
Capacity Sharing and Stealing in Dynamic Server-based Real-Time Systems

Luı́s Nogueira, Luı́s Miguel Pinho
IPP Hurray Research Group

Polythecnic Institute of Porto, Portugal
{luis,lpinho}@dei.isep.ipp.pt

Abstract

This paper proposes a dynamic scheduler that supports
the coexistence of guaranteed and non-guaranteed band-
width servers to efficiently handle soft-tasks’ overloads by
making additional capacity available from two sources: (i)
residual capacity allocated but unused when jobs complete
in less than their budgeted execution time; (ii) stealing ca-
pacity from inactive non-isolated servers used to schedule
best-effort jobs. The effectiveness of the proposed approach
in reducing the mean tardiness of periodic jobs is demon-
strated through extensive simulations. The achieved re-
sults become even more significant when tasks’ computation
times have a large variance.

1 Introduction

It is well known that reserving resources based on a
worst-case feasibility analysis will drastically reduce re-
source utilisation, causing a severe system’s performance
degradation when compared to a soft guarantee based on av-
erage execution times. Furthermore, it is increasingly diffi-
cult to compute WCET bounds in modern hardware without
introducing excessive pessimism [6].

Several solutions have already been proposed to max-
imise resource usage and achieve a guaranteed service and
inter-task isolation using average execution estimations and
isolating an overload of a particular tasks, not jeopardising
the schedulability of other tasks [1, 9, 10, 11, 12, 22]. Other
works further increase resource utilisation by reclaiming the
unused computation times of some tasks, exploiting early
completions [15, 4, 16, 5, 14].

However, a more flexible overload control in highly dy-
namic real-time systems can be achieved with the combi-
nation of guaranteed and best-effort servers and reducing
isolation in a controlled fashion in order to donate reserved,
but still unused, capacities to currently overloaded servers.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

This paper considers the coexistence of non-isolated and
isolated servers in the same system. For an isolated server,
a specific amount of a resource is ensured to be available
every period. An inactive non-isolated server, however,
can have some or all of its reserved capacity stolen by
active overloaded servers. Non-isolated servers are moti-
vated by the increasing use of imprecise computation mod-
els and anytime algorithms in dynamic real-time systems
[2, 19, 18].

The paper introduces and evaluates the Capacity Shar-
ing and Stealing (CSS) algorithm for sets of hard, soft and
non-real-time tasks that in the presence of isolated and non-
isolated bandwidth servers can: (i) achieve isolation among
tasks; (ii) efficiently reclaim unused computation time, ex-
ploiting early completions; (iii) reduce the number of dead-
line postponements, assigning all excess capacity to the
currently executing server; and (iv) steal reserved capacity
from inactive non-isolated servers in overload situations.

2 Related work

Optimal fixed priority capacity stealing algorithms that
minimise soft tasks’ response times whilst guaranteeing that
the deadlines of hard tasks are met were proposed in [13, 8].
However, they present some drawbacks. [13] relies on a
pre-computed table that define the residual capacity present
on each invocation of a hard task. In contrast, [8] calculates
the available residual capacity at run time, but the execution
time overhead introduced by the optimal dynamic approach
is infeasible in practice [7].

In [3], each server can consume capacity of other servers
to advance the execution of the served task in overload situ-
ations for enhancing soft aperiodic responsiveness. A server
can receive less bandwidth than expected, loosing isolation
among served tasks.

The HisReWri algorithm [2] identifies the tasks that did
execute when a hard task has released some of its maxi-
mum allocation budget and retrospectively assigns their ex-
ecution times to the hard task. If there is residual capacity
available, tasks’ budgets are replenished by the amount of

residual capacities they consumed. As execution time is ret-
rospectively reallocated, the authors describe the protocol as
history rewriting.

In dynamic scheduling, CBS [1] was proposed to ef-
ficiently handle soft real-time requests with a variable or
unknown execution behaviour under the EDF scheduling
policy, achieving isolation among tasks through a resource
reservation mechanism which bounds the effects of tasks
overruns. Several extensions were proposed next.

GRUB [15] uses excess capacity to reduce the number of
tasks’ preemptions, assigning all the excess bandwidth to
the currently executing server and postponing its deadline
before starting a new job, regardless of the current value of
the server’s budget. Although a greedy reclamation policy
is used, excess capacity always tends to be distributed in
a fair manner among needed servers across the time line.
A critical parameter of this approach is the time granular-
ity used in the algorithm, since a small period reduces the
scheduling error, but increases the overhead due to context
switches [4].

