
Fast Configurable-Cache Tuning with a Unified
Second-Level Cache

ABSTRACT
Tuning a configurable cache subsystem to an application can
greatly reduce memory hierarchy energy consumption. Previous
tuning methods use a level one configurable cache only, or a
second level with separate instruction and data configurable
caches. We instead use a commercially-common unified second
level, a seemingly minor difference that actually expands the
configuration space from 500 to about 20,000. We develop
additive way tuning for tuning a cache subsystem with this large
space, yielding 62% energy savings and 35% performance
improvements over a non-configurable cache, greatly
outperforming an extension of a previous method.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures: Design Styles – cache
memories.

General Terms: Design.

Keywords
Configurable cache, cache hierarchy, cache exploration, cache
optimization, low power, low energy, architecture tuning,
embedded systems.

1. INTRODUCTION AND MOTIVATION
The memory hierarchy of a microprocessor can consume as much
as 50% of the system power in a microprocessor [6]. Such a large
contributor to total system power is a good candidate for
optimizations to reduce total system power and energy.

Applications require highly diverse cache configurations for
optimal energy consumption in the memory hierarchy. Even
different phases of the same application may benefit from
different cache configurations in each phase [10].

Recent technologies have enabled the tuning of cache
parameters to the needs of an application. Core-based processor
technologies allow a designer to design a specific cache

configuration. Additionally, processor designs with configurable
caches are available that can have their caches configured during
system reset or even during runtime [6]. Such configurable caches
have been shown to have very little size or performance overhead
compared to non-configurable caches [6][12].

With the option of cache configuration readily available, a
problem is to determine the best cache configuration for a
particular application. Previous methods use cache hierarchies
with limited configurability, yielding cache configuration spaces
of at most a few hundred possible cache configurations, making
fast exploration relatively straightforward. Most such methods
configure total size, line size, and associativity for only a single
level of cache, having less than 50 possible configurations,
achieving memory hierarchy energy savings of 40% [12]. A few
methods also include a second level of separate instruction and
data configurable caches, having a few hundred possible
configurations, achieving increased memory hierarchy energy
savings of 53% [4]. The increased savings suggest that the larger
cache configuration space reveals a greater opportunity for energy
savings, by allowing the cache to be tuned more closely to an
application’s needs. However, a larger configuration space makes
exploration heuristic development more difficult.

Two-level caches are common in desktop systems and are
becoming common in increasingly capable embedded systems.
However, the second level cache is commonly unified (having
one cache with both instructions and data), rather than separate
(having one cache for instructions and another for data). A multi-
way unified cache enables tradeoffs between the number of
instruction ways and the number of data ways, with those
tradeoffs known as way management [6]. Each way may be used
for instructions only, data only, or both instructions and data (or
may even be shut down). The interdependence between
instruction and data has a (perhaps surprisingly) large impact on
the cache configuration space that we must explore. With
separated level two caches, we can effectively explore the
instruction cache hierarchy independently from the data cache
hierarchy, because a configuration of one cache hierarchy doesn’t
(significantly) affect the other cache hierarchy. In contrast, with a
unified second level, the two hierarchies become tightly
interdependent, requiring us to consider (roughly) the cross
product of the two configuration spaces. For example, two spaces
of 200 configurations each, when independent yield 400
configurations to be searched, but when interdependent yield
40,000. Our results will show that this larger space, rather than
consisting of uninteresting or impractical configurations, indeed
contains useful configurations that allow for intense specialization
of the cache hierarchy to an application’s needs.

In this paper, we present a heuristic cache tuning method for a
highly configurable two-level cache hierarchy. We improve upon

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-137-6/05/0008...$5.00.

Ann Gordon-Ross, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{ann/vahid}@cs.ucr.edu

http://www.cs.ucr.edu/~vahid
*Also with the Center for Embedded Computer Systems at UC Irvine

Nikil Dutt
Center for Embedded Computer Systems

School of Information and Computer Science
University of California, Irvine

dutt@cecs.uci.edu
http://www.ics.uci.edu/~dutt

323

previous methods by significantly increasing the search space via
a unified second level configurable cache, resulting in greater
energy savings than previous methods and increased applicability
to current and future systems. Our cache hierarchy allows for
18,144 possible cache configurations. Our heuristic achieves an
average energy savings of 62%, while requiring explicit
examination of a mere 0.2% of the search space on average –
approximately 34 configurations.

