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ABSTRACT 
Tuning a configurable cache subsystem to an application can 
greatly reduce memory hierarchy energy consumption. Previous 
tuning methods use a level one configurable cache only, or a 
second level with separate instruction and data configurable 
caches. We instead use a commercially-common unified second 
level, a seemingly minor difference that actually expands the 
configuration space from 500 to about 20,000. We develop 
additive way tuning for tuning a cache subsystem with this large 
space, yielding 62% energy savings and 35% performance 
improvements over a non-configurable cache, greatly 
outperforming an extension of a previous method.   

Categories and Subject Descriptors 
B.3.2 [Hardware]: Memory Structures: Design Styles – cache 
memories. 

General Terms: Design. 

Keywords 
Configurable cache, cache hierarchy, cache exploration, cache 
optimization, low power, low energy, architecture tuning, 
embedded systems. 

1. INTRODUCTION AND MOTIVATION 
The memory hierarchy of a microprocessor can consume as much 
as 50% of the system power in a microprocessor [6]. Such a large 
contributor to total system power is a good candidate for 
optimizations to reduce total system power and energy.  

Applications require highly diverse cache configurations for 
optimal energy consumption in the memory hierarchy. Even 
different phases of the same application may benefit from 
different cache configurations in each phase [10].  

Recent technologies have enabled the tuning of cache 
parameters to the needs of an application. Core-based processor 
technologies allow a designer to design a specific cache  

 
 
 

 

 
 
configuration. Additionally, processor designs with configurable 
caches are available that can have their caches configured during  
system reset or even during runtime [6]. Such configurable caches 
have been shown to have very little size or performance overhead 
compared to non-configurable caches [6][12]. 

With the option of cache configuration readily available, a 
problem is to determine the best cache configuration for a 
particular application. Previous methods use cache hierarchies 
with limited configurability, yielding cache configuration spaces 
of at most a few hundred possible cache configurations, making 
fast exploration relatively straightforward. Most such methods 
configure total size, line size, and associativity for only a single 
level of cache, having less than 50 possible configurations, 
achieving memory hierarchy energy savings of 40% [12]. A few 
methods also include a second level of separate instruction and 
data configurable caches, having a few hundred possible 
configurations, achieving increased memory hierarchy energy 
savings of 53% [4]. The increased savings suggest that the larger 
cache configuration space reveals a greater opportunity for energy 
savings, by allowing the cache to be tuned more closely to an 
application’s needs. However, a larger configuration space makes 
exploration heuristic development more difficult. 

Two-level caches are common in desktop systems and are 
becoming common in increasingly capable embedded systems. 
However, the second level cache is commonly unified (having 
one cache with both instructions and data), rather than separate 
(having one cache for instructions and another for data). A multi-
way unified cache enables tradeoffs between the number of 
instruction ways and the number of data ways, with those 
tradeoffs known as way management [6]. Each way may be used 
for instructions only, data only, or both instructions and data (or 
may even be shut down). The interdependence between 
instruction and data has a (perhaps surprisingly) large impact on 
the cache configuration space that we must explore. With 
separated level two caches, we can effectively explore the 
instruction cache hierarchy independently from the data cache 
hierarchy, because a configuration of one cache hierarchy doesn’t 
(significantly) affect the other cache hierarchy. In contrast, with a 
unified second level, the two hierarchies become tightly 
interdependent, requiring us to consider (roughly) the cross 
product of the two configuration spaces. For example, two spaces 
of 200 configurations each, when independent yield 400 
configurations to be searched, but when interdependent yield 
40,000. Our results will show that this larger space, rather than 
consisting of uninteresting or impractical configurations, indeed 
contains useful configurations that allow for intense specialization 
of the cache hierarchy to an application’s needs.  

In this paper, we present a heuristic cache tuning method for a 
highly configurable two-level cache hierarchy. We improve upon 
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previous methods by significantly increasing the search space via 
a unified second level configurable cache, resulting in greater 
energy savings than previous methods and increased applicability 
to current and future systems. Our cache hierarchy allows for 
18,144 possible cache configurations. Our heuristic achieves an 
average energy savings of 62%, while requiring explicit 
examination of a mere 0.2% of the search space on average – 
approximately 34 configurations.  

