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ABSTRACT
As FPGAs enter the nanometer regime, several modifications are needed to
reduce the increasing leakage power dissipation. Hence, this work presents
some modifications to the FPGAs CAD flow to mitigate leakage power dis-
sipation through the use of multi-threshold CMOS technologies to pack and
place logic blocks that exhibit similar idleness close to each other so they
can be turned off during their idle time. The modifications are integrated
into the VPR flow and tested on several FPGA benchmarks using a CMOS
0.13µm dual-Vth technology, resulting in an average leakage power savings
of at least 20%.
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1. INTRODUCTION AND RELATED WORK
In order to maintain the performance improvement witnessed by the

semiconductor industry in the past decades, future CMOS technologies will
continue to be aggressively scaled down. However, this scaling created sev-
eral challenges to circuit designers, of which the most significant is sub-
threshold leakage. Leakage current is estimated to increase by three to five
folds on average per technology generation and the total leakage power dis-
sipation is expected to reach 50% of the total design power in the 65nm
CMOS technology [1]. Traditionally, power management in FPGAs was
constrained to dynamic power minimization. However, with modern FP-
GAs built using 90nm CMOS technologies, leakage power is forming a road
block to the widespread use of FPGAs in some applications like wireless
personal communication systems, which have conservative leakage power
dissipation requirements.

FPGAs suffer from leakage power dissipation more seriously than ASIC
designs for several reasons. Firstly, for a certain design, not all of the FPGA
logic and switching resources are utilized. In fact the average percentage
utilization for FPGAs is around 60% [2]. Hence, almost 40% of the FPGA
is consuming leakage power without delivering useful output. Secondly, in
most applications, all of the utilized part is not used for all of the time. As
a matter of fact, several parts of the utilized portion of the FPGA can be
producing useless output for a long time of the operation time of the FPGA.
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Lastly, the whole FPGA design can be inactive for a long time period, for
example in wireless communication systems, the idle periods can be longer
than 50% of the operational time of the design. Hence, FPGAs need to be
forced into a low-power (standby) mode during their idle periods.

Although leakage power reduction is a familiar topic in the ASIC indus-
try, however, only recently FPGA researchers started to tackle this problem
[2, 3, 4, 5]. Leakage power dissipation in FPGAs can be reduced by in-
troducing new techniques at the circuit level, architecture level, and/or at
the computer-aided design (CAD) level. In this work an architectural mod-
ification for FPGAs is adopted and the changes needed at the CAD level
are devised to make full advantage of the architecture in maximizing the
leakage savings. The architectural modification adopted is the use of multi-
threshold CMOS (MTCMOS) technology in FPGAs [2].

MTCMOS has proven its success in reducing both the active and standby
leakage in the ASIC domain by employing a high-Vth (HVT) sleep transis-
tor (ST) to connect the pull-down network of a circuit to the ground, as
shown in Figure 1. However, STs introduce a speed penalty due to the
added resistance to the ground [6, 7]. In FPGAs, STs can reduce leak-
age by: (i) powering down the unutilized part of the chip, (ii) dynamically
turning on/off the utilized parts of the chip depending on their activity, (iii)
powering down all of the FPGA during its idle time, and (iv) reducing leak-
age current due to the stacking effect. In [8], a test FPGA tile based on
MTCMOS architecture was fabricated in a CMOS 0.13µm technology to
prove the applicability of the use of STs in FPGAs.

Figure 1: FPGA architecture using STs.

In [2], the authors did not provide a method to automatically identify
these logic blocks that need to placed in the standby mode. They resorted to
a manual step, which in turn is inappropriate to be included in a CAD tool.
Moreover, in [2], the blocks that are turned on/off together were placed
close to each other, irrespective of their connections. This approach can
adversely affect the delays along the critical paths of the design.

Hence, this work proposes several modifications that need to be done to
the CAD flow of FPGAs to safely and effectively employ MTCMOS tech-
niques and are integrated into the VPR flow [9]. A flowchart of a typical
CAD flow is shown in Figure 2(a) and a flowchart of the proposed modifi-
cations is shown in Figure 2(b). An activity generation phase, called Logic
Activity Packing (LAP), is added to identify the BLEs that exhibit similar
activity (thus will be forced into a standby mode together) and is explained
in Section 4. A processing algorithm for the discharge current estimation
through the STs is explained in Section 5. A modified T-VPack [9, 10] algo-
rithm, called Activity TV-Pack (AT-VPack), is proposed in Section 6. Some
modifications to the flexible power model [11] are introduced to account for
the changes in the FPGA architecture are presented in Section 7. Finally,
experimental results and discussions are presented in Section 8.
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Figure 2: FPGA CAD flowchart. (a) Conventional flowchart. (b) Proposed flow-
chart.

