
Tiresias: Black-Box Failure Prediction in Distributed Systems

Andrew W. Williams, Soila M. Pertet and Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213-3890

Abstract

Faults in distributed systems can result in errors that mani-
fest in several ways, potentially even in parts of the system
that are not collocated with the root cause. These manifes-
tations often appear as deviations (or “errors”) in perfor-
mance metrics. By transparently gathering, and then identi-
fying escalating anomalous behavior in, various node-level
and system-level performance metrics, the Tiresias system
makes black-box failure-prediction possible. Through the
trend analysis of performance metrics, Tiresias provides a
window of opportunity (look-ahead time) for system recov-
ery prior to impending crash failures. We empirically val-
idate the heuristic rules of the Tiresias system by analyz-
ing fault-free and faulty performance data from a replicated
middleware-based system.

1. Introduction

Current approaches to making distributed applications and
systems fault-tolerant rely on first detecting a failure before
initiating any form of fault-recovery action. With this kind
of reactive (or “after-the-fact”) fault-recovery, the impact of
the fault is not necessarily averted. This approach also fails
to take advantage of any pre-failure indicators or symptoms
that might be present in the system. While analyzing these
indicators might not avert the fault, the results of this anal-
ysis might have allowed recovery to be initiated faster or
proactively, thereby mitigating the impact of the fault on
the application/system.

Pre-failure indicators might occur in the form of a fault’s
manifestation on the behavior of various performance met-
rics in the system. For example, a distributed client-server,

1-4244-0910-1/07/$20.00 c©2007 IEEE.

This work has been partially supported by the NSF CAREER grant
CCR-0238381, the Army Research Office grants DAAD19-01-1-0646 and
DAAD19-02-1-0389.

or middleware, application typically relies on network com-
munication in order to dispatch invocations and responses,
and to function correctly. Thus, the network becomes a crit-
ical resource to such applications. In such a middleware
application, a memory-leak fault at the server can cause the
server to slow down sufficiently as to degrade the server’s
responsiveness from the client’s perspective. The network
traffic between the client and the server will be seen to drop,
perhaps even to the extent that the client receives no timely
responses from the server. This might trigger the expira-
tion of application- or middleware-level timeouts, which,
in turn, raises a client-side exception that effectively indi-
cates the server has failed. Note that the network itself has
not failed in this case – rather, the application’s behavior,
from a network-traffic viewpoint, has changed to the extent
that it is no longer representative of the normal, non-faulty
execution of the application. Thus, the observation of the
memory-leak’s manifestation on network traffic might have
provided an early indication of subsequent application-level
failure.

Our approach is based on the hypotheses that a fault
manifests as increasingly unstable performance-related be-
havior before escalating into a failure, and that systems ex-
hibit steady-state performance behavior with few variations
in the non-faulty case. Thus, the early discovery of any de-
viations, or anomalies, in the trends of various performance
metrics can provide sufficient look-ahead time (a window
of opportunity ahead of impending system failure), where
we can perform proactive recovery.

The hypothesis of steady-state behavior to enable
anomaly detection has been reported in the literature and
also observed by us [1]. The hypothesis of increasing pre-
failure instability is borne out by the literature, where a
number of interesting computer-related faults have been ob-
served to be preceded by a visible pattern of abnormal be-
havior that favors the use of some form of prediction. Typ-
ically, these failures result from gradual degradation faults,
such as resource exhaustion [6], or from transient and inter-
mittent hardware faults, such as disk crashes [8] or telecom-
munication equipment failures [16]. We acknowledge that

some failures might occur so abruptly that we cannot possi-
bly hope to predict them. For example, if someone acciden-
tally unplugs the power supply of a node, it might not be
possible to predict the power outage simply because there
was no discernible “build-up” to the failure.

The Tiresias system monitors various performance met-
rics (e.g., network traffic, CPU usage, context-switch rate),
transparently to the application. By using the gathered time-
series data to develop a priori models of normal, non-faulty
application performance, and then examining these metrics
under faulty conditions, Tiresias is able to generate predic-
tions of impending failure without any knowledge of the
application’s internals. In this paper, we describe the results
of the empirical study of Tiresias on a fault-tolerant middle-
ware test-bed, where we inject various faults, such as mem-
ory leaks, thread leaks, etc. Our objective is to demonstrate
the feasibility of black-box failure prediction through the
analysis of performance metrics in a distributed system.

