact that the B-pipe “trusts” the
A-pipe in most situations to have executed instructions cor-
rectly; that is, the B-pipe does not confirm or re-execute
instructions begun in the A-pipe, but merely incorporates
their results. First, this entails that the A-pipe must accu-
rately determine which instructions may be pre-executed
and which must be deferred and must ensure that the A-
file contains correct values for valid registers, even though
write-after-write (WAW) stall conditions and other con-
straints typical to EPIC systems have been relaxed. Sec-
ond, the proper (effective) ordering of loads and stores must
be maintained, even though they are executed partially in
the A-pipe and partially in the B-pipe. Finally, as the new
pipe includes two stages at which the correct direction of a
branch may be ascertained, the misprediction flush routine
needs to be augmented. The following sections investigate
these issues in detail.

3.3 Maintaining the A-file

The A-file, a speculative register file, operates in a man-
ner somewhat unconventional to in-order EPIC designs, as
delinquent instructions can write “invalid” results and as
WAW dependences are not enforced by the A-pipe through
the imposition of stalls (this is legitimate only because the
B-file is the architectural one). Each register in the A-file
is accompanied by a “valid” bit (V), set on the write of
a computed result and cleared in the destination of an in-
struction whose result cannot be computed in the A-pipe; a
“speculative” bit (S), set when an A-pipe instruction writes
a result and reset when an update from the B-pipe arrives;
and “DynID,” a tag indicating the ID of the last dynamic in-

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

a) b) d)c)
Coupling Queue B-pipe

A-pipe

load miss

Coupling Queue B-pipe

A-pipe

instruction
not ready

A-pipe

B-pipeCoupling Queue

Instruction Load
Load miss

Miss-dependent instr.
Operation deferred

Result fwd. from pre-execution
Dependence stallBranch

B-pipe stalls
until load delivers

to CRS

Coupling Queue

A-pipe

B-pipe

second load
miss started

deferred
instructions
will execute

in B-pipe

A-pipe
continues

Figure 4: Applying two-pass pipelining to the previous 181.mcf example.

struction to write the register, sufficiently large to guarantee
uniqueness within the machine at any given moment. The
V bit supports the determination in the A-pipe of whether
an instruction either has all operands available, and there-
fore may execute normally, or relies on an instruction de-
ferred into the B-pipe, and therefore must also be deferred
to the B-pipe. The S bit marks those values written by
the A-pipe but not yet committed by the B-pipe. All data
marked as such is speculative, since, for example, a mis-
predicted branch might resolve in the B-pipe and invali-
date subsequent instructions in the queue and the A-pipe,
including ones that have already written to the A-file. This
bit supports a partial update of the A-file as an optimiza-
tion of the B-pipe flush routine, as discussed later. Finally,
the dynamic ID tag (DynID) serves to allow the selective
update of the A-file with results of retiring B-pipe instruc-
tions. An entry can be updated by a B-pipe retirement only
if its outstanding invalidation was by the particular instruc-
tion retiring in the B-pipe on its deferral in the A-pipe.

3.4 Preserving a correct and efficient
memory interface

Since the two-pass model can allow memory accesses to
be performed out-of-order, the system must do some book-
keeping, beyond what is ordinarily required to implement
consistency semantics, to preserve a consistent view of
memory. To make a brief presentation of this issue, we con-
sider representative pairs of accesses which end up having
the same access address, but where program order is vio-
lated by the deferral of the first instruction to the B-pipe.
Consider α to indicate an instruction which executes in the
A-pipe and β one which executes in the B-pipe. Three de-
pendence cases are of interest, as follows. Seemingly vio-

lated anti-dependences ld[addr]β
A→ st[addr]α and output

dependences st[addr]β
O→ st[addr]α are resolved correctly

due to the fact that loads and stores executing in the B-pipe
do so with respect to architectural state and that stores exe-

cuting in the A-pipe do not commit to this state, but rather
write only to a speculative store buffer (an almost ubiqui-
tous microarchitectural element), for forwarding to A-pipe
loads. When A-pipe stores reach the B-pipe their results
are committed, in order with other memory instructions, to
architectural state.

