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Abstract 

Having stealth and lightweight authentication methods 
is empowering network administrators to shelter critical 
services from adversaries. Spread-Spectrum TCP 
(SSTCP) [1] is one of these methods by which the client 
sends an authentic sequence of SYN packets to the server 
for authentication. Since SSTCP have some certain 
drawbacks and security flaws, we propose an enhanced 
version of SSTCP (ESSTCP) which modifies the original 
algorithm to reduce the computational cost and cover its 
vulnerabilities from denial of service and replay attacks. 
Some performance problems like time synchronization are 
also resolved.  We finally try to extend the functionality of 
this method for different applications and numbers of 
users by which ESSTCP can be performed as a secure 
Remote Procedure Call (RPC). 

1. Introduction 

Hiding internet services from untrusted users would be 

one of the effective methods to protect not only the 

unpredictable attacks on local network and servers, but 

also to the unknown potential service and software 

vulnerabilities discovered gradually.  Thereby, in order to 

distinguish between authorized users and adversaries, 
hidden authentication techniques should be exploited.  

These authentication techniques should be lightweight 

enough to be easily applicable on vast variety of devices 

and strong enough to be reliable for protecting crucial 

services and servers.  

Barham et al. [1] proposed a few techniques in which 

the client authenticates to firewall and asks for access to a 

specific port number for connection. Since this 

authentication has to be done stealthily, the general idea is 

to send some specific packets to closed ports of the 

firewall and trigger daemons on the firewall by authentic 
packets to open the desired ports for the authenticated 

user. These authentication techniques are classified into 

three groups based on the way the authentic packets are 

sent. In Spread-Spectrum TCP (SSTCP), the client sends a 

sequence of SYN packets to particular port numbers and 

prompts the firewall to execute the corresponding 

instructions for the client. In second method called 

Tailgate TCP (TGTCP), instead of sending a sequence of 

SYN packets, it sends a packet with some data including 

the secret and other parameters for authentication. In the 
third approach, Option-Keyed TCP (OKTCP), firewall 

only allows the SYN packets which contain a key 

encoded in some IP and TCP header fields to pass 

through. 

Subsequently, Port-knocking is introduced by Martin 

Krzywinski in [2] as a method of connection through a 

closed port. It is mostly focused on the server’s personal 

firewall and protecting UNIX-based services with 

iptables. Since using this method protects important 

administrative services like SSH, SNMP, and etc, from 

denial of service and/or any possible attacks, and 
moreover it is flexible for developers to have their own 

implementation, it is widely embraced by the industry and 

academic communities and several open source 

implementations have been released.  

The structure of this paper is organized as follows. In 

section 2, we examine the SSTCP method and review its 

advantages and drawbacks. In section 3, we will have a 

survey on existing implementations and proposed 

methods and study their benefits and flaws. We then 

present in detail our new proposal based on ESSTCP in 

section 4, and its method analysis in section 5. Finally, in 

section 6 we summarize and conclude the work.

2. Spread-Spectrum TCP (SSTCP) 

2.1. Methodology

In this method, the client calculates the Authentic Port-

Knock Sequence (APKS) and sends N TCP SYN packets 

to calculated port numbers. In the other side, there is a 

Silent Authentication Service (SAS) module on the 

firewall that listens for incoming knock sequence and if 

NM ≤  of them is received in correct order, it authorizes 

the client to send packets through the firewall on the 

desired port. In SSTCP, an infinite array of ports is 
generated by a one-way function based on a key (K) and 

time window value. Each new element of APKS in each 

time interval of “T” generated as 

[ ] xFFFFtKSHAtA 0&)||(=       (1) 

where “SHA” denoted as the hash function of SHA-1, || 

denotes concatenation, and “t” is the current time divided 

by T. They also propose a mechanism for synchronization 

on the first knock. In this mechanism, the received knock 
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is processed as shown in Figure 1. The first knock is 

compared with three generated knocks at time t-1, t, and

t+1. if it was equal to one of them, the SSTCP considers 

an array of knock from A[start..start+N], and if the 
knocker is able to knock M ports out of N available ports, 

it is eligible to open its desired port. The detailed 

description of SSTCP is available in [1]. 