For Tiresias’ performance-centric failure-prediction, we
leverage heuristics that were originally developed for pre-
dicting single-node hardware failures. These heuristics
were driven off data collected from analyzing error-logs [8].
We extend these heuristics and apply them quite effectively,
for the first time, to predicting application-level failures in
a distributed setting. Unfortunately, because applications
are not normally instrumented to produce error logs of per-
formance deviations, Tiresias generates its own “error logs”
through the application of anomaly-detection techniques on
the performance-metric data that it gathers. Equipped with
these “performance-error logs” extracted from the time-
series data of various performance metrics, we apply our
extended heuristics to forecast application-level failure. The
key contributions of this paper are as follows.

Performance metrics facilitate black-box failure pre-
diction: Comparing the trends in the behavior of var-
ious performance metrics, under non-faulty and faulty
conditions, can provide advance notice (look-ahead time)
of application-level failures. Thus, Tiresias forms the
first stage of a proactive fault-recovery framework. No
application-level knowledge is needed to perform the mon-
itoring or the subsequent failure prediction.
Empirical validation of Tiresias: We perform our exper-
iments on a fault-tolerant middleware test-bed implemen-
tation. We inject a variety of faults into this test-bed, and
discuss how Tiresias can be tuned to improve the quality of
its predictions.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the challenges and the assumptions under-
lying our approach. Section 3 provides the details of the
Tiresias system. In Section 4, we describe our data collec-
tion and our experimental results. We discuss future and
related work in Sections 5 and 6 respectively and we con-
clude in Section 7.

2. System Model

The Tiresias system makes some assumptions in order to
assert statements about the future state of the distributed
system. For one, faults that lead to failures, regardless of
the fault’s root cause (e.g., an application-level problem,
such as a memory leak, or a network-level fault, such as
a network-interface card failure), are assumed to affect per-
formance metrics in an observable, identifiable way. These
effects should be discernible as anomalous behavior when
compared to normal system performance. This assump-
tion is not far-fetched – in fact, it is fundamental to many
anomaly-detection techniques [4, 5].

We also assume that failures, while appearing to be ran-
dom to an outside observer, can exhibit performance pat-
terns leading up to the failures. These pre-failure pat-
terns can take the form of anomalous performance behav-
ior prior to the failure. This assumption is borne out by
other research: “predictable faults produce a transient per-
formance degradation before causing a full-blown failure”
[15], in the context of network faults. We regard escalat-
ing/cumulatively anomalous behavior (i.e., increasing de-
parture from non-faulty behavior) to be indicative of im-
pending failure.

We assume that our anomaly detector has sufficient
resolution (i.e., sufficient granularity of time over which
the anomaly-detection algorithm works) to generate a
performance-error log that serves as input to Tiresias’ fail-
ure prediction. In this paper, our smallest sampling interval
of measurement is seconds (e.g., we measure network traf-
fic in terms of packets per second). This is an artifact of our
chosen anomaly-detection method (we emphasize that our
intent in this paper is not to develop a new anomaly detec-
tor, but rather to exploit an existing, off-the-shelf anomaly-
detection algorithm). Clearly, an anomaly detector that uses
a higher resolution could predict deviations in performance
metrics in a shorter window of time.

Tiresias cannot predict any failure that is not preceded
by escalating anomalous behavior of the system’s perfor-
mance metrics. Application-level faults (e.g., value faults
where the application produces a wrong result) that do not
impact any performance metrics will go undetected. In ad-
dition, if our anomaly detector does not adequately capture
the pre-failure symptoms, or if it has a high false-positive
or false-negative rate, then, our predictive capability will
clearly suffer.

3. Tiresias’ Failure-Prediction Framework

As shown in Figure 1, we use a two-stage approach to an-
alyzing our data: anomaly-detection followed by failure-
prediction. In the first stage, we examine the performance-
metric data to determine where it deviates from its expected

protocol
metrics

co
ll

ec
te

d
ti

m
e-

se
ri

es
d
at

a
o
n

th
e

cl
ie

n
t,

fa
u
lt

y
re

p
li

ca
an

d
g
o
o
d

re
p
li

ca
n
o
d
es

application
metrics

/proc
metrics

libpcap
metrics

template upper
and lower thresholds

for metric

,

each

lookahead time
based on

metric’s behavior
each

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Tiresias’
Forecast

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

anomaly vectors

100101....