2. TARGETED FPGA ARCHITECTURE
The targeted FPGA architecture is shown in Figure 1. Each BLE con-

sists of a 4-input LUT, a flip-flop and a 2:1 multiplexer. Several BLEs are
grouped together to form a CLB. Every n CLBs are connected to the ground
through one ST to reduce leakage current and force the n CLBs into low-
power modes during their inactive periods, as shown in Figure 1. The ST
is controlled using a SLEEP signal to its gate, which is generated dynami-
cally during the device operation using the partial reconfiguration property
of modern FPGAs [12, 13] to avoid adding extra hardware. Moreover, in
each CLB, the latches are used to retain the value of the BLEs outputs when
they enter the sleep mode. The logic blocks served by one sleep transistor
are called the sleep region. The size of the sleep region is controlled by; the
maximum allowable size for the ST, hence, the peak current this transistor
will hold, the maximum performance loss allowed due to the ST, and the
maximum permitted ground bounce in the virtual ground V GND lines. A
diagram of the proposed FPGA fabric is shown in Figure 3, where it can
be seen that the STs are prefabricated and hardwired to their corresponding
SLEEP signals and virtual ground V GND rails. Hardwiring the SLEEP
signals and V GND rails reduces the complexity of the routing stage of the
CAD design flow.

Figure 3: MTCMOS-based FPGA fabric.

In this work, a local ST architecture is adopted because of its several
advantages. Firstly, the V GND rails are treated as local connections,
hence, there is no need to fabricate them using wide metal lines like VDD

and GND rails. Secondly, the routing complexity of the V GND rails
is reduced significantly in local ST architectures than global architecture.
Lastly, local STs provide less routing overhead in terms of the criticality of
the sleep signals, better noise margins, and higher turn off flexibility, thus
higher power savings [8].

3. SLEEP TRANSISTORS SIZING
The proper selection of the ST size used in the FPGA is crucial to the suc-

cess of the proposed low-leakage algorithm without incurring large penal-
ties to the performance. To reduce the delay penalty, the size of the ST
should be as large as possible. However, a large ST dictates a large area
penalty and larger leakage current and dynamic power dissipation during
the switching of the ST. In order to minimize the performance loss due to
the use of STs while retaining sufficient leakage savings, 5% is set as the

maximum allowable performance loss in this work. Hence, the size of the
ST is expressed as [7]

W

L sleep
=

Isleep

0.05µnCox(VDD − VthL
)(VDD − VthH

)
, (1)

where W
L sleep is the aspect ratio of the ST, Isleep is the maximum discharge

current the ST can hold, µn is the electrons mobility, Cox is the MOS oxide
capacitance, and VthL

and VthH
are the threshold voltage of the LVT and

HVT devices, respectively.

4. ACTIVITY GENERATION
An activity profile is a representation of the periods that a BLE is active

(switching). If a group of BLEs are expected to switch in the same time
periods, then it is said that they have similar activity profiles. In order to
maximize the power savings from the use of STs, BLEs with similar activity
profiles are packed together to be served by one ST. The main goal of the
activity generation is to identify the BLEs that have a similar activity profile
so that the packing algorithm can cluster them together. By the end of this
phase, all the BLEs in the design are given labels to divide them into several
activity regions according to their activity profiles. The algorithm proposed
for activity generation is called Logic Activity Packing (LAP). The LAP
algorithm depends on the representation of the activities of each BLE in the
design as a binary sequence. In order to properly explain this algorithm,
several definitions and notations will be first explained.

4.1 Activity Vector
Definition: Activity Vector
Given a net x in a circuit netlist, the activity vector Ax of x is defined as:

Ax = [ a1 a2 a3 .... a2n−1 a2n ]T , (2)

where n is the total number of inputs to the circuit, ai is a binary variable
that is ‘1’ if any of the outputs of the circuit depend on net x for evalua-
tion when the inputs to the circuit are given by the ith input vector, and T
represents the transpose of the vector.

In FPGAs, each BLE has only one output; thus, the activity vector of
each net resolves to be the activity vector of the BLE driving that net.