2. RELATED WORK
Commercial systems with tunable caches (e.g., [6]) do not address
how to tune those caches, leaving the task to the designer. Several
research efforts therefore focus on providing automated assistance
for such tuning. Most such efforts focus on single level cache
tuning. Platune [3] is a framework for tuning configurable system-
on-a-chip (SOC) platforms. Platune offers many configurable
parameters and prunes the search space by isolating
interdependent parameters from independent parameters.
However, the level one cache parameters, being interdependent,
are explored exhaustively. Whereas exhaustive exploration was
feasible for a level one cache due to the small number of possible
configurations, the exhaustive method is not feasible with a
highly configurable cache. An exhaustive search of tens of
thousands of configurations could take months or more to fully
explore.

To speed up exploration time, heuristic methods have been
developed. Palesi et al. [7] designed an extension to the Platune
tuning environment that used a genetic algorithm to speed up
exploration time and produce comparable results. Zhang et al.
[12] presents a heuristic method for tuning a configurable cache
that searches the cache parameters in their order of impact on
energy consumption. The heuristic produces a set of Pareto-
optimal points trading off energy consumption and performance.

A few methods exist for tuning two levels of cache, using
reduced configurability to maintain a manageable search space.
Balasubramonian et al. [1] proposes a method for redistributing
the cache size between the level one and level two caches or
between the level two and level three caches while maintaining a
conventional level one cache. In previous work [4], we designed
an exploration heuristic for a configurable cache hierarchy that
explores separate level one instruction and data caches and
separate level two instruction and data caches.

3. CONFIGURABLE CACHE
ARCHITECTURE
Our configurable two-level cache architecture consists of separate
configurable level one caches and a unified level two cache. The
level one configurable cache architecture is based on the tunable
cache described in [13]. Hardware layout verification for the
configurable cache is presented in [12]. The tunable parameters
consist of cache size, line size, and associativity. The base cache
structure in an 8 KB cache consisting of four 2 KB banks where
each bank acts as a way. Special way configuration registers
allow for a 2-way set associative and a direct mapped cache using
way concatenation. Additionally, ways may be shut down to
allow for direct mapped and 2-way set associative 4 KB caches
and a direct mapped 2 KB cache. Way shutdown and way
concatenation can be combined to allow a direct-mapped 4 KB
cache.

The second level cache is a configurable unified cache quite
different than the first level cache. For the second level, we utilize

way management implemented in Motorola’s M*CORE processor
[6]. Way management allows for each particular way in a unified
cache to be specified as a unified way (instruction and data), an
instruction-only way, a data-only way, or the way can be shut
down entirely.

For the exploration parameters, we chose values to reflect
typical off-the-shelf embedded systems. For the level one cache,
we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64 byte line
sizes, and direct-mapped, 2-, and 4-way set associativities. For the
level two cache, we use a 64 KB cache with four configurable
ways and configurable line sizes of 16, 32, and 64 bytes.
However, our heuristic is not dependent on these values, nor on
embedded applications – for desktop applications, larger total-size
values would be appropriate. For comparison purposes, we use a
common cache configuration to act as a base cache configuration
to show the effectiveness of our cache tuning heuristic in reducing
energy. The base cache configuration is an 8 Kbyte 4-way set
associative cache with a 32 byte line size for the level one cache,
and a 64 Kbyte fully unified cache with a 64 byte line size for the
level two cache – a reasonably common configuration.

Our configurable cache architecture offers 18,144 different
configurations. For each level one cache, there are 18 different
cache configurations (configurable parameters are size, line size,
and associativity, each with three possible values, minus invalid
combinations). The second cache level has 36 unique
combinations of way configuration for each of the three line sizes,
resulting in 108 different level two configurations. Thus, the
maximum number of cache configurations is 34,992. However,
the second level line size must be equal than or greater than the
largest level one line size, reducing the design space to 18,144 –
still a very large number of configurations.

4. TUNING HEURISTICS
4.1 Sequential Exploration with Ratio
Projection
A simple tuning heuristic for two-level caches ignores the tuning
dependency between the level one instruction and data caches,
and sequentially explores the two levels, first tuning level one,
then level two. As previous tuning methods don’t consider a
unified cache, we first developed a sequential heuristic for two-
level caches, providing a close comparison to current methods,
and illustrating the need to fully explore the tuning dependencies.