Preserving a flow dependence st[addr]β
F→ ld[addr]α

requires more effort. As indicated earlier, the general as-
sumption is that instructions executed in the A-pipe either
return correct values or are deferred. If, in the A-pipe, the
store has unknown data but is to a known address, the mem-
ory subsystem can defer the load, causing it to execute cor-
rectly in the B-pipe, after the forwarding store. If, however,
the store address is not known in the A-pipe, it cannot be
determined in the A-pipe if the value loaded should have
been forwarded or not. If a load executes in the A-pipe
without observing a previous, conflicting store, the B-pipe
must detect this situation and take measures to correct what
(speculative) state has been corrupted. Fortunately, a device
developed in support of explicit data speculation in EPIC
machines, the Advanced Load Alias Table (ALAT) [7, 8]
can be adapted to allow the B-pipe to detect when it is
possible for such a violation to have occurred (since all
stores are buffered, memory has not been corrupted). The
Alpha 21264 [9], much in the same way, used a content-
addressable memory to detect when a load dynamically re-
ordered with a conflicting store.

Ordinarily, an advanced load writes an entry into an
ALAT, a store deletes entries with overlapping addresses,
and a check determines if the entry created by the advanced
load remains. Here, loads executed in the A-pipe create
ALAT entries (indexed by dynamic ID rather than by des-
tination register), stores executed in the B-pipe delete en-
tries, and the merger of load results into the B-pipe checks
the ALAT to ensure that a conflicting store has not inter-
vened since the execution of the load in the A-pipe. If
such a store has occurred, as indicated by a missing ALAT
entry, corrupted speculative state must be flushed (con-
servatively, all instructions subsequent to the load and all

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

marked-speculative entries in the A-file), the A-file must
be restored from the architectural copy, and execution must
resume with the offending load. Since this can have a detri-
mental performance effect, the experimental results section
presents material indicating the frequency of these events.
It should also be noted that this ALAT is distinct from
any architectural ALAT for explicit data speculation, and
that, because of its cache-like nature, the ALAT carries the
(small) possibility of false-positive conflict detections.

3.5 Maintaining the A-pipe success rate

Since an instruction gets only a single chance at pre-
execution in the A-pipe, a deferred instruction and all
its dataflow successors (until an update arrives from the
B-pipe) will fully expose any stalls associated with the
consumption of their results. In other words, the two-
pass scheme provides one “second chance” to expose ILP;
for these instructions, that chance has been lost. Fig-
ure 5 shows a dependence-graph representation of five is-
sue groups to illustrate this limitation. After the cache miss
caused by load instruction A, execution is not stalled with
the arrival of consumer C. Rather, C is forwarded for execu-
tion to the B-pipe along with all its dataflow successors. In-
struction D is thus allowed to begin execution in the A-pipe.
The result is an overlapping of the miss latencies A→C and
D→H. When the subsequent instruction F, executing in the
B-pipe, also misses in cache, however, execution of the B-
pipe is stalled at instruction J, resulting in the serialization
of the latencies of instructions F and K. As a result of this
limitation, one can consider the deferral of any unknown-
latency instruction to the B-pipe to be something of a lia-
bility. Each pair of stalls in the deferred dependence chain
of this instruction that are serialized by in-order semantics
will be serialized in execution since there is no subsequent
pipe to which to defer. Typically this is no worse than if
we had a single pipeline; however, when such an instruc-
tion leads to the detection of a branch misprediction perfor-
mance may suffer, since the two-pass scheme adds to the
B-pipe branch misprediction penalty compared to a tradi-
tional in-order pipeline.

One means of dealing with this limitation is to en-
sure timely updates of corrected state (and corresponding
V-bits) from the architectural (B) register file to the A-
file. This allows dependent instructions to get the correct
operands and execute in the A-pipe. The DynID tag on
each A-file register allows this update, as described in Sec-
tion 3.3. In our initial design, every retirement in the B-pipe
attempts to update the A-file. Since these updates may con-
tend with retiring instructions in the A-pipe for A-file write
ports, a buffer is provided, as shown in Figure 3. Since
whenever a decision is made to defer the execution of an
instruction to the B-pipe, it will not write the A-file, the
bandwidth required is not expected to be much higher than

Misses processed in
parallel since each is split
between A and B pipes

Misses processed serially
since both consummated
in B-pipe

41

4

A

B-pipe
instruction

Stall

A-pipe
instruction

1 1

4 1

1 1

4 1

D E

B

I

1

2

3

4

5

Issue Group

C

F G H

J K

L M

Figure 5: Limitation on overlap of latency events.

in a traditional EPIC design. As the V-bits of these deferred
instructions’ destination registers in the A-file are cleared
at dispatch time, the V-bits on these registers will defer all
consumers until an update arrives from the B-pipe.

