
Improved Output Jitter Calculation for Compositional Performance Analysis of
Distributed Systems

Rafik Henia, Razvan Racu, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig / Germany

{henia|racu|ernst}@ida.ing.tu-bs.de

Abstract

Compositional performance analysis iteratively alter-
nates local scheduling analysis techniques and output event
model propagation between system components to enable
performance analysis of heterogeneous distributed systems.
In spite of its high scalability and adaptability, the com-
positional approach may suffer from overestimated results
compared with other system performance verification tech-
niques. The main reason is an incomplete consideration
of event sequence correlations. In this paper we present a
new technique that improves the output jitter calculation by
correlating jitter and response times and offers significantly
tighter analysis bounds.

1. Introduction
As a consequence of the growing complexity of mod-

ern embedded systems, large heterogeneous distributed and
multi-core architectures are replacing traditional single-
processor architectures thus, increasing the need for per-
formance verification techniques adapted to this new trend.
Beyond simulation, there are novel approaches to formal
schedulability analysis that scale to large heterogeneous sys-
tems and are meanwhile used in industrial practice [12].
From the literature, two different formal approaches ad-
dressing this problem can be identified: the holistic ap-
proach that extends the classical scheduling theory to dis-
tributed systems [14] [2], and the compositional approach
that couples local scheduling analysis techniques either us-
ing new event models or based on existing event models and
analysis techniques [1] [13] [11].

Despite its better ability to take global system effects into
account, the holistic performance analysis approach lacks
flexibility due to the need to adapt scheduling analysis to
each potential system configuration. On the other hand, the

1-4244-0910-1/07/$20.00 c©2007 IEEE.

compositional performance analysis approach which over-
comes these mentioned holistic approach restrictions, in its
current form [11] ignores event parameter correlations, such
as the correlation between jitter and response time of in-
dividual events that is intrinsically considered in holistic
analysis. Hence, in complex systems, compositional perfor-
mance analysis may suffer from pessimism due to an overes-
timated jitter calculation at component outputs. This overes-
timation can drastically increase when propagating the event
models along the system paths, leading to unnecessarily pes-
simistic analysis results. To overcome this problem, we pro-
pose a new technique allowing a more accurate output jitter
calculation by taking into account the above mentioned jitter
and response time correlations. We show the applicability of
our approach for two well-known scheduling strategies.

In the following section, we will review in detail the
existing approaches from the literature that enable perfor-
mance analysis for heterogeneous distributed systems. In
Section 3.1, we introduce our application model. Standard
event models are described in Section 3.2. In Section 4, we
show the disadvantage of the current technique and present a
new approach that improves the output jitter calculation. In
Sections 5 and 6 we demonstrate the applicability of our ap-
proach for two popular scheduling strategies: Static Priority
Preemptive and TDMA scheduling. In Section 7, we apply
our technique to analyze the performance of a hypothetical
system example. Finally, we interpret the results and draw
conclusions.

2. Related Work
Numerous scheduling analysis algorithms for processors

and communication have been developed by the real-time
system research community for decades. The first schedula-
bility analysis algorithm was presented by Liu and Layland
for Rate Monotonic Scheduling (RMA) [7]. Since then, var-
ious scheduling analysis algorithms have been developed.
Examples include Static Priority Preemptive (SPP) [15] and
time-slicing mechanisms like TDMA or Round-Robin [6].

Scheduling analysis algorithms are however not directly

applicable to heterogeneous distributed systems with dif-
ferent scheduling and resource-sharing strategies. Formal
approaches adapted to such systems are needed. From the
literature two known approaches address this problem: the
holistic and the compositional approaches.