CASH [4] uses a global queue of residual capacities orig-
inated by early completions, ordered by deadline. Each
server consumes available residual capacities before us-
ing its own budget, reducing the number of deadline shifts
and executing periodic tasks with more stable frequencies.
However, CASH may not schedule tasks as expected, since
it immediately recharges servers’ budget without suspend-
ing the tasks [16]. An improvement to CASH’s residual
bandwidth reclaiming and the ability to work in the pres-
ence of shared resources has been recently reported in [5].

BACKSLASH [14] proposes to retroactively allocate
residual capacities to tasks that have previously borrowed
their current resource reservations to complete previous
overloaded jobs, using an EDF version of the mechanism
implemented in HisReWri. At every capacity exhaustion,
servers’ budget are immediately recharged and their dead-
lines extended as in CBS. However, a task that borrows from
a future job remains eligible to residual capacity reclaiming
with the priority of its previous deadline. The main prob-
lem of this approach is that allowing a task to use resources
allocated to the next job of the same task may cause future
jobs of that task to miss their deadlines by larger amounts.
Considering the mean tardiness of a set of periodic tasks on
higher system loads, BACKSLASH can be outperformed
by an algorithm that do not borrows from future resources
[14].

This paper proposes a different approach to handle ca-
pacity exhaustion. In particular, in the approaches discussed
above, when a server consumes its entire budget, the server
budget is recharged and a new deadline is generated and it
continues to execute the current job using its new capacity
and deadline until the job is completed. The next pend-
ing job, if any, is executed using the remaining budget and

deadline. We suspend budget recharging and deadline up-
date until a specific time. This enables the overloaded server
to steal capacities from inactive non-isolated servers and to
eventually use any new residual capacities that is released
by some other servers, keeping its current priority.

IRIS [16] identifies problems in CBS when scheduling
acyclic tasks (tasks that are continuously active for large in-
tervals of time) and also proposes to suspend each task’s
replenishment until a specific time, implementing a hard
reservation technique [21]. Residual capacity reclaiming is
only performed after all the servers had exhausted their re-
served capacities. IRIS proposes a work-conserving mech-
anism that guarantees a minimum budget in a fixed inter-
val of time and fairly distributes residual capacities among
needed servers.

We carefully considered this fairness issue. The in-
creased computational complexity of fairly assign residual
capacities to all active servers and the fact that fairly dis-
tributing residual capacities to a large number of servers
can originate a situation where no enough excess capac-
ity is provided to any one to avoid a deadline miss, lead
us to assign all residual bandwidth to the currently execut-
ing overloaded server. Furthermore, our work focuses on
minimising the mean tardiness of guaranteed jobs by con-
suming residual capacities as early, and not necessarily as
fairly, as possible.

3 System model and notation

The paper considers the existence of a set τ = τh∪τs∪τn

of hard, soft and non-real time tasks in the system and a set
of isolated and non-isolated servers.

Isolated servers have a guaranteed budget until their
deadlines while inactive non-isolated servers can have some
or all of its reserved capacity stolen by active overloaded
servers. Non-isolated servers were thought to serve ape-
riodic or sporadic tasks that can be served in a best-effort
manner.

Both types of servers are characterised by a pair (Qi, Ti),
where Qi is the reserved capacity and Ti is the server pe-
riod. Each server Si maintains a current capacity ci, a server
deadline di and a recharging time ri. The fraction of the
CPU reserved to server Si (the utilisation factor) is given
by Ui = Qi

Ti
.

At time t, a server can be in one of the following states:

• Active: the served task is (i) ready to execute; (ii) is
executing using a residual capacity, the capacity of its
server or stealing capacity from a inactive non-isolated
server; (iii) or the server is supplying its residual ca-
pacity to other servers until its deadline.

• Inactive: the server has no pending jobs and is not
supplying its residual capacity to other servers. In-

2

active non-isolated capacities can be stolen by active
overloaded servers.

State transitions are determined by the arrival of a new
job, capacity exhaustion, or the non-existence of pending
jobs at replenishment time. An inactive server reaches the
Active state on a job arrival. On the other hand, an active
server becomes Inactive if all its reserved capacity is con-
sumed and there are no pending jobs to serve, either while
supplying its residual capacity to other servers or exhausting
its capacity and finishing its job. Similarly, active servers
with no pending jobs at replenishment time become inac-
tive.