Additionally, it may be useful to constrain the deferral
of instructions by the A-pipe. If very little actual execution
is occurring in the A-pipe (most instructions are being de-
ferred), allowing the A-pipe to continue to run ahead may
simply accumulate a large number of unexecuted instruc-
tions in the coupling queue—instructions which will cause
non-overlappable stalls when executed. At some point,
flushing instructions out of the queue and restarting the A-
pipe issue after the B-pipe has cleared some of the backlog
may be preferable to accumulating a long sequence of de-
ferred instructions. This is a matter for future investigation.

3.6 Managing branch resolution

Constructing a two-pass pipeline results in two stages
where branch mispredictions can be detected: A-DET and
B-DET, shown as the DET stages of the A-pipe and the
B-pipe in Figure 3. A conditional branch has subtly dif-
ferent execution semantics from other instructions in the
A-pipe. When the direction of a branch cannot be com-
puted in the execution stage of the A-pipe, the mispredict
detection of the branch and not the effect of the branch it-
self is deferred to the B-pipe. This is implicit in the de-
sign of the pipelined machine, since the branch prediction
has already been incorporated into the instruction stream
in the front end. When a branch misprediction is detected
“early” in A-DET, there is no need to stall the B-pipe un-
til it “catches up” to the A-pipe by emptying the coupling
queue. Any subsequent instructions present in the coupling
queue, if any, must be invalidated, but otherwise fetch can
be redirected and the A-pipe restarted as if the B-pipe were
not involved. This can result in a reduction in observable
branch misprediction penalties.

When mispredicted branches depend on deferred in-
structions for determination of either direction or target,

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

however, the misprediction cannot be detected until the B-
DET stage. In this case, the A-file may have been pol-
luted with the results of wrong-path instructions beyond the
misprediction. Consequently, all subsequent instructions in
both the A-pipe and the B-pipe must be flushed, all cor-
rupted state in the A-file must be repaired from the B-file,
and fetch must be redirected. The “speculative” flags in the
A-file reduce the number of registers requiring repair: only
the A-file entries marked as speculative need to be repaired
from B-file data. As this procedure somewhat lengthens the
branch misprediction recovery path for these instructions,
performance may be degraded if too many misprediction
resolutions are delayed to the B-pipe. Alternatively, one
could employ a checkpoint repair scheme to enable faster
branch prediction recovery at a higher register file imple-
mentation cost [10]. Various invalidation or A-file double-
buffering strategies could also be applied.

3.7 Assessing the implementation cost

The actual execution pipelines of a typical, contemporary
microprocessor consume only a small fraction of the chip’s
transistor count. For example, the Intel Itanium 2 integer
pipeline and integer register file together consume an aver-
age of less than five percent of the total chip power and oc-
cupy less than two percent of the total chip area [11]. Even
considering the relatively substantial additional overhead
of things like pipeline control and clock distribution, the
cost of two-pass pipelining appears reasonable. Addition-
ally, our two-pass pipeline design requires relatively little
interaction (e.g. no bypassing) between the two pipelines,
resulting in minimal global complexity.

Nonetheless, it may not be desirable to replicate all func-
tional units in both pipelines. As examples, the floating-
point subpipeline would be a significant fraction of the
replicated area, and data-cache ports might be prohibitively
expensive to replicate. However, our design lends itself
readily to partial replication. The only limitation is that
a complete set of functional resources must be available to
the B-pipe. Some units could be shared, with the two pipes
arbitrating them, or, if the A-pipe does not have a particular
type of unit available to it, instructions incapable of execu-
tion on the A-pipe can be marked as deferred and passed
into the coupling queue. Of course, this can impact perfor-
mance if instructions using non-replicated functional units
occur frequently and are on paths leading to pipeline stalls.
For our evaluation, we have assumed that each of the func-
tional units have been replicated.

