
An Energy Efficient TLB Design Methodology
 Dongrui Fan, Zhimin Tang, Hailin Huang

 Institute of Computing Technology
 Chinese Academy of Sciences

P.O.Box 2704-25, Beijing, China 100080
 Telephone: +86-10-62565533-9315

{fandr, tang, huanghl }@ict.ac.cn

GuangR. Gao
Dept. of Electrical & Computer Engineering

University of Delaware
140 Evans Hall, Newark, Delaware 19716

Telephone: +1-302-8313241

ggao@capsl.udel.edu

ABSTRACT
This paper researches Translation Look-aside Buffer (TLB) of
embedded processor. Based on an analysis of design-related
factors: power, area, critical path and performance of our research
model—Godson-I, a low-power TLB design is proposed without
sacrifice of performance and timing. Using this method, the
following results are achieved: power of TLB-RAM reduces
92.7% and area of TLB-RAM reduces 50%. Compared with other
methods, the hit rate of this design is much higher and the
accessing conflict to RAM between ITLB and DTLB is much
reduced. Although our work targets to Godson-I, the proposed
methodology should be applicable to other designs.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – Associative
memories. B.7.1 [Integrated Circuits]: Types and Design Styles
– VLSI (very large scale integration).

General Terms
Design, Experimentation, Performance.

Keywords
TLB, low-power consumption, Godson-I, single-port RAM,
energy efficient, embedded processor design.

1. INTRODUCTION
Designers of embedded architecture are paying increasingly more
attention to the power and area of chip design, because they are
also the deciding factors for the mobility and price of an
embedded product. That is critical to survive in the industry full
of competition.

This paper proposes a power and area reduction scheme in the
design of the translation look-aside buffer (TLB). We illustrate
our method using Godson-I processor – an embedded processor
designed at ICT [2,3,12]. We improve the TLB design through
three steps. Our method can reduce power and area, while

keeping the new design from sacrificing of its performance and
timing. We have performed various experiments and analysis to
study the effectiveness of the proposed TLB design method.

Using the new TLB design method, the area of RAM part of TLB
reduces 50%, and the power of RAM reduces 92.7%; the total
area of TLB reduces 23.7% and the total power of TLB reduces
28.5%. This has not cause any notable timing increase and
performance degradation. The experimental results show that the
proposed method is both practical and effective.

2. RELATED WORK AND
EXPERIMENTAL METHODOLOGY
A TLB plays a major role in MMU (Memory Management Unit)
providing the caching function to speed up the translation
between virtual addresses to physical addresses. The power
consumption and area of TLB construct important part of a
processor. A TLB is often designed as a full-associative or set-
associative buffer, which is constructed with a content-indexed
CAM and an address-indexed RAM. There are different ways to
structure TLBs in processor architecture design. For example,
instruction TLB (ITLB) and data TLB (DTLB) can be combined
into a unified TLB, or else they can be designed as separate TLBs
[1,8]. In recent years, many new design methods are introduced to
reduce the power consumption of TLB. The work described in [7]
turns off some inactive entries of TLB according to history; [5]
and [11] introduce micro-TLB, which divides TLB into two levels,
and controls the number of entries accessed each time based on
power considerations. But the hit rate of this method is much
lower. Dividing TLB into banks [6] and Semantic-Aware
Multilateral Partitioning [4] are also effective to reduce power
consumption of a TLB. But these new methods are more complex,
and may not be suitable for an embedded architecture design.

In this paper we report our research on an experimental TLB
design in the context of the Godson-I processor. We modify the
Godson-I architecture to incorporate our new TLB design and
implement the design at the register transaction level (RTL). We
are able to conduct an evaluation of our design at the gate level
using the commercial EDA tools for power, area and timing
analysis. These tools can accurately capture the effect of our new
design. Several aspects of the new design are considered in our
integrated experimental environment. After simulation and
verification, we collected experimental data in terms of
performance, power, area and timing. Suitable embedded TLB
design is raised according to tradeoff and analysis on these data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’05, August 8-10, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-137-6/05/0008...$5.00.

351

Figure 1 illustrates the original TLB design of Godson-I. When
TLB miss happens, refill operation will occur to both ITLB and
DTLB to keep the consistency between them. Advantage of this
design is to support simultaneously accessing between instruction
fetching and data visiting. Also this design is simple to realize,
and easy to keep higher hit rate. But the shortcoming of the
original design is that it may incur higher power and area. For
ASIC design, IP cores and standard cells are widely used. SRAM
is a standard IP (RF1SH from Artisan in Godson-I) and is easy to
get from foundries, but CAM is constructed using standard cells
in Godson-I. So CAM and RAM are separately designed in
different manners.