On an early completion of its current job, a server re-
mains active supplying its residual capacity until its dead-
line. If a server is supplying residual capacity, it is con-
tributing to the global system’s activity and, as such, can be
considered as being active. This eliminates the need of a
global queue to manage residual capacities and additional
server states.

Each server receives a job for computation at time ai,j

serves it assigning a dynamic absolute deadline di,j =
ai,j + Ti. The arrival time of a particular job is only re-
vealed during execution, and the exact execution require-
ments ei,j can only be determined by actually executing the
job to completion.

The server that is selected as the running server is the one
with the earliest deadline and pending work among the set
of servers in the Active state A. When no server is selected,
the processor is idle or it is executing non-real time tasks.

Hard tasks can be directly scheduled by EDF, through
dedicated isolated CSS servers characterised by their
WCET, or hierarchical scheduling. Soft tasks are charac-
terised by average values and can be served by isolated or
non-isolated servers.

Since it is not possible to guarantee to complete the
execution of soft tasks before their deadlines, our goal is
to minimise their mean tardiness without jeopardising the
guarantees of isolated servers. The tardiness Ei,j of a job
Ji,j is defined as Ei,j = max{0, fi,j − di,j}, where fi,j is
the finishing time of job Ji,j .

The reader should refer to [17] for a theoretical valida-
tion of the proposed model.

4 Capacity sharing and stealing

The main contribution of the work presented in this paper
is the combination of two sources of extra bandwidth for
an efficient overload control: (i) residual capacity allocated
but unused when jobs complete in less than their budgeted
execution time; and (ii) stealing capacity from inactive non-
isolated servers used to schedule best-effort jobs. The main
principles of the proposed approach are detailed in the next
sections.

4.1 Dynamic budget accounting

Whenever a server is executing a task, budget accounting
must be performed. The proposed dynamic budget account-
ing mechanism ensures that at time t, the currently execut-
ing server Si is using a residual capacity cr originated by an
early completion of another active server, its own reserved
capacity ci, or is stealing capacity cs from an inactive non-
isolated server. The server to which the budget accounting
is going to be performed is dynamically determined at the
time instant when a capacity is needed.

CSS requires three additional parameters to characterise
each server when compared to the original CBS algorithm.
Each server has a type (isolated or non-isolated), a pointer
to a server from which the budget accounting is going to
be performed and a specific recharging time. On the other
hand, it eliminates the need of additional server states and
extra queues to manage residual and stolen capacities, re-
ducing the needed overhead when compared to other algo-
rithms that improve CBS.

Intuitively, each servers’ deadline is a measure of its pri-
ority under EDF scheduling. The proposed dynamic bud-
get accounting protocol follows these rules: (i) whenever
a server is selected to be the running server, if there are
high priority servers with residual capacities greater than
zero, the server consumes available residual capacities until
their exhaustion or job completion (whatever comes first);
(ii) if all residual capacities are exhausted and there is still
pending work to do, the server points to itself and con-
sumes its own capacity; (iii) if all consumed (residual and
own) capacities were not enough to complete the job, the
server steals high priority capacities of inactive non-isolated
servers, until its deadline, job completion, or non-isolated
capacity exhaustion (whatever comes first); (iv) if the cur-
rently executing server is connected to another server and it
is preempted, the former is immediately disconnected from
the later and points to itself; (v) on job’s completion the
server points to itself.

The used capacity is decremented from the reserved ca-
pacity of the pointed server. Note that at a particular time t
there is only one server pointing to another server.

4.2 Residual capacity reclaiming

When a server Si completes a job and its remaining ca-
pacity ci is greater than zero, it can immediately be used
by others, until the currently assigned Si’s deadline di,k.
If there are no pending jobs waiting to execute, Si’s resid-
ual capacity cr is updated to the current value of remaining
server’s capacity ci and ci is set to zero. The server is kept in
the Active state, maintaining its deadline di,k and supplying
its residual capacity to other servers.

Whenever a new server is scheduled for execution it first

3

tries to use residual capacities released by early completions
of other active servers, with deadlines less than or equal to
the one assigned to the served job.