001100....

111001....

000011....

000011....

111111....

network
traffic

memory
usage

CPU
usage

context
switch

rate

token
arrival

rate

response
time

Figure 1. Stages in the operation of Tiresias.

value, thereby signaling an anomaly (i.e., “statistically un-
usual performance” [3]) that might be indicative of a poten-
tial problem in the system.

Tiresias learns of the normal state of the distributed sys-
tem through the trends of the various performance metrics
that it gathers. Note that the system could be multi-modal,
e.g., there could be off-peak and peak workloads on the sys-
tem. In this case, Tiresias builds multi-modal templates of
the system’s performance behavior. This allows Tiresias to
keep up with the system’s evolving behavior and to modify
its conclusions according to workload changes.

In this anomaly-detection phase, we process all of the
time-series data of the performance metrics using a rela-
tively straightforward threshold-based anomaly detector [3]
to determine when performance degradations occur. For
each performance metric, the anomaly detector outputs an
anomaly vector that indicates whether each data-point of the
metric’s time-series is deemed anomalous or normal. Basi-
cally, each metric’s anomaly vector is a time-series consist-
ing of a binary sequence of 1s and 0s to indicate the anoma-
lous or normal state of that metric over time. The anomaly
vector captures the state of the metric while allowing us to
reduce the raw metric values into a simple binary represen-
tation.

We then apply the Dispersion Frame Technique (DFT)
prediction heuristics [8] to the anomaly-vectors that we gen-
erate in the anomaly-detection phase. The DFT stage exam-
ines the anomaly vector for each metric, looking for specific
clustering patterns of anomaly points. We exploit the DFT
heuristic rules to seek patterns of behavior that might in-
dicate escalating instability in a metric’s behavior. If we

observe such patterns of behavior, we fire warnings of im-
pending failure. The rules do not distinguish between dif-
ferent kinds of failure and do not have access to application
or fault-type information. Thus, the predictions can be use-
ful to system administrators as advance indicators of system
failure.

We note that the predictions do not reveal the root cause
and do not guarantee that the failure will occur; they merely
indicate escalating instability in the specific metric under
examination. We also note that our system does not depend
on the anomaly detection algorithm. Any anomaly detector
would serve our purpose equally. The point of this paper
is not to showcase either the anomaly-detection algorithm
or the failure-prediction heuristics, nor even to highlight
the combined power of both. Instead, the idea is to study
Tiresias’ synergistic usage of these existing techniques, and
to evaluate the feasibility of its black-box failure-prediction
strategy that is driven off performance metrics alone.

3.1 Data Collection

We identify which performance metrics are affected by a
failure, and how they are affected, through collecting em-
pirical data from our test-bed. We collected this data under
non-faulty experimental runs, as well as under the injection
of a variety of faults.

We monitored node-level resource usage on every node
in our system by retrieving the resource-usage statistics
from the /proc pseudo-filesystem [2] every five seconds.
The /proc pseudo-filesystem contains a hierarchy of spe-
cial files that represent the current state of every running
process on the Linux operating system. By periodically
examining /proc/meminfo and /proc/stat, we ob-
tained information about the combined resource usage of
all of the running processes on that node. We could opt to
examine individual process-level resource behavior in ad-
dition to node-level aggregate behavior – however, for the
purposes of this paper, the granularity of failure prediction
is the node, and thus, the node-level aggregate performance
metrics suffice for our purposes. Tiresias monitors the fol-
lowing system metrics for every node through that node’s
/proc filesystem.

• CPU usage (%) - The percentage of time that the CPU
on the node is busy executing user and kernel tasks.

• Available memory (bytes) - This is the sum of both
the free and the cached memory on a node. Cached
memory is the amount of memory that Linux uses for
the disk cache, and can be replaced quickly if a running
(or new) program needs memory.

• Context-switch rate (per second) - This represents the
number of context switches that the node undergoes in
one second.

