
Dataflow Analysis for Energy-Efficient Scratch-Pad
Memory Management

Guangyu Chen and Mahmut Kandemir
Computer Science and Engineering Department

The Pennsylvania State University
University Park, PA 16802, USA

{gchen,kandemir}@corporation.com

ABSTRACT
Scratch-Pad Memories (SPMs) are a serious alternative to conven-
tional cache memories in embedded computing since they allow
software to manage data flowing from and into memory compo-
nents, resulting in a predictable behavior at runtime. The prior
studies considered compiler-directed SPM management using both
static and dynamic approaches. One of the assumptions under which
most of the proposed approaches to data SPM management operate
is that the application code is structured with regular loop nests with
little or no control flow within the loops. This assumption, while it
makes data SPM management relatively easy to implement, limits
the applicability of those approachs to the codes involve conditional
execution and complex control flows. To address this problem, this
paper proposes a novel data SPM management strategy based on
dataflow analysis. This analysis operates on a representation that
reflects the conditional execution flow of the application and, con-
sequently, it is applicable to a large class of embedded applications,
including those with complex control flows.

Categories and Subject Descriptors
D.3.m [Software]: Programming Languages—Miscellaneous

General Terms
Languages

Keywords
Scratch Pad Memory (SPM), data flow analysis, compiler

1. INTRODUCTION
Recent research has demonstrated that conventional hardware-

managed cache hierarchies may not necessarily be the best option
for embedded application codes that manipulate large data structures
using nested loops. The main reason for this is the fact that these
applications have compiler analyzable data access patterns and an
optimizing compiler would be in a better position than hardware to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

manage data transfers across memory hierarchies. One of the archi-
tectures employed for enabling software-managed memory space is
scratch-pad memories (SPMs). An SPM is similar to a conventional
cache memory; the difference is that, while data transfers into and
out of caches are determined by hardware at runtime, those in SPM
are determined by a compiler at compilation time. In the context of
real-time embedded computing, SPMs are preferable as they allow
accurate worst case execution time analysis, which is not easy with
conventional caches.

Several research groups investigated SPMs from hardware and
software perspectives. As far as software support is concerned, one
of the most important questions is how to decide which subset of
data should be kept in the SPM at any given time. The answer
to this question is critical since SPM space is typically limited (it
is on-chip) and cannot accommodate all the data manipulated by a
reasonably-sized embedded application. Among the solutions pro-
posed for data SPMs are static approaches (e.g., [8]) that keep SPM-
resident data fixed throughout execution and dynamic approaches
(e.g., [6]) that change the SPM contents based on dynamic data
access and reuse patterns. One of the implicit assumptions under
which most of the proposed approaches to SPM management oper-
ate is that the application code is structured with regular loop nests
with little or not control flow within and between the loops. This
assumption, while it makes SPM management relatively easy to im-
plement (as we do not deal with dynamic conditional control flow),
limits the applicability of those approaches to the codes involve con-
ditional execution and complex control flows (both intra and inter-
procedural). When applied to such codes, these techniques need to
be conservative, which means in practice missing some opportuni-
ties for further code optimization and losing some potential perfor-
mance/energy benefits.

Focusing on large array-based embedded applications, this pa-
per proposes a compiler-guided dataflow analysis based approach
to data SPM management. The proposed scheme is very general
and applicable to a large class of embedded applications, including
those with complex control flows.

The rest of this paper is organized as follows. Section 2 discusses
related work on SPM management. Section 3 revises several impor-
tant concepts and terms related to dataflow analysis and control flow
graphs. Section 4 gives our dataflow analysis formulation for SPM
management and explains how it is used for optimization. Section 5
gives our concluding remarks.