Since the execution requirements of each job are not
known beforehand, it makes sense to devote as much ex-
cess capacity as possible to the currently executing server,
maximising its chances to complete the current job before
the deadline, rather than distribute this capacity (usually in
proportion of servers’ bandwidths) among a large number
of servers, without providing enough excess capacity to any
of the servers to avoid a deadline miss.

Let A be the set of all active servers. The set of active
servers Ar eligible for residual capacity reclaiming is given
by Ar = {Sr|Sr ∈ A, dr ≤ di,k, cr > 0}, where dr is the
current deadline of early completed jobs.

The consumed residual capacity cr is selected from the
earliest deadline active server Sr from the set of eligi-
ble servers Ar. Sr is then defined as ∃1Sr ∈ Ar :
mindr

(Ar), Ar �= ∅.
Server Si updates its pointer to Sr and starts consuming

the Sr’s residual capacity cr, running with the deadline dr

of the pointed server Sr. Whenever the residual capacity is
exhausted and there is pending work to do, Si disconnects
from Sr and selects the next available server S′

r (if any). As
such, all available residual capacities are greedily assigned
to the currently executing server until its deadline. This has
been proved to minimise deadline postponements and the
number of preemptions [15].

If all available residual capacities are exhausted and the
current job is not complete, the server starts using its own
capacity ci (it points to itself), either until job’s completion
or ci’s exhaustion. On a ci’s exhaustion, Si keeps in the
Active state and maintains its deadline di,k.

4.3 Non-isolated capacity stealing

When the reserved capacity of some server is exhausted
and there is still pending work, the server is allowed to steal
inactive non-isolated capacities to handle its overload.

Let I be the set of all servers in the Inactive state. The
set of inactive non-isolated servers IN

s eligible for capacity
stealing is given by IN

s = {Ss|Ss ∈ I, ds < di,k, cs >
0}, where ds is the current deadline of each inactive non-
isolated server.

Budget accounting will be performed on the earli-
est deadline inactive non-isolated server Ss from the set
of eligible servers IN

s , determined by ∃1Ss ∈ IN
s :

minds
(IN

s), IN
s �= ∅.

The currently executing overloaded server Si connects
to the earliest deadline inactive non-isolated server Ss, but
continues to run with its own deadline di,k (Si is stealing the
Ss’s capacity and not its priority). When the stolen capacity
is exhausted and the job has not been completed, the next

non-isolated capacity c′s is used (if any).
Keeping Si’s deadline allows to interrupt the current ca-

pacity stealing on a job arrival for Ss. This way, Ss reaches
the Active state with the remaining budget, preserving sys-
tem’s schedulability. Note that while serving a task, an ac-
tive non-isolated server behaves as isolated servers (it can
share residual capacity and steal from other non-isolated
servers).

Whenever Si is connected to an inactive non-isolated
server Ss and it is preempted or whenever a replenishment
event occurs on the capacity being stolen, Si is immediately
disconnected from Ss and stops using that capacity capac-
ity, keeping the Active state.

Before stealing any future capacity of an inactive non-
isolated server Ss it is necessary to check whether or not
an update of Ss’s deadline and capacity replenishment are
needed since a deadline greater than the actual time im-
plies that some other active overloaded server has already
updated Ss’s parameters and stolen some portion of the
Ss’s reserved capacity. If the previously generated absolute
deadline ds of the selected non-isolated server Ss is lower
than the actual time (ds < t), a new deadline (ds = t + Ts)
is generated and server’s capacity is recharged to the max-
imum value (cs = Qs). Otherwise, the currently executing
server steals capacity cs using current values. In either case,
Ss is kept in the Inactive state.

4.4 Specific replenishment time

An overloaded server whose budget has exhausted can
only continue its execution and steal inactive non-isolated
capacities if its current capacity and deadline are not auto-
matically updated when its capacity is exhausted. As such,
CSS suspends capacity recharging and deadline update of
each server Si until a specific time ri.

Setting the replenishment and deadline update of an ac-
tive server to its currently assigned deadline, ri = di,
satisfies the purposes of the capacity reclaiming and non-
isolated capacity stealing mechanisms presented above.

For each server Si, when t = ri, the taken action de-
pends on the existence at time t of pending jobs to be exe-
cuted, that is, if there is a job Ji,k such that ai,k ≤ t < fi,k.
An active server without pending work (it must be supply-
ing its residual capacity to other servers) reaches the In-
active state and its residual capacity is discharged. For a
server with pending jobs, a new deadline is generated to
di,k = max{ai,k, di,k−1} + Ti, the server’s capacity is re-
plenished to its maximum value (ci = Qi), the recharging
time is set to the server’s new deadline (ri = di,k) and the
server’s residual capacity is set to zero (cr = 0).