For level one exploration, our heuristic explores parameters in
the order of their impact on the energy consumption, with higher
impact parameters explored first [13]. Cache size is explored first
followed by line size and then associativity. To reduce cache
flushing during exploration, the heuristic explores each parameter
starting with the smallest value and increasing to the largest value.
For the level two cache, the heuristic must also consider that the
cache is unified. Thus, not only must the heuristic determine the
total size, line size, and ways, but the heuristic must also
determine how many ways will be for data, how many for
instruction, how many for both instruction and data, and how
many will be shut down. For unified level two cache exploration,
we initially developed a method we call ratio projection.

The ratio projection method projects the number of necessary
instruction and data ways needed for the best cache configuration.
Ratio projection sets the level two cache to have one instruction
way and adds data ways one at a time. The lowest energy
configuration suggests the ideal number of data ways needed in

324

the level two cache. The method determines the ideal number of
instruction ways similarly. The method then must combine the
ideal number of instruction and data ways. Simply adding the
number of ways could exceed the available number of ways in the
level two cache. Instead, the method decreases the number data
and instruction ways and/or unifies them and trying to keep the
ratio of instruction to data ways as close to the ideal as possible.
For example, the method might determine the ideal number of
instruction and data ways to be 3 and 3, respectively. Given only
four available ways, the ratio projection method would allocate 2
instruction and 2 data ways, thus maintaining the same ratio of
instruction to data ways. Further details of the ratio projection
method are available in [5].

The sequential heuristic performed poorly for many
benchmarks. Although the heuristic resulted in a 20-40% decrease
in energy consumption over the base cache configuration for most
examples, poor performance on some benchmarks (as much as
3.6x more energy) resulted in the heuristic yielding an average
energy increase of 24%. Clearly, a simple adaptation of current
methods does not sufficiently explore tuning dependencies.

4.2 Alternating Cache Exploration with
Additive Way Tuning – ACE-AWT
The poor results of the first heuristic substantiate the hypothesis
that precise exploration with regards to tuning dependencies is
necessary. Exploring the level one cache separately from the level
two cache naively ignores the dependency that exists between the
two levels via the level two unified cache. For example, altering a
parameter in the level one instruction cache changes the
effectiveness of the level two cache by changing the quantity of
level two fetches and the addresses fetched. Also, the change in
level two utilization by instructions affects the level one data
cache by changing the contention among instructions and data in
the shared level two cache.

In [4], we similarly concluded the importance of tuning levels
one and two together (though instruction and data were separate
in that work), and we thus designed the interlaced exploration
method. Instead of fully exploring the level one cache and then
proceeding to the level two cache, the interlaced method explores
one parameter for the level one cache and then for the level two
cache, before proceeding to explore the next parameter. However,
that interlaced method only addressed dependency between
separate level one and level two caches, and not the dependency
between the level one instruction and data caches. Additionally,
the interlaced method cannot be easily adapted to a unified cache
featuring way management.

For level two exploration, way management makes interlaced
exploration of the cache levels difficult because of the
dependency between size and associativity. To change cache size,

way management either adds or removes a way. However, the
added or removed way is either a unified, data, or instruction way,
thus affecting associativity. Similarly, when changing the cache’s
associativity, a way is either added or removed, which changes
the cache size. This dependency complicates level two cache
exploration, preventing exploring either associativity or size
alone.

To overcome the difficulty arising in interlaced exploration
and to extend the interlaced heuristic to address level one
instruction and data cache dependencies, we introduce the
alternating cache exploration with additive way tuning heuristic
for level two cache exploration (ACE-AWT). For each cache
parameter, the ACE-AWT heuristic first tunes the level one
instruction cache, then the level one data cache, followed by
additive way tuning for the level two cache. The first phase of
additive way tuning, illustrated in Figure 1(a), adds ways one at a
time and chooses the next way to add based on what type of
added way resulted in the lowest energy cache configuration.
Additive way tuning starts by adding one way to the level two
cache, and then explores three configurations – a single
instruction, data, or unified way. The heuristic chooses the
lowest-energy configuration, and then adds another way to the
level two cache, again trying an instruction, data, or unified way.
This additive method of increasing the cache size and
associativity continues until the level two cache is full or until
there is no longer a decrease in energy consumption. This phase
of additive way tuning is done when the level two cache size is
initially explored.