The holistic approach [14] [2] systematically extends
the classical scheduling theory to distributed systems e.g.
Tindell have extended existing techniques to allow perfor-
mance analysis of special heterogeneous architectures: fixed
priority-scheduled CPU connected via a TDMA-scheduled
bus [14]. In [9] and [8] Eles et al. consider a larger vari-
ety of mixed time/event-triggered distributed systems, and
focus on real-world communication protocols. One major
advantage of the holistic approach over the compositional
approach is that it has a global view of the system allowing
it to take global performance effects into account to yield to
tighter calculated analysis bounds. However, because of the
very large number of dependencies, the complexity of the
equations underlying the analysis grows with system size
and heterogeneity. In practice, the holistic approach is lim-
ited to those system configurations which simplify the equa-
tions, such as deterministic TDMA networks. It is difficult
to define a general procedure to set-up and solve the holistic
equations for arbitrary systems.

The compositional approach [1] [13] [11] establishes a
different view on scheduling analysis allowing performance
analysis for arbitrarily complex architectures, thus overcom-
ing the restrictions of the holistic approach. This is done by
coupling different existing analysis techniques on individ-
ual components via event streams. In the compositional ap-
proach, the output event stream of one component turns into
the input event stream of the connected component. System
performance analysis can then be performed by iteratively
alternating local scheduling analysis and event stream prop-
agation between components. Gresser [1], Thiele [13] and
Richter [11] use different event stream representations to de-
scribe the timing of the event streams. Gresser [1] uses a su-
perpositional event vector system, which is then propagated
using complex event dependency matrices. Thiele et. al. [13]
use numerical upper and lower bound event arrival curves
for event streams, and similar service curves for execution
modeling. Because they introduce new stream models, both
Thiele and Gresser have to develop new scheduling analysis
algorithms for the local components that utilize these mod-
els; the host of existing work in real-time system can not be
re-used. Furthermore, the new models are far less intuitive
than the ones known from the classical real-time systems re-
search, e. g. the model of rate-monotonic scheduling with its
periodic tasks and worst-case execution times.

Richter [11] uses parameterized standard event models
(Section 3.2) from real-time systems research rather than in-
troducing new complex event stream representations. Peri-
odic events or event streams with jitter and bursts are ex-
amples of standard event models. Therefore, rather than de-
veloping new local analysis techniques, Richter’s approach

benefits from the host of work in real-time scheduling anal-
ysis. However, since the tasks response time calculation
strongly depends on the tasks activating event models, the
compositional analysis using standard event models requires
an accurate calculation of the output event models at the
tasks outputs to avoid pessimistic system performance es-
timates.

In [4] and [10] a technique improving the output jitter cal-
culation by considering the effects of the best-case response
time on the output event streams has been presented. In this
paper, we present a new technique allowing a more accurate
output jitter calculation by considering the correlation be-
tween the individual jitter delays of events in input streams
and the resulting task response times.

3. System Model
In this section, first we present our application model.

Then, we give an overview about standard event models.

3.1. Application Model

An application is modeled by a set of computation and
communication tasks (application entities). The tasks are
mapped and executed on a set of processing (CPUs) and
communication (Buses) elements, representing the system
architecture. Each task is characterized by its core execution
time interval (CET interval), defined as the minimum and
maximum times the task requires for a complete execution
on the corresponding resource, assuming that no blocking or
preemption occur during execution.

A task graph describes the functional and timing depen-
dencies between tasks. Tasks are allowed to have more than
one immediate successor and predecessor. The task graph
may contain cycles. describing applications with cyclic de-
pendencies between tasks, like control loops[5].

One execution of a task is called job. Ti,k denotes the k-
th job of task Ti. The activation of a task is triggered by
an activating event. Activating events can be generated in a
multitude of ways, including expiration of a timer, external
or internal interrupt, and task chaining. Each task is assumed
to have one input FIFO. A task reads activating event data
from its input FIFO and writes data into the input FIFOs of
dependent tasks. A task may read its input data at any time
during one execution. We therefore assume that the data
needs to be available at the input during the whole execu-
tion of the task. We also assume that input data is removed
from the input FIFO at the end of the task execution. This
assumption is standard in scheduling analysis. After finish-
ing its execution, a task produces one event at each of its
outputs.

