
A Low-Power Crossroad Switch Architecture and Its Core
Placement for Network-On-Chip

Kuei-Chung Chang
∗

Department of Information
Management

WuFeng Institute of
Technology

Chia-Yi, Taiwan (R.O.C)

ckj@cs.ccu.edu.tw

Jih-Sheng Shen
Department of Computer
Science and Information

Engineering
National Chung Cheng

University
Chia-Yi, Taiwan (R.O.C)

sjs92@cs.ccu.edu.tw

Tien-Fu Chen
Department of Computer
Science and Information

Engineering
National Chung Cheng

University
Chia-Yi, Taiwan (R.O.C)

chen@cs.ccu.edu.tw

ABSTRACT
As the number of cores on a chip increases, power consumed
by the communication structures takes significant portion of
the overall power-budget. The individual components of the
SoCs will be heterogeneous in nature with widely varying
functionality and communication requirements. The com-
munication topology should possibly match communication
workflows among these components. In this paper, we first
propose an interconnection architecture for SoC, which uses
crossroad switches to construct a dedicated communication
path dynamically between any two cores. We then present a
design methodology for constructing network on chip (NoC)
for application-specific computer systems with profiled com-
munication characteristics. We design a core placement tool,
which automatically maps cores to a communication topol-
ogy such that we can minimize the total communication
energy. Experimental results show that the design method-
ology can generate optimized on-chip networks with fewer
resources than meshes and tori, and the power saving ap-
proximates to 40%.

Categories and Subject Descriptors
C.1.2 [PROCESSOR ARCHITECTURES]: Multiple Data Stream

Architectures—Interconnection architectures; B.4.3 [INPUT / OUT-

PUT AND DATA COMMUNICATIONS]: Interconnections—

Topology

General Terms
NoC design

∗This author is currently pursuing the PhD degree in
computer science and information engineering at National
Chung Cheng University, Chia-Yi, Taiwan (R.O.C)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

Keywords
Low-Power,Systems On Chips,Application-specific,Networks
On Chip

1. INTRODUCTION
As parallel chip architectures scale in size, on-chip net-

works have becoming the main communication architecture,
replacing dedicated interconnection architecture and shared
buses. NoC architectures have to deliver good performance
in the face of very tight power and area budgets. These
trends make on-chip network design to be one of the most
challenging and significant design problems.
In [9, 11], they design mapping algorithms for regular

topologies, which are suitable for interconnecting homoge-
neous cores in a chip multiprocessor. However, varied core
functionality, core size and communication requirements are
involved in recent SoC designs. If we design a regular in-
terconnection architecture such as mesh or tori to match
the requirements of few high communicative components, it
maybe waste much resources with respect to the needs of
other components. Therefore, it is attractive for most cur-
rent SoCs to use irregular topologies (e.g. Figure 1(d)) to
design dedicated high-speed links between high communica-
tive cores.
Some applications have high point-to-point communica-

tions. If it is not well controlled, large intercommunications
across switches could consume large significant energy of
NoCs. Take a core flow graph for application suite in Fig-
ure 1(a) as an example. Each node in the core flow graph
represents a core, while each weighted edge represents the
communication frequency between a pair of cores. Two pos-
sible NoC topologies for the core flow graph are shown in
Figure 1(c) and Figure 1(d). The topology in Figure 1(c)
is an initial core placement, and there are 27 intercommu-
nications. The topology in Figure 1(d) is an improved core
placement, and there are 15 intercommunications. We can
observe that the power consumption of random placement
will be larger than the well-controlled placement, because of
the high frequency of inter-communications.
This paper makes two contributions as follows:

• First, we propose a novel bus architecture named cross-
road interconnection architecture. The architecture con-

375

(a) (b)

(c) (d)

1 2 3

4

567

10 4
2

3

2

2

5
7

8

1

S1

1

6

2

4

5

S3

3
S2

7

7

3

1 4

56

2

S1 S2 S3

4

6

1 5

73

2

S1 S2 S3

Figure 1: (a) Core flow graph. (b) Final NoC block
of power-aware core placement (c) Initial core place-
ment (d) Improved core placement

sists of several communication blocks, which include a
group of cores, four way bus lines and a local crossroad
switch. There is also a global arbiter to coordinate the
communications between crossroad switches when nec-
essary. By coordinating those arbiters, we can organize
several algorithms either to enhance the performance
or to minimize the power consumption for communi-
cations.