Tiresias monitors the network traffic and records a times-
tamp every time that a new packet appears on the wire. To
monitor the network traffic in packets/sec, Tiresias uses a
network sniffer based on the libpcap library [12] devel-
oped at Lawrence Berkeley National Laboratory. This li-
brary is widely used in intrusion-detection schemes and in
packet sniffers. This library provides a high-level interface
to capture all network traffic into and out of a node. In
promiscuous mode, all of the packets on the network, even
those destined for other nodes, are accessible through this
mechanism.

On each node in the network, Tiresias monitors the rate
of all traffic to and from that node. Tiresias records a times-
tamp every time that a new packet appears on the wire.
Each host’s packet-timestamp log is then locally analyzed
to count how many packets have been seen in any given
time interval. This script generates a network-load log that
consists of the magnitude of network traffic (in packets/sec)
for all of the 1440 minutes during a given 24-hour day. This
network-load log that Tiresias generates is then used by its
anomaly detector.

Our network-traffic capture is entirely passive on the net-
work, and does not add any overhead to the existing network
traffic. We also note that both the /proc and the libpcap
capture mechanisms are transparent to the application.

3.2 Anomaly Detection

We emphasize that the Tiresias system can use any
anomaly-detection scheme. The novelty of our work does
not lie in the anomaly-detection scheme, but rather, in its
exploitation for the prediction of failures.

Our current anomaly detector is based on algorithms that
were developed and tested for network-related failures [3].
Simply computing the mean of the data and looking at a
three-standard-deviations (±3σ) rule for finding anomalies
has been shown to be insufficient for metrics such as net-
work traffic. These performance metrics are inherently dy-
namic, i.e., they vary with the workload, the time of day, the
day of the week, etc. Thus, a true anomaly detector should
account for the time-varying nature of the system’s perfor-
mance.

We employ a standard method [3, 9] for finding anoma-
lous points. Using this method, we develop a template, a
model of time-varying expected/normal system behavior for
each metric, and envelopes, which represent tolerance limits
for that metric’s normal behavior. We describe the anomaly
detector’s analysis of network-traffic data; the anomaly de-
tector is similarly applied to all of the other metrics.

We define four vectors X , P , T and V . The X vector is
the current raw network-traffic data as captured by our snif-
fer. P is the smoothed traffic data, where smoothing main-

tains the general trend of the data, but avoids extreme dis-
continuities that could skew the data. T is the template that
describes normal network-traffic behavior. This is the ag-
gregate of the smoothed data that is combined into a single
expected/normal-behavior pattern. Finally, V is a variance
template that is used to calculate the standard deviation that
we use as the thresholds for detecting anomalies. This rep-
resents the range of values that we define as upper and lower
bounds for the acceptable, non-anomalous network traffic.
The following four steps, are then used to detect anomalous
network-traffic data points.

• Compare X both to T and to the threshold values cal-
culated from V . Any points outside the envelope are
considered anomalous, and are flagged in the corre-
sponding anomaly vector.

• Smooth the raw data to produce a one-day trend, P .

• Combine the current prediction template with P to
produce the new template, T1. This is done by using
exponential smoothing.

• Compute the current variance vector, V , to include the
new data.

We implemented a simple, but adequate, median and
mean smoother. In median or mean smoothing, a point
is replaced with the median or mean, respectively, of the
surrounding N points. Large values of N will produce
smoother curves, but can effectively smooth out important
outliers in the data. The new template Ti is found by

Ti = (1 − α)Ti−1 + αPi−1 i ≥ 0

where α weights one data set more than another. This con-
trols how quickly new data is incorporated into the template
T . If T0 does not exist, then, P0 becomes T1. The formula
for finding the variance vector, Vi, is

Vi = (1 − α) Vi−1 + α (Pi−1 − Ti−1)
2

i ≥ 0

The choice of α, α ≥ 0 ,determines how quickly the
system folds changes into the templates [3]. The current
network data, X , is compared to the thresholds, which
are calculated to be three standard deviations (3σ) above
and below the template T ; using ±3σ-based thresholds is
a common statistical technique. Any values of the real-
time network data that fall outside these thresholds are
deemed anomalous and are appropriately recorded in our
performance-error log.

The template, the upper and lower thresholds are all de-
rived from multiple traces for each metric over multiple, in-
dependent non-faulty experimental runs of the entire sys-
tem. Armed with this information, Tiresias can generate an
anomaly vector for any supplied input trace for that metric.
Thus, the end-result of this stage is a collection of anomaly
vectors, one for each metric on every node in our system.