All activating events of a task are captured by an event
stream. The behavior of an event stream is described us-
ing parameterized event models, presented in detail in Sec-
tion 3.2.

A task needs to be mapped onto a computation or com-
munication resource to execute. When multiple tasks share

the same resource, then two or more tasks may request the
resource at the same time. In order to arbitrate request con-
flicts, a resource is associated with a scheduler which selects
a task to be executed from the set of active tasks according to
some scheduling policy. For each task Ti, scheduling anal-
ysis calculates worst-case (Rw

i) and also best-case (Rb
i) task

response times, i.e. the maximum and minimum times be-
tween the event arrival at task input and task completion.
Scheduling analysis guarantees that all observable response
times will fall into the calculated [Rb

i ,R
w
i] interval. We there-

fore say that scheduling analysis is conservative. In this pa-
per we use Ri,k to refer to the response time of the k-th job
of task Ti.

3.2. Standard Event Models

The timing of the events within an event stream is de-
scribed using event models. We use a set of six parameter-
ized event models that slightly extend the known event mod-
els from literature to capture the consequences of jitters, and
subsequently bursts [11]. Each event model is described us-
ing a set of three parameters: period (P), jitter (J) and min-
imum distance (dmin). Depending on the event model, only
some of the three parameters need to be defined: a periodic
stream requires only the period to be specified, a periodic
stream with jitter requires two parameters, the period and
the jitter, while a periodic stream with burst is specified us-
ing all parameters, period, jitter and minimum distance be-
tween events.

The period shows the rate at which a task is activated and
is used to compute the average load determined by the task
on the assigned resource. Many applications use periodic
event models to specify the activation pattern of the tasks.
Examples can be found in signal processing domain or con-
trol engineering.

The jitter parameter is used to show the perturbations that
may influence the pure periodic activation of a task. A pe-
riodic with jitter event model describes the activation of a
task that still has a general periodic behavior, but the single
activations may occur within a time interval, rather than at
exact time instances. The maximum value of this time in-
terval is expressed using the jitter parameter. In general, if
a jitter is present at task input then it is propagated to the
output. Moreover, a variable task execution time and the ef-
fects of scheduling induce additional jitter at the output. A
more detailed description of the output jitter calculation can
be found in the following section. When the jitter interval
exceeds the period, two or more events may arrive at the
same time, leading to bursty task activations. The minimum
distance parameter is used to additionally specify the timing
of the activating events in case of bursts, and to reduce the
transient load peaks.

In this paper we use Jin
i and Jout

i to denote the jitter pa-
rameter of the input and output event models of task Ti. Ad-
ditionally, Jin

i,k and Jout
i,k represent the input and output jitter

delays corresponding to the k-th job of task Ti.

4. Problem Formulation
Most worst-case response time analysis techniques are

based on the creation of the longest busy window. In general,
the busy window is defined as a time interval in which the
resource is busy processing tasks mapped on it. The worst-
case response time of a task is obtained by comparing the
response times of all its jobs that are activated within the
longest busy window.

Figure 1. system example

Observe the system in Figure 1 consisting of three tasks
T1, T2 and T3 mapped onto two resources R1 and R2. We
assume SPP scheduling on R1 and assume that T1 has the
highest priority. The core execution time interval of T1 is
assumed to be [5,5]. Both core execution time intervals of T2
and T3 are assumed to be [0,2]. Task T1 is activated by events
sent by the source task Source1, while T2 is activated by
events sent by the source task Source2. Let the event model
at the input of T1 be (Pin

1 = 10,Jin
1 = 3) and the event model

at the input of T2 be (Pin
2 = 10,Jin

2 = 8). In the following,
the focus will be on the response time and the output jitter
calculation of T2.