• Second, we also present a design methodology and a
core placement tool to automatically build application-
specific communication topologies, which supports low
intercommunications for well-known communication pat-
terns. It starts from application specifications, con-
tinues through the mapping of the application onto
topologies and ends up with selection of a topology.

The rest of the paper is organized as follows. Section 2
summarizes the related work. In Section 3, we describe the
proposed crossroad interconnection architecture and char-
acteristics of this design. Section 4 describes the design
methodology and the power aware core placement algorithm.
We explain the experimental environment and show the re-
sults of our work in Section 5. Finally, we summarize our
findings in Section 6.

2. RELATED WORK
VLSI design for power optimization to satisfy the power

budget is an important research issue [2]. We can split the
bus topology into different segments to reduce the power
consumption [4, 12]. The early works in [5] pointed out the
need of more scalable architectures for on-chip communica-
tion, therefore, to progressively replace shared busses with
on-chip networks.
The problem of mapping cores onto NoC architectures is

addressed in [1, 11]. In [8], a branch-and-bound algorithm
is used to map cores onto a mesh-based architecture with
the objective of minimizing energy and satisfying the band-
width constraints of the NoC. Murali and De Micheli [11]
presented an algorithm that maps cores, or components of
a SoC, onto a mesh NoC architecture, minimizing the aver-
age communication delay. Hu and Marculescu [9] presented
an algorithm for mapping IPs onto a generic regular NoC
architecture consisting of a network of tiles, each consisting
of a processing core and a router. In [3, 9], the assignment

and scheduling of tasks onto cores were performed first, and
then they apply profiling to derive the communication pat-
terns of the application used in the topology synthesis and
routing algorithms.
However, most of these researches were focused on regu-

lar topologies (e.g. mesh, tori, hypercube), which require
large-scale redundant switches in order to meet application
requirements of burst point-to-point communication. These
regular topologies do not fit for application-specific SoC de-
velopments, because they are sometimes over-designed. It
is also hard automatically to construct optimized NoCs by
a tool if the switches are heterogeneous.

3. THE CROSSROAD INTERCONNECTION
ARCHITECTURE

In this section we present a brief description of the pro-
posed bus architecture, Crossroad Interconnection Architec-
ture, in the aspect of switches, links and networks. The
crossroad interconnection architecture is similar to the seg-
mented bus architecture [4]. However, it isolates the re-
quirements of long data swing to reduce power consumption.
The key idea of the crossroad interconnection architecture
is to partition all cores on chip as well-organized irregular
topologies and use crossroad switches to dynamically control
active paths for those connections needed between any two
cores. In addition to power optimization, our crossroad in-
terconnection architecture also gives better performance and
parallel communication by providing two separated virtual
paths for different crossroad blocks at the same time.

3.1 The Proposed Architecture
The basic communication element of the architecture is

the crossroad communication block (CCB) as shown in Fig-
ure 2(a). The CCB comprises a crossroad switch with an
arbiter, a group of cores, and four bus links for data trans-
missions. More than one route can go through the switch at
the same time if there is no conflict. Every crossroad switch
only takes care of requests from four ways (up, down, left
and right), so the control of the crossroad switch is inde-
pendent, low complexity, and scalable. In this case, users
can construct different NoC topologies of the crossroad com-
munication architecture based on the requirements such as
power, performance, and area.