Time

F0

DF0

Application ofDF0

Application ofDF0

DF1

F1

EDI = 3

F2 F3 F4

{

EDI = 3{

Figure 2. Illustration of the DFT Rule 3.3.

3.3 Dispersion Frame Technique (DFT)

The Dispersion Frame Technique (DFT) [8] was originally
developed to analyze and predict failures in hardware de-
vices, such as disk drives. DFT ascertains the relationship
between anomaly occurrences by examining how closely
they occur in time. It consists of a set of heuristic rules
developed from extensive empirical studies of error-logs
of disk drives and memory boards. These rules have only
been applied to single-node hardware failures and to readily
available error event-logs as they currently exist on operat-
ing systems. Tiresias represents the first instance of apply-
ing these rules to the derived time-series error-logs (i.e., the
anomaly vectors or performance-error logs) that are output
by our anomaly detector.

DFT utilizes the concept of Dispersion Frames (DF) and
Error Dispersion Indices (EDI). A Dispersion Frame is the
inter-arrival time between successive error events, i.e., suc-
cessive anomalies of the same metric. The EDI is defined as
the number of errors (or anomaly occurrences) in one half
of a DF. A highly related group of anomalies, which is a
sign of instability in the system and a potential harbinger of
failure, exhibits a high EDI. In Figure 2, we show a series
of errors (F1,F2,..), with DFs (DF0,DF1,..) being centered
on them. Given three consecutive errors (e.g. F1, F2 and
F3 for DF0) in the latter half of a DF, the EDI is equal to 3.

In the original DFT implementation, a DF of 168 hours
was used to activate the heuristics. This number was based
on the statistical analysis of data gathered from kernel error-
logs and actual hard-drive failures for the Andrew filesys-
tem at Carnegie Mellon. Five heuristic clustering rules were
developed and were used when the DF fell below the acti-
vator of 168 hours.

• 3.3 rule: when two consecutive indices from succes-
sive applications of the same DF exhibits an EDI of at
least 3, as illustrated in Figure 2;

• 2.2 rule: when two consecutive indices from two suc-
cessive DFs exhibits an EDI of at least 2;

• 2-in-1 rule: when a DF is less than one hour;

• 4-in-1 rule: when four error events occur within a 24-
hour frame;

• 4-decreasing rule: when there are four monotonically
decreasing DFs and at least one frame is half the size
of its previous DF.

The reasoning behind each rule can be found in more
detail in [8]. DFT was successfully applied to predicting
hard-drive failures on the Andrew File System at Carnegie
Mellon University, where it achieved a 93.7% success rate
[7].

3.4 Reconfiguring DFT for the Tiresias
System

Tiresias aims to investigate the effectiveness of DFT, an
established single-node hardware-failure prediction tech-
nique, for failure prediction in distributed systems.

Tiresias analyzes the generated anomaly vectors with
its reconfigured DFT rule-set. Its DFT-like heuristics are
activated when the time interval between two successive
anomalies drops below a predetermined frame size, which
we call the minimum activator. The unique nature of each
system forces us to find a minimum activator for it. Tun-
ing the activator can affect the look-ahead time, as we de-
scribe later. The minimum activator can be determined ei-
ther by an experienced administrator, or by examining mul-
tiple fault-free and faulty system traces and then estimating
the appropriate activator.

After the right minimum activator is configured, Tiresias
begins analyzing the anomaly vectors generated in the pre-
vious phase. Once the heuristics are activated, a number of
clustering rules are applied to the anomaly vectors in order
to fire warnings of imminent failure. The key idea here is to
find the EDI as we progressively scan each anomaly vector
and as the DF changes. Tiresias’ prediction rule-set dif-
fers from the original clustering rules described in [8], and
has been modified to work effectively with our fault-tolerant
middleware:

• 3.3 rule: when two consecutive indices from the suc-
cessive application of the same DF exhibit an EDI of
at least 3.

• 2.2 rule: when two consecutive indices from two suc-
cessive DFs exhibit an EDI of at least 2.

• 4-decreasing rule: when there are four monotonically
decreasing DFs and at least one DF is half the size of
its previous one.

• 2-in-10 rule: when a DF is less than 10 minutes.