2. RELATED WORK
There exist several prior studies on using SPMs for instruction

accesses. For example, Sias et al [10] present compiler techniques,
which arrange for 70-99% of the fetched operations to come from a

327

statically managed 256-instruction loop buffer, allowing instruction
fetch power savings and eliminating branch penalties. Bellas et al.
[2] present an SPM management scheme for instruction accesses.
Steinke et al. [11] focus on a strategy for placing program and data
objects into SPM for saving energy. As compared to our approach
presented in this paper, all these schemes focus on instruction ac-
cesses. In comparison, we target data references. Also, in most of
these studies, the SMP management is static; that is, the set of data
elements that are mapped to SPM is decided before the execution
and are fixed for the entire execution. In contrast, in our approach,
the set of data elements mapped to SPM is dynamically changed as
the execution progresses. Lee et al. [7] focus on reducing the energy
consumption due to instruction accesses using a software-managed
SPM (called loop cache). While their scheme is also dynamic, it
is fundamentally different from ours as it focuses on instruction ac-
cesses. In a similar way, our work is also different from that of
Steinke et al [4], where they propose a solution to the same problem
using integer linear programming (ILP). Note that some of the cur-
rent embedded processors, such as SH-DSP, StarCore SC140 and
ST Microelectronics ST120, also support software-controlled loop
caches.

On the data accesses side, several studies focused on the use of
SPMs. Panda et al. [8] present a powerful static data partitioning
scheme for efficient utilization of scratch-pad memory. Their ap-
proach is oriented towards eliminating the potential conflict misses
due to limited associativity of on-chip cache. This approach benefits
applications with a number of small (and highly reused) arrays that
can fit in the SPM. Benini et al. [3] discuss an elegant memory man-
agement scheme that is based on keeping the most frequently used
data items in a software-managed memory (instead of a conven-
tional cache). Kandemir et al. [6] propose a dynamic SPM manage-
ment scheme for data accesses. Their framework uses both loop and
data transformations to maximize the reuse of data elements stored
in the SPM. Hallnor and Reinhardt [5] propose a software-managed
cache architecture and a data replacement algorithm. Wang et al.
[12] discuss a framework for analyzing the flow of values and data
reuse for on-chip memories. In contrast to these studies, our work
focuses on improving the energy behavior of an SPM, is based on
dataflow analysis, and is applicable to a larger class of applications.

3. REVIEW OF DATAFLOW ANALYSIS
Dataflow analysis reveals opportunities for optimization by rea-

soning about the runtime flow of data values at compile-time. It
is performed on a control flow graph (CFG), which is usually build
from the source code of a program. A CFG is a directed graph. Each
node in a CFG represents a basic block – a sequence of consecutive
program statements in which flow of control enters at the beginning
and leaves at the end without halt or possibility of branching except
maybe at the end [1]. Each directed edge from one basic block to
another indicates a potential control flow during execution from the
former to the latter. CFG is a conservative representation of the pro-
gram since many of the edges in CFG may not exercised in a typical
execution.

Dataflow analysis builds and solves dataflow equations to dis-
cover facts about what can occur at runtime during execution. Dataflow
equations have following forms:

in[b] =
[

p∈pred(b)

out[p, b];

out[p, b] = gen[p] ∪ (in[p] − kill[p, b]), p ∈ pred(b);

where gen[p] and kill[p, b] represent the set of properties generated
by and killed by basic block p, respectively. On the other hand,

out[p, b] gives the set of properties that propagate from p to b along
the edge p → b in the CFG, and in[b] gives the set of properties that
reach the beginning of b. In the remainder of this paper, we present
a dataflow analysis for SPM management (a problem that has not
been considered previously in a dataflow framework) and evaluate
its effectiveness.

4. DATAFLOW FORMULATION
Our dataflow analysis is performed in three steps: (1) computing

the constraints on array access instructions, (2) constructing reuse
graphs, and (3) determining the regions of the arrays that need be
loaded into or evicted from SPM. Our goal is to decide what to bring
to SPM and what to displace from it for each point in the program
code. Although we focus on a data SPM in this paper, our analysis
can also be used to generate hints that can help applications make
better use of a conventional hardware-managed data cache.