For the circuit in Figure 4, blocks F and G must be on to generate the
outputs of the circuit f and g, respectively. Consequently, the activity vec-
tors Af and Ag for blocks F and G, respectively, are given by

Af = [ 1 1 1 1 1 1 1 1 ]T ,

Ag = [ 1 1 1 1 1 1 1 1 ]T . (3)

On the other hand, for computing the activity vector at the inputs of block

Figure 4: An example of a circuit.

F , it is noteworthy that block D will be only used to generate the output
signal f if the input c is ‘1’. Similarly, block E is only used when c is
‘0’. Hence, the activity vectors for D and E, when f is evaluated, are
represented by

Ad = [ 0 1 0 1 0 1 0 1 ]T ,

Ae|f = [ 1 0 1 0 1 0 1 0 ]T . (4)

However, to evaluate h, E will have the following activity vector:

Ae|h = [ 1 1 1 1 1 1 1 0 ]T , (5)
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which differs from the one given in (4). Hence, the resulting Ae is given by

Ae = Ae|1 + Ae|2 = [ 1 1 1 1 1 1 1 0 ]T .

Finally, the activity vector for i is given by

Ai = [ 1 1 0 0 0 0 1 1 ]T . (6)

From this discussion, it can be deduced that if F , G, and H are active
for all the input combinations, packing them together will result in improved
results. Moreover, E will be active for almost all of the input combinations
except for only one, thus it can also be packed with F , G, and H in the
same cluster. Therefore, the cluster containing E, F , G, and H will be
always on. On the other hand, D and I have similar activity profiles for
half of the input combinations, thus it will be a good strategy to group them
together and turn off this cluster for half of the circuit operational time.

4.2 Hamming Distance and Weighted Ham-
ming Distance

Definition 2: Hamming Distance
Given two binary sequences of length n; An and Bn, the Hamming dis-
tance d(a,b) between these two sequences is defined as

d(a,b) =

n−1

k=0

|ak − bk| , (7)

where ak and bk are the kth elements of An and Bn, respectively.
From (7), the Hamming distances between the activity vectors given in

(3) to (6) are written as

d(f,g) = 0 d(f,d) = 4 d(f,e) = 1 d(f,i) = 4

d(f,h) = 0 d(g,d) = 4 d(g,e) = 1 d(g,i) = 4

d(g,h) = 0 d(e,d) = 5 d(e,i) = 5 d(e,h) = 1

d(d,i) = 4 d(d,h) = 4 d(i,h) = 4 (8)

From (8), it is seen that the Hamming distance between the activity vec-
tors of any two CLBs is a measure of the correlation between the activity
profiles of the CLBs. A Hamming distance close to the absolute minimum
of zero, indicates that the two blocks will exhibit the same activity profile,
thus when positioned together in the same cluster will result in maximum
power savings and vice versa. This is verified by examining the values in (8)
and the results stated in the previous sub-section. However, the Hamming
distance between the activity vectors of two CLBs does not take into con-
sideration the probability of occurrence of the different input combinations.
As a result, the quality of the results can be notably affected, especially for
large circuits.
Definition 3: Weighted Hamming Distance
Given two binary sequences of length n; An and Bn, and a weighting
vector Wn, the weighted Hamming distance dw(a,b) between these two
sequences is defined as

dw(a,b) =

n−1

k=0

wk × |ak − bk| , (9)

where ak , bk , and wk are the kth elements of An, Bn, and Wn, respec-
tively.

The weighting Hamming distance is an efficient way to incorporate the
various probabilities of the input combinations into the algorithm. Hence,
in this work, the weighted Hamming distance is used to group the different
BLEs into activity regions.

4.3 The LAP Algorithm Operation
The LAP algorithm consists of two main phases: activity vector genera-

tion and activity labeling. The activity vector generation phase exhaustively
simulates the circuit by iterating all the input vectors and finding the values
of all the circuit nets resulting from that input vector. Afterwards, for each
input vector iteration, each signal (or block) is tested to investigate whether
or not it affects the evaluation of the circuit outputs. This is performed by
complementing the value of the signal under consideration and then pro-
ceeding from that point towards the circuit outputs. If the output of BLEs
that have this net as an input will change, then this change is taken to the
next circuit level, otherwise, a ‘0’ is placed in the corresponding row of the
input vector. If a loop is found, then this net is given ’1’ in its activity vec-
tor for that input combination. It should be noted that the number of levels
checked from the net under consideration increases the computational time

significantly. In order to limit this computational complexity, the number
of levels to be checked is limited to 3. After exhaustively generating all the
activity vectors for all the circuit nets, the static probability of each net is
calculated.