2. RELATED WORK 
Commercial systems with tunable caches (e.g., [6]) do not address 
how to tune those caches, leaving the task to the designer. Several 
research efforts therefore focus on providing automated assistance 
for such tuning. Most such efforts focus on single level cache 
tuning. Platune [3] is a framework for tuning configurable system-
on-a-chip (SOC) platforms. Platune offers many configurable 
parameters and prunes the search space by isolating 
interdependent parameters from independent parameters. 
However, the level one cache parameters, being interdependent, 
are explored exhaustively. Whereas exhaustive exploration was 
feasible for a level one cache due to the small number of possible 
configurations, the exhaustive method is not feasible with a 
highly configurable cache. An exhaustive search of tens of 
thousands of configurations could take months or more to fully 
explore. 

To speed up exploration time, heuristic methods have been 
developed. Palesi et al. [7] designed an extension to the Platune 
tuning environment that used a genetic algorithm to speed up 
exploration time and produce comparable results. Zhang et al. 
[12] presents a heuristic method for tuning a configurable cache 
that searches the cache parameters in their order of impact on 
energy consumption. The heuristic produces a set of Pareto-
optimal points trading off energy consumption and performance.  

A few methods exist for tuning two levels of cache, using 
reduced configurability to maintain a manageable search space. 
Balasubramonian et al. [1] proposes a method for redistributing 
the cache size between the level one and level two caches or 
between the level two and level three caches while maintaining a 
conventional level one cache. In previous work [4], we designed 
an exploration heuristic for a configurable cache hierarchy that 
explores separate level one instruction and data caches and 
separate level two instruction and data caches.  

3. CONFIGURABLE CACHE 
ARCHITECTURE 
Our configurable two-level cache architecture consists of separate 
configurable level one caches and a unified level two cache. The 
level one configurable cache architecture is based on the tunable 
cache described in [13]. Hardware layout verification for the 
configurable cache is presented in [12]. The tunable parameters 
consist of cache size, line size, and associativity. The base cache 
structure in an 8 KB cache consisting of four 2 KB banks where 
each bank acts as a way. Special way configuration registers 
allow for a 2-way set associative and a direct mapped cache using 
way concatenation. Additionally, ways may be shut down to 
allow for direct mapped and 2-way set associative 4 KB caches 
and a direct mapped 2 KB cache. Way shutdown and way 
concatenation can be combined to allow a direct-mapped 4 KB 
cache. 

The second level cache is a configurable unified cache quite 
different than the first level cache. For the second level, we utilize 

way management implemented in Motorola’s M*CORE processor 
[6]. Way management allows for each particular way in a unified 
cache to be specified as a unified way (instruction and data), an 
instruction-only way, a data-only way, or the way can be shut 
down entirely. 

For the exploration parameters, we chose values to reflect 
typical off-the-shelf embedded systems. For the level one cache, 
we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64 byte line 
sizes, and direct-mapped, 2-, and 4-way set associativities. For the 
level two cache, we use a 64 KB cache with four configurable 
ways and configurable line sizes of 16, 32, and 64 bytes. 
However, our heuristic is not dependent on these values, nor on 
embedded applications – for desktop applications, larger total-size 
values would be appropriate. For comparison purposes, we use a 
common cache configuration to act as a base cache configuration 
to show the effectiveness of our cache tuning heuristic in reducing 
energy. The base cache configuration is an 8 Kbyte 4-way set 
associative cache with a 32 byte line size for the level one cache, 
and a 64 Kbyte fully unified cache with a 64 byte line size for the 
level two cache – a reasonably common configuration. 

Our configurable cache architecture offers 18,144 different 
configurations. For each level one cache, there are 18 different 
cache configurations (configurable parameters are size, line size, 
and associativity, each with three possible values, minus invalid 
combinations). The second cache level has 36 unique 
combinations of way configuration for each of the three line sizes, 
resulting in 108 different level two configurations. Thus, the 
maximum number of cache configurations is 34,992. However, 
the second level line size must be equal than or greater than the 
largest level one line size, reducing the design space to 18,144 – 
still a very large number of configurations. 

4. TUNING HEURISTICS 
4.1 Sequential Exploration with Ratio 
Projection  
A simple tuning heuristic for two-level caches ignores the tuning 
dependency between the level one instruction and data caches, 
and sequentially explores the two levels, first tuning level one, 
then level two. As previous tuning methods don’t consider a 
unified cache, we first developed a sequential heuristic for two-
level caches, providing a close comparison to current methods, 
and illustrating the need to fully explore the tuning dependencies. 