According to [15], the worst-case response time scenario
of T2 is obtained, as shown in Figure 2, by activating T1 and
T2 simultaneously after a maximum input jitter delay (the
jitter interval is represented by a dashed line). The instant
tc at which both tasks are activated is called critical instant.
All subsequent jobs of both tasks are then activated at or
as soon as possible after the critical instant. Note that the
busy window starts at the critical instant and finishes when
the resource becomes idle i.e. after the job T2,3 finishes its
execution. The calculated worst-case response time of T2
is Rw

2 = 12. It is experienced by the job T2,2 whose execu-
tion is delayed by the executions of T1,1, T2,1 and T1,2. The
calculated best-case response time of T2 is Rb

2 = 0.
Now having calculated the response time interval of task

T2 ([Rb
2,R

w
2] = [0,12]), we can derive the output event model

to its output according to [11]. The output period obviously
equals the input period. The output jitter is mathematically
calculated using equation 1. It is obtained by composing
the input jitter with the jitter resulting from the variation of
the task response times. Since the task activation is event-
driven, the activation delay at task input is entirely propa-

Figure 2. worst-case response time calcula-
tion for task T2

gated at its output, and therefore, the task output jitter is at
least equal to the task input jitter. In the above example, the
calculated output event model of T2 is (Pout

2 = 10,Jout
2 = 20).

Jout
i = Jin

i +Rw
i −Rb

i (1)

The output event model of T2 turns into the input event
model of task T3. We calculate the worst-case response time
of T3 by applying the approach used above. This calculation
is shown in Figure 3: Rw

3 = R3,3 = 6.

Figure 3. worst-case response time calcula-
tion for task T3

Let us now take a closer look on the output jitter calcula-
tion as illustrated in equation 1. It can be observed that the
equation associates the maximum input jitter of a task with
its worst-case response time. This is only true if the job ar-
riving after maximum input jitter delay also experiences the
task worst-case response time. However, a closer look on
the Gantt charts in Figure 2, shows that T2,1, whose activa-
tion occurs after maximum input jitter delay Jin

2,1 = Jin
2 = 8,

experiences the response time R2,1 = 7 smaller than the task
worst-case response time Rw

2 = 12. On the other hand, T2,2,
which experiences the task worst-case response time, is acti-
vated after an input jitter delay Jin

2,2 = 0 smaller than Jin
2 = 8.

This shows that the output jitter calculation in equation 1
might be overestimated, since it ignores the correlation be-
tween the input jitter delay and the response time of every
job. As the worst-case response time calculation directly de-
pends on the input jitter, the overestimated output jitter cal-
culation is propagated to the next component and may easily

lead to an increasingly larger overestimation along the entire
application path (in our example the path containing T2 and
T3).

To overcome this problem, equation 1 has to be modified
to consider the correlation between the individual input jitter
delays and the resulting response times of the jobs. This is
illustrated in equation 2.

Jout
i = max

∀k
(Jout

i,k) = max
∀k

(Jin
i,k +Ri,k)−Rb

i (2)

Equation 2 requires to find out the execution scenario of
the job of Ti with the maximum output jitter delay, i.e., the
job of Ti for which the sum of its individual input jitter delay
and its response time is maximized. In the following sec-
tions, we show for two popular scheduling strategies, that
this job belongs to the busy window corresponding to the
worst-case response time scenario.

5. Output jitter calculation under static prior-
ity preemptive scheduling

Tasks scheduled under SPP are assigned unique priori-
ties. The execution of a lower priority task can be inter-
rupted at any time by the execution of higher priority tasks
mapped on the same resource.

5.1. Worst-Case Response Time Scenario

In this section we review the worst-case response time
scenario under SPP scheduling as presented by Tindell
in [15].