The next step is the calculation of the Hamming distance between each
two BLEs in the design. This is performed recursively through all the design
elements. Using the static probability of each net, the weighted Hamming
distance dw between every two BLEs is then calculated. At this point, the
activity labels can be assigned according to the weighted Hamming dis-
tance. However, this approach can result in performance deterioration as
the connections between the different BLEs is not considered. Since those
BLEs that will have a similar activity label are expected to be placed in the
same sleep region, i.e., will be placed close to each other. Hence, it seems
that the wire length should be included in the activity labeling as well. Since
at this stage the algorithm does not have any information about where each
block will be placed, an approximation for the wire length is adopted. If
any two BLEs share one net, then the distance between them l is considered
as zero, e.g., E and F in Figure 4. If there is one level of BLEs in between
the two BLEs, then the distance is considered as 1, and so on.

Furthermore, the use of the weighted Hamming distance is not a suffi-
cient measure for the difference in activity between the different BLEs. If
for example, there are 2 BLEs with a weighted Hamming distance between
them of 1. However, this net at which they differ is a very active one that
keeps on toggling all of the time. This will mean that the ST will keep on
turning on and off all of the time thus consuming most of the savings in
leakage through dynamic power dissipation. In order to avoid such condi-
tion, the transition density [14] of the net is considered while calculating
the Hamming distance. The transition density D is defined as the average
number of transitions per unit time. Multiplying the transition density with
the weighted Hamming distance results in the transition weighted Hamming
distance (dw = dw × D).

In order to combine the transition weighted Hamming distance and the
distance between BLEs, BLEs are assigned activity labels by minimizing
the cost function given below

min{dw + δ × l} , (10)

where δ is a normalization constant selected to be 0.5. To avoid having ac-
tivity regions with a large number of BLEs, which will decrease the leakage
savings, the size of the activity region is limited to 1.5 times the longest
path from input to output in the circuit. This value was obtained by running
the algorithm on several benchmarks. Assigning a constant value for activ-
ity region size, irrespective of the circuit size, results in impractical results.
Increasing it than 1.5 times the longest path in the circuit results in having
excessively large activity regions that are usually not fully filled up by the
algorithm. On the other hand, decreasing the activity region size increases
the number of activity regions in the final design.

Hence, the algorithm starts to greedily assign activity labels to the BLEs
according to (10) until the maximum activity region size is reached. After-
wards, a new BLE is selected as a seed cell for a new activity region and the
procedure is repeated. A pseudocode of the algorithm is listed in Figure 5.

for all the input combinations
for all the nets in the circuit

find the value of the net
end for
for each net in the circuit

toggle the value of the net
Activity[input vector][net] = 0
proceed with the new value of the net
if the value of any output changes

Activity[input vector][net] = 1
end if

end for
end for
for each net in the circuit

find the static probability
find the transition density
find the distance to each net in the circuit

end for

Figure 5: Pseudocode of LAP.

5. DISCHARGE CURRENT FEASIBILITY
AND PROCESSING

Before deciding whether it is possible to add a certain BLE to any sleep
region or not, the discharge current feasibility should be checked. In this
work, the term current feasibility is used to denote whether by adding a cer-
tain BLE to a sleep region, the sum of discharge currents in the sleep region
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at any instant will exceed Isleep or not. The current feasibility check consists
of a topological sorting of the BLEs in the sleep region so far as well as the
one under consideration. Afterwards, the maximum of the resulting current
vector Imax is checked against the value of Isleep. If Imax is less than Isleep,
then the current feasibility test is valid, otherwise, it is infeasible to add this
BLE to the current sleep region.

5.1 Pre-Processing of Discharge Currents
The value of the instantaneous discharge current of a certain BLE in a

sleep region depends on the connections between this particular BLE and
the other BLEs in the sleep region and the fanout of the BLE. When the
output of a certain BLE A is connected to the input of another BLE B, as
shown in Figure 6(a), if the output of both A goes low, then the discharge of
B is not expected to start before that of A. As a matter of fact, B will start
discharging after the discharge current of A reaches its maximum value.
The discharge current pattern of each BLE can be linearly approximated
using triangles, as shown in Figure 6(b), where the x-axis is the time at
which a certain current value (the y-axis value) occurs. tmax is the value
at which the peak of the discharge current is expected. Hence, the sum of
discharge currents in any sleep region can be represented by the trapezoid
approximation shown in Figure 6. Consequently, Isleep can be designed to
accommodate only the peak current of the trapezoid approximation rather
than the sum of peak currents of all the BLEs in the sleep region.