For level one exploration, our heuristic explores parameters in 
the order of their impact on the energy consumption, with higher 
impact parameters explored first [13]. Cache size is explored first 
followed by line size and then associativity. To reduce cache 
flushing during exploration, the heuristic explores each parameter 
starting with the smallest value and increasing to the largest value. 
For the level two cache, the heuristic must also consider that the 
cache is unified. Thus, not only must the heuristic determine the 
total size, line size, and ways, but the heuristic must also 
determine how many ways will be for data, how many for 
instruction, how many for both instruction and data, and how 
many will be shut down. For unified level two cache exploration, 
we initially developed a method we call ratio projection. 

The ratio projection method projects the number of necessary 
instruction and data ways needed for the best cache configuration. 
Ratio projection sets the level two cache to have one instruction 
way and adds data ways one at a time. The lowest energy 
configuration suggests the ideal number of data ways needed in 
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the level two cache. The method determines the ideal number of 
instruction ways similarly. The method then must combine the 
ideal number of instruction and data ways.  Simply adding the 
number of ways could exceed the available number of ways in the 
level two cache. Instead, the method decreases the number data 
and instruction ways and/or unifies them and trying to keep the 
ratio of instruction to data ways as close to the ideal as possible. 
For example, the method might determine the ideal number of 
instruction and data ways to be 3 and 3, respectively. Given only 
four available ways, the ratio projection method would allocate 2 
instruction and 2 data ways, thus maintaining the same ratio of 
instruction to data ways. Further details of the ratio projection 
method are available in [5]. 

The sequential heuristic performed poorly for many  
benchmarks. Although the heuristic resulted in a 20-40% decrease 
in energy consumption over the base cache configuration for most 
examples, poor performance on some benchmarks (as much as 
3.6x more energy) resulted in the heuristic yielding an average 
energy increase of 24%. Clearly, a simple adaptation of current 
methods does not sufficiently explore tuning dependencies.  

4.2 Alternating Cache Exploration with 
Additive Way Tuning – ACE-AWT 
The poor results of the first heuristic substantiate the hypothesis 
that precise exploration with regards to tuning dependencies is 
necessary. Exploring the level one cache separately from the level 
two cache naively ignores the dependency that exists between the 
two levels via the level two unified cache. For example, altering a 
parameter in the level one instruction cache changes the 
effectiveness of the level two cache by changing the quantity of 
level two fetches and the addresses fetched. Also, the change in 
level two utilization by instructions affects the level one data 
cache by changing the contention among instructions and data in 
the shared level two cache.  

In [4], we similarly concluded the importance of tuning levels 
one and two together (though instruction and data were separate 
in that work), and we thus designed the interlaced exploration 
method. Instead of fully exploring the level one cache and then 
proceeding to the level two cache, the interlaced method explores 
one parameter for the level one cache and then for the level two 
cache, before proceeding to explore the next parameter. However, 
that interlaced method only addressed dependency between 
separate level one and level two caches, and not the dependency 
between the level one instruction and data caches. Additionally, 
the interlaced method cannot be easily adapted to a unified cache 
featuring way management. 

For level two exploration, way management makes interlaced 
exploration of the cache levels difficult because of the 
dependency between size and associativity. To change cache size, 

way management either adds or removes a way. However, the 
added or removed way is either a unified, data, or instruction way, 
thus affecting associativity. Similarly, when changing the cache’s 
associativity, a way is either added or removed, which changes 
the cache size. This dependency complicates level two cache 
exploration, preventing exploring either associativity or size 
alone.  

To overcome the difficulty arising in interlaced exploration 
and to extend the interlaced heuristic to address level one 
instruction and data cache dependencies, we introduce the 
alternating cache exploration with additive way tuning heuristic 
for level two cache exploration (ACE-AWT). For each cache 
parameter, the ACE-AWT heuristic first tunes the level one 
instruction cache, then the level one data cache, followed by 
additive way tuning for the level two cache. The first phase of 
additive way tuning, illustrated in Figure 1(a), adds ways one at a 
time and chooses the next way to add based on what type of 
added way resulted in the lowest energy cache configuration. 
Additive way tuning starts by adding one way to the level two 
cache, and then explores three configurations – a single 
instruction, data, or unified way. The heuristic chooses the 
lowest-energy configuration, and then adds another way to the 
level two cache, again trying an instruction, data, or unified way. 
This additive method of increasing the cache size and 
associativity continues until the level two cache is full or until 
there is no longer a decrease in energy consumption. This phase 
of additive way tuning is done when the level two cache size is 
initially explored. 

Alternating level exploration with a unified second level of 
cache increases the difficulty of exploring the line size. The line 
size of the level two cache must always be equal or greater than 
the line sizes of both of the level one instruction and data caches. 
To allow for level one line size exploration, our heuristic 
increases the size of the level two line size while increasing the 
size of the level one line size. After determining level one line 
sizes, the ACE-AWT heuristic explores remaining larger level 
two line sizes. 