2.2. SSTCP Analysis 

T2.2.1. Probability of guessing APKS.T Since this protocol 

is completely passive in the network and generates no 

traffic, the SAS module can be implemented on layer 2 

(L2) devices such as hidden security boxes which have no 

IP address, example of which include layer 2 firewalls 

and IPS/IDSs. Furthermore, knocks have no specific 
signature to which may reveal the existence of this service 

on the firewall to the attacker. SSTCP is also resilient to 

the packet loss and the packet reordering. Its computation 

complexity is relatively low, and it is invincible to brute 

force attacks, since the probability of guessing is  
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in which first term is for the first knock and second term 

is the probability of guessing other knocks. For example 

for the arbitrary values Tof N=10 and M=8 the probability 

would be -37102.1738 × , which is small enough to be safe 

against brute force attacks.  

Barham et al. also addressed certain problems in SSTCP 

and discussed alternative approaches to mitigate these 

issues. One approach is using ISN (Initial Sequence 

Number) instead of the destination port, first to diminish 

the probability of guessing port knocks. Because the 

destination port field in TCP header is just 16 bits, while 

the sequence number field is 32 bits. Secondly, as some 

packets with specific destination ports might be dropped 

by the firewalls in between, ISN would be a good idea to 
be exploited. However, sending packets to a specific 

destination ports with different ISN would jeopardize the 

stealthiness of SSTCP technique. Moreover, ISN is likely 

to be changed by the firewalls, proxies, and NAT boxes in 

between which will be more explained in section 5. 

2.2.2. Choosing M, N, and T values. Finding optimum 

values for the T, M, and N to avoid replay attack is 

another serious issue in SSTCP. The required time for an 

attacker to perform a replay attack, is TMN *)5.0( +−
[1]. So with a large value of T the server would be 

vulnerable to replay attacks. On the other hand, with a 

small value of T, the time synchronization between server 

and client and subsequently the functionality of the 

service might be disrupted.  The proper values for M and 

N is also defined based on the desired security level 

parameters and link packet loss rate, to avoid brute force 

attack, and to choose a proper value for M / N ratio. So 

since it is not feasible to utilize a dynamic mechanism to 

calculate the link packet loss or time difference between 

server and client, some maximum assumed values should 
be chosen by the network administrator which make a 

suitably large window for replay attack. 

T2.2.3. SSTCP vs. DoS attack. As it is shown in Figure 1, 

after the first knock is received, an array of knock 

sequence from [ ]NstartstartA +..  is filled with 
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Figure 1. SDL representation of how the firewall listens to the received 

knocks from each knocker. (Each knock here is a destination port number 

for specific source IP address.)



calculated authentic knocks. Then, the following received 

knocks will be compared to each element of array and 

update the start value with the index of the received 

knock in the array whereas the total authentication 

duration is at least TM ⋅  seconds. Suppose an attacker 

suspects a port-knock process is started by noticing that 
some packets from specific source IP and source port is 

sent to a specific destination with different destination 

port, periodically, almost equal to T. It starts DoS attack 

with the identical spoofed source IP and port with 

different destination ports sweep from 0 to
16

2 . If these 

forged knock matches to one of the authentic knocks with  

1)( +−−> indind realKnockMNkforgedKnoc         (3) 

it can interrupt the legitimate port knocking process and 

make client to knock the firewall again.  

We will address the analysis of the SSTCP in more 

details in Section 5.

3. Other port-knocking implementations and 

related works 

There are many port-knocking implementations listed 
in [4] which are mostly lightweight scripts installed as a 

server daemon manipulating the server’s personal firewall 

when they are triggered by receiving authentic port-knock 

sequence. However, a few of them are based on the 

SSTCP concept. The basic implementations following 

SSTCP idea are utilizing a limited number of fixed hard-

coded knocks which would be convenient for local port-

knocking with trusted network environments. But as soon 

as the attacker eavesdrops on the knock sequence, the 

server is vulnerable to replay attack. These kinds of 

scripts are interesting for backdoors as well, because they 
are simple and lightweight to implement and are able to 

make a covert channel for intruder through the victim. 

But, on the other hand, this fixed APKS is a signature 

exploited by anti-viruses to find these kinds of backdoors 

on the system. 