(a) (b)

Figure 6: Linear vector approximation of discharge current and vector summa-
tion.

Moreover, the discharge current patterns, duration and maximum value,
depends heavily on the load capacitance. However, the loading effect of
BLEs is mainly due to the programmable routing resources, which to some
extent is fixed. In order to account for the discharge pattern of the BLEs that
are employed in the design, the BLEs are simulated in a 0.13µm CMOS
process using HSpice and the shape of the discharge pattern, in terms of
instantaneous values and duration, is recorded as a current vector, where
each element is the discharge current value with a step of 5ps as in [7].

The value of Isleep controls the maximum number of BLEs that can be
placed in a single sleep region. Increasing the value of Isleep, gives the
packing algorithm more freedom to fill out all of the used sleep regions,
but at the same time necessitates the use of larger STs, as noticed from (1),
which in turn leads to larger leakage current and dynamic power dissipation
during the switching of STs, as well as, an increase in the ground bounce
on the virtual ground lines. On the other hand, a small value for Isleep
limits the margin given to the packing algorithm in packing BLEs in each
sleep region, resulting in a large number of partially filled sleep regions.
Consequently, a larger number of sleep signals will be employed in the
design, leading to an increase in both power dissipation and complexity of
the sleep signal generation procedure, and large leakage power dissipation
in the unused CLBs located inside the used CLBs. For a sleep region of
size 4 BLEs, this optimum value of Isleep is found to be twice the maximum
discharge current of one BLE. The same experiment is repeated for other
sizes of the sleep region and the corresponding values of Isleep are evaluated
in terms of the maximum discharge current of one BLE.

5.2 Topological Sorting
In this phase the topology of the BLEs already in the sleep region is

extracted to be used in properly adjusting and adding the current vectors
of each BLE. There are three main cases that can be encountered while
performing topology sorting: a combinational sleep region where each BLE
shares at least one net with any other BLE in the sleep region (Figure 7(a)),
a combinational sleep region with at least one BLE does not share any net
with any other BLE in the sleep region (Figure 7(c)), or a sequential sleep
region that contain one or more loops (Figure 7(c)).

For a combinational connected sleep region, the algorithm starts by con-
verting the BLEs inside the sleep region into an undirected graph, the graph

(a) (b) (c)

Figure 7: Different types of sleep regions.

in Figure 8(a) is equivalent to the sleep region in Figure 7(a). Afterwards, a
topological sort for the resulting graph is used to find the relations between
all the BLEs in the sleep region by converting the graph to a hierarchal
data structure. An example of the topological sorting procedure is shown
in Figure 8, where A is found as the parent node, B and C are ordered in
the same level, and D in the last level. The triangular approximation for the
discharge current for the BLEs in the sleep region is shown in Figure 8(e) as
well as the resulting sum of the discharge current vectors. It can be noticed
from Figure 8(e) that since nodes B and C are ordered in the same level,
they are both expected to start discharging as soon as the discharge of A
reaches its maximum, hence, their discharge currents start simultaneously.

(a) (b)

(c) (d) (e)

Figure 8: Steps of the current feasibility check for a combinational connected
sleep region. (a) A is selected to be deleted, (b) A is ordered in the first position
and B and C are selected for deletion, (c) B and C are ordered in the same position,
(d) Final ordering, (e) Current vectors summation

If the graph contains unrelated nodes, as shown in Figure 9, instead of us-
ing the triangular approximation as discussed before, the discharge current
is assumed to be constant and equal to the peak value for the unconnected
BLE because it is difficult to predict when the unrelated node is expected
to discharge. The unrelated or unconnected node is identified only during
the first iteration of the algorithm. Figure 9(a) represents the graphical rep-
resentation of the sleep region in Figure 7(b), nodes B is identified as an
unrelated node. The algorithm then continues as the previous case to sort
the rest of the graph. Thereafter, the current vector of the unrelated node B
is represented as a rectangle with width equal to the sum of widths of the
other vectors and added to the rest of the currents, as shown in Figure 9(e).