Figure 4. worst-case response time scenario
under SPP scheduling

Let Ti be a task scheduled under a SPP scheduler. Let
hp(Ti) be the set of higher priority tasks sharing the re-
source with Ti. The worst-case response time scenario of
Ti is shown in Figure 4. It is obtained by simultaneously
activating Ti and all tasks belonging to hp(Ti), in our exam-
ple Thigh. The instant tc at which both tasks are activated is
called critical instant. The first job of each task is activated
at the latest possible activation time, which is after a maxi-
mum input jitter delay. All subsequent jobs are activated at
or as soon as possible after the critical instant. The interval
of time starting at the critical instant and during which the

resource is busy processing jobs from Ti or from tasks be-
longing to hp(Ti) is called a busy window. The worst-case
response time of Ti is obtained by comparing the response
times of all its jobs that execute within the busy window. In
the following, we refer to the busy window corresponding to
the worst-case response time scenario of Ti with maximum
busy window.

5.2. Maximum Output Jitter Delay
In this section, we show that the output jitter delay corre-

sponding to the k-th job of Ti executing within the maximum
busy window is larger than or equal to the output jitter de-
lay corresponding to the k-th job of Ti executing within any
other busy window.

It is obvious that the worst-case response time scenario
presented in Section 5.1 maximizes both the number and
the response times of the jobs of Ti released within a busy
window. From this characteristic, we derive the following
lemma.

Lemma 1. The k-th job of Ti released within the maximum
busy window experiences a response time which is larger
than or equal to the response time experienced by the k-th
job of Ti released within any other busy window.

From lemma 1, we can easily derive the following
lemma.

Lemma 2. The output jitter delay corresponding to the first
job of Ti released within the maximum busy window is larger
than or equal to the output jitter delay corresponding to the
first job of Ti executing within any other busy window.

Proof. The first job of Ti within the maximum busy window
is released after a maximum input jitter delay, i.e. jin

i,1 = jin
i .

In addition, according to lemma 1, its response time is larger
than or equal to the response time experienced by the first
execution of Ti within any other busy window. Therefore,
its output jitter delay calculated according to equation 2 is
maximized.

Before, we generalize lemma 2 for all jobs of Ti released
within the maximum busy window, we introduce the follow-
ing lemma.

Lemma 3. Let Ti,k be the k-th job of Ti released within a
given busy window, where k > 1. As long as Ti,k is released
within the busy window, moving its activation within its jitter
interval does not affect its corresponding output jitter delay.

Proof. Let Jin
i,k be the input jitter delay and Ri,k the response

time experienced by Ti,k. If we cause the arrival of the event
activating Ti,k to occur later within its jitter interval, the input
jitter delay Jin

i,k is increased while decreasing the response
time Ri,k by the same amount of time. If now we cause
the arrival of the event activating Ti,k to occur earlier within
its jitter interval, the input jitter delay of Jin

i,k is decreased

while increasing the response time Ri,k by the same amount
of time. Therefore, the calculated output jitter delay corre-
sponding to Ti,k according to equation 2 would be always the
same when moving the activation of Ti,k within its jitter in-
terval. This can be observed by comparing the Gantt charts
in Figure 5 and Figure 6.

Figure 5. early activation of Ti,k within its jit-
ter interval compared with its activation in fig-
ure 6

Figure 6. late activation of Ti,k within its jit-
ter interval compared with its activation in fig-
ure 5

Now, using the previous lemmas we can prove the fol-
lowing lemma.

Lemma 4. The output jitter delay corresponding to the k-th
job of Ti released within the maximum busy window is larger
than or equal to the output jitter delay corresponding to the
k-th job of Ti executing within any other busy window

Proof. Lemma 4 is already proven for k = 1 (lemma 2). Let
now Ti,k be the k-th job of Ti within a given busy window,
where k > 1. Let Jin

i,k be the input jitter delay, Ri,k the re-
sponse time and Jout

i,k the output jitter delay corresponding to
Ti,k. According to lemma 1, Ri,k is smaller than or equal to
the response time of the k-th job of Ti released within the
maximum busy window. If in addition Jin

i,k is smaller than or
equal to the input jitter delay of the k-th job of Ti within the
maximum busy window, it is obvious that lemma 4 is proven
for Ti,k. Let us now assume that Jin

i,k is larger than the input
jitter delay experienced by the k-th job of Ti within the max-
imum busy window. According to lemma 3, if we move the

activation of Ti,k to occur earlier within its jitter interval, Jout
i,k

is not affected. In particular, if we activate Ti,k after an input
jitter delay equal to the input jitter delay experienced by the
k-th job of Ti within the maximum busy window, the value
of Jout

i,k does not change. Therefore, since Ri,k is smaller than
or equal to the response time of the k-th job of Ti within the
maximum busy window, Ti,k satisfies lemma 4.