--

Global
Controller

Control Signals

--

-- -- --

Core
1

Core
3

Core
2

Core
4

Request, Address,
Communicate type,

Data

Ack, DataCrossroa
d Switch

(a) (b)

Figure 2: The crossroad interconnection architec-
ture and the CCB

The overall communication architecture is shown as Fig-
ure 2(b). We can connect several CCBs to construct a large-
scale communication network. Only the edge sides of the
crossroad switches can connect cores. If two switches con-

376

nect to each other, the bus line between the two switches
cannot plug any cores, because it only provides data path
between two CCBs. We use the global controller for spe-
cific purposes, such as deadlock-free algorithms, routing al-
gorithms, contention-free algorithms, etc. We can design
several algorithms to coordinate all switches to enhance the
performance or low-power communication depending on the
characteristics of different applications.

3.2 Features
There are several advantages in the crossroad communi-

cation architecture, and we will describe as follows.

3.2.1 Fully Configurable
The switch in a CCB only takes care of the control and

the data exchanges between four ways. When a master core
requests a slave core in the local block, it passes the signals
to the target core. If a master core requests a slave core in
another remote block, the local arbiter will act as a master
core in the remote block and sends the request to the remote
switch. Every crossroad switch only cares about the requests
from four different ways, so the basic element structure and
control can be regular and simple.
When two switches connect to each other, one of the two

blocks can be regarded as a master or a slave module for
another block. This feature makes the overall architecture
more scalable and highly configurable. Our design can easily
combine the CCBs to make up our irregular network topolo-
gies according to the different application characteristics, as
shown in Figure 3. We can employ with a placement algo-
rithm to explore the best solutions of the intercommunica-
tion for purposes of high performance, low power consump-
tion and low cost.

3.2.2 Power Optimization by Localization
In shared-bus architectures, every data transfer is broad-

cast, meaning the data must reach each possible receiver
at great energy cost. Because the power consumption of
each bus segment is proportional to the number of devices
connecting to the segment in splitting bus architecture. In
our design, only one sender, one receiver and one or more
than two switches are involved at each data communica-
tion, data exchanges among devices will result in minimum
power consumption. Due to the full programmability, we
can optimize the placement of cores by profiling the com-
munication traffic characteristics of applications. We can
group high communicative cores into several CCBs to pro-
vide separate high-frequency blocks where data are total in-
dependently transmitted, as shown in Figure 3. In this case,
it can save more energy consumption due to the reduction
of long-distance communications.

3.2.3 Better Communication Parallelism
We design a ”overpass” mechanism that can construct

multiple segments to let different master cores communicate
with their target slave cores at the same time, as shown in
Figure 4(a). Figure 4(b) shows the three possible combina-
tions of parallel communications in a local communication
block. If those master-slave pairs are different, they may
use different channels to communicate in the crossroad bus
architecture. This behavior is suitable for multiprocessor or
multithreading, where each processor or thread can work in
its local regions and communicate to other regions by coordi-

Line Shape T-Shape

Grid

H-Shape

High-Frequency
communication CCB

Virtual Bus Segments
(VBS)

Figure 3: Interconnection topologies

nating crossroad switches in each block. Because the archi-
tecture may provide separate virtual bus segments (VBSs)
where data are total independently transmitted, as shown in
Figure 3, it results in more communication parallelism than
conventional shared-bus architectures.

Segment 1

M1

S1 M2

S2

Segment 2

(a) Two parallel communication
segments

(b) Three possible combinations of
parallel segments

Figure 4: Three available combinations for parallel
communications

4. DESIGN METHODOLOGY
Crossroad NoC is a structured interconnection architec-

ture such that it can be integrated into a design flow easily,
as shown in Figure 5. First, the communication character-
istics between cores can be derived by profiling embedded
applications. Then, we can construct suitable communica-
tion topologies according to the profiling results to meet
specific requirements (power, performance, area). Using the
proposed partition algorithms, we can decide which cores
should be allocated in the same CCB. The hardware speci-
fication specifies the cores (e.g. processing and storage ele-
ments) that are to be connected in the system-on-chip design
as well as the requirements on bandwidth, latency, etc. put
on the communication hardware to support the necessary
transfers. The optimized code can then be used in the be-
havioral simulator to ensure correctness and to generate a
number of different benchmarking information to make sure
that the specification is fulfilled. Designers can get the area,
performance and power estimations of the crossroad com-
munication architecture to estimate their design. Finally,