The last case is when the graph contains one or more loops. Having a
loop in the graph makes the topological ordering infeasible, hence, a loop
has to be detected before starting the topological sorting algorithm. Thus,
before the topological sorting phase, loop detection is employed on the
sleep region graph, if a loop is found, then a loop resolving algorithm is
used. The presence of loops does not change the value of the peak current
of the sleep region, it only affects the shape of the discharge current pattern
by breaking the loop at any point while keeping a virtual edge to represent
the broken edge.

6. PACKING ALGORITHM
Modern island-style FPGAs have a hierarchal architecture, where sev-

eral BLEs are packed together to form clusters (CLBs). The main aim of
the available packing algorithms is to minimize the total area (by packing
clusters to their full capacity), minimize the delay (by packing LUTs on a
certain critical path together [15]), and/or maximize routability (by mini-
mizing the number of inputs to each cluster). However, the goal of mini-
mizing power dissipation, either dynamic or leakage power dissipation, has
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(a) (b)

(c) (d) (e)

Figure 9: (a) Both A and B are selected for deletion, (b) A and B are ordered on
the same position, with B an unrelated node and C is marked for deletion, (c) C is
ordered in the next position, (d) Final ordering, (e) Current vectors summation.

been rarely addressed. In this work, the activity profiles obtained in Sec-
tion 4 are incorporated into the T-VPack [15] algorithm to pack BLEs to
minimize leakage power dissipation.

6.1 T-VPack
In T-VPack, LUTs are packed one at a time into clusters, while satisfy-

ing two main hard constraints; (i) the number of BLEs in the cluster must
be less than the cluster size and (ii) the number of input nets needed by
the BLEs in the cluster and generated outside the cluster must be less than
or equal to the number of cluster inputs. The original T-VPack tries to fill
the clusters to their full capacity while minimizing a cost function that in-
cludes the delay across the critical path and wire length. This is performed
by calculating an attraction force, Attraction() between each unclustered
BLE and the cluster under investigation. Attraction() is calculated based
on a compromise between the criticality of the nets connected to the BLE
and the number of connections that the BLE shares with the BLEs previ-
ously clustered in the cluster. The BLE with the maximum Attraction()
is added to the cluster. Afterwards, a hill climbing procedure is called to
ensure that the cluster is full to its maximum capacity. This continues on
until all the BLEs in the circuit are clustered.

6.2 AT-VPack
In this work, the T-VPack algorithm is modified to include activity pro-

files, thus the modified T-VPack is called Activity T-VPack (AT-VPack).
In AT-VPack, a set of BLEs are selected as candidates to be added to the
cluster under investigation. The selection criteria for these candidate BLEs
are: (iii) the combined discharge current of the BLEs inside the cluster plus
the BLE to be added does not exceed Isleep and (iv) the activity label of the
BLE to be added is the same as that of the BLEs inside the cluster. From the
pool of candidate BLEs, the one that maximizes Attraction and satisfies
(i) and (ii) is selected to be added to the cluster. If AT-VPack fails to fill
out all of the spaces in the cluster, the hill-climbing approach used in the
original T-VPack is invoked to start filling the vacant places while satisfying
both (iii) and (iv).

Unlike T-VPack, AT-VPack might still be unable to fill the cluster to
its maximum capacity due to the additional two constraints (iii) and (iv).
Hence, a second hill-climbing stage is used that employs simulated anneal-
ing to swap the BLEs in the cluster with other candidate BLEs that have not
been clustered yet and then try to fill the cluster. If the set of BLEs currently
in the cluster is given by A and the set of BLEs that had not been clustered
is called B, the algorithm swaps block i from set A with block j from set
B while satisfying constraint (iii) using the following cost function

min α κ Attraction(Ai) − Attraction(Bj)

+ (1 − κ)
number of vacant places

total number of places
, (11)

where α is a variable that represents the transition weighted Hamming dis-
tance between A and Bj (α = 1 + dw) and κ is a weighting constant
(0 � κ � 1) that is used to give importance to either filling up the cluster
with any blocks or to consider the attraction force. A small value of κ would
result in a faster filling for the cluster, while a decrease in the Attraction()
can be tolerated, while a large value will keep the decrease in Attraction()

to a minimum and accepting partially filled clusters. By performing several
experiments using AT-VPack for different FPGA benchmarks, it is found
that the best value for κ is 0.5. The value chosen for α forces the algorithm
to start looking at first for blocks with the same activity as the cluster be-
fore looking for blocks with other activities. Even when it does look for
BLEs with different activities, it always searches for those with close activ-
ity profiles. This ensures maximum leakage savings (clusters with blocks
that have different activity profiles will be on for a longer period).