The experimental environment is described as below. The
experimental platform is Sun Blade 2000 server and SunOS
Solaris 5.8. We use NCVerilog (version: v03.30.(p001)) from
Cadence company to conduct simulation and use Design
Compiler (version: design_vision 2003.12) from Synopsys
company to do synthesis and timing analysis. VCS (vcs script
version: 6.0, compiler version: 6.0.1) and Power Compiler
(version: 2003.12)[9,10] from Synopsys are used to estimate
power consumption. The EDA tools mentioned above are popular
commercial products. The results from these EDA tools are
always much more accurate than micro-architecture simulators
available to us.

In our experiments, typical benchmarks, like LinuxKernal,
Dhrystone, Whetstone, and Paranoia etc. are used to test the
influence to performance and power for different TLB designs.

3. CHALLENGES IN EXISTING TLB
DESIGN
In this section, we first analyze power, area, critical path, and
performance of existing TLB design. Through the quantitative
analysis we can identify the problems and possible solutions.

3.1 Power Analysis
From Figure 1, we can see that frequently accessing to CAM and
RAM may significantly increase the power consumption of TLB.

Figure 2 illustrates the power distribution of Godson-I. TLB
occupies 12.9% of total power, and becomes the most important
source of power consumption besides CACHE. Table 1 shows the
accessing frequency of TLB. ITLB ratio is the number of cycles
of accessing ITLB divided by the total running cycles for each
benchmark. And DTLB ratio is number of cycles of accessing
DTLB divided by the total running cycles.

From Figure 2 and Table 1, we can find the power consumption
of TLB is mainly due to frequent access to CAM and RAM of
TLB. For instance, 34.2% accessing ratio for ITLB and 9.0%
accessing ratio for DTLB are very high for these benchmarks,
which are not intensive in memory accesses. On the other hand,
the area of TLB is aggressive because CAM and RAM have
special circuit structures. These factors all illustrate why TLB
consumes so much power.

3.2 Area Analysis
As is shown in Figure 3, area of 48-entry TLB equals to the whole
area of Godson-I processor except CACHE and float point units.
The graph “A” of Figure 3 illustrates area distribution of each unit
of Godson-I. Area of TLB occupies 13% of the total processor.
The graph “B” shows the ratio of area of each part of TLB itself.
RAM constructs 50% area of TLB. If some method can reduce
RAM effectively without notable impact on other factors, e.g.
performance. That will be a good way to reduce the area of TLB.

3.3 Critical Path Analysis
In processor design, critical path always lies in MMU and
CACHE, so does Godson-I. Figure 4 illustrates the critical path:
from physical address, which is from the output of TLB-RAM, to
tag comparison in CACHE module. The result of tag comparison
indicates whether a CACHE hit happens. If CACHE hit happens,
this operation will return data and new memory accessing
operation will be allowed in. If CACHE miss happens, CACHE
will send an accessing request to memory.

Because it takes much long time to access a big RAM, and
compare and control operations also take extra time, this path
actually becomes the critical path. So the new TLB design should

13%

7%

5%

5%

6%

10%

36%

1%

2%

2%

13%
TLB

CACHE

FALU

FMUL

ROQueue

General
Register

Float
Register

Others

ALU

MUL

MCUControl

Figure 2. Power Distribution of Each Part of Godson-I.

PC Virtual Addr.

Physical Addr. Physical Addr. Data Return Inst Return

ICACHE DCACHE

ITLB-RAM DTLB-RAM

Two-Port CAM

Fetching Data Access

Figure 1. Original TLB design method of Godson-I

352

 Table 1. Accessing Frequency of ITLB and DTLB for original TLB design
Benchmark LinuxKernal Whetstone Dhrystone Paranoia Aver. Ratio

Numb. Of ITLB accessing 3,459,885 22,378,257 37,709,705 14,700,174

Numb. Of DTLB accessing 974,210 6,832,384 8,768,139 3,796,648

Running Cycles 15,986,000 66,257,750 72,926,250 49,673,750

――

ITLB ratio 21.6% 33.8% 51.7% 29.6% 34.2%

DTLB ratio 6.1% 10.3% 12.0% 7.6% 9.0%

not add much delay on this path. Otherwise, worse timing is
unacceptable.