Figure 7. improved worst-case response time
calculation for task T3

From lemma 4 we conclude that under SPP, the maxi-
mum output jitter delay corresponding to a job of Ti is ob-
tained by comparing the individual output jitter delays of all
jobs of Ti that are released within the maximum busy win-
dow. let us apply this for the system in Figure 1. When
applying equation 2, we calculate the following output jitter
delays for the three jobs of T2 activated within the busy win-
dow: Jout

2,1 = 15, Jout
2,2 = 12 and Jout

2,3 = 4. Therefore, the output
jitter of T2 is provided by the job T2,1: Jout

2 = Jout
2,1 = 15. Af-

ter propagating the new calculated output event model to the
input of task T3, we calculate, as shown Figure 7, a tighter
worst-case response time for T3: Rw

3 = R3,2 = 4.

6. Output jitter calculation under time division
multiple access scheduling

Each task scheduled under TDMA is assigned a time slot.
The sequence of consecutive time slots of all tasks mapped
on a TDMA resource is called round or turn. Tasks can only
execute within their respective time slots. If a task does not
finish executing before the end of its time slot, it has to wait
for its time slot in the next round.

6.1. Worst-Case Response Time Scenario

In this section we review the worst-case response time
scenario under TDMA scheduling as presented in [6].

Let Ti be a task scheduled under TDMA scheduling. The
worst-case response time scenario of Ti is shown in Figure 8.
It is obtained by activating Ti at the end of its time slot, af-
ter having experienced a maximum input jitter delay. The
instant at which Ti is activated is called critical instant. All
subsequent jobs of Ti are then activated as soon as possible
after the critical instant. Under a TDMA scheduler, we de-
fine the busy window as the interval of time starting at the

Figure 8. worst-case response time scenario
under TDMA scheduling

Figure 9. heterogeneous distributed system
example

critical instant until the first instant at which the resource be-
comes idle within a time slot of Ti. The worst-case response
time of Ti is obtained by comparing the response times of all
its jobs that are activated within the busy window. In the ex-
ample in Figure 8, the worst-case response time is provided
by the job Ti,2.

6.2. Maximum Output Jitter Delay

From the point of view of a task scheduled under TDMA,
the sequence of time slots of the other tasks in a round could
be assimilated with a periodic execution of a higher priority
task under SPP scheduling. Therefore, the argumentation
presented in Section 5.1 could be applied to show that the
busy window corresponding to the worst-case response time
scenario under TDMA scheduling contains the job that max-
imizes the output jitter delay according to equation 2.

7. Distributed System Example
In the following, we apply our output jitter calculation

technique presented in the preceding sections to analyze
the performance of a hypothetical heterogeneous distributed
system.

Figure 9 shows an example of a heterogeneous archi-
tecture, containing two processing elements (CPU1,CPU2)
that communicate via a shared bus (BUS). A periodic data

stream coming from the IP1 component travels through the
bus on channel C1 and then activates task T1 on CPU1. When
task T1 finishes execution, it transmits data via channel C2 to
task T3 running on CPU2. T3, in turn, sends data to the co-
processor HW1. In parallel, another periodic stream coming
from the IP2 component activates the execution of task T2
mapped on CPU1. At its completion, task T2 sends a data
stream through channel C3 to task T4 on CPU2. After finish-
ing its execution T4 transmits data to the connected hardware
component HW2.

