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ABSTRACT 
This paper researches Translation Look-aside Buffer (TLB) of 
embedded processor. Based on an analysis of design-related 
factors: power, area, critical path and performance of our research 
model—Godson-I, a low-power TLB design is proposed without 
sacrifice of performance and timing. Using this method, the 
following results are achieved: power of TLB-RAM reduces 
92.7% and area of TLB-RAM reduces 50%. Compared with other 
methods, the hit rate of this design is much higher and the 
accessing conflict to RAM between ITLB and DTLB is much 
reduced. Although our work targets to Godson-I, the proposed 
methodology should be applicable to other designs. 

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles – Associative 
memories. B.7.1 [Integrated Circuits]: Types and Design Styles 
– VLSI (very large scale integration).  

General Terms 
Design, Experimentation, Performance. 

Keywords 
TLB, low-power consumption, Godson-I, single-port RAM, 
energy efficient, embedded processor design. 

1. INTRODUCTION 
Designers of embedded architecture are paying increasingly more 
attention to the power and area of chip design, because they are 
also the deciding factors for the mobility and price of an 
embedded product. That is critical to survive in the industry full 
of competition. 

This paper proposes a power and area reduction scheme in the 
design of the translation look-aside buffer (TLB). We illustrate 
our method using Godson-I processor – an embedded processor 
designed at ICT [2,3,12]. We improve the TLB design through 
three steps. Our method can reduce power and area, while 

keeping the new design from sacrificing of its performance and 
timing. We have performed various experiments and analysis to 
study the effectiveness of the proposed TLB design method.  

Using the new TLB design method, the area of RAM part of TLB 
reduces 50%, and the power of RAM reduces 92.7%; the total 
area of TLB reduces 23.7% and the total power of TLB reduces 
28.5%. This has not cause any notable timing increase and 
performance degradation. The experimental results show that the 
proposed method is both practical and effective. 

2. RELATED WORK AND 
EXPERIMENTAL METHODOLOGY 
A TLB plays a major role in MMU (Memory Management Unit) 
providing the caching function to speed up the translation 
between virtual addresses to physical addresses. The power 
consumption and area of TLB construct important part of a 
processor. A TLB is often designed as a full-associative or set-
associative buffer, which is constructed with a content-indexed 
CAM and an address-indexed RAM. There are different ways to 
structure TLBs in processor architecture design. For example, 
instruction TLB (ITLB) and data TLB (DTLB) can be combined 
into a unified TLB, or else they can be designed as separate TLBs 
[1,8]. In recent years, many new design methods are introduced to 
reduce the power consumption of TLB. The work described in [7] 
turns off some inactive entries of TLB according to history; [5] 
and [11] introduce micro-TLB, which divides TLB into two levels, 
and controls the number of entries accessed each time based on 
power considerations. But the hit rate of this method is much 
lower. Dividing TLB into banks [6] and Semantic-Aware 
Multilateral Partitioning [4] are also effective to reduce power 
consumption of a TLB. But these new methods are more complex, 
and may not be suitable for an embedded architecture design.  

In this paper we report our research on an experimental TLB 
design in the context of the Godson-I processor. We modify the 
Godson-I architecture to incorporate our new TLB design and 
implement the design at the register transaction level (RTL). We 
are able to conduct an evaluation of our design at the gate level 
using the commercial EDA tools for power, area and timing 
analysis. These tools can accurately capture the effect of our new 
design. Several aspects of the new design are considered in our 
integrated experimental environment. After simulation and 
verification, we collected experimental data in terms of 
performance, power, area and timing. Suitable embedded TLB 
design is raised according to tradeoff and analysis on these data. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ISLPED’05, August 8-10, 2005, San Diego, California, USA. 
Copyright 2005 ACM 1-59593-137-6/05/0008...$5.00. 
 

351



Figure 1 illustrates the original TLB design of Godson-I. When 
TLB miss happens, refill operation will occur to both ITLB and 
DTLB to keep the consistency between them. Advantage of this 
design is to support simultaneously accessing between instruction 
fetching and data visiting. Also this design is simple to realize, 
and easy to keep higher hit rate. But the shortcoming of the 
original design is that it may incur higher power and area. For 
ASIC design, IP cores and standard cells are widely used. SRAM 
is a standard IP (RF1SH from Artisan in Godson-I) and is easy to 
get from foundries, but CAM is constructed using standard cells 
in Godson-I. So CAM and RAM are separately designed in 
different manners. 