Moreover, the cost function in (11) minimizes the loss in the quality of
the solution, in terms of the attraction force, by minimizing the difference
between Attraction(Ai) and Attraction(Bj). Similarly, the current
constraint is kept as a hard constraint throughout this hill-climbing stage.
By the end of this hill-climbing stage, the cluster is full to its maximum
capacity. A pseudocode for AT-VPACK algorithm is listed in Figure 10.

Perform T-VPACK with 2 extra constraints:
max Icluster � Isleep
activityblocks in cluster is constant

while there are empty spaces in the cluster
for all unclustered blocks

find blocks i and j with min cost (equation(11))
add i to the cluster
if max Icluster > Isleep

remove i
end if

end for
end while

Figure 10: Pseudocode for the modified T-VPACK algorithm

7. POWER ESTIMATION
In order to evaluate the performance of the proposed algorithms, the

power dissipation in the placed and routed design is compared to that of
the same benchmark without STs. The flexible power model proposed in
[11], which calculates dynamic, short-circuit, and leakage power, is used to
estimate the power dissipation in the design without STs. In order to mea-
sure the power dissipation in the design with STs, several modifications are
proposed to the power model. The original power model starts by calcu-
lating the switching activity along the nets in the design and then uses this
information to calculate the dynamic power dissipation across the design.
Afterwards, the short-circuit is approximated as 10% of the dynamic power
dissipation. Finally, the leakage power is calculated in all of the design.

When a circuit is idle, it only consumes leakage power. Hence, to include
the possibility that the whole circuit can be forced into the standby mode
during its idle time, the total power dissipation Pt is expressed as

Pt = ton × Pon + toff × Pidle , (12)

where ton and toff are the percentages of on and off times of the FPGA
and Pon and Pidle are the power dissipation during the active and idle
modes of operation of the FPGA. Pon is expressed as

Pon = [Pdyn + Psckt + Pleak]utilized + Pleak|unutilized (13)

where Pdyn, Psckt, and Pleak are the dynamic, short-circuit, and ac-
tive leakage power dissipations, respectively, in the utilized portion of the
FPGA, while Pleak|unutilized is the standby leakage in the unutilized
CLBs. On the other hand, Pidle is the standby leakage for the whole FPGA.

In order to estimate the power dissipation of the placed and routed design
using the proposed low-leakage algorithm, several changes are made to the
original power model. (a) The method used to calculate the leakage current
is changed to reflect the presence of a sleep transistor by only calculating
the leakage due to the sleep transistor. (b) The leakage in the unused CLBs
is calculated. (c) The percentage of short-circuit power dissipation is in-
creased to 15% to account for the increased rise/fall times of the BLEs with
STs. The 15% approximation was evaluated by simulating a BLE with and
without an ST using HSPICE. (d) The dynamic power in the switching of
the ST is calculated and added to the total power dissipation.

8. RESULTS AND DISCUSSIONS
The activity generation algorithm and the AT-VPACK discussed in Sec-

tion 6 are integrated into VPR and the modified power model is used to
estimate the power savings in the final design. The proposed algorithms are
tested on several FPGA benchmarks to assess their capability in minimiz-
ing both standby and active leakage power dissipation. The experiments are
conducted on a 900MHz Ultra Sparc III machine with 5Gbytes RAM, and
the results are summarized in Table 1 for a sleep region of size 4 BLEs. It
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should also be noted that the maximum allowable performance loss due to
STs in all of the benchmarks is kept less than 5% (Section 3). The third
column in Table 1 lists the number of resulting clusters and the minimum
FPGA array that can be used to map the circuit, i.e., maximum utilization
percentage. For simplicity, the case where the design is mapped onto the
minimum FPGA array is called 100% utilization. The power dissipated
by each design is calculated using the modified power model discussed in
Section 7 and the percentages savings in leakage are listed in Table 1.