Compared to a full out-of-order implementation, two-
pass pipelining avoids the significant area, power and com-
plexity cost of instruction schedulers and register renam-
ing hardware. While our system requires a second reg-
ister file, out-of-order execution would also require addi-
tional registers (potentially more than twice the number of

Table 1: Experimental machine configuration.

Feature Parameters

Functional Units 8-issue, 5 ALU, 3 Memory, 3 FP, 3 Branch
Data model ILP32 (integer, long, and pointer are 32 bits)
L1I Cache 2 cycle, 16KB, 4-way, 64B lines
L1D Cache 2 cycle, 16KB, 4-way, 64B lines
L2 Cache 5 cycles, 256KB, 8-way, 128B lines
L3 Cache 15 cycles, 1.5MB, 12-way, 128B lines
Max Outstanding Loads 16
Main memory 145 cycles
Branch Predictor 1024-entry gshare
Two-pass Coupling Queue 64 entry
Two-pass ALAT perfect (no capacity conflicts)

architectural registers) to support effective renaming. The
buffer coupling the A-pipe with the B-pipe is a simple first-
in/first-out queue that is likely less complex than a reorder
buffer in an out-of-order architecture. Similarly the result
queue for retired values from the B-pipe is also a simple
first-in/first-out queue, and this feedback path adds only lo-
calized and latency-tolerant complexity. Finally, the ALAT
hardware used in two-pass pipelining is similar in complex-
ity to the content-addressable memories used by aggressive
out-of-order implementations [9] to support the reordering
of loads with stores to unknown addresses. While difficult
for us to quantify exactly, the cost of two-pass pipelining
appears, qualitatively, quite reasonable.

4 Experiments

In order to examine the performance of the two-pass
pipelined microarchitecture, we developed an execution
model within our cycle-by-cycle full-pipeline simulation
environment. The most relevant machine parameters from
the simulated system are shown in Table 1. Our simulated
design was based on pipeline length one stage longer than
that of the Intel Itanium 2 architecture to model an achiev-
able near-future EPIC microarchitecture. A cache hierar-
chy with latencies only slightly longer than those of the
Itanium 2 was selected to provide a relatively conservative
baseline memory hierarchy; a futuristic design with smaller
low-level caches and longer latencies would further accen-
tuate the demonstrated benefits.

For our evaluation, three benchmarks from SPECint95,
six from SPECint2000, and one from SPECfp2000 were
compiled using the IMPACT compiler. These are listed in
Table 2 along with the simulated inputs and the lengths
of these inputs in executed instructions. Each program
was optimized using control-flow profiling information and
pointer alias analysis. Optimizations applied included in-
lining, hyperblock formation, and instruction scheduling
with control speculation. Due to the length of the SPEC-
provided inputs, a mixture of SPEC test inputs and re-
duced SPEC reference inputs from the University of Min-
nesota (UMN) [12] were used for simulation.

Execution cycle counts for these benchmarks are shown

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

ba
se 2P

2P
re

099.go 129.compress 130.li 175.vpr 181.mcf 183.equake 197.parser 254.gap 255.vortex 300.twolf

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 c
yc

le
s

A-pipe stall Unstalled execution Front end stall Resource stall Non-load dep. stall Load stall

Figure 6: Normalized execution cycles; baseline (base), two-pass (2P) and with instruction regrouping (2Pre).

Table 2: Benchmarks and inputs used in experiments.

Benchmark Inputs Instructions

099.go SPEC Train 453 M
129.compress SPEC Train 13 M
130.li SPEC Train 91 M
175.vpr SPEC Test 1145 M
181.mcf SPEC Test 132 M
183.equake SPEC Test 477 M
197.parser UMN mdred 409 M
254.gap SPEC Test 645 M
255.vortex UMN mdred 189 M
300.twolf UMN smred 46 M

in Figure 6, normalized to the number of cycles in the base-
line machine. The normalized execution cycles are pre-
sented for the baseline (base), two-pass pipelining (2P) and
two-pass pipelining with instruction regrouping (2Pre). As
described in Section 3.1, instruction regrouping allows the
2Pre system to execute in a single cycle a set of instruc-
tions that spanned a stop bit in the original schedule. Be-
cause pre-executed instructions have no incoming, latency-
bearing dependences, the regrouper removes the superflu-
ous cycle break between two adjacent issue groups wherein
instructions in the second group are no longer dependent
upon those in the first because of A-pipe pre-execution.