Advancing the recharging times when there is pending
work is against our purpose of executing periodic activities
with stable frequencies. If pending jobs are a consequence

4

of early arrivals, executing periodic services with a stable
frequency suggests that those early arrived jobs should only
begin their execution in the expected period of arrival.

5 The CSS scheduler

In this section, CSS is formally described and an exam-
ple of an efficient overload control is presented. Each task
τi is served by a dedicated (isolated or non-isolated) server,
characterised by a maximum capacity Qi and a period Ti.
Budget accounting is dynamically performed on the pointed
server. Initially all servers are in the Inactive state.

1. When a job Ji,k arrives at time ai,k for server Si

(a) if Si is Inactive, it becomes Active and it is in-
serted in the ready queue.

• if ai,k < di,k, the job is served with the
last generated deadline di,k, using the cur-
rent capacity ci.

• otherwise, Si’s capacity is recharged to its
maximum value ci = Qi, a new deadline
is generated to di,k = max{ai,k, di,k−1} +
Ti, recharging time is set to ri = di,k and
residual capacity is set to cr = 0

(b) if Si is Active, the job is buffered and will be
served later

2. When a Active server Sj is selected as the running
server

(a) Sj connects to the earliest deadline Active server
with residual capacity cr > 0, such that dr ≤
dj,k (if any) and runs with deadline dr

(b) when cr = 0, Sj selects the next earliest deadline
capacity c′r (if any) with deadline d′r ≤ dj,k and
updates its deadline to d′r

(c) when all available residual capacities cr are ex-
hausted and there is pending work, Sj uses its
own capacity cj , pointing to itself, and runs with
its own deadline dj,k

(d) when cj = 0 and there is still pending work to do,
the server connects to the Inactive non-isolated
server SN

k with the earliest deadline from which
it will steal its capacity (if any), such that t <
dSN

k
≤ dj,k. The server continues to run with its

deadline dj,k (not with the deadline of the non-
isolated server SN

k).

(e) when cs = 0 the next capacity c′s with deadline
t < dS′N

k
≤ dj,k is used (if any), until job’s com-

pletion or dj,k

(f) if Sj is using capacity cs of a non-isolated server
SN

k and it is preempted, then Sj stops using cs.
Sj points to itself and is kept in the Active state

3. Whenever job Ji,k executes, the used capacity cr, ci or
cs is decreased by the same amount

4. When a job Ji,k served by Si finishes, the next pending
instance Ji,k+1 (if any) is executed using the current
capacity and deadline. If there are no pending jobs, the
residual capacity is updated with remaining capacity
cr = ci, ci is set to zero, and Si keeps Active, keeping
its recharging time ri and deadline di,k

5. If the server is Active and t = ri, if there is pend-
ing work to do, the capacity is recharged to its maxi-
mum value ci = Qi, the deadline is set to di,k+1 =
max{ai,k+1, di,k} + Ti, the recharging time is set to
ri = di,k+1, and the residual capacity cr is set to zero.
Otherwise, the server becomes Inactive

6. Whenever the processor becomes idle for an interval of
time ∆, the residual capacity cr with the earliest dead-
line is decreased by the same amount, until all residual
capacities are exhausted

Consider the following periodic task set, described by
average execution times and period: τ1 = (2, 5), τ2 =
(4, 10), τ3 = (3, 15). Task τ1 is served by a non-isolated
server, while tasks τ2 and τ3 are served by isolated servers.
A possible execution of this task set is presented in Figure
1. When a server is using a residual or stolen capacity from
another server a pointer indicates where the budget account-
ing is being performed.

Figure 1. Overload handling with CSS

At time t = 3 task τ2 has an early completion, and a
residual capacity cr = 1 with deadline dr = 10 is available.
Server S3 is scheduled for execution and connects to earliest
deadline residual capacity available of server S2. Task τ3

consumes cr = 1 before starting to using its own capacity

5

at time t = 4. At time t = 7, an overload is handled by
stealing capacity of the inactive non-isolated server S1. A
new deadline for the stolen capacity cs is set to time t = 12.

Note that at time t = 9 a new job for task τ2 arrives but
the job is only released at time t = 10. Remember that ad-
vancing execution times is against our purpose of executing
periodic activities with stable frequencies.