377

behavioral verification by the structural description is used
as a part in the integration of the system-on-chip design to
achieve the final implementation.
Because crossroad interconnection architecture is a sim-

ple structure, it is easy to automate the design and even
build a library of IP cores for crossroad interconnects with
various self-routing encoding and performance. In addition,
the crossroad interconnection architecture gives more space
on performance, power, and area along with other useful
features such that designs can be more flexible.
In this section, we present an algorithm to support a

power-aware placement for the crossroad architecture. We
will define the system model in Section 4.1, and present the
core placement algorithm in Section 4.2.

Application
Specification

Bus
Topology
Library

HW Modules
Specification

Profiling

Optimization &
Code Generation

Optimization
Algorithms

Simulation &
Estimation

Implementation

Routing Codes

Module
Wrappers

Configurations

Power

Performance

Area

Partitioning

Core Flow
Graph
(DAG)

Meet requirements ?

Yes

No

Figure 5: Design flow for crossroad NoC

4.1 System Model
Hu et al. [9] proposed a model for power consumption

of tiled-based NoC architectures. The average energy con-
sumption of sending one bit of data from tile ti to tj is:

E
ti,tj

bit = nhops × ESbit + (nhops − 1) × ELbit , (1)

where ESbit , ELbit , nhops represent the energy consump-
tion of a switch, the energy consumption of interconnecting
wires and the number of switches the bit passes, respectively.
The basic idea of the paper is to group high communicative
cores into several CCBs, as shown in Figure 3, such that
data exchanges among cores will result in minimized power
consumption calculated by Equation 1. To formulate this
problem more formally, we define the following terms:

Definition 4.1. The Core Flow Graph (CFG) is an undi-
rected graph, G(V,E), where each vertex vi ∈ V represents
a core and the directed edge (vi, vj), denotes as ei,j ∈ E,
representing the communication between the cores vi and vj

. The weight of the edge ei,j , denoted by flowi,j , repre-
sents the communication flow or communication frequency
between vi and vj .

Definition 4.2. The Switch Topology Tree (STT) is a
tree, T (V, E) with each vertex vi ∈ V representing a cross-
road switch with at most 4 degrees and the edge (vi, vj), de-
noted as ei,j ∈ E, representing the communication between

the switches vi and vj . The weight of the edge ei,j , denoted
by flowi,j , represents the communication flow or commu-
nication frequency between vi and vj .

In order to achieve low-power design for NoC topologies,
we have to minimize the amount of communications tra-
versed through bus lines and switch hops for each pair of
cores. For this purpose, we define communication distance
as follows:

Definition 4.3. The Communication Distance (CDist)
between two switches si, sj , denoted CDist(T , si, sj), on
a switch topology tree T is the number of switch hops and
edges traversed from si to sj on T , where

CDist(T, si, sj) =
∑

e∈Pathsi,sj

ELbit +
∑

switch∈Pathsi,sj

ESbit

(2)

For example, as shown in Figure 1(d), we connect cores 1
and 2 with the same switch. When core 1 sends a signal to
core two (intra-block communication), the signal only flows
within the same switch, instead of all switches, so it avoids
charging or discharging the unnecessary part of the entire
NoC system. Based on Equation 1, the power savings can
be very significant if most data exchanges are performed by
intra-block communication. However, several switches must
be involved for inter-block communication, e.g., switches 1,
2 and 3 in Figure 1(d) must pass signals if core 6 sends a
signal to core 5. The number of switches to be involved for
each inter-block communication depends on the topologi-
cal relationships among the cores and the NoC architecture.
Thus, it is important to organize the bus architecture such
that most data exchanges will be performed within the same
CCB or near CCBs as close as possible. We define the NoC
topology construction problem as follows:

Definition 4.4. Given a Core Flow Graph G = (V, E),
the NoC Topology Construction problem is to identify a Switch
Topology Tree T (V,E) whose total communication cost can
be minimized. We define the formula of Cost(T,G) as fol-
lows:

Cost(T, G) =
∑

e(i,j)∈E[G]
and

si,sj∈V [T]

weight(e)× CDist(T, si, sj), (3)

where si and sj are the switches connected by core i and
core j, respectively.
A NoC topology construction example is shown in Figure

1. In Figure 1(a), each node in the core flow graph represents
a core, while each weighted edge represents the communica-
tion frequency between a pair of cores. Two possible NoC
topologies for the core flow graph of Figure 1(a) are shown
in Figure 1(c) and Figure 1(d), respectively. The topology
in Figure 1(c) constructed by initial core placement, and its
communication cost is ([(10+4) + (2+1)] × ESbit + [(2+3)]
× (2ESbit+ELbit) + [(5+7+8+2)]×(3ESbit+2ELbit)=93ESbit

+ 49ELbit). The topology in Figure 1(d) constructed by the
power-aware core placement, and its communication cost is
([(10+7+5) + (2+2+3)] × ESbit + [(2)] × (2ESbit+ELbit) +
[(1+4+8)] × (3ESbit+2ELbit) = 72ESbit + 28ELbit). Obvi-
ously the cost of the initial core placement is large than the
cost of the power-aware core placement, because the inter-
communication flow is too large. Our key idea is to profile

378

the characteristics of applications and to allocate high com-
municative cores in CCBs or near CCBs to minimize the
Cost(T, G). Figure 1(b), shows the placement result block
based on the organization of Figure 1(d).

4.2 Power-Aware Core Placement (PACP)
The objective of the power-aware core placement is to

minimize the inter-communications between cores such that
the power consumption can be saved. In order to find effi-
cient methods, we followed a multi-phase approach, where
each phase addresses a limited instance of the general prob-
lem. The successive steps are outlined as follows: core clus-
tering, cluster optimizing, and physical switch map-
ping.

4.2.1 Phase 1: Core Clustering

1 2 3

4

56

7

15 16 13 5

2 5

Figure 6: GH-cut tree derived from Figure 1(a)

The first phase constructing a NoC topology is to char-
acterize the hardware structure that can be mapped into a
graph, called a ”backbone graph” or ”switch topology tree.”
It can be obtained by applying Gomory and Hu [7]. That
is, given a weighted and undirected graph, the Gomory-Hu
algorithm can find a tree that has minimum communica-
tion cost and the entire process is guaranteed to be finished
in polynomial time. Figure 6 gives an example of the Go-
mory Hu cut tree of Figure 1(a). It can be proven that the
tree generated has the minimum Cost(T,G) using polyno-
mial computing time.
Next, we have to group high communicative cores into

clusters to minimize the intercommunications. Systemati-
cally partitioning the Gomory Hu cut tree into smaller clus-
ters is the key point of the clustering. By the min-cut the-
orem, we can select the minimum cut to make the GH-tree
into two clusters, shown as Figure 7(a). By this way, we can
make sure that the flow of the backbone between the two
clusters C1 and C2 is minimum. By recursively applying the
above process to clusters C1 and C2 until each cluster con-
taining at most 3 nodes, and we can finally have the cluster
tree as shown in Figure 7(b).

1 2 3

4

56

7

15 16 13 5

2 5

3 4,51,2,6

7

2

13 5 3,4,51,2,6

7

2

13

(a)

(b) (c)

C1
C2

merge

Figure 7: Example of clustering

Because each switch can connect at most three cores and
the other link connects to another switch. We can merge
adjacent clusters if there are sufficient empty core connec-
tions in one of the adjacent clusters, shown as Figure 7(b).
Finally, we can get the cluster tree shown as Figure 7(c),
which can be used to allocate switches to connect all cores.