3.4 Performance Analysis
Because both instruction fetching and data accessing need to
translate virtual address by using TLB, TLB must be able to
process two visits at the same time to avoid port violation. In
Godson-I processor, as shown in Figure 1, there is a two-port
CAM, which can process two translation requests at the same
cycle. After comparing with each entry of CAM, ITLB and DTLB
generate its own index separately. Using the index, ITLB-RAM

and DTLB-RAM can be queried to generate physical address
separately. Thus, instruction fetching and data accessing will not
conflict for port of RAM.

Although, the original TLB design keeps higher hit rate and
performance, it incurs higher power and area. In the following
section, we propose a new design method to resolve this problem,
while keeping the performance unaffected.

4. ENHANCED TLB DESIGN
According to the above analysis, we introduce our improved TLB

Control Circuit

19%

CAM

29%
IRAM

26%

DRAM

26%

TLB 13%

FMUL 17%

FALU 6%

CACHE 42%

MCUControl 1%
ALU 1%

MUL 5% Others 4%

ROQueue 5%
GeneralRegister

3%

Float Register
3%

Figure 3A. Ratio of Area of Each Part of Godson-I Processor Figure 3B. Ratio of Area of Each Part of TLB

Compare
Physical Address

Control the next request

Index

Tag match

Control CACHE selection from
different ways.

Virtual Address

DTLB-RAM

CACHE TAG RAM

CAM

Figure 4. The Red and dashed Path is the Critical Path of original Godson-I.

353

Table 2. The Amount of RAM Accessing Reduces Dramatically After the First Step Improvement
 Benchmark Linux Kernal Whetstone Dhrystone Paranoia

Original ITLB: Amount of RAM Accessing 3,459,885 22,378,257 37,709,705 14,700,174

Enhanced ITLB: Amount of RAM Accessing 932 227,410 693,290 33,838

ITLB: Enhanced Amount/Original Amount 2.7% 1.0% 1.8% 0.2%

Original DTLB: Amount of RAM Accessing 974,210 6,832,384 8,768,139 3,796,648

Enhanced DTLB: Amount of RAM Accessing 13,427 1,553,550 1,973,773 245,482

DTLB: Enhanced Amount/Original Amount 1.4% 22.7% 22.5% 6.5%

Table 3. Power Saving for the First Step Improvement

 Benchmark Linux Kernal Whetstone Dhrystone Paranoia Aver. Reduction

Power Reduction of RAM: 98.0% 88.2% 87.9% 96.7% 92.7%

Power Reduction of TLB: 21.3% 28.9% 36.9% 26.9% 28.5%

design method in three steps. The first step is to reduce power; the
second step is to reduce area; and the third step is to reduce delay
on critical path. At last, a new TLB design is structured to meet
the need of embedded system.

4.1 The First Step: Reduce Power
Analysis in the previous sections shows that power consumption
of TLB is serious. The aim of the first step is to reduce power.
The method is described in two parts as following sentences.
Firstly, when a new memory accessing comes, the virtual address
of this accessing is compared with the previous virtual address of
last accessing. If the two addresses lie in the same page, RAM of
TLB won’t be accessed and the previous physical tag of the last
access is used for this memory accessing. Furthermore, this
compare logic is processed simultaneously with CAM query
operation to avoid extra delay on critical path. Because the last
accessing information will be kept in registers inherently until a
new accessing comes, no extra hardware logic is needed to realize
this method. Secondly, we utilize some high bits of the virtual
address to judge which address space it belongs to. If the address
lies in unmapped address space, we can map the address directly
by using algorithm and don’t access the RAM of TLB.

We don’t access the RAM of TLB until it’s necessary. Thus, the
dynamic power of RAM can be controlled to a lower level, and
the RAM can stay in low-power state for a longer time.

Because of the data locality, continuous accessing to a specific
page is very popular. We utilize this property in ITLB and DTLB.
Though comparing with historical accessing is not a new concept,
e.g. introduced in [7], our design method is still different on
realization. We compare it simultaneously with CAM comparison
to avoid extra delay on critical path. The first step constructs a
solid foundation for step two.

The amounts of accessing the RAM of ITLB and DTLB are listed
in Table 2 to compare the effectiveness with original design. After
the first improvement, the amount of accessing ITLB is only 0.2%
~ 2.7% of the original design, and the amount of accessing DTLB
is only 1.4% ~ 22.7% of the original design. Accordingly, the
power of TLB will be reduced dramatically. From Table 3, we
can see that the power of RAM has been reduced by 98% for

LinuxKernal. And the average power reduction of RAM is 92.7%.
Because the power of CAM is equal to the original design, the
average power of the total TLB design is reduced by 28.5%. The
first improvement is very effective.