In this section, we limit our analysis to a single perfectly-nested
and normalized loop nest. A perfectly nested loop nest is a loop
nest whose instructions are all in the inner-most loop. A normalized
loop nest has the following properties: (1) the lower bound of each
loop in the nest is zero; (2) the upper bound of each loop is either a
constant or a function of the iteration indices of the outer loops; and
(4) the increment (i.e., step size) of each loop is one.1 In Section 4.4,
we will extend our analysis to more general cases.

A perfectly-nested and normalized loop nest has the following
form:

for �I = �0 to �U { loop body }
Vector �I = (i1, i2, ..., in)T is the iteration vector of the loop nest,
and ik (1 ≤ k ≤ n) is the iteration index of the kth loop. Particu-
larly, i1 and in are the iteration indices for the outer-most and inner-
most loops, respectively. Vector �U = (u1, u2, ..., un)T is the upper
bounds vector, where uk (1 ≤ k ≤ n) is the upper bound for the
kth loop. Further, u1 is a constant, and uk (1 < k ≤ n) is the func-
tions of vector (i1, i2, ..., ik−1)

T , i.e., uk = fk(i1, i2, ..., ik−1). In
addition, we assume that fk is an affine function.

Another assumption under which our analysis operates is that the
subscript vector for each array access instruction is an affine func-
tion of the iteration vector and loop-invariant constants. An affine
function can be represented as M�I + �o, where �I is an iteration vec-
tor with n elements, M is an n-column matrix (referred to as access
matrix), and �o (referred to as offset) is a constant vector with n ele-
ments. For example, X[i1+2i2−1, 3i1−4i2+5] can be represented
as X[M�I + �o], where

M =

„
1 2
3 −4

«
and �o =

„ −1
5

«
.

4.1 Computing Constraints
In a loop nest containing conditional branches, a basic block may

not be executed at every iteration. For each basic block b in the
body of loop nest L, we use dataflow analysis to compute the set
of iterations at which b may be executed. For b0, the entry block of
the loop body of L, we have in[b0] = {�I |�0
 �I
 �U}, where �U
is the upper bounds for L. For all the blocks, we have gen[b] = φ.
For p ∈ pred(b), kill[p, b] is the set of iterations where control
flow does not transition from p to b. Let us assume that the last
instruction of basic block p is a conditional branch depending on
the value of a boolean expression e. We have kill[p, b] equal to the
set of iterations where e = false if the control transitions from p to
1There exist compiler techniques [13] to make a loop nest normal-
ized.

328

b when e = true. On the other hand, kill[p, b] is equal to the set of
iterations where e = true if the control transitions from p to b when
e = false. If the last instruction of p is not a conditional branch, we
have kill[p, b] = φ. All the sets in our analysis are expressed using
Presburger formulas [9]. We do not consider the sets that cannot be
expressed in Presburger formulas.

Let us assume that Ci is the set of iterations where array access
instruction Ai is executed. We have:

Ci = in[b], where Ai is in basic block b.

In the rest of this paper, we refer to Ci as the constraint on Ai. For
convenience, we use the following notation:

Ci(f(�I)) ≡ {�I | f(�I) ∈ Ci}, where f is a function of �I.

4.2 Constructing Reuse Graphs
Let us first define a function δ(Ai, Aj) that computes the reuse

vector from Ai toAj , where Ai and Aj are array access instructions
with same access matrix M . We compute δ(Ai, Aj) as follows. For
Aj at iteration �I+�d to reuse the array element used byAi at iteration
�I , we must have:

M�I + �oi = M(�I + �d) + �oj ,

where �oi and �oj are the offset vectors of Ai and Aj , respectively.
By assuming�b = �oi − �oj , we obtain:

M�d = �b. (1)