TIn some implementations the knocker and the server 

agree on a one-time APKS by negotiating that in an 

encrypted way. For instance, Sig2Knock [4] knocker 

generates the APKS and encrypts it by using the 

knocker’s password hash and sends it (P1) to a specific 

port on server. After a short time interval, it starts sending 

knock packets and queries the server for the knock status 
(P2). On the other side, the server Tsends P3 to the client 

indicating whether the knock process proceeded 

successfully. P3 contains the encrypted port number 

which knocker should connect to for communicating to 

the real server application. To avoid replay attacks, they 

propose to use time stamps for P1, P2, and P3, to enable 

the server to reject packets with same or older time 

stamps. They also confined the number of knocks to three 

in which they use both destination port number and ISN 

to send a random 144 bits number.  However, the 

destination port range is not limited which causes 

management problems. Furthermore, it is susceptible to 

DoS attack in which the attacker generates forged knocks 

when the knocking process is started and suspends the 

real knock. The attacker is also able to send fake UDP P1 

packets and compel server to try to decrypt its data with 
its list of passwords. Thus, forged P1 packets would cause 

resource allocations on the firewall which is dangerous 

even for regular firewall performance, although the server 

performs several checks to remove invalid packets. In 

addition, because the server sends P3, it is not passive in 

the network and it compromises the stealthiness of the 

port-knocking service and it would not be effective on L2 

devices. 

DeGaaf et al. [5] proposed another challenge-response 

method similar to Sig2Knock which uses a NAT-aware 

authentication algorithm and a few techniques to 

overcome the packet-reordering phenomenon [6]. 
However, in addition to the weaknesses they mentioned, 

like other challenge-response algorithms, it is vulnerable 

to DDoS attack; the attacker can flood the server by 

requests or inundate the knocker by challenges. It can be 

effectively done because the three-way authentication 

over UDP and techniques used to avoid packet-reordering 

(monotonically increased knocks) is useful signature of 

this method which gives the idea to an attacker when the 

knocking process is started and when it is finished. 

Furthermore, the authors did not offer a clear solution for 

packet loss, whereas the packet loss rate on Internet is 
estimated from 2.7% to 5.2% based on packet window 

size [6]. 

4. Proposed ESSTCP 

By considering current implementations and their 

respective advantages and drawbacks, we try to design a 
new port-knocking system which addresses the existing 

weaknesses and propose a comprehensive and reliable 

system which can be widely used for different security 

purposes. Thus, we extend the concept of the port-

knocking where port-knock daemon is not confined to be 

installed on the server or a firewall to open ports. In this 

approach, we call the port-knock daemon as Port-Knock 

Detector (PKD) which can be installed completely 

distributed in the network and listen to the traffic for 

authentic knock sequence.  The ESSTCP package 

including PKD and the knocker entities called 
“JESSTCP” is implemented using Java and JPCAP [9]. 

In this method, both client and PKD try to calculate 

the APKS by themselves based on a secret key and a 

shared profile in which all required information exists. 

Each profile consists of following fields: 

[PKD-side and client-side] 

port_range (portRange): The port range of the APKS



validity_timeout (T): The time interval in which the 

calculated APKS is valid, after that the APKS should be 

recalculated.

time_source: {LocalTime, <Time_ser_ip>} the time 

source from which both client and PKD would retrieve 

time [Default: LocalTime] 
knock_no (N): {9_SHA-1, 31_SHA-256, 63_SHA-512} 

number of knocks including three choices for three levels 

of security.[Default: 9_SHA-1]
knock_wating: the waiting time between each knock 

(note: (maximum RTT)/2 value is recommended) 

knock_type: {UDP, syn, ack, rst, urg. psh, fin} are knock 

segment type which can be UDP or TCP with one of the 

mentioned flags. Client will randomly choose one the 

values listed in this attribute in order to send the knock. 

The order of the elements in this attribute should be same 

in client and detector sides. [Default: syn]
server_ip: knocks destination IP address, which is a list 
of IP addresses or a network range (note: the list order in 

both sides should be same)

source_ip: different source IP addresses for knocks, 

which is a list of IP addresses or a network range (note: 

the list order in both sides should be same) [Default: 
host_ip_address] 

[PKD-side] (Complementary fields dedicated to PKD)
Password (secret): Secret string which identifies each 

profile 

accepting_knocks (M): authentic number of knocks 

(note: N≤ )

knock_timeout (
waitT ): the listening timeout for each 

knock (Note: knock_waiting < knock_timeout < 2 * 
knock_waiting)

commands: the commands should be executed in case of 
successive port knocks.

commands_time_gap: the time gap between commands 

execution. 