Alternating level exploration with a unified second level of
cache increases the difficulty of exploring the line size. The line
size of the level two cache must always be equal or greater than
the line sizes of both of the level one instruction and data caches.
To allow for level one line size exploration, our heuristic
increases the size of the level two line size while increasing the
size of the level one line size. After determining level one line
sizes, the ACE-AWT heuristic explores remaining larger level
two line sizes.

During associativity exploration, Figure 1(b) illustrates the
final tuning step applied to fine tune the cache configuration. The
ACE-AWT heuristic adjusts ways to hone in on the best cache
configuration by attempting to add and/or remove ways. First, the
heuristic tries to increase the number of ways by adding either an
instruction, data, or unified way one at a time. If the cache size is
full, the heuristic skips the enlargement step. The heuristic then
explores decreasing the size of the cache by removing an
instruction, data, or unified way one at a time. If removing a way
causes the cache to be empty, that configuration is ignored. The
lowest energy cache configuration is chosen if it improves upon
the current cache configuration. This tuning step is continued

Figure 1: Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning phase.

If no unexplored
configuration to

try

Start with empty cache

Current Cache Configuration

Try three possible way additions for
the current cache configuration

Add I-way Add D-way Add U-way

Choose the way addition that results
in the lowest energy cache

If the addition of a
way decreases the
energy from the
previous cache

configuration, add
that way to the
current cache
configuration

If cache
is full

If no decrease in energy over previous configuration

DONE

Start with resulting cache
from first phase

Current Cache Configuration

Try 3 possible way additions and 3 possible way removals for
the current cache configuration – size permitting

Add
U-way

Choose the way addition or way removal
that results in the lowest energy cache

If the addition or
removal of a way

decreases the energy
from the previous

cache configuration,
add/remove that way
to/from the current
cache configuration

If no decrease in energy over previous configuration

DONE

Add
D-way

Add I-
way

Remove
I-way

Remove
D-way

Remove
U-way

(a) (b)

325

until there is no improvement in energy consumption or there is
no previously unexplored configuration to explore. Further details
of the ACE-AWT heuristic are available in [5].

5. RESULTS
We applied each heuristic to 27 benchmarks - sixteen benchmarks
from the EEMBC benchmark suite [2] and eleven benchmarks
from the Powerstone benchmark suite [6]. These benchmarks are
all embedded system benchmarks and thus suitable for the
configurable cache parameter values we examined. We stress that
we could also run desktop benchmarks using suitable cache
parameter values, and we are doing so for related and future work.

We used estimation methods and measurements to calculate
the total system energy consumption, including both dynamic and
static energy. We used CACTI [9] to determine the dynamic
energy consumption consumed by a cache fetch for each cache
configuration for 0.18-micron technology. We obtained the main
memory fetch energy using a standard Samsung memory, and
CPU stall energy from a 0.18-micron MIPS microprocessor
(details are available in [5]). Our energy numbers represent all
memory-access-related energy only. We estimate cache static
energy as 10% of total cache energy – a reasonable assumption
for current and near future technology. For miss penalties and
throughput for both cache levels, we estimate ratios typical for an
embedded system. We assume a level two fetch is four times
slower than a level one fetch, and a main memory fetch is ten
times slower than a level two fetch. We assume memory
throughput is 50% of latency, meaning blocks fetches after the
first block take 50% of the latency of the first block fetch.

We modified SimpleScalar to simulate way management in
the level two cache and to determine cache hit and miss values for
each cache configuration. We ran exploration scripts that applied
each heuristic to every benchmark.

Figure 2 shows the energy consumption for each benchmark
for both tuning heuristics, and shows the optimal cache energy
consumption for 12 randomly chosen benchmarks (we couldn’t
generate optimal energy for every benchmark due to the large
time required). Energy consumption for each heuristic is
normalized to the energy consumption of the base cache for each
benchmark. Figure 2 shows that while the sequential with ratio
projection heuristic performed well on a number of benchmarks,
the average energy increased due to poor heuristic performance
on several benchmarks. However, the ACE-AWT heuristic
achieves energy savings for every benchmark, resulting in an
average 62% energy savings. For the benchmarks with optimal
cache configuration information, the ACE-AWT either finds the
optimal or near-optimal configuration. The ACE-AWT achieves
these energy savings by exploring only 34 unique configurations
on average over all benchmarks – a mere 0.2% of the total search
space.