In Figure 6, each cycle is classified into one of six cat-
egories of stall or unstalled execution conditions. For two-
pass pipelining, these represent the condition of the B-pipe
so that the architectural pipeline of the two-pass pipelined
system is compared with that of the baseline. These cy-
cle classes include stalls delaying the B-pipe because we
require that the A-pipe always remain at least one cycle
ahead of the B-pipe. (A-pipe stall), stalls on the front-
end of the processor (Front end stall), stalls on oversub-
scribed resources (Resource stall), stalls on dependences
(Non-load dep. stall and Load stall) and unstalled execu-
tion (Unstalled execution).

For each benchmark, a significant number of memory
stall cycles is eliminated by two-pass pipelining. Gener-
ally, this improvement results in a reduction in executed
cycles for the 2P system. For example, 181.mcf shows a
62% reduction in memory stall cycles and a 23% reduction
in overall cycles. For other benchmarks like 300.twolf the
reduction in memory stall cycles is offset by an increase
in additional cycles stalled in the front end. This is due to
the effective lengthening of the pipeline observed by branch
mispredictions resolved in the B-pipe. Although a small
number of its load miss cycles are successfully hidden,
175.vpr is the only benchmark to show a net loss of perfor-
mance, due to store conflict flushes and dependence stalls.
Its dependence stalls are caused by the deferral of 98% of
its long-latency floating point instructions, in chains, to the
B-pipe because the A-pipe does not stall for them to com-
plete. It may therefore be advisable to allow the A-pipe to
stall on anticipable latencies, since these latencies are ef-
fectively modeled by the compiler.

Figure 7 shows the distribution of the initiation of mem-
ory accesses to the A- and B-pipes. Each access is cate-
gorized by the level of the cache hierarchy from which it
is serviced, and is scaled by the effective latency of an ac-
cess to that level. For each benchmark, the majority of the
access latency is initiated in the A-pipe, indicating that it
is largely successful in pre-executing loads, with a smaller
portion of accesses being deferred to the B-pipe. Most no-
table is the significant portion of the L3 cache misses in
183.equake started in the A-pipe. The benefit of overlap-
ping the handling of these cache misses is clearly reflected
in the performance improvement for 183.equake. 254.gap,
on the other hand, executes most of its substantial number
of main memory accesses in the B-pipe, and thus displays
only a small performance improvement. 254.gap is also

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

B
a

se
A

-p
ip

e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se
A

-p
ip

e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se
A

-p
ip

e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se
A

-p
ip

e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se
A

-p
ip

e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se

A
-p

ip
e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se

A
-p

ip
e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se

A
-p

ip
e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se

A
-p

ip
e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

B
a

se

A
-p

ip
e

B
-p

ip
e

A
-p

ip
e

B
-p

ip
e

2P 2Pre 2P 2Pre 2P 2Pre 2P 2Pre 2P 2Pre 2P 2Pre 2P 2Pre 2P 2Pre 2P 2Pre 2P 2Pre

099.go 129.compress 130.li 175.vpr 181.mcf 183.equake 197.parser 254.gap 255.vortex 300.twolf

N
o

rm
a

li
ze

d
 A

c
c

e
s

s
 C

y
c

le
s

MM L3 L2 L1

Figure 7: Distribution of initiated access cycles; baseline (base), two-pass (2P) and with instruction regrouping (2Pre).

an example of a benchmark showing a decrease in A-pipe
loads with the addition of regrouping. Regrouping may
allow the B-pipe to respond more rapidly to branch mis-
predictions, reducing the number of off-path loads futilely
fetched, executed, and sent down the queue by the A-pipe.

We posit three modes of benefit from two-pass pipelin-
ing. First, continuing execution beyond the consumer of a
delinquent load allows the absorption of short cache misses.
Since the code has been scheduled by a compiler assum-
ing hit latencies, loads that miss in the first level of cache
are often followed in quick succession by consuming in-
structions; in two-pass pipelining these instructions can be
deferred to the B-pipe, hiding the latency of these misses.
Second, long latency memory instructions which would
have otherwise been blocked by preceding stalled instruc-
tions can be started early. This allows multiple long la-
tency loads to be overlapped rather than processed sequen-
tially. Both of these techniques reduce the number of cy-
cles in which the processor reports being stalled on load
misses, as demonstrated in Figure 6. When an application
has poor cache locality, the benefit of overlapping long ac-
cesses dominates the benefit of hiding shorter ones (as in
183.equake). For other benchmarks, like 129.compress, the
few long-latency memory accesses are distributed between
the A-pipe and the B-pipe and the performance gain seen
in 2P for 129.compress is likely due to the first source, the
absorption of latencies from short but ubiquitous misses.
Finally, regrouping instructions at the head of the B-pipe
allows now-superfluous stop bits to be removed, increasing
the degree of instruction-level parallelism available. This is
clearly shown in Figure 6, with 2Pre achieving an average
speedup of 1.08 over 2P.