The port-knocking authentication system starts 

working after the user enters the password (secret). The 

client entity requests for time either from the time server 

or local machine (cur_time), divides (integer division) it 

to T and concatenates the result to the password string 

(secret). It applies the hash function indicated in the 

knock_no part and finds random string of (H).
Subsequently, the knock_extract function which is 
explained later in detail is employed on H in order to 

convert the string to a desired ][ jAPKS  (j denotes the 

knock number). This array of the numbers is in the port 

range that specified in the profile “port_range”. The 

APKS calculation is as follows: 

( )( )TtimecurrretFuncHashH \_||sec_= *

[ ] ( ) [ ]( )noknockMAXjHextractknockjAPKS __,1_ ∈=

* baba /\ ≡
The knock_extract function can be different based on 

developer considerations. The algorithm here is dividing 

the hash string into bytes and multiplying each byte value 

by its following one and the last byte by the first byte to 

generate numbers in [0, 65535] interval. However, we 
need an APKS in the specific port range (port_range). 

Thus, the remainder of division of each calculated port to 

port_range is added to port range minimum value to 

obtain the desired result for APKS. The algorithm code is 

provided as following. 

for (i=0;i<hashByArr.length; i++) 

{

     j= (j<hashByArr.length-1 ? i+1 : 0); 

    APKS[i]=portRangeMin +  

(hashByArr[i]*hashByArr[j])  % (portRangeMax-

portRangeMin); //APKS_calc function 

}
Contrary to most port-knocking implementations 

which use APKS as destination port number we define the 

knock packets PK[i] as: 

[ ] [ ]
[ ] [ ]
[ ] ( )
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ipserverpollIPIPdestiPK
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Figure 2 is an example of APKS calculation in which 9 

knocks are calculated and the last pair is reserved. We use 

this pair for source/destination IP and type polling. It 

would be also helpful to calculate the After-Knock Key 

(AKK) which will be explained in Section V.A.8. 

The polling functions algorithms also can vary based on 

the developer’s consideration, for example we propose a 

simple algorithm which is 

( ) lenpoolipjnAPKS __mod\]1[ −  for the IP_poll and 

( ) lenpoolipjnAPKS __mod\][  for Type_poll. The 

knocker may use AKK as the source port of the 

connection that will request after knocking process. In 

this case, PKD-side will be aware of the knocker source 

port for the connection, so it can modify the accepting 

rule more efficiently.  To calculate AKK, we suggest a 

multiplication of ][nAPKS  and ]1[ −nAPKS and 

calculate the remainder of the division to max_port_no 
(65535), and if the result is less that 1024, it will be 

supplemented with 1024 to make sure that the source port 

is not in well-known port range.  

1D D8 9E 53  67  78 5B A8 90  76 CD  26 4d AA C0 46 4FDF 0D 7B

sport 11264     18114   17360    20288    21992    12790    18090    18440   22617           6569

dport 19128    13549    15920    9192       9190      7926     17640  10580    7899             8567

Reserved Pair

Hash Result

APKS_calc function

Knock Index:       1           2                                … 9

Figure 2. APKS calculation example (N=9, and port_range= [5000, 25000]) 



On PKD side, we perform same operation. Since there 

is more than one profile in PKD, this calculation should 

be done for each profile. Accordingly, we assign a thread 

for each profile in which the APKS calculation is taking 
place periodically with period of T. When the APKS is 

computed by each thread, it starts filtering the captured 

traffic for its determined first knock with particular 

characteristic already declared in profile and 

corresponding calculation (first-knock listening phase). 

As it is shown in Figure 3, while the first knock is 

detected, a counter initiates and adds up and the detector 

listens for the next knock (verification phase). As soon as 

the counter value is equal to the M in the corresponding 

profile, it executes the commands in the profile. As matter 

of fact, the PKD only accepts one connection in each time 

slot 
iT . In other words, computed knocks are valid only 

for one knocking trial. Consequently, when the first knock 

is detected, another thread will be triggered. In this thread, 

PKD listens for each knock for 
waitT   and if it does not 

detect any knock in this period, it considers that the knock 

packet is lost. If the knocker is not successful in 

accomplishing M successive knocks, it has to wait for 

next time slot 
iT  and knock the detector again. 

Furthermore, the first-knock listening phase is completely 
independent to the verification phase. It is important in 

case suppose the detector is in verification phase and 

waiting for residual knocks, but 
iT is finished, in this case 

for new time slot, new knocks will be calculated and 

detector will be in first-knock listening phase. 

5. ESSTCP method analysis 

Here in ESSTCP, we tried to modify and add some 

complementary techniques to mitigate the drawbacks of 

SSTCP and add some features to broaden its 

functionalities and applications.  In design, we consider 

the scalable number of users which would be interesting 

for enterprises and large scale applications. However, this 

method has its own disadvantages. 