The experimental environment is described as below. The 
experimental platform is Sun Blade 2000 server and SunOS 
Solaris 5.8. We use NCVerilog (version: v03.30.(p001)) from 
Cadence company to conduct simulation and use Design 
Compiler (version: design_vision 2003.12) from Synopsys 
company to do synthesis and timing analysis. VCS ( vcs script 
version: 6.0, compiler version: 6.0.1) and Power Compiler 
( version: 2003.12)[9,10] from Synopsys are used to estimate 
power consumption. The EDA tools mentioned above are popular 
commercial products. The results from these EDA tools are 
always much more accurate than micro-architecture simulators 
available to us. 

In our experiments, typical benchmarks, like LinuxKernal, 
Dhrystone, Whetstone, and Paranoia etc. are used to test the 
influence to performance and power for different TLB designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. CHALLENGES IN EXISTING TLB 
DESIGN 
In this section, we first analyze power, area, critical path, and 
performance of existing TLB design. Through the quantitative 
analysis we can identify the problems and possible solutions. 

3.1 Power Analysis 
From Figure 1, we can see that frequently accessing to CAM and 
RAM may significantly increase the power consumption of TLB. 

Figure 2 illustrates the power distribution of Godson-I. TLB 
occupies 12.9% of total power, and becomes the most important 
source of power consumption besides CACHE. Table 1 shows the 
accessing frequency of TLB. ITLB ratio is the number of cycles 
of accessing ITLB divided by the total running cycles for each 
benchmark. And DTLB ratio is number of cycles of accessing 
DTLB divided by the total running cycles. 

From Figure 2 and Table 1, we can find the power consumption 
of TLB is mainly due to frequent access to CAM and RAM of 
TLB. For instance, 34.2% accessing ratio for ITLB and 9.0% 
accessing ratio for DTLB are very high for these benchmarks, 
which are not intensive in memory accesses. On the other hand, 
the area of TLB is aggressive because CAM and RAM have 
special circuit structures. These factors all illustrate why TLB 
consumes so much power. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

3.2 Area Analysis 
As is shown in Figure 3, area of 48-entry TLB equals to the whole 
area of Godson-I processor except CACHE and float point units. 
The graph “A” of Figure 3 illustrates area distribution of each unit 
of Godson-I. Area of TLB occupies 13% of the total processor. 
The graph “B” shows the ratio of area of each part of TLB itself. 
RAM constructs 50% area of TLB. If some method can reduce 
RAM effectively without notable impact on other factors, e.g. 
performance. That will be a good way to reduce the area of TLB. 

3.3 Critical Path Analysis 
In processor design, critical path always lies in MMU and 
CACHE, so does Godson-I. Figure 4 illustrates the critical path: 
from physical address, which is from the output of TLB-RAM, to 
tag comparison in CACHE module. The result of tag comparison 
indicates whether a CACHE hit happens. If CACHE hit happens, 
this operation will return data and new memory accessing 
operation will be allowed in. If CACHE miss happens, CACHE 
will send an accessing request to memory.  

Because it takes much long time to access a big RAM, and 
compare and control operations also take extra time, this path 
actually becomes the critical path. So the new TLB design should  
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Figure 1. Original TLB design method of Godson-I 
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 Table 1. Accessing Frequency of ITLB and DTLB for original TLB design 
Benchmark LinuxKernal Whetstone Dhrystone Paranoia Aver. Ratio 

Numb. Of ITLB accessing 3,459,885 22,378,257 37,709,705 14,700,174 

Numb. Of DTLB accessing 974,210 6,832,384 8,768,139 3,796,648 

Running Cycles 15,986,000 66,257,750 72,926,250 49,673,750 

―― 

ITLB ratio 21.6% 33.8% 51.7% 29.6% 34.2% 

DTLB ratio 6.1% 10.3% 12.0% 7.6% 9.0% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not add much delay on this path. Otherwise, worse timing is 
unacceptable. 

3.4 Performance Analysis 
Because both instruction fetching and data accessing need to 
translate virtual address by using TLB, TLB must be able to 
process two visits at the same time to avoid port violation. In 
Godson-I processor, as shown in Figure 1, there is a two-port 
CAM, which can process two translation requests at the same 
cycle. After comparing with each entry of CAM, ITLB and DTLB 
generate its own index separately. Using the index, ITLB-RAM 

and DTLB-RAM can be queried to generate physical address 
separately. Thus, instruction fetching and data accessing will not 
conflict for port of RAM.  

Although, the original TLB design keeps higher hit rate and 
performance, it incurs higher power and area. In the following 
section, we propose a new design method to resolve this problem, 
while keeping the performance unaffected. 