4.2 The Second Step: Reduce Area
As shown in Table 2, the accessing frequency to RAM reduces a
lot after using the first-step improvement. Will the conflict reduce
if ITLB and DTLB share only one RAM with only one port after
utilizing the first-step effect? If the conflict reduces a lot, the
performance will not be influenced. But using only one one-port
RAM can reduce much area. Of course, we can use a RAM with
two ports, but its area is nearly equal to two RAMs with one port.
It is also unacceptable.

As shown in Table 4, ITLB and DTLB are very frequently
accessed simultaneously for original design because both of them
are accessed too much times. So two one-port RAMs or one two-
ports RAM are needed to avoid conflicts and to keep performance
for original design. But after using the first-step enhancement,
requirement of accessing RAMs reduces a lot, and as a result,
requirement of accessing simultaneously the two one-port RAMs
reduce a lot. For examples, conflict of Dhrystone reduces to
0.01% of original design, and conflict of Whetstone reduces to
0.03% of original design. So we can be confident to conduct the
second step: using only one one-port RAM to save power and
area without sacrifice of performance.

The following experimental results can prove the efficiency of the
second-step improvement. Table 5 compares the running time of
the second-step improvement with original design n RTL
simulation environment. We find the affect to performance is no
more than 0.1%. Because a little conflict between ITLB and
DTLB changes the execution behavior of the same program, that
even makes Paranoia run a little bit faster - 0.02%. Anyway, the
influence can be ignored.

Now, we will see how much benefit we can get from the second
improvement. Because ITLB and DTLB share only one one-port
RAM, the area of RAM is reduced by 50%. From Figure 3B, we
can figure out that the area of TLB will be reduced by 26%. The
synthesis result from Design Compiler shows that under the same

354

Table 4. Number of Accessing to ITLB and DTLB simultaneously
 Benchmark Linux Kernal Whetstone Dhrystone Paranoia

Number of Original Design 542,612 4,406,089 7,003,155 2,202,878

Number of Enhanced Design 2 1,141 982 1,265

Enhanced Design/ Original
Design

0.0004% 0.02% 0.01% 0.06%

Table 5. Impact on Performance after ITLB and DTLB share one RAM

 Benchmark Linux Kernal Whetstone Dhrystone Paranoia

Running time of Original Design (ns) 63,946,000 265,344,000 294,324,000 198,661,000

Running time of Enhanced Design (ns) 63,946,000 265,031,000 291,705,000 198,695,000

Performance Degradation 0.00% 0.12% 0.90% -0.02%

constrains with 0.18um process, the area of the original TLB
design is 724,464.8um2, and it becomes 552,445.9um2 after using
the second-step improvement. The area of TLB reduces 23.7%.
The effectiveness of step two is obvious. Furthermore, it is certain
that power consumption will be reduced to a lower level because
of less area.

What’s the shortcoming of the second step? It is inevitable that
the modification adds extra delay on the critical path. We will
analyze one scenario to describe this problem. First, ITLB is
accessed by a PC (Program Counter), and the corresponding
physical tag is got from the RAM; Second, DTLB is accessed by

another virtual address, the output of the RAM changes to a new
physical tag; Then, ITLB is accessed by another new PC, which
lies in the same page with previous PC, and the new PC will not
access RAM according to the first-step improvement. Thus, we
cannot use the output of RAM directly, and we must add extra
registers to lock the previous physical tag. If a virtual address lies
in the same page with previous virtual address, the physical tag
kept in the registers will be used. If a virtual address doesn’t lies
in the same page with previous virtual address, RAM will be
accessed and output of RAM will be used. As shown in Figure 5,
a MUX is added to select from outputs of RAM and Keep_Reg.
Keep_Reg is the register set to keep the previous physical tag.

M
U

X

Figure 5. The structure of the circuit using the second-step improvement

Compare

Compare

Control the next request

Control CACHE selection
from different ways.