Two-pass execution has the potential to sacrifice per-
formance in two situations. First, it extends the effective
pipeline length for any misprediction detected in the B-

pipe, increasing misprediction recovery cost. In our sim-
ulations, an average of 32% of branch mispredictions are
discovered and repaired in the A-pipe. The effects of these
mispredictions are less severe than in the single-pipe de-
sign, as the B-pipe may continue to process during the redi-
rection of the A-pipe as long as the coupling queue has in-
structions remaining. 68% of branch mispredictions remain
to be processed in the B-pipe.

Second, store-conflict flushes are incurred whenever a
store initiated in the B-pipe conflicts with a programmati-
cally subsequent load that was already initiated in the A-
pipe, as discussed in Section 3.4. Initiating loads in the A-
pipe (even in the presence of deferred, ambiguous stores)
is advisable, as 97% of all load accesses initiated in the A-
pipe while a deferred store is in the queue are free of store
conflicts. Only 1.6% of all stores are deferred to the B-pipe
and eventually cause a conflict flush.

Taking into account misprediction and store flushes, the
results of Figure 6 show by the reasonable size of the Front
end stall segment that neither substantially erodes the per-
formance gained from two-pass pipelining.

Finally, continued successful pre-execution requires that
committed results in the B-pipe be fed back into the A-pipe
to prevent the deferral of ever-greater numbers of instruc-
tions. As this inter-pipe communication may be difficult
to implement in a single cycle, we evaluated the effect of
latency on this update path for three of the benchmarks, as
shown in Figure 8. As shown by the increase in deferred in-
structions when this updating is eliminated (inf), it is clear
such a mechanism is beneficial. For 181.mcf, eliminating
the feedback increases by 16% the number of instructions
deferred. Loss of pre-execution potential for these instruc-
tions increases mcf’s runtime by 5.5%. On the other hand,
Figure 8 also shows that this update path is tolerant of mod-
erate additional latency, especially up to four clock cycles.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

0 2 4 8 inf

B-pipe to A-pipe update delay (cycles)

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 c
yc

le
s

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

D
ef

er
ra

l f
ra

ct
io

n

129.compress (cy.) 181.mcf (cy.) 300.twolf (cy.)

129.compress (def.) 181.mcf (def.) 300.twolf (def.)

Figure 8: Effect of delay in feeding committed results in
the B-pipe to the A-pipe.

5 Related work

This paper is not alone in proposing a mechanism for im-
proving the tolerance of variable-latency instructions. Its
uniqueness is that it targets relatively short cache miss la-
tencies, which cause a pronounced but distributed perfor-
mance problem for EPIC machines, while maintaining the
inherent simplicity of an EPIC core design.

Dundas [5] and Mutlu [6] both propose run-ahead
schemes relying on checkpointing and repair. Mutlu
presents a run-ahead implementation specifically target-
ing long-latency misses in out-of-order machines. The
technique attempts to accommodate such misses efficiently
without over-stressing out-of-order instruction scheduling
resources. In a single-issue, short-pipeline, in-order ma-
chine, Dundas examines run-ahead execution in a special
mode during any L1 cache miss. In Dundas’ model, run-
ahead begins when a cache miss occurs, not, as in this work,
when the consuming instruction executes. In cases where
the consumers of a load are scheduled farther away than
the load’s hit latency, Dundas’ mechanism could enter run-
ahead unnecessarily.