During associativity exploration, Figure 1(b) illustrates the 
final tuning step applied to fine tune the cache configuration. The 
ACE-AWT heuristic adjusts ways to hone in on the best cache 
configuration by attempting to add and/or remove ways. First, the 
heuristic tries to increase the number of ways by adding either an 
instruction, data, or unified way one at a time. If the cache size is 
full, the heuristic skips the enlargement step. The heuristic then 
explores decreasing the size of the cache by removing an 
instruction, data, or unified way one at a time. If removing a way 
causes the cache to be empty, that configuration is ignored. The 
lowest energy cache configuration is chosen if it improves upon 
the current cache configuration. This tuning step is continued 

 

 

 

 

 

 

 

 

 

Figure 1: Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning phase. 
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until there is no improvement in energy consumption or there is 
no previously unexplored configuration to explore. Further details 
of the ACE-AWT heuristic are available in [5]. 

5. RESULTS 
We applied each heuristic to 27 benchmarks - sixteen benchmarks 
from the EEMBC benchmark suite [2] and eleven benchmarks 
from the Powerstone benchmark suite [6]. These benchmarks are 
all embedded system benchmarks and thus suitable for the 
configurable cache parameter values we examined. We stress that 
we could also run desktop benchmarks using suitable cache 
parameter values, and we are doing so for related and future work. 

We used estimation methods and measurements to calculate 
the total system energy consumption, including both dynamic and 
static energy. We used CACTI [9] to determine the dynamic 
energy consumption consumed by a cache fetch for each cache 
configuration for 0.18-micron technology. We obtained the main 
memory fetch energy using a standard Samsung memory, and 
CPU stall energy from a 0.18-micron MIPS microprocessor 
(details are available in [5]). Our energy numbers represent all 
memory-access-related energy only. We estimate cache static 
energy as 10% of total cache energy – a reasonable assumption 
for current and near future technology. For miss penalties and 
throughput for both cache levels, we estimate ratios typical for an 
embedded system. We assume a level two fetch is four times 
slower than a level one fetch, and a main memory fetch is ten 
times slower than a level two fetch. We assume memory 
throughput is 50% of latency, meaning blocks fetches after the 
first block take 50% of the latency of the first block fetch.  

We modified SimpleScalar to simulate way management in 
the level two cache and to determine cache hit and miss values for 
each cache configuration. We ran exploration scripts that applied 
each heuristic to every benchmark. 

Figure 2 shows the energy consumption for each benchmark 
for both tuning heuristics, and shows the optimal cache energy 
consumption for 12 randomly chosen benchmarks (we couldn’t 
generate optimal energy for every benchmark due to the large 
time required). Energy consumption for each heuristic is 
normalized to the energy consumption of the base cache for each 
benchmark. Figure 2 shows that while the sequential with ratio 
projection heuristic performed well on a number of benchmarks, 
the average energy increased due to poor heuristic performance 
on several benchmarks. However, the ACE-AWT heuristic 
achieves energy savings for every benchmark, resulting in an 
average 62% energy savings. For the benchmarks with optimal 
cache configuration information, the ACE-AWT either finds the 
optimal or near-optimal configuration. The ACE-AWT achieves 
these energy savings by exploring only 34 unique configurations 
on average over all benchmarks – a mere 0.2% of the total search 
space. 

We also examined the performance impact of the ACE-AWT 
heuristic. In real time systems, negative performance impacts are 
likely unacceptable. We observed that for the ACE-AWT 

heuristic, each benchmark shows an improvement in performance 
with an average speedup of 35%. We found that this improvement 
comes due to tuning the line size to the locality needs of the 
application [11]. (While this result may seem surprising, the 
compromise line size found in most caches, typically 32 bytes, 
may perform best on average across all benchmarks, but specific 
applications often do much better with either a 16 byte or 64 byte 
line size). 
6. CONCLUSIONS AND FUTURE WORK 
We presented a new heuristic for tuning a two-level cache with a 
unified second level, yielding an average 62% memory-access-
energy savings over a base cache configuration, while exploring 
only 0.2% of the design space. Future work includes applying our 
heuristic to desktop/server applications and architectures. We are 
also investigating finer-grained cache tuning to program phases.  
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Figure 2: Energy consumption normalized to the base cache configuration (bold line) for both cache exploration heuristics and the 

optimal cache configuration.  
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