At this point, we consider three possible cases:
Case 1. �b �= �0, and �d has integer solution that is lexicographically

greater than �0:
δ(Ai, Aj) = min

M �d=�b ∧ �d��0
{�d};

Case 2. �b = �0, and Ai can be executed before Aj within the same
loop iteration2: δ(Ai, Aj) = �0;

Case 3. Otherwise: δ(Ai, Aj) = ∞.
If M�d = �0 has only the trivial solution (i.e., �d = �0), equation

(1) has at most one solution. In this case, each instruction can never
use an array element more than once (i.e., there is no reuse). On the
other hand, if M�d = �0 has non-trivial solutions, equation (1) can
have an infinite number of solutions. In this case, an instruction may
use the same array element multiple times. To address this situation,
we define R(M) as the minimum sized set such that for all integer
vector �y such that �y
 �0 and M�y = �b, there exist n non-negative
integers c1, c2, ..., cn and n vectors �x1, �x2, ..., �xn ∈ R(M) such
that:

�y =
nX

i=1

ci�xi.

It can be proven that any reuse vector from Ai to Aj can be repre-
sented as:

�di,j = δ(Ai, Aj) +

|R(M)|X
k=1

ck�xk,

where ck ∈ Z+ ∪ 0 ∧ �xk ∈ R(M).
Now, we can define RG(L,X,M), the Reuse Graph for loop

nest L, array X, and access matrix M , as follows:

RG(L, X,M) ≡ (V, E,χ),

2Since Ai and Aj can be in different conditional branches within
the loop, they are not necessarily executed together in every loop
iteration.

where

V ≡ {Ai|Ai in L ∧Ai accesses X[M�I + �oi]};
E ≡ {(Ai, Aj)|Ai, Aj ∈ V ∧ `

(i �= j ∧ δ(Ai, Aj) �= ∞)

∨(i = j ∧R(M) �= φ)
´};

and, for each (Ai, Aj) ∈ E, we have:

χ(Ai, Aj) =

 {δ(Ai, Aj)}, i �= j
R(M), i = j

Let us assume that a is the number of instructions in the loop nest
L that access array X using access matrix M . The number of the
vertices in the corresponding reuse graph RG(L,X,M) is equal to
a, and the number of the edges in this graph cannot exceed a2.

4.3 Determining the Contents of SPM
For instruction Ai that accesses array X, let us define the set

RI(N, i) as the set of loop iterations such that each element of X
accessed by Ai at iteration �I ∈ RI(N, i) will be reused at least N
times. Figure 1 gives the algorithm for computing RI(N, i). The
idea behind this algorithm can be briefly explained as follows. First,
we find all the paths start from Ai with N edges in the given reuse
graph. And then, we compute the constraint on each of these paths.
For a given path p = (Ak0 , Ak1 , Ak2 , ..., AkN), we compute the
constraint on p as:

C(p) =

N−1\
j=0

Ckj
(�I +

jX
r=0

�dkr ,kr+1),

whereCkj is the constraint onAkj , and �dkr,kr+1 ∈ χ(Akr , Akr+1).
For example, given a path (A0, A1, A2), if an array element is

used by A0 at �I, and then reused by A1 at �I + �d0,1, and by A2 at
�I + �d0,1 + �d1,2, then �I must satisfy the following constraint:

C0(�I) ∩ C1(�I + �d0,1) ∩ C2(�I + �d0,1 + �d1,2).

Finally, we compute RI(N, i) as follows:

RI(N, i) =
[

p∈P (i)∧|p|≥N+1

C(p),

where P (i) is the set of paths starting from Ai, and |p| denotes the
length of path p.

Further, our algorithm in Figure 1 uses the thresholds �t and �T to
filter out the reuse paths that span too many iterations since we are
interested only in the reuses that will take place in the near future.

For ease of discussion, we define:

RA(X,N, �L, �U) ≡
[

∀Ai∈L
{X[M�I + �oi] | �I ∈ RI(N, i) ∧ �U � �I ≺ �L}.