We could elect to fire a failure prediction when any one
of these rules is valid. However, we can perform a further
clustering of the rules in time by recording when each rule is
fired. For instance, we could fire predictions only when we
have seen x firings of one rule and y firings of another rule.
Subsequent firings of the rules signifies a trend of increas-
ing rule firings, where each rule firing in itself represents a
trend of increasing performance anomalies. Thus, the accu-
mulation of multiple rule firings allows the Tiresias system
to increase its confidence in predictions about impending
failures in the system.

4. Empirical Evaluation

We evaluated Tiresias on a fault-tolerant middleware system
running on the Emulab test-bed environment.

4.1 Test-Bed Description

Our empirical evaluation was conducted in the Emulab dis-
tributed environment [17]. In our experiments, we used
up to 4 physical nodes (850MHz processor, 256 Kb cache,
512MB RAM, running RedHat Linux kernel 2.4.18). The
nodes were interconnected by a 100Mbps LAN. We use
a simple two-tier distributed client-server test application,
with one client and a dual-redundant server, with the client
and the two replicas each on its own node. The client sends
a request to the server, in response to which the server re-
turns 32 Kb of data to the client; the client pauses 10ms
between requests.

We use the off-the-shelf open-source MEAD fault-
tolerant middleware [11] to provide replication support to
distributed client-server applications. MEAD implements
active (where all replicas are peers and actively executing)
and passive replication (where one replica is the primary
and the others are backups) styles using group communi-
cation protocols. This leads to some similarities in failure
prediction for the two replication styles.

4.2 Data Collection

Each experiment covers 45,000 round-trip client invoca-
tions and runs for about 15 minutes. We collect traces
for every one of our 5 metrics of interest (CPU us-
age, free memory, context-switches/sec packets/sec, token-
arrivals/sec) on every node in the system, and in addition,
the response time on the client node. Thus, we have 15
metrics altogether across the 3 nodes, plus the additional
response-time metric on the client side, giving us a total of
16 metrics altogether. In addition, we perform this experi-
ment for two different replication styles. Thus, we have a
total of 32 traces of metrics that cover both the replication
styles. We perform the collection of multiple traces (320,

ctxtSwitches
packets/sec

tokens/sec
availMemory

Thread
Babbling

Packet loss
64KB leak

96KB leak
128KB leak

256KB leak
Crash

−100

0

100

200

300

400

500

600

PASSIVE REPLICATION − PRIMARY’S VIEW

Lo
ok

ah
ea

d
T

im
es

 (
se

c)

ctxtSwitches
packets/sec

tokens/sec
availMemory

Thread

Babbling

Packet loss

64KB leak

96KB leak

128KB leak

256KB leak

Crash

−100

0

100

200

300

400

500

600

PASSIVE REPLICATION − BACKUP’S VIEW

Lo
ok

ah
ea

d
T

im
es

 (
se

c)

Figure 3. Look-ahead times for passive repli-
cation from the (i) faulty primary node’s view-
point and (ii) non-faulty backup node’s view-
point.

to be precise) of these 32 metrics in the fault-free case in
order to provide a better basis for defining our normal tem-
plate for anomaly detection. In addition, we inject 12 differ-
ent performance-degrading faults (memory leaks of 64Kb,
96Kb, 128Kb, 256Kb at the primary replica and then at
the backup, thread-leak, babbling node, packet loss, abrupt
crash), which leads to 384 metric traces for studying failure
prediction in our system.

4.3 Observations

Regardless of the replication style, Tiresias’ failure pre-
diction can predict the onset of various kinds of failures
through its monitoring of system metrics, as shown in Fig-
ures 3 and 4. The amount of look-ahead time depends on
the replication style, the failure, and the metric being moni-

ctxtSwitches
packets/sec

tokens/sec
availMemory

responseTime

Thread
Babbling

Packet loss
64KB leak

96KB leak
128KB leak

256KB leak
Crash

−100

0

100

200

300

400

500

600

PASSIVE REPLICATION − CLIENT’S VIEW

Lo
ok

ah
ea

d
T

im
es

 (
se

c)

availMemory

packets/sec

tokens/sec

ctxtSwitches

responseTime

Thread

Packet Loss

64KB Leak

Crash

−100

0

100

200

300

400

500

600

ACTIVE REPLICATION − CLIENT’S VIEW

Lo
ok

ah
ea

d
T

im
es

 (
se

c)

Figure 4. Look-ahead times from non-faulty
client node’s viewpoint for (i) passive replica-
tion and (ii) active replication.

tored. It is important to point out that our graphs show that
look-ahead time (i.e., failure prediction) can be performed
on a node other than the faulty one!