4. ENHANCED TLB DESIGN 
According to the above analysis, we introduce our improved TLB 
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Table 2. The Amount of RAM Accessing Reduces Dramatically After the First Step Improvement 
    Benchmark Linux Kernal Whetstone Dhrystone Paranoia

Original ITLB: Amount of RAM Accessing  3,459,885 22,378,257 37,709,705 14,700,174

Enhanced ITLB: Amount of RAM Accessing 932 227,410 693,290 33,838

ITLB: Enhanced Amount/Original Amount 2.7% 1.0% 1.8% 0.2%

Original DTLB: Amount of RAM Accessing  974,210 6,832,384 8,768,139 3,796,648

Enhanced DTLB: Amount of RAM Accessing 13,427 1,553,550 1,973,773 245,482

DTLB: Enhanced Amount/Original Amount 1.4% 22.7% 22.5% 6.5%

 
Table 3. Power Saving for the First Step Improvement 

    Benchmark Linux Kernal Whetstone Dhrystone Paranoia Aver. Reduction 

Power Reduction of RAM: 98.0% 88.2% 87.9% 96.7% 92.7%

Power Reduction of TLB: 21.3% 28.9% 36.9% 26.9% 28.5%

 

design method in three steps. The first step is to reduce power; the 
second step is to reduce area; and the third step is to reduce delay 
on critical path. At last, a new TLB design is structured to meet 
the need of embedded system. 

4.1 The First Step: Reduce Power 
Analysis in the previous sections shows that power consumption 
of TLB is serious. The aim of the first step is to reduce power. 
The method is described in two parts as following sentences. 
Firstly, when a new memory accessing comes, the virtual address 
of this accessing is compared with the previous virtual address of 
last accessing. If the two addresses lie in the same page, RAM of 
TLB won’t be accessed and the previous physical tag of the last 
access is used for this memory accessing. Furthermore, this 
compare logic is processed simultaneously with CAM query 
operation to avoid extra delay on critical path. Because the last 
accessing information will be kept in registers inherently until a 
new accessing comes, no extra hardware logic is needed to realize 
this method. Secondly, we utilize some high bits of the virtual 
address to judge which address space it belongs to. If the address 
lies in unmapped address space, we can map the address directly 
by using algorithm and don’t access the RAM of TLB.   

We don’t access the RAM of TLB until it’s necessary. Thus, the 
dynamic power of RAM can be controlled to a lower level, and 
the RAM can stay in low-power state for a longer time.  

Because of the data locality, continuous accessing to a specific 
page is very popular. We utilize this property in ITLB and DTLB. 
Though comparing with historical accessing is not a new concept, 
e.g. introduced in [7], our design method is still different on 
realization. We compare it simultaneously with CAM comparison 
to avoid extra delay on critical path. The first step constructs a 
solid foundation for step two.  

The amounts of accessing the RAM of ITLB and DTLB are listed 
in Table 2 to compare the effectiveness with original design. After 
the first improvement, the amount of accessing ITLB is only 0.2% 
~ 2.7% of the original design, and the amount of accessing DTLB 
is only 1.4% ~ 22.7% of the original design. Accordingly, the 
power of TLB will be reduced dramatically. From Table 3, we 
can see that the power of RAM has been reduced by 98% for 

LinuxKernal. And the average power reduction of RAM is 92.7%. 
Because the power of CAM is equal to the original design, the 
average power of the total TLB design is reduced by 28.5%. The 
first improvement is very effective. 

4.2 The Second Step: Reduce Area 
As shown in Table 2, the accessing frequency to RAM reduces a 
lot after using the first-step improvement. Will the conflict reduce 
if ITLB and DTLB share only one RAM with only one port after 
utilizing the first-step effect? If the conflict reduces a lot, the 
performance will not be influenced. But using only one one-port 
RAM can reduce much area. Of course, we can use a RAM with 
two ports, but its area is nearly equal to two RAMs with one port. 
It is also unacceptable. 

As shown in Table 4, ITLB and DTLB are very frequently 
accessed simultaneously for original design because both of them 
are accessed too much times. So two one-port RAMs or one two-
ports RAM are needed to avoid conflicts and to keep performance 
for original design. But after using the first-step enhancement, 
requirement of accessing RAMs reduces a lot, and as a result, 
requirement of accessing simultaneously the two one-port RAMs 
reduce a lot. For examples, conflict of Dhrystone reduces to 
0.01% of original design, and conflict of Whetstone reduces to 
0.03% of original design. So we can be confident to conduct the 
second step: using only one one-port RAM to save power and 
area without sacrifice of performance.  

The following experimental results can prove the efficiency of the 
second-step improvement. Table 5 compares the running time of 
the second-step improvement with original design n RTL 
simulation environment. We find the affect to performance is no 
more than 0.1%. Because a little conflict between ITLB and 
DTLB changes the execution behavior of the same program, that 
even makes Paranoia run a little bit faster - 0.02%. Anyway, the 
influence can be ignored. 