RA(X,N, �L, �U) contains the elements of array X that are used
during the iterations between �L and �U , and these elements are reused
at least N times.

The compiler determines the set of data elements that are mapped
to SPM at any given time, it also inserts code to the program for
loading the mapped data elements into the SPM, and, if necessary,
evicting some data elements from the SPM to make space for the
new data. For ease of implementation, our compiler inserts the SPM
management codes at the entry of each iteration of the nth loop in the
loop nest. Consequently, the set of data elements that are mapped to
SPM is changed at iterations �I0, �I1, ..., �In, where �I0 = �0 and

�Ik+1 − �Ik = (0, 0, ..., 0| {z }
n−1

, 1, 0, ..., 0).

329

During the iterations between �Ik and �Ik+1 (0 ≤ k < n), the
set of elements mapped to the SPM is not changed. Loading data
to SPM incurs performance overheads, which are amortized by the
future access to these data. Therefore, only the data elements that
will be reused more than N times should be loaded into the SPM,
where N is the SPM loading threshold. Assuming that Sk is the
set of elements of array X in the SPM right before iteration �Ik, the
set of the elements of array X that need to be loaded into SPM at
iteration �Ik (0 ≤ k < n) can be determined as:

Load(k) = RA(X,N, �Ik, �Ik+1) − Sk.

Further, we have:

Sk ⊆
k−1[
i=0

RA(X,N, �Ii, �Ii+1) = RA(X,N, �I0, �Ik).

If |Sk ∪ RA(X,N, �Ik, �Ik+1)| > CSPM , where CSPM is the
capacity of the SPM, we need to evict some elements from the SPM.
Specifically, we evict the elements that are used less than M times
during the iterations between �Ik and �Ik+1, where M (M < N) is
the SPM eviction threshold. Therefore, the set of elements that can
be evicted is:

Evict(k) = Sk − RA(X,M, �Ik, �Ik+1).

Note that the elements not in Evict(k) are not evicted. If we can-
not find enough space by eviction, we do not load all the elements
in Load(k). This policy ensures that each array element that has
been loaded into SPM remains in the SPM until it is reused by at
least N − M times. After that, it might be evicted due to the in-
sufficient SPM space (depending on the reuse patterns of other el-
ements). The thresholds N and M are determined by the capacity
of SPM (CSPM), the cost for loading a data element into the SPM
(Costload), and the per access costs for the SPM (CostSPM) and
the main memory (CostMemory). The following constraints on M
and N should hold. First, the total size of data elements in the SPM
cannot exceed the capacity of the SPM:X

∀X,∀k

|RA(X,N, �Ik, �Ik+1)| ≤ CSPM .

Second, the cost for loading must be amortized by the future ac-
cesses:

(N −M)(CostMemory − CostSPM) > Costload.

4.4 Dealing with Non-Perfectly-Nested Loops
So far, we have discussed our analysis for perfectly-nested nor-

malized loop nests. However, in reality, not the all loop nests found
in embedded application codes are perfectly-nested and normalized.
Wolfe [13] presents an algorithm for loop normalization. In this sec-
tion, we briefly discuss how our analysis can be extended to analyze
the non-perfectly-nested loops.

Non-perfectly-nested loop nests are processed in three steps. First,
we transform a non-perfectly-nested loop nest into a perfectly-nested
one by moving all the instructions into the inner most loop nest.
To ensure the correctness of the program, in the most general case,
these moved instructions are enclosed by a conditional branch in-
struction. Second, we perform the dataflow analysis discussed so
far on the body of the transformed loop nest and then generate the
SPM management code. Finally, we extract the conditional branch
instructions that have been added in the first step out of the inner
most loop to eliminate the unnecessary condition tests.