It appears that response time is the best harbinger of fail-
ure because it provides the most look-ahead time. Unfor-
tunately, CPU usage was not stable enough for consistent
failure-prediction and we were forced to resort to other met-
rics for this purpose. Also, in the case of the faults where
we varied the failure rate, we noticed that the failure rate
does affect the look-ahead time – the trend seems to be that
the faster the failure, the smaller the look-ahead time, which
makes intuitive sense. Certain kinds of failures (that show
no period of instability prior to the failure) cannot be pre-
dicted, e.g., abrupt crashes.

We note that our failure predictions did encounter false
positives. We recognized the false positives because we
recorded when the faults were injected into the system. The
false anomalies (and ,therefore, false predictions) were reg-

istered prior to the fault injection. We note that we had only
5 false positives out of 200 runs of our prediction algorithm
(2.5%). We note that we used only simple ±3σ anomaly-
detection and also used the first rule-firing in DFT to predict
failures. By using clustering and other ±nσ thresholds, we
expect to lower this false-positive rate.

We also examined the effect of tuning the DFT failure-
prediction algorithm with respect to its minimum activator
(window) size. As a first observation, the look-ahead time
for the 64Kb leak was greater than that for the 256Kb leak.
This makes sense because the 256Kb leak caused the system
to fail faster in comparison to the 64Kb leak.

As the DF activator size increases, more anomalous
points are included in the DFT rulesets. These points, re-
ferred to as the window size, acts as a threshold for discrim-
inating between anomalous points that are related and those
that are simply transient hiccups. As more points are con-
sidered to be related, there is a better chance that some com-
bination of points will match a DFT rule. At some point, the
window is large enough to encompass a set of anomalous
points that will always fire a DFT rule (e.g., 10 anomalies
in a row). As the window size becomes larger, this set of
points will always fire a prediction. This also increases the
false-positive rate of our failure prediction. If these points
are early on in the experiment, or other anomalous points
do not appear ahead them, then, the look-ahead time is con-
stant no matter how large the window.

5. Future Work

Our future work focuses on analyzing additional character-
istics of Tiresias and exploring its extensions to root-cause
analysis and proactive recovery.

As a part of understanding Tiresias’ mechanisms better,
we would like to inject other kinds of faults outside of those
that we have studied in this paper. We would also like to
investigate Tiresias’ false-positive rate more accurately by
gathering more empirical data. Another direction to pur-
sue is to employ alternative anomaly-detection algorithms,
along with DFT, within the Tiresias system to see if the ac-
curacy and sensitivity of the predictions can be tuned better.

We also intend to develop a Distributed DFT (DDFT) al-
gorithm within Tiresias. It is our belief that correlating fail-
ure predictions for various metrics across the system could
be more revealing than predictions based on single metrics
alone.

6. Related Work

The area of fault management and prediction remains an
open field of research. Many approaches to fault detection
and prediction have been proposed. Hajii et al. [4] have

developed a system based on the stochastic approximation
of the maximum likelihood function. They propose a base-
line of normal network operations with anomalous points
defined as a sudden jump in the mean of the multivariate
random variable. These jumps represent system anomalies
and are used to detect network faults or performance prob-
lems.

Hood and Ji [5] propose a proactive fault-detection sys-
tem that extracts anomalous points and analyzes them with a
Bayesian network. This system is capable of detecting pre-
viously unseen faults. This system also uses anomalous net-
work points as an indicator of network faults. The Bayesian
network is also capable of filtering out some of the false
positives, giving a more reliable fault detector.