We also examined the performance impact of the ACE-AWT
heuristic. In real time systems, negative performance impacts are
likely unacceptable. We observed that for the ACE-AWT

heuristic, each benchmark shows an improvement in performance
with an average speedup of 35%. We found that this improvement
comes due to tuning the line size to the locality needs of the
application [11]. (While this result may seem surprising, the
compromise line size found in most caches, typically 32 bytes,
may perform best on average across all benchmarks, but specific
applications often do much better with either a 16 byte or 64 byte
line size).
6. CONCLUSIONS AND FUTURE WORK
We presented a new heuristic for tuning a two-level cache with a
unified second level, yielding an average 62% memory-access-
energy savings over a base cache configuration, while exploring
only 0.2% of the design space. Future work includes applying our
heuristic to desktop/server applications and architectures. We are
also investigating finer-grained cache tuning to program phases.
7. ACKNOWLEDGEMENTS
This research was supported in part by the National Science
Foundation (CCR-0203829, CCR-9876006) and by the
Semiconductor Research Corporation.

8. REFERENCES
[1] Balasubramonian, R., Albonesi, D., Buyuktosunoglu, A.,

Dwarkadas, S. Memory heirarchy reconfiguration for energy and
performance in general-purpose processor architecture. 33rd
International Symposium on Microarchitecture, December 2000.

[2] EEMBC, the Embedded Microprocessor Benchmark Consortium,
www.eembc.org.

[3] Givargis, T., Vahid, F. Platune: a tuning framework for system-on-a-
chip platforms. IEEE Transactions on Computer Aided Design,
November 2002.

[4] Gordon-Ross, A., Vahid, F., Dutt, N. Automatic tuning of two-level
caches to embedded applications. Design, Automation and Test
Conference in Europe (DATE), 2004.

[5] Gordon-Ross, A., Vahid, F., Dutt, N., Fast configurable-cache tuning
with a unified second-level cache. UC Riverside Technical Report
UCR-CS-2005-05002.

[6] Malik, A., Moyer, W., Cermak, D. A low power unified cache
architecture providing power and performance flexibility. International
Symposium on Low Power Electronics and Design, 2000.

[7] Palesi, M., Givargis, T. Multi-objective design space exploration
using genetic algorithms. International Workshop on
Hardware/Software Codesign, May 2002.

[8] Personal communication with M*CORE designers
[9] Reinman, G., Jouppi, N.P. Cacti2.0: an integraded cache timing and

power model. COMPAQ Western Research Lab, 1999.
[10] Sherwood, T., Perelman, E., Hamerly, G., Sair, S., Calder, B.

Discovering and Exploiting Program Phases, IEEE Micro: Micro's Top
Picks from Computer Architecture Conferences, December 2003

[11] Veidenbaum, A., Tang, W., Gupta, R., Nicolau, A., Ji, X. Adapting
cache line size to application behavior. International Conference on
Supercomputing, June 1999.

[12] Zhang, C., Vahid, F., Najjar, W. A highly-configurable cache
architecture for embedded systems. 30th Annual International
Symposium on Computer Architecture, June 2003.

[13] Zhang, C., Vahid, F. A self-tuning cache architecture for embedded
systems. Design, Automation and Test Conference in Europe, 2004

Figure 2: Energy consumption normalized to the base cache configuration (bold line) for both cache exploration heuristics and the

optimal cache configuration.

0%
20%
40%
60%
80%
100%
120%
140%

A2
TI
ME
01

Ba
se
FP
01

CA
CH
EB
01

CA
NR
DR
01

IIR
FL
T0
1

MA
TR
IX
01

PU
W
MO
D0
1

RS
PE
ED
01

TB
LO
OK
01

AI
FF
TR
01

AI
IF
FT
01

AI
FI
RF
01

BI
TM
NP
01

ID
CT
RN
01

PN
TR
CH
01

TT
SP
RK
01
bc
nt bi

lv

bi
na
ry bl

it
br
ev

g3
fa
x

m
at
m
ul

po
cs
ag

ps
-jp
eg

uc
bq
so
rt
v4
2
av
g

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

n

o
rm

a
li
ze

d
 t

o
 t

h
e
 b

a
se

ca

ch
e
 c

o
n

fi
g

u
ra

ti
o

n Sequential/
Ratio
Projection
ACE-AWT

Optimal

2.4 2.1 2.0 3.6 3.1

326

	Main Page
	ISLPED'05
	Front Matter
	Table of Contents
	Author Index