Both these approaches discard results of run-ahead ex-
ecution (aside from memory accesses initiated) when the
run-ahead mode is terminated. Our mechanism, on the
other hand, not only allows the correct portion of the run-
ahead execution to be retained, but also allows for the si-
multaneous execution of both run-ahead and standard in-
struction streams, and provides for the feedback of archi-
tectural thread computation to the run-ahead thread. In a
manner similar to our approach, both run-ahead designs
utilize a second register file during run-ahead mode. Since
run-ahead work is not preserved, register state is repaired
at the end of each runahead effort. Additionally, to avoid
refetching once a run-ahead-activating load has completed,
these previous run-ahead techniques also would require ad-
ditional instruction queues. Thus, the added cost of our
approach relative to these techniques is limited to the repli-

cation of the execution pipeline and the addition of memory
dependence detection hardware.

Slipstream processors [13] and master/slave specu-
lative parallelization [14] attempt to exploit additional
instruction-level parallelism by selecting program threads
for pre-execution. Slipstream does this dynamically by
squashing predictably-useless instructions out of the “ad-
vance” stream. Master/slave uses multiple “slave” checkers
to verify, in parallel, sections of the “master’s” execution
of a “distilled” version of the program. These approaches
share have in common with ours the strategy of achieving
better parallelism through partitioned program execution.
As in our approach, the leading thread performs persistent
program execution; these systems, however, use a much
coarser mechanism for partitioning program streams than
two-pass pipelining’s fine-grained, cycle-by-cycle mecha-
nism. Unlike these thread approaches that attempt to ex-
ecute all useful work in the leading thread, our technique
specifically defers useful computation to avoid stalling the
leading, in-order thread on the consumers of load misses.

Other related approaches share some of our goals but
differ significantly in approach. Simultaneous subordinate
microthreading [15] adds additional microthreads, the sole
purpose of which is to help the microarchitecture execute
the main thread more efficiently. Like the run-ahead archi-
tectures, these threads can initiate memory accesses early
with the goal of reducing the cache stalls of the main thread.
Decoupled architectures [16] also allow the latencies of
loads to be overlapped by issuing all loads separately from
their consumers and then delivering their results through a
architecturally visible data queue.

Collins et al. [17, 18] proposed software-based specu-
lative precomputation and prefetching targeted to particu-
lar delinquent loads. Annavaram [19] proposed a dynamic
mechanism to generate prefetching microthreads for pre-
execution. These techniques, because they require code
generation or dynamic slice extraction for specific delin-
quent loads, address a different problem than the diffuse
serialization of occasional misses targeted here.

6 Conclusion and future work

This paper presents the two-pass pipeline organization, a
mechanism that counteracts in-order stalls on unanticipated
cache latencies while preserving the benefits of traditional
in-order pipelines. We present the basic organization and
outline the critical design issues encountered in its devel-
opment. This novel microarchitecture achieves many of
the objectives of out-of-order execution models without dy-
namic scheduling and renaming. We show with initial sim-
ulation results that executing ahead, beyond stalled instruc-
tions, in one “advance” pipeline allows a significant portion
of cache miss latency to be tolerated. This is shown to result

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

in significant performance improvement for benchmarks
that spend much of their execution time stalled on memory
accesses. Finally, the increase in effective pipeline length
for the execution of deferred instructions in a “backup”
pipeline is shown not to overwhelmingly degrade perfor-
mance with flush cycles.

In our detailed results, we show how our initial design
addresses these issues. Specifically, we have shown that the
bulk of load instructions are initiated in the A-pipe, allow-
ing short-latency misses to be absorbed and long latency
misses that would have been serialized by stalls in a tradi-
tional organization to be resolved concurrently. Addition-
ally the feedback of values from the B-pipe to the A-pipe is
shown to tolerate a reasonable amount of latency.

We expect the benefit of our proposed pipeline organi-
zation to be even more pronounced for applications that
stress the cache hierarchy, and that the benefit of the pro-
posed pipeline organization will further increase for future
processors which are bound to be more distant from sub-
stantial cache storage. The two-pass design space supports
many research opportunities, including the study of mech-
anisms to moderate the issue of the A-pipe in cases where
most instructions are being deferred to the B-pipe.

Acknowledgments

This work was supported by the MARCO/DARPA Center
for Circuits, Systems and Software under contract 2001-
CT-888 and the National Science Foundation Informa-
tion Technology Research program under contract num-
ber 0086096. We thank John Crawford, John Shen, Chris
Newburn and Matthew Merten at Intel Corporation and Jim
McCormick at Hewlett-Packard for their generous and in-
sightful feedback. We also thank Jason Park for his work
on our simulation framework and the anonymous reviewers
for their helpful comments.