Thottan and Ji [13] propose a system that analyzes
statistics from the standard Management Information Base
(MIB) variables [10] that represent the state of the net-
work. The MIB data is analyzed using a sequential Gener-
alized Likelihood Ratio test. This test indicates anomalous
changes in the MIB variables. Unusual changes can repre-
sent an anomaly in the state of the network. The anoma-
lies are used to detect network faults. Thottan and Ji [14]
extended their previous system to propose a system simi-
lar in concept to ours. Their approach uses their previous
MIB fault detector. The enhanced system uses intelligent
agents to monitor the MIB data from the routers and pro-
vide time- and space-correlated alarms. The time-correlated
changes in the individual MIB variables are spatially corre-
lated using a combining scheme. Their system works on the
assumption that the MIB variables will behave abnormally
prior to, and during, a network fault. The detected anoma-
lous points are used to predict the onset of network faults
and degradations. Our system uses a similar concept, but
instead of MIB variables, we use simple packets/sec statis-
tics. Our system could be implemented to exploit the MIB
anomaly detector in [13].

7. Conclusion

By transparently gathering, and then identifying escalating
anomalous behavior in, various node-level and system-level
performance metrics, the Tiresias system makes black-box
failure-prediction possible. It exploits clustering rules that
were originally developed for single-node hardware fail-
ures, and extends them successfully to predict, with reason-
ably confidence, application-level failures in a distributed
system. In our experiments with injecting a variety of differ-
ent faults in a reliable middleware system, the Tiresias sys-
tem’s predictions came in advance of the failures, thereby
paving the way for proactive fault-recovery and high avail-
ability.

References

[1] T. A. Dumitraş and P. Narasimhan. Fault tolerance and
the magical 1%. In ACM/IFIP Conference on Middleware,
pages 431–441, Grenoble, France, November 2005.

[2] R. Faulkner and R. Gomes. The process file system and
process model in UNIX System V. In Winter USENIX Con-
ference, pages 243–252, Dallas, TX, Jan. 1991.

[3] F. Feather. Fault Detection in an Ethernet via Anomaly De-
tectors. PhD thesis, Department of Electrical and Computer
Engineering, Carnegie Mellon University, 1992.

[4] H. Hajii, B. Far, and J. Cheng. Detection of network faults
and performance problems. In Internet Conference, Osaka,
Japan, November 2001.

[5] C. Hood and C. Ji. Proactive network fault detection. IEEE
Transactions of Reliability, 46(3):1147–1156, 1997.

[6] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software
rejuvenation: analysis, module and applications. In Interna-
tional Symposium on Fault-Tolerant Computing, pages 381–
390, Washington,DC, June 1995.

[7] T.-T. Y. Lin. Design and Evaluation of an On-Line Predic-
tive Diagnostic System. PhD thesis, Department of Electri-
cal and Computer Engineering, Carnegie Mellon University,
1988.

[8] T.-T. Y. Lin and D. P. Siewiorek. Error log analysis: Statis-
tical modeling and heuristic trend analysis. IEEE Transac-
tions on Reliability, 39(4):419–432, Oct. 1990.

[9] R. Maxion. Unanticipated behavior as a cue for system-level
behavior. In International Phoenix Conference on Comput-
ers and Communications, pages 4–8, Phoenix, AZ, March
1989.

[10] K. McCloghrie and M. Rose. Management information base
for network management of TCP/IP-based Internets:MIB-2.
RFC 1213, 1991.

[11] P. Narasimhan, T. A. Dumitraş, S. M. Pertet, C. F. Reverte,
J. G. Slember, and D. Srivastava. MEAD: Support for real-
time fault-tolerant CORBA. Concurrency and Computation:
Practice and Experience, 17(12):1527–1545, 2005.

[12] TCPDump. www.tcpdump.org.
[13] M. Thottan and C.Ji. Adaptive thresholding for proactive

network detection. In IEEE International Workshop on
Systems Management, pages 108–116, Newport, RI, April
1998.

[14] M. Thottan and C. Ji. Fault prediction at the network layer
using intelligent agents. In IEEE/IFIP Integrated Network
Management, pages 745–759, Boston, MA, May 1999.

[15] M. Thottan and C. Ji. Properties of network faults. In
IEEE/IFIP Networks Operations and Management Sympo-
sium, pages 941–942, Honolulu, HI, 2000.

[16] R. Vilalta and Ma Sheng. Predicting rare events in temporal
domain. In IEEE International Conference on Data Mining,
pages 474– 481, Maebashi, Japan, December 2002.

[17] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems
and networks. In Symposium on Operating Systems Design
and Implementation, pages 255–270, Boston, MA, Decem-
ber 2002.