As we can see, both data streams (the one traveling
from IP1 to HW1 and the other traveling from IP2 to HW2)
are crossing different common resources (CPU1,CPU2 and
BUS).

The IP1 periodically sends data packets with a period of
100µs. The IP2 component also sends data blocks with a pe-
riod of 150µs. The processing resources CPU1 and CPU2 are
running a SPP scheduler. The communication channels C1,
C2, and C3 share the BUS using a TDMA arbitration scheme.
Table 1 provides the timing and scheduling parameters of the
tasks running on CPU1 and CPU2. Table 2 provides the tim-
ing and scheduling parameters of the channels running on
BUS. The time values are expressed in µs.

Table 1. tasks parameters
CPU1 CPU2

Static Priority Preemptive Static Priority Preemptive
Task CET Priority Task CET Priority
T1 [10;40] high T3 [10;40] high
T2 [10;50] low T4 [10;40] low

Table 2. channels parameters
BUS

TDMA
Channel Access Time Time Slot

C1 [10;30] 10
C2 [10;20] 7
C3 [20;60] 15

In the following, we apply the known local scheduling
analysis, then determine the output event models, and fol-
lowing the compositional approach, propagate these to the
inputs of the connected components. Notable is that the
analysis on CPU1 requires the input event model of task T1.
However, this cannot be calculated before we analyze the
communication on the bus. For the communication analy-
sis we need the input event models of channels C2 and C3
that are generated only after we analyze CPU1. Therefore,
there is cyclic dependency between CPU1 and the bus. This
problem is solved by initially propagating all external event
models along all system paths until an input event model is
available for each task. Then, local scheduling analysis and

event model propagation are performed alternately until no
newly propagated event model is different from the event
model that was propagated in the previous step, or if some
timing constraint is violated [3].

Table 3 shows the response times and the jitter values
of the input and output event models calculated using equa-
tion 1.

Table 3. previous analysis results consider-
ing the jitter calculation as illustrated in equa-
tion 1

Task Response Time Input Jitter Output Jitter
T1 [10;66] 86 142
T2 [10;170] 0 160
C1 [10;96] 0 86
C2 [35;227] 142 334
C3 [37;246] 160 369
T3 [10;65] 334 389
T4 [10;409] 369 768

We see that the jitter drastically increases along a depen-
dency path. When we consider the path IP2−T2−C3−T4−
HW2, we observe that the periodic data stream coming from
the IP2 component turned into a heavy burst event stream
at HW2 input. A periodic with jitter event model with the
period equal to 150 and the jitter equal to 768 may have at
the input of HW2 in the worst-case scenario a burst activa-
tion with the burst size equal to 6. Such a burst obviously
generates a high transient load.

Let us apply the analysis on the system again, but this
time using the output jitter calculation as expressed in the
equation 2. Table 4 shows the result values obtained from
the analysis.

Table 4. new analysis results considering the
jitter calculation as illustrated in equation 2

Task Response Time Input Jitter Output Jitter
T1 [10;66] 86 116
T2 [10;170] 0 160
C1 [10;96] 0 86
C2 [35;201] 116 176
C3 [37;246] 160 251
T3 [10;50] 176 206
T4 [10;246] 251 441

Notable is that the jitters along the paths do not increase
that fast when applying the improved output jitter calcula-
tion technique. Furthermore, the calculated worst-case re-
sponse times of the tasks are noticeably shorter. This is be-
cause a better jitter estimation at the output of a task strongly
reduces the uncertainty at the input of subsequent tasks. Ta-
ble 5 shows the calculated output jitter and response time

reductions when comparing the results obtained using the
improved output jitter calculation technique with the results
obtained using equation 1. As it can be observed, there is no
calculation improvement at the outputs of T2 and C1 since
these tasks are activated strictly periodically (jobs of these
tasks are activated without any input jitter delay). It is also
notable that the calculation improvement increases continu-
ously along the system paths.