M
U
X

DTLB-RAM

CACHE TAG RAM

Keep_Reg

Virtual Address

CAM

Tag Match

Figure 6. The structure of circuit after using the third-step improvement

CAM DTLB-RAM

CACHE TAG RAM

Keep_Reg

Control CACHE selection
 from different ways. Index

Physical Address

Tag Match

Virtual Address

 Control the next request

Compare

M
U

X

355

According to the design specification, the output of TLB-RAM is
128-bit width. Selection on the two 128-bit data must bring heavy
load and long delay. The timing results of Design Compiler show
that the delay increases from 3.09ns to 3.26ns. It is unacceptable
to add so much delay on critical path. How to resolve this
problem? The third step is introduced in the following section to
uncover this answer.

4.3 The Third Step: Reduce Delay
The area and power of TLB are reduced a lot because of the step
one and step two. But these improvements bring a new trouble—
extra delay on critical path. This is what this section should try to
resolve.

Because the critical path lies in DTLB, and the design of DTLB is
similar with ITLB, we focus on the structure of DTLB to exploit
an effective way to resolve the timing problem. The reason of
extra delay on the critical path is that the width to be selected is
too wide and the load is also too heavy. So we specially design
the related circuit as shown in Figure 6. Selection between RAM
and Keep_Reg registers is postponed. Outputs of DTLB-RAM
and Keep_Reg are both compared with the tag of CACHE. Then
we get two one-bit results. Selection between the two results can
be done to judge whether it is a CACHE hit or not. Though the
extra delay is also added, it is a selection between two one-bit
signals, not two 128-bit signals. The synthesis results from Design
Compiler show that the timing of critical path is 3.11ns after
using the third-step improvement, and only 0.02ns is added
compared with original 3.09ns.

As a result, using three steps of improvements, the power and area
of TLB of Godson-I are reduced to a lower level without sacrifice
of timing and performance. Of course, there are much more
details needed to be considered in the real design of Godson-I
processor. In this paper we introduce the main method of the
improvement after realizing the total design in the real chip.

5. SUMMARY AND FUTURE WORK
In this paper, we have proposed a new TLB design method and
analyzed its effect on performance, power and area on the
Godson-I processor architecture. We have implemented our
proposed design and reported preliminary results. We have
demonstrated the merit of a judiciary combination between the
use of a single-port RAM and some history information.
Furthermore, this single-port RAM is shared by ITLB and DTLB
without influence the performance and timing, while keeping
higher hit rate.

In the future, we plan to investigate a configurable TLB design
method that can optimize power, area, timing and performance
with different applications on embedded systems.

6. ACKNOWLEDGMENTS
This work was supported by Fundamental Research Foundation of
ICT (20056020), the National High-Tech Research and
Development 863 Program of China (2005AA110010), the
National 863 International Cooperation (20041080).

7. REFERENCES
[1] ARM Limited. ARM1020TTM (Rev 0) Technical

Reference Manual. www.arm.com, 2004.
[2] Dongrui Fan, Hongbo Yang, Guangrong Gao, Rongcai

Zhao. Evaluation and Choice of Various Branch
Predictors for Low-Power Embedded Processor.
Journal of Computer Science & Technology, Vol.18,
No.6, pp833-838, Nov. 2003.

[3] Dongrui Fan. Low Power Technology Research for
Godson Processor—master to Ph.D. thesis. CAPE
memo7, http://cape.ict.ac.cn, July 2002.

[4] Hsien-Hsin S Lee, Chinnakrishnan S Ballapuram.
Energy Efficient D-TLB and Data Cache using
Semantic-Aware Multilateral Partitioning. ISLPED,
pp306-311, 2003.

[5] J. B. Chen, et al. A Simulation Based Study of TLB
Performance. Proc. 19th Symp. Comp. Arch., pp114-
123, 1992.

[6] Jung-Hoon Lee, Gi-Ho Park, Sung-Bae Park, Shin-
Dug Kim. A selective filter-bank TLB system.
ISLPED pp312-317, 2003.

[7] Lawrence T Clark, Byungwoo Choi, Michael
Wilkerson. Reducing translation lookaside buffer
active power. ISLPED pp10-13, 2003.

[8] MIPS Technologies. MIPS32® 4Kc Processor Core
Data Sheet. www.mips.com, 2004.

[9] Synopsys Inc. Power Compiler Reference Manual.
Version 2003.

[10] Synopsys Inc. Power Compiler User Guide. Version
2003.12.

[11] T Juan, et al. Reducing TLB Power Requirements.
ISLPED, pp196-201, 1997.

[12] Weiwu Hu, Zhimin Tang. The Architecture of
Godson-I processor. Journal of Computer，Vol.26，
No.4，April 2003.

356

	Main Page
	ISLPED'05
	Front Matter
	Table of Contents
	Author Index