At time t = 15, after S2 completes its job by stealing
some of the inactive non-isolated capacity of S1, a new job
for server S1 arrives. S1 reaches the active state, keeping
its current available capacity and corresponding deadline.
Now, it behaves as an active isolated server and tries to use
available residual capacities. Since there is not any resid-
ual capacity available, S1 starts to consume its remaining
reserved capacity.

At time t = 16, server S1 has no remaining capacity and
stops executing. At time t = 19, a replenishment of server’s
capacity occurs and S1 continues to execute the pending
job. Since at time t = 20 S1 completes its job’s execution,
it frees a residual capacity cr = 1 with deadline dr = 24,
that is used by server S2 before consuming its own capacity
at time t = 21.

At time t = 25, a job for task τ1 arrives and the non-
isolated server S1 becomes active. It first consumes the
residual capacity cr = 1 with deadline dr = 30, generated
at time t = 24 by an early completion of task τ2, before
consuming its own capacity.

At time t = 33 an overload of task τ2 is first efficiently
handled by stealing capacity of the inactive non-isolated
server S1 and then, at time t = 38, consuming the avail-
able residual capacity generated by an early completion of
task τ3. Note that a server remains in the Active state until
its deadline, even if it has exhausted its capacity.

This example shows that overloads can be efficiently
handled without postponing deadlines, either by using
residual capacities and by stealing capacities of inactive
non-isolated servers.

6 Evaluation

Two sets of experiments have been performed to verify
the effectiveness of the CSS algorithm in reducing the mean
tardiness of periodic jobs. In the first set, a comparison
is made against BACKSLASH and CASH scheduling only
isolated servers serving a set of periodic tasks. The second
set evaluates the higher flexibility introduced by CSS to an
efficient overload management with non-isolated capacity
stealing.

The results reported in this section were observed from
multiple and independent simulation runs, with initial con-
ditions and parameters, but different seeds for the random
values used to drive the simulation [20]. The mean values
of all generated samples were used to produce the charts.

Each simulation ran until t = 100000 and was repeated
several times to ensure that stable results were obtained.

The mean tardiness of a set of periodic tasks was deter-
mined by

∑n
i=0 trdi/n, where trdi is the tardiness of task

Ti, and n the number of periodic tasks.

6.1 Capacity reclaiming

The performance of CSS when scheduling a set of pe-
riodic tasks served only by isolated servers was compared
against CASH and BACKSLASH, since the three algo-
rithms greedily assign residual capacities as early as possi-
ble to the highest priority server. However, they propose dif-
ferent approaches on servers’ budget exhaustion with pend-
ing jobs whose effect in lowering the mean tardiness of pe-
riodic jobs was evaluated.

Different sets of 6 periodic servers, with varied capaci-
ties ranging from 20 to 50, and period distributions ranging
from 60 to 600 were used, creating different types of load,
from short to long deadlines and capacities. The execution
time of each job varied in the range [0.7Qi, 1.4Qi]. The pur-
pose of using random workloads was to evaluate the perfor-
mance of each algorithm when tasks’ parameters differ in
dynamic real-time scenarios.

Figure 2 shows the performance of the three algorithms
as a function of the system’s load, measuring the mean tar-
diness of periodic tasks under random workloads for differ-
ent probabilities of jobs’ overload.

Figure 2. Performance in dynamic scenarios

As expected, all the algorithms perform better when
there is more residual capacity available to handle over-
loads. As the probability of jobs’ overload increases, CSS
outperforms the other algorithms in lowering the mean tar-
diness of periodic jobs. In CASH, once a task’s budget is
exhausted it is immediately recharged and its deadline ex-
tended. As such, its priority is effectively lowered, lower-
ing its probability of spare capacity reclaiming before miss-
ing its deadline. BACKSLASH also immediately updates
budget and deadline, but spare capacity reclaiming is done
with virtual (original) deadlines. While BACKSLASH and
CSS share the same concept of using original deadlines for

6

spare capacity reclaiming, since CSS keeps a server in Ac-
tive state until its deadline without deadline postponement,
it effectively improves servers’ probability of actually us-
ing any spare capacity that eventually will be released until
then, minimising the mean tardiness of periodic jobs. Fur-
thermore, allowing a task to use resources allocated to the
next job of the same task, may cause future jobs to miss
their deadlines by larger amounts [14].