Table 5. output jitter and response time reduc-
tion

Task Output jitter Reduction (%) Resp. Time Reduction (%)
T1 18.3 0
T2 0 0
C1 0 0
C2 47.3 11.5
C3 31.9 0
T3 47.0 23.0
T4 42.5 39.8

8. Conclusion
Accurate output jitter calculation is essential to apply

efficiently the compositional approach to the performance
analysis of heterogeneous distributed systems. Output jit-
ter turns namely, into input jitter of connected components
and strongly affects their response time calculation. In this
paper, we identified the limitations of the existing output jit-
ter calculation technique and presented a new approach im-
proving the jitter bound at task outputs. We also showed
that our technique simply requires the calculation of the out-
put jitter delays of the jobs that are considered in the activa-
tion scenarios leading to the task worst-case response time.
The experiments performed on a distributed system exam-
ple showed that the new technique significantly improves
the overall system performance bounds.

References
[1] K. Gresser. An event model for deadline verification

of hard real-time systems. In Proceedings 5th Euromi-
cro Workshop on Real-Time Systems, pages 118–123,
Oulu, Finland, 1993.

[2] J. J. Gutierrez, J. C. Palencia, and M. G. Harbour. On
the schedulability analysis for distributed hard real-
time systems. In Proceedings 9th Euromicro Workshop
on Real-Time Systems, pages 136–143, Toledo, Spain,
June 1997.

[3] Rafik Henia, Arne Hamann, Marek Jersak, Razvan
Racu, Kai Richter, and Rolf Ernst. System level perfor-
mance analysis - the symta/s approach. IEE Proceed-
ings Computers and Digital Techniques, 152(2):148–
166, March 2005.

[4] J. J. Gutirrez J. C. Palencia and M. G. Harbour. Best-
case analysis for improving the worst-case schedula-
bility test for distributed hard real-time systems. In
Proc. of the 10th Euromicro Workshop on Real-Time
Systems, 1998.

[5] M. Jersak. Compositional Performance Analysis for
Complex Embedded Applications. PhD thesis, Techni-
cal University of Braunschweig, 2004.

[6] H. Kopetz and G. Gruensteidl. TTP - a time-triggered
protocol for fault-tolerant computing. In Proceedings
of the 23rd International Symposium on Fault-Tolerant
Computing, pages 524–532, 1993.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[8] P. Pop, P. Eles, and Z. Peng. Schedulability analysis
and optimization for the synthesis of multi-cluster dis-
tributed embedded systems. In Proc. Design, Automa-
tion and Test in Europe (DATE 2003), Munich, Ger-
many, 2003.

[9] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and
analysis of mixed time/event-triggered distributed em-
bedded systems. In Proc. Int. Symposium on Hard-
ware/software codesign CODES’02, Estes Park, USA,
2002.

[10] R. Racu, K. Richter, and R. Ernst. Calculating task
output event models to reduce distributed system cost.
In Proceedings of GI/ITG/GMM-Workshop Metho-
den und Beschreibungssprachen zur Modellierung und
Verifikation von Schaltungen und Systemen, pages 1–
10, Kaiserslautern, Germany, February 2004.

[11] K. Richter. Compositional Scheduling Analysis Using
Standard Event Models. PhD thesis, Technical Univer-
sity of Braunschweig, 2004.

[12] Symtavision. http://www.symtavision.com.

[13] L. Thiele, S. Chakraborty, and M. Naedele. Real-
time calculus for scheduling hard real-time systems. In
Proceedings International Symposium on Circuits and
Systems (ISCAS), Geneva, Switzerland, 2000.

[14] K. Tindell and J. Clark. Holistic schedulability anal-
ysis for distributed real-time systems. Microprocess-
ing and Microprogramming - Euromicro Journal (Spe-
cial Issue on Parallel Embedded Real-Time Systems),
40:117–134, 1994.

[15] K. W. Tindell. An extendible approach for analysing
fixed priority hard real-time systems. Journal of Real-
Time Systems, 6(2):133–152, Mar 1994.