5.1. Advantages 

5.1.1. Time Synchronization.T In view of the fact that the 

time difference between client and PKD may prevent a 

successful authentication, we propose one large time 

window instead of N small time windows 

(
SSTCPESSTCP TNT ⋅≥ ) for N authentic knocks. Although 

ESSTCP empowers administrator to use time server, the  

ESSTCPT  can overcome trivial time differences 

(
ESSTCPTT ≤∆ ).  

5.1.2. CPU utilization. Because PKD is installed as a 
module on firewall certain resource constraints are 

considered. The implementations of both SSTCP and 

ESSTCP are divided into two main procedures: APKS 

Calculation and Knock Detection.      

In ESSTCP, A[t] is filled by one iteration of retrieving 

the random hash string and calculating the knocks 

compare to SSTCP in which A[t] is filled by N iteration 

of almost same procedure. Figure 5 shows how ESSTCP 

removes the N-1 spikes of the SSTCP APKS calculation.  

In Knock Detection, the ESSTCP is more efficient 

because it only monitors a short range of ports whereas 

the SSTCP needs to monitor all incoming SYN packets. 
Moreover, The CPU consumption would be very crucial 

when the PKD counters SYN DOS attacks. However, the 

ESSTCP is less vulnerable to this phenomenon since the 

small port range is secret. 

5.1.3. Expandability by profiles. In ESSTCP, profiles 

are exploited for different users and/or different services 

where in each profile the number and type of knocks 

besides the corresponding executing commands are 

predefined. So ESSTCP could be called as a stealth 

connectionless Remote Procedure Call (RPC) working on 
link layer that can be triggered by the user with a secret 

APKS remotely. 
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Figure 3. ESSTCP timing  diagram
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5.1.4. Improving the probability of guessing APKS. 

Probability of guessing knocks for ESSTCP can be 

calculated by following formula: 
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where first term is the probability of guessing the APKS 

port range (PortRange = PortRangeMax – PortRangeMin) 

and second term is the probability of guessing APKS 

sequence which contains the knocks’ source and 

destination port numbers. The difference between (2) and 

(4) is mainly because of the power of denominators in 

both equations where in equation (4) it is 2M due to 
considering source and destination addresses in ESSTCP. 

As it can be deduced from the formulas and Figure 5, 

ESSTCP improves the likelihood of guessing APKS, with 

very short port ranges compare to SSTCP which uses all 

available port numbers. As it is shown, with ESSTCP 

PortRange=100 the probability of guessing SSTCP for 

different M and N values is almost achievable. The 

subgraph in Figure 5 also explicitly illustrate this 

probability improvement in a given example with N=35
and M=20.

5.1.5. Vulnerability to sweeping attack. Sweeping 
attack happens when the attacker floods the PKD by SYN 

packets with different destination ports sweeping from 1 

to 65536. The attacker starts sweeping attack immediately 

after it detects the client knocking process is commenced. 

As it is mentioned in section 2 and based on (3), for 

SSTCP, it is highly probable that one of these forged 

knocks matches one of the APKS elements and interrupts 

the knocking process. For instance, assume a practical 

situation in which M=10, N=8, T=5s, link_BW=2Mbps,

and SYN_packet_size=512bits, in SSTCP the estimated 

time for sweeping would be 16s, while the total available 

knocking time is 40s. So the attacker can generate all 

possible knocks to satisfy the condition given in (3) to 

hinder the legitimate client to have a successful knocks. 

On the other hand, in ESSTCP, due to the fact that port 

range is secret, the attacker needs to sweep both 

destination and source addresses that would take 291 
hours 16 minutes and 16 seconds for the given example. 

This long period is substantially more than 
ESSTCPT .

Barham et al. address to use ISN to mitigate the 

concerns on the low number of the knocks in SSTCP, 

however, in ESSTCP source addresses next to destination 

addresses are preferred. It is because of the fact that since 

SSTCP needs to be installed and implemented either as 

executable script or as a hardware module, for existing 

firewalls and network tools technically it is more practical 

to have control over source ports rather than the TCP 

sequence number. In addition, ISN is more prone to be 

changed by middle boxes, because some firewalls and 
security boxes change the ISN to ensure that it is 

completely random and the connection is not vulnerable 

to ISN prediction attacks [7, 8].  

Sweeping attacks can be also done in order to perform 

a successive knock. ESSTCP lessen significantly the 

probability of prosperity of attacker, although choosing a 

big M value is also very important to impede the attacker 

to attain the successive knock. 