4.2.2 Phase 2: Cluster Optimization

(a)

(b)
1

1 3 6 54

2

4 5 2 1

17

2, 3, 41 5,6
4 2

1,2, 3 4,5,6
5

(c)
4

Figure 8: Example of cluster shifting

In previous phase, the high communicative cores can be
mapped into several low-intercommunication clusters; how-
ever, the flows between clusters may not be minimum. There
are some special cases, where clustering results are not the
optimal when the weights of edges are too close. We have
to optimize these clusters to get more power savings. For
example, the Figure 8(b) is the clustering result topology
of Figure 8(a), and its backbone flow is six. However, we
can find that the backbone flow of another topology in Fig-
ure 8(c) is five. Because more than two adjacent clusters of
the topology in Figure 8(b) can be merged into a cluster to
make more intracommunications. We name this behavior as
cluster shifting. If there are more than two non-fulfilled clus-
ters (less than 3 nodes), we will try to adjacency-pair shift
combination one cluster at a time to merge some adjacent
clusters into less clusters.

4.2.3 Phase 3: Physical Switch Mapping

S1

S2

S3S4

7

1

4
5

6
2

3
S1

S2

S3S4

7

1

4

5

6

2

3

S1 S3S4

71

4
5

6
2

3

(a) (b) (c)

merge

Figure 9: Example of switch assignment

Because a switch only has four connecting links, we have
to allocate switches to clusters carefully. From the cluster
tree, we can regard each cluster as a super node and recur-
sively select three adjacent clusters containing the maximum
sum of weights as a super cluster. By the way, there will gen-
erate several layered super clusters containing at most three
clusters. Finally, we assign switches to clusters and super
clusters to connect all cores, as shown in Figure 9(a). Next,
we merge adjacent switches that are not full connected until
no adjacent switches can be merged, shown as Figure 9(b).
Figure 9(c) is the final NoC infrastructure.

5. EXPERIMENTAL EVALUATION
We use Modelsim to simulate our NoC RTL code design,

and verify the correctness by some experiments. Then, we
utilize Synopsys Design Analyzer to synthesize our crossroad
bus components and get the netlist schematic file. Before we
start the simulation of power consumption, we must trans-
late the netlist schematic file to SPICE model and use the
simulation patterns that automatically generated by Mod-
elsim. Next, we use Nanosim to do detailed low-level simu-
lation and gain the average power consumption.

379

Table 1: Estimates of bus architectures
Bus Architecture Power(µW) Performance(cycles)
Crossroad NoC 507.39 130
Wishbone 528.23 180

Table 2: Estimates of core placement algorithms
Placement Approach Power(µW) Performance(cycles)
Initial placement 365.27 315994
PACP placement 260.59 310487

Figure 10 shows the experiment NoC topology, which in-
cluded two masters and three slaves. M1, M2 and M2 trans-
mit 32-bit data to S1, S2 and S3, respectively. For the
power estimations, we first model another bus architecture,
wishbone [13], and apply the same workload to compare
with the estimated crossroad architecture. We use the sim-
plescalar to simulate the MPEG4 decoder, and collect the
15 frames’ cache access information. These frames include
1 I-frame and 40 P-frames. We also perform the evaluation
by choosing two application cases: Video Object Plane De-
coder (VOPD) and Multi-Window Displayer (MWD), pre-
sented in [10, 6], to show the resource improvement for the
custom NoC. The two evaluation metrics are ”power” and
”performance”. The power is estimates by Nanosim, and
the performance is the cycles for completing the workloads.

5.1 Comparison of Power and Performance
The experimental results of the experiment NoC topology

and the wishbone are shown in Table 1. Because the energy
consumption is power × cycles, and the crossroad bus archi-
tecture is 507µW × 130 = 65910 µW, and wishbone is 528
µW × 180 = 95040 µW. The crossroad bus architecture can
save the energy consumption approximated to 31%.