Now, we will see how much benefit we can get from the second 
improvement. Because ITLB and DTLB share only one one-port 
RAM, the area of RAM is reduced by 50%. From Figure 3B, we 
can figure out that the area of TLB will be reduced by 26%. The 
synthesis result from Design Compiler shows that under the same  
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Table 4. Number of Accessing to ITLB and DTLB simultaneously 
     Benchmark Linux Kernal Whetstone Dhrystone Paranoia

Number of Original Design 542,612 4,406,089 7,003,155 2,202,878

Number of Enhanced Design 2 1,141     982 1,265

Enhanced Design/ Original 
Design 

0.0004% 0.02% 0.01% 0.06%

 
Table 5. Impact on Performance after ITLB and DTLB share one RAM 

   Benchmark Linux Kernal Whetstone Dhrystone Paranoia 

Running time of Original Design (ns) 63,946,000 265,344,000 294,324,000 198,661,000 

Running time of Enhanced Design (ns) 63,946,000 265,031,000 291,705,000 198,695,000 

Performance Degradation 0.00% 0.12% 0.90% -0.02% 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

constrains with 0.18um process, the area of the original TLB 
design is 724,464.8um2, and it becomes 552,445.9um2 after using 
the second-step improvement. The area of TLB reduces 23.7%. 
The effectiveness of step two is obvious. Furthermore, it is certain 
that power consumption will be reduced to a lower level because 
of less area. 

What’s the shortcoming of the second step? It is inevitable that 
the modification adds extra delay on the critical path. We will 
analyze one scenario to describe this problem. First, ITLB is 
accessed by a PC (Program Counter), and the corresponding 
physical tag is got from the RAM; Second, DTLB is accessed by 

another virtual address, the output of the RAM changes to a new 
physical tag; Then, ITLB is accessed by another new PC, which 
lies in the same page with previous PC, and the new PC will not 
access RAM according to the first-step improvement. Thus, we 
cannot use the output of RAM directly, and we must add extra 
registers to lock the previous physical tag. If a virtual address lies 
in the same page with previous virtual address, the physical tag 
kept in the registers will be used. If a virtual address doesn’t lies 
in the same page with previous virtual address, RAM will be 
accessed and output of RAM will be used. As shown in Figure 5, 
a MUX is added to select from outputs of RAM and Keep_Reg. 
Keep_Reg is the register set to keep the previous physical tag. 

M
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Figure 5. The structure of the circuit using the second-step improvement 
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According to the design specification, the output of TLB-RAM is 
128-bit width. Selection on the two 128-bit data must bring heavy 
load and long delay. The timing results of Design Compiler show 
that the delay increases from 3.09ns to 3.26ns. It is unacceptable 
to add so much delay on critical path. How to resolve this 
problem? The third step is introduced in the following section to 
uncover this answer. 

4.3 The Third Step: Reduce Delay 
The area and power of TLB are reduced a lot because of the step 
one and step two. But these improvements bring a new trouble—
extra delay on critical path.  This is what this section should try to 
resolve. 

Because the critical path lies in DTLB, and the design of DTLB is 
similar with ITLB, we focus on the structure of DTLB to exploit 
an effective way to resolve the timing problem. The reason of 
extra delay on the critical path is that the width to be selected is 
too wide and the load is also too heavy. So we specially design 
the related circuit as shown in Figure 6. Selection between RAM 
and Keep_Reg registers is postponed. Outputs of DTLB-RAM 
and Keep_Reg are both compared with the tag of CACHE. Then 
we get two one-bit results. Selection between the two results can 
be done to judge whether it is a CACHE hit or not. Though the 
extra delay is also added, it is a selection between two one-bit 
signals, not two 128-bit signals. The synthesis results from Design 
Compiler show that the timing of critical path is 3.11ns after 
using the third-step improvement, and only 0.02ns is added 
compared with original 3.09ns.  

As a result, using three steps of improvements, the power and area 
of TLB of Godson-I are reduced to a lower level without sacrifice 
of timing and performance. Of course, there are much more 
details needed to be considered in the real design of Godson-I 
processor. In this paper we introduce the main method of the 
improvement after realizing the total design in the real chip. 

5. SUMMARY AND FUTURE WORK 
In this paper, we have proposed a new TLB design method and 
analyzed its effect on performance, power and area on the 
Godson-I processor architecture. We have implemented our 
proposed design and reported preliminary results. We have 
demonstrated the merit of a judiciary combination between the 
use of a single-port RAM and some history information. 
Furthermore, this single-port RAM is shared by ITLB and DTLB 
without influence the performance and timing, while keeping 
higher hit rate.  

In the future, we plan to investigate a configurable TLB design 
method that can optimize power, area, timing and performance 
with different applications on embedded systems. 
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