T5.1.6. TESSTCP and replay attack. As it is mentioned in 

section 5, the calculated APKS is valid just for one knock 
trial, therefore the attacker can not perform the replay 

attack on the server, while on the contrary SSTCP has a 

considerably large replay attack time windows which was 

mentioned in section 2.2.2. 

T5.1.6. Port knocking stealthiness.T The Spread Spectrum 

methods are completely hidden, and as long as we ensure 

of secrecy of the service and the existence of the PKD, 

most of the security problems and possible attacks would 

be resolved. SAS module in SSTCP can be easily detected 

by attacker, because of its specific signature which is 
nothing but some SYN packets coming from a host to 

specific server with different destination ports and after 

that the host connects to a closed port. However, in 

ESSTCP, PKD is installed dissipatedly and a pool of IP 

addresses for destination addresses and source ports are 

predicted. Thus, ESSTCP causes some difficulties for 

attacker to detect the PK service on the server.

5.1.7. After-knock DoS attack. It happens when the SAS 

module or PK server opens the port and permit SYN 

packets pass through the firewall from the knocker to 

desired service, the attacker may spoof the knocker 
address and flood the open port during opening time 

period and impede the knocker to connect to the server. 

This attack can be considered almost for all PK 

implementations except for those which use PK server or 

0 10 20 30 40 50 60 70

10
-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

P
ro

b
ab

ili
ty

 o
f G

ue
ss

in
g

 A
P

K
S

Probability of guessing APKS for different N and M value using various portRanges in ESSTCP and SSTCP

10
2

10
4

10
6

10
-200

10
-150

10
-100

10
-50

PortRange

P
ro

ba
bi

lit
y 

of
 G

ue
ss

in
g

 A
P

K
S

Prob[Guessing] VS PortRange 
when N=35 M=20

PortRange=20000 PortRange=5000 PortRange=1000

PortRange=100

SSTCP
PortRange=65536

Note: Each line represents an N
value.

SSTCP

M

Figure 5. The comparison between probability of guessing of SSTCP and 

ESSTCP with different port ranges, the subgraph illustrates this 
comparison for an example where N=35 and M=20 more precisely. 



firewall as a proxy to connect to the server like Sig2knock 

[4].

Avoiding after-knock DoS attack, ESSTCP provides a 

random and secret number AKK to be utilized by the 

knocker application and PKD to recognize the legitimate 

knocker in further connections. For example, the firewall 
can open the port for a connection to a specific secret 

source port which is AKK or deviation of that. It also may 

utilize to secure the services like SNMP; for instance, it 

might be as a kind of dynamic secret community string.  

5.2. Disadvantages 

The NATed clients are the most important concern in 

ESSTCP and other port-knocking methods. In the view of 

the fact that we utilize the TCP header for authentication 

and except destination port field, all other fields are 

changed by in Dynamic Address Assignment NAT [10], 

and on the other hand, 16 bits is not enough to secure the 

server from port sweeping attack, solving this problem is 

a big challenge. Thus, if the knocker connection provider 

use dynamic address assignment NAT the PKD would not 

receive the correct knocks, unless knocker use a tunneled 

connection like VPN to connect to the PKD. However, in 
other NAT methods like static address assignment NAT 

which keeps the information in TCP header and just 

change the source IP address, knocker has no problem to 

knock the PKD. Likewise, in IPv6 networks which has 

almost no limitation for the number of the IP addresses 

and only static address assignment NAT will be utilized 

for security purposes, ESSTCP is a comprehensive 

method for scalable remote procedure calls, and a reliable 

and secure technique for port-knocking. 

6. Conclusions 

SSTCP was proposed as a lightweight authentication 

protocols for client to send SYN packets through closed 

ports. Port-knocking implementations and techniques 

which mostly focus on servers’ personal firewalls follow 

that basic idea. They are useful for sheltering critical 

services furtively from potential vulnerabilities and denial 
of service attacks. However, port-knocking approaches 

have some general limitations. They are mostly 

vulnerable to replay attacks, and also DDoS attack in case 

of disrupting the port-knocking process. Besides, those 

approaches in which the server is not passive and generate 

packets are jeopardizing the covertness of the service for 

attackers and third parties.   

Our approach which is an extension of original SSTCP 

basically try to mitigate and solve certain drawbacks such 

as time synchronization, vulnerability to DoS attack and 

replay attack, and add some features to enhance its 

scalability and flexibility. In general, ESSTCP may 

satisfy basic stealth, lightweight, and secure 

authentication requirements. 
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