6.2 Capacity reclaiming and stealing

The second set of simulations evaluated the effect of
non-isolated capacity stealing on the performance of soft
real-time tasks, either with short or long variations from
mean execution times.

The workload consisted of a hybrid set of periodic iso-
lated and non-isolated servers. The maximum capacity and
inter-arrival times of the isolated servers were randomly
generated in order to achieve a desired processor utilisation
factor of Uisolated. The maximum capacity and period of
the non-isolated servers were uniformly distributed in order
to obtain an utilisation of Unon−isolated = 1 − Uisolated.

To evaluate the weight of non-isolated capacity steal-
ing in lowering the mean tardiness of tasks, the probability
of arrival of new jobs to non-isolated servers varied in the
range [1.0, 0.1]. The mean tardiness of isolated and non-
isolated jobs was measured when using both residual capac-
ities and non-isolated capacity stealing or when only using
residual capacities.

In the first simulation, periodic tasks were served by 1
non-isolated server S1 = (2, 10) and 4 isolated servers
S2 = (3, 15),S3 = (4, 20),S4 = (5, 25), S5 = (6, 30),
with utilisation of Unon−isolated = 0.2 and Uisolated = 0.8.
The execution time of each job shortly varied in the range
[0.8Qi, 1.2Qi].

Figure 3. Small variation in execution times

Figure 3 shows the results. As expected, when over-
loaded active servers have more opportunities to steal non-
isolated capacities, the mean tardiness of jobs lowers ac-
cordingly. When only using residual capacities, the mean

tardiness is higher as the probability of non-isolated jobs’
arrival lowers, since there is less residual capacities avail-
able, released by active non-isolated servers. The exper-
iment shows that with low variation in jobs’ computa-
tion times non-isolated capacity stealing produces better re-
sults, although the use of only an efficient residual capac-
ity reclaiming mechanism achieves a slightly poorer perfor-
mance.

Furthermore, Figure 3 also shows that the performance
of non-isolated servers is worse than the achieved perfor-
mance of isolated servers. Two reasons explain this be-
haviour. First, when a new job arrives for a inactive non-
isolated server, some of its reserved capacity might have
been stolen by a needed active overload server. As such, if
there is not any residual capacity available at that particular
time, the job must be executed with a lower capacity than
expected, probably resulting in a deadline miss (anytime al-
gorithms were not used to evaluate CSS in a more generic
scenario). Second, there is a big difference on the perfor-
mance of a server for different configurations of Qi and Ti,
even if they result in the same server utilisation [3]. It is
well known that the higher the priority the smaller the ca-
pacity available, since there is a tradeoff between capacity
size and interference. A server with parameters (2Qi, 2Ti)
has the same utilisation but a higher probability of using
residual capacities and steal inactive non-isolated time due
to the increased period.

The second simulation has been generated with the same
characteristics of the first one, except that a greater vari-
ance of jobs’ execution time was introduced, ranging from
[0.6Qi, 1.8Qi]. Note that in this experiment the average
value of the jobs’ execution requirements is greater than the
reserved capacity of their servers, necessarily leading to a
greater tardiness. Figure 4 clearly shows a perceptibly im-
proved performance of servers when it is possible to steal
inactive non-isolated capacities in the presence of a large
variation in jobs’ computation times. One can conclude that
severe overloads can be efficiently handled with residual ca-
pacity reclaiming and non-isolated capacity stealing, reduc-
ing the mean tardiness of periodic jobs.

7 Conclusion

The work reported in this paper integrates and extends
recent advances in dynamic deadline scheduling with re-
source reservation. Namely, while achieving isolation
among tasks, it can efficiently reclaim residual capacities
and steal capacity from inactive non-isolated servers, effec-
tively reducing the mean tardiness of periodic jobs. Further-
more, the proposed dynamic budget accounting mechanism
eliminates the need of several server states and extra queues
to manage residual and stolen capacities.

CSS offers the flexibility to consider the coexistence of

7

Figure 4. Large variation in execution times

guaranteed and best-effort servers in the same system. It has
been demonstrated that the proposed algorithm can achieve
a higher performance when considering the mean tardiness
of periodic guaranteed services in systems where some ser-
vices can appear less frequently, and when they do they
can be served in a best-effort manner, giving priority to the
overload control of guaranteed services. The achieved re-
sults become even more significant when tasks’ computa-
tion times have a large variance.