References
[1] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier,

B.-C. Cheng, P. R. Eaton, Q. B. Olaniran, and W. W. Hwu, “Inte-
grated predicated and speculative execution in the IMPACT EPIC
architecture,” in Proceedings of the 25th Annual International Sym-
posium on Computer Architecture, pp. 227–237, July 1998.

[2] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R. M. Kling,
and J. P. Shen, “Memory latency-tolerance approaches for Itanium
processors: Out-of-order execution vs. speculative precomputation,”
in Proceedings of the Eighth International Symposium on High-
Performance Computer Architecture, pp. 167–176, Feb. 2002.

[3] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W.
Hwu, B. R. Rau, and M. S. Schlansker, “Sentinel scheduling: a
model for compiler-controlled speculative execution,” ACM Trans-
actions on Computer Systems (TOCS), vol. 11, no. 4, pp. 376–408,
1993.

[4] Intel Corporation, Intel Itanium 2 Processor Reference Manual for
Software Development and Optimization, Apr. 2003.

[5] J. Dundas and T. Mudge, “Improving data cache performance by
pre-executing instructions under a cache miss,” in Proceedings of the
11th Annual International Conference on Supercomputing, pp. 66–
75, June 1997.

[6] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead exe-
cution: An alternative to very large instruction windows for out-of-
order processors,” in Proceedings of the Ninth International Sym-
posium on High-Performance Computer Architecture, pp. 129–140,
Feb. 2003.

[7] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and
W. W. Hwu, “Dynamic memory disambiguation using the Memory
Conflict Buffer,” in Proceedings of the Sixth International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, pp. 183–193, Oct. 1994.

[8] R. Zahir, J. Ross, D. Morris, and D. Hess, “OS and compiler con-
siderations in the design of the IA-64 Architecture,” in Proceedings
of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 213–222, Oct.
2000.

[9] R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro,
vol. 19, March/April 1999.

[10] W. W. Hwu and Y. N. Patt, “Checkpoint repair for out-of-order ex-
ecution machines,” in Proceedings of the 14th Annual International
Symposium on Computer Architecture, pp. 18–26, July 1987.

[11] E. S. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and
B. Mohammad, “A fully bypassed six-issue integer datapath and reg-
ister file on the itanium-2 microprocessor,” IEEE Journal of Solid-
State Circuits, vol. 37, Nov 2002.

[12] AJ. KleinOsowski and D. J. Lilja, “MinneSPEC: A new SPEC 2000
benchmark workload for simulation-based computer architecture re-
search,” Computer Architecture Letters, vol. 1, May 2002.

[13] Z. Purser, K. Sundaramoorthy, and E. Rotenberg, “A study of slip-
stream processors,” in Proceedings of the 33rd Annual International
Symposium on Microarchitecture, pp. 269–280, Nov. 2000.

[14] C. Zilles and G. Sohi, “Master/slave speculative parallelization,” in
Proceedings of the 35th Annual International Symposium on Mi-
croarchitecture, pp. 85–96, Nov. 2002.

[15] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N.
Patt, “Simultaneous subordinate microthreading (SSMT),” in Pro-
ceedings of the 26th Annual International Symposium on Computer
Architecture, pp. 186–195, July 1999.

[16] J. R. Goodman, J. Hsieh, K. Liou, A. R. Pleszkun, P. Schechter,
and H. C. Young, “PIPE: A VLSI decoupled architecture,” in Pro-
ceedings of the 12th Annual International Symposium on Computer
Architecture, pp. 20–27, July 1985.

[17] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen, “Speculative precomputation: Long-range
prefetching of delinquent loads,” in Proceedings of the 28th Annual
International Symposium on Computer Architecture, pp. 14–25, July
2001.

[18] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen, “Dynamic
speculative precomputation,” in Proceedings of the 34th Annual In-
ternational Symposium on Microarchitecture, pp. 306–317, Nov.
2001.

[19] M. Annavaram, J. M. Patel, and E. S. Davidson, “Data prefetching
by dependence graph precomputation,” in Proceedings of the 28th
Annual International Symposium on Computer Architecture, pp. 52–
61, July 2001.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