Table 1: Experimental results for FPGA benchmarks

Circuit
# of # of % of Unused % Saving in Leakage

BLEs Clusters CLBs (100% on time)
alu4 1522 382 (20×20) 4.5 22.9

apex2 1878 472 (22×22) 2.48 20.7
apex4 1262 317 (18×18) 2.16 19.1
bigkey 1707 429 (21×21) 2.72 20.2
clma 8381 2100 (46×46) 0.76 18.9
des 1591 399 (20×20) 0.25 16.8

diffeq 1494 376 (20×20) 6 22
dsip 1370 344 (19×19) 4.7 21.2

elliptic 3602 904 (31×31) 5.9 21.6
ex1010 4598 1153 (34×34) 0.26 18.7

ex5p 1064 269 (17×17) 6.92 22.8
frisc 3539 886 (30×30) 1.56 18.2

misex3 1397 353 (19×19) 2.21 20.9
pdc 4575 1147 (34×34) 0.78 17.7
s298 1930 485 (23×23) 8.32 28.3

s38417 4096 1028 (33×33) 5.6 25.4
s38584.1 6281 1575 (40×40) 1.56 18.9

seq 1750 441 (21×21) 0 14.2
spla 3690 926 (31×31) 3.6 18.3
tseng 1046 265 (17×17) 8.3 27

In each benchmark, the power savings consist of two parts; savings from
permanently turning off all the unused clusters and savings from dynami-
cally turning on and off the used clusters in the design depending on their
activity profile. By taking a look at the results for the ‘seq’ benchmark in
Table 1, this benchmark has no unused CLBs while the leakage savings
achieved is 14.2%. This saving is entirely from dynamically turning on
and off the different used clusters in the design depending on their activity
profile and the stacking effect of the ST.

On the other hand, the ‘s298’ benchmark has the maximum percentage of
unused blocks among all of the benchmarks and it resulted in the maximum
leakage savings (28.3%). The leakage savings from permanently turning
off the unused clusters in this benchmarks is 14.5%. The average leakage
savings due to dynamically turning on and off the used CLBs among all of
the benchmarks tested is 14.3%, while that due to turning off the unused
blocks is proportional to the number of unused blocks. The average leakage
savings across all of the benchmarks for the 100% on time case is found to
be 20.68%.

Practically, the utilization percentage is less than the maximum utiliza-
tion assumption used in finding the results in Table 1. Typically, the uti-
lization in FPGAs ranges from 80% to 60% [2]. Moreover, the 100% on
time assumption made earlier is impractically high. The average on time of
most applications is around 50% to 20% for some hand-held applications
[6]. Hence, the same benchmarks are tested again using utilization percent-
ages of 80% and 60% and on times of 100%, 50%, and 20%. The average
leakage savings among all of the benchmarks in each of these cases is plot-
ted in Figure 11. From Figure 11, it can be noticed that the average leakage
power savings increases by about 46% when the device idle time increases
from 0 to 50%. Moreover, Decreasing the utilization from 100% to 80%,
increases the leakage power savings by about 39%.
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Figure 11: Percentage savings in leakage.

In another experiment, several sizes for the sleep region are tested for
different CLB sizes. The size of the CLB is changed from 3 to 6 BLEs
and the size of the sleep region is changed from 1 to 5 CLBs. The leak-
age savings in each of these experiments are recorded and plotted in Figure
12. From Figure 12, it can be noticed that for each CLB size, there is an
optimum sleep region size. Moreover, leakage savings is always maximum
for sleep regions of size around 8 BLEs. This proves the fact stated ear-
lier that too large (will require a large ST, which results in large standby
leakage and dynamic power dissipation in the ST) and too small (will result
in partially unfilled clusters, which will increase the area and decrease the
number of permanently off sleep regions, hence, increases the total leakage
power) sleep regions will result in lower leakage savings.
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Figure 12: Impact of the sleep region size on the leakage savings.

In order to find the execution time penalty of the proposed packing al-
gorithm compared to the original VPR algorithm, the same benchmarks are
packed and placed using VPR on the same machine and the execution time
is recorded. The average increase in execution time is found to be 37%,
which can be reduced by employing heuristics to find the activity vectors.

9. CONCLUSIONS
This work presented a CAD technique that can be used to minimize leak-

age power dissipation in MTCMOS based FPGAs. The methodology is
tested using a 0.13µm dual-Vth CMOS technology, resulting in an average
power savings of 20.68% for a 100% ON time FPGA. Moreover, the opti-
mum size for the sleep region is found to be 8 BLEs for maximum leakage
savings.
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