Acknowledgements

This work was partly supported by FCT, through the CIS-
TER Research Unit (FCT UI 608) and the Reflect project
(POSC/EIA/60797/2004), and the European Comission through
the ARTIST2 NoE (IST-2001-34820).

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the 19th
IEEE RTSS, page 4, Madrid, Spain, December 1998.

[2] G. Bernat, I. Broster, and A. Burns. Rewriting history to
exploit gain time. In Proceedings of the 25th IEEE RTSS,
pages 328–225, December 2004.

[3] G. Bernat and A. Burns. Multiple servers and capacity shar-
ing for implementing flexible scheduling. Real-Time Sys-
tems, 22(1-2):49–75, 2002.

[4] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for
overrun control. In Proceedings of 21th IEEE RTSS, pages
295–304, Orlando, Florida, 2000.

[5] M. Caccamo, G. C. Buttazzo, and D. C. Thomas. Efficient
reclaiming in reservation-based real-time systems with vari-
able execution times. IEEE Transactions on Computers,
54(2):198–213, February 2005.

[6] A. Colin and S. M. Petters. Experimental evaluation of code
properties for wcet analysis. In Proceedings of the 24th
IEEE RTSS, pages 190–199, December 2003.

[7] R. I. Davis. Approximate slack stealing algorithms for fixed
priority preemptive systems. Technical report, Department
of Computer Science, University of York, November 1993.

[8] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack
time in fixed priority preemptive systems. In Proceedings of
the 14th RTSS, pages 222–231, 1993.

[9] Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. In Proceedings of the 18th IEEE
RTSS, page 308, Washington, DC, USA, 1997.

[10] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a dead-
line scheduling environment. Real-Time Systems, 9(1):31–
67, 1995.

[11] P. Goyal, X. Guo, and H. M. Vin. A hierarchical cpu sched-
uler for multimedia operating systems. Readings in multi-
media computing and networking, pages 491–505, 2001.

[12] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham.
Integrated scheduling of multimedia and hard real-time
tasks. In Proceedings of the 17th IEEE RTSS, page 206,
Washington, DC, USA, 1996.

[13] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm
for scheduling soft-aperiodic tasks fixed-priority preemptive
systems. In Proceedings of the 13th RTSS, pages 110–123,
December 1992.

[14] C. Lin and S. A. Brandt. Improving soft real-time perfor-
mance through better slack reclaiming. In Proceedings of
the 26th IEEE RTSS, pages 410–421, 2005.

[15] G. Lipari and S. Baruah. Greedy reclamation of unused
bandwidth in constant-bandwidth servers. In Proceedings of
the 12th ECRTS, pages 193–200, Stockholm, Sweden, 2000.

[16] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. Iris:
A new reclaiming algorithm for server-based real-time sys-
tems. In Proceedings of the 10th IEEE RTAS, page 211,
Toronto, Canada, 2004.

[17] L. Nogueira and L. M. Pinho. Capacity shar-
ing and stealing in server-based real-time systems.
Technical report, HURRAY-TR-051205. Available at
http://hurray.isep.ipp.pt/, December 2005.

[18] L. Nogueira and L. M. Pinho. Dynamic adaptation of stabil-
ity periods for service level agreements. In Proceedings of
the 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 77–
81, Sydney, Australia, August 2006.

[19] L. Nogueira and L. M. Pinho. Iterative refinement approach
for qos-aware service configuration. IFIP From Model-
Driven Design to Resource Management for Distributed
Embedded Systems, 225:155–164, 2006.

[20] N. Pereira, E. Tovar, B. Batista, L. M. Pinho, and I. Broster.
A few what-ifs on using statistical analysis of stochastic sim-
ulation runs to extract timeliness properties. In Proceedings
of the 1st International Workshop on Probabilistic Analy-
sis Techniques for Real-Time Embedded Systems, Pisa, Italy,
September 2004.

[21] R. Rajkumar, K. Juvva, A. Molano, , and S. Oikawa. Re-
source kernels: A resource-centric approach to real-time and
multimedia systems. In Proceedings of the SPIE/ACM Con-
ference on Multimedia Computing and Networking, 1998.

[22] M. Spuri and G. Buttazzo. Efficient aperiodic service un-
der earliest deadline scheduling. In Proceedings of the 15th
IEEE RTSS, pages 2–11, San Juan, Puerto Rico, 1994.

8