M1

S1 S3

M3

S2

M2 M2 S2: 1 Read + 1 Write

M3 S3: 1 Read + 1 Write

M1 S1: 1 Read + 1 Write

Figure 10: Experimental topology of the crossroad
NoC

The profiled core flow graph of application MPEG4 is
shown as Figure 11(a). The Figure 11(b) is our compared
initial generated topology, and the PACP topology gener-
ated by our power-aware placement tool is shown as Figure
11(c). The experimental results for power consumption and
performance of placement algorithms are shown in Table 2.
The ratio of the power saving approximates to 40%. Obvi-
ously, it saves power consumption if we carefully construct
the NoC topology.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented crossroad interconnection

architecture and its design methodology. The key point of
the design flow is to profile the application characteristics,
and to connect high communicative cores in a local com-
munication block to reduce the intercommunications as less
as possible. The network architectures are highly optimized
for the particular NoC design, providing savings in power,

mc

Transfer

S2S1

idctPredict
_acdc

decoder
mbintra

iq

mc

Transfer

S2S1idct

Predict
_acdc

decoder
mbintra

iq

(c)(b)

(a)

idct

mc

iq

transfer

predict_acdc

decoder_mbintra

40

38072

65

9072

89856

107880
24

72

2778

12

Figure 11: (a) Core flow graph of the MPEG4 de-
coder (b) Initial Topology (c) Power-aware Topology

switches for example designs. In the future, we will continue
to build a tool chain, which automatically instantiates an
application-specific NoC in SystemC and verilog, and then
the system can automatically completes the whole design
flow and simulations for heterogeneous NoCs.

7. REFERENCES
[1] N. K. Bambha and S. S. Bhattacharyya. Joint application

mapping/interconnect synthesis techniques for embedded
chip-scale multiprocessors. IEEE Transaction on Parallel and
Distributed Systems, 16(2):99–112, Feb. 2005.

[2] A. Bellaouar, I. Abu-Khater, and M. I. Elmastry. An
ultra-low-power cmos on-chip interconnect architecture. In
Symposium on Low Power Electronics. Digest of Technical
Papers, pages 52–53, Oct. 1995.

[3] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergio,
L. Benini, and G. D. Micheli. NoC synthesis flow for
customized domain specific multiprocessor systems-on-chip.
IEEE Transaction on Parallel and Distributed Systems,
16(2):113–129, Feb. 2005.

[4] J. Y. Chen, W. B. Jone, J. S. Wang, H. I. Lu, and T. F. Chen.
Segmented bus design for low-power systems. IEEE
Transactions on VLSI Systems, 7(1):25–29, Mar. 1999.

[5] W. Dally and B. Towles. Route packets, not wires: On-chip
interconnection networks. In Proceedings of Design and
Automation Conference, pages 684–689, June 2001.

[6] E. V. der Tol and E. Jaspers. Mapping of mepg-4 decoding on a
flexible architecture platform. In SPIE2002, pages 1–13, Jan.
2002.

[7] R. E. Gomory and T. C. Hu. Multi-terminal network flows.
Journal of Soc. Industrial Appl. Math., 9(4):551–569, Dec.
1961.

[8] J. Hu and R. Marculescu. Energy-aware mapping for tile-based
noc architectures under performance constraints. In
Proceedings of Asia and South Pacific Design Automation
Conference, pages 233–23, Jan. 2003.

[9] J. Hu and R. Marculescu. Exploiting the routing flexibility for
energy/performance aware mapping of regular noc
architectures. In Proceedings of DATE Conference, Mar. 2003.

[10] E. Jaspers and P. de With. Chip-set for video display of
multimedia information. IEEE Transaction on Consumer
Electronics, 45(3):707–716, Aug. 1999.

[11] S. Murali and G. D. Micheli. Bandwidth constrained mapping
of cores onto noc architectures. In Proceedings of DATE
Conference, 2004.

[12] J. Plosila, T. Seceleanu, and P. Liljeberg. Implementation of a
self-timed segmented bus. IEEE Journals on Design and Test
of Computers, 20(6):44–50, 2003.

[13] Silicore Corporation. WISHBONE System-On-Chip
Interconnection Architecture for Portable IP Cores, 2001.

380

	Main Page
	ISLPED'05
	Front Matter
	Table of Contents
	Author Index