5. CONCLUDING REMARKS
This paper proposes a novel SPM management scheme built upon

dataflow analysis over the control flow graph representation of the
program. It is able to handle a large class of embedded applications
(even those with complex conditional control flow).

RG(L, X, M) = (V, E, χ) — reuse graph
	t, 	T — thresholds for reuse vectors
N — minimum number of reuses Ci — symbolic constraint on Ai

D[i, j] — set of reuse vectors from Ai to Aj

RI[N, i] — the set of loop iterations such that each element of X accessed by Ai

at the iteration 	I ∈ RIN,i will be reused at least N times.

// initialize
for each (Ai, Aj) ∈ E {

D[i, j] = φ;
for each 	d ∈ χ(Ai, Aj)

if(d ≺ 	t) {
S = {	I|Ci(I) ∧ Cj(I + 	d)};
if(S �= φ)

D[i, j] = D[i, j] ∪ {	d};
}

}
// computing RI[N, i] for all N and i
for each Ai ∈ V {

S = {	I|Ci(I)};
RI[N, i] = visit(i, 0, 	0, S);

}

function visit(i, n, 	p, C) {
if(p
 	T) return false;
for each j ∈ V such that D[i, j] �= φ

for each 	d ∈ D[i, j] {
C′ = C ∩ Cj(I + 	p + 	d);
if(C′ �= φ) {

if(n = N)
return C′;

else
r = visit(j, n + 1, 	p + 	d, C′);
return r;

}
}

}

Figure 1: Algorithm for computing R(N, i) for array X in loop
nest L with access matrix M . This algorithm finds all the paths
with N edges in the reuse graph RG(L,X,M), and computes
the constraint on each of these paths. �T and �t are the thresholds
that filter out the reuse paths that span too many iterations since
we are interested only in the reuses that will happen in the near
future.

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles,

Techniques, and Tools (second edition). Addison-Wesley, Reading,
Ma, 1986.

[2] N. Bellas, I. N. Hajj, C. Polychronopoulos, and G. Stamoulis. Energy
and performance improvements in microprocessor design using a loop
cache. In International Conference on Computer Design, 1999.

[3] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy
efficiency of embedded systems by application-specific memory
hierarchy generation. In IEEE Design & Test of Computers, Apr. 2000.

[4] S. S. et al. Reducing energy consumption by dynamic copying of
instructions onto on-chip memory. In ISSS’02, Oct. 2002.

[5] E. G. Hallnor and S. K. Reinhardt. A fully-associative
software-managed cache design. In International Conference on
Computer Architecture, 2000.

[6] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh. Dynamic management of scratch-pad memory space.
In the 38th DAC, June 2001.

[7] L. H. Lee, B. Moyer, and J. Arends. Instruction fetch energy reduction
using loop caches for embedded applications with small tight loops. In
ISLPED, Aug. 1999.

[8] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of
scratch-pad-memory in embedded processor applications. In
European Design and Test Conference (ED&TC’97), Mar. 1997.

[9] W. Pugh and D. Wonnacott. An exact method for analysis of
value-based array data dependences. In Lecture Notes in Computer
Science 768: Sixth Annual Workshop on Programming Languages and
Compilers for Parallel Computing, Aug. 1993.

[10] J. Sias, H. Hunter, and W. Hwu. Enhancing loop buffering of media
and telecommunication applications using low-overhead predication.
In the Annual International Symposium on Microarchitecture, Dec.
2001.

[11] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning
program and data objects to scratchpad for energy reduction. In
Proceedings of the conference on Design, automation and test in
Europe, page 409, Washington, DC, USA, 2002. IEEE Computer
Society.

[12] L. Wang, W. Tembe, and S. Pande. Optimizing on-chip memory usage
through loop restructuring for embedded processors. In 9th
International Conference on Compiler Construction, Mar. 2000.

[13] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, CA, 1996.

330

	Main Page
	ISLPED'05
	Front Matter
	Table of Contents
	Author Index

