
ESSTCP: Enhanced Spread-Spectrum TCP

Amir R. Khakpour, Hakima Chaouchi

Institut National des Télécommunication (INT) Evry, France.
Email:{amir.khakpour, hakima.chaouchi}@int-evry.fr

Abstract

Having stealth and lightweight authentication methods
is empowering network administrators to shelter critical
services from adversaries. Spread-Spectrum TCP
(SSTCP) [1] is one of these methods by which the client
sends an authentic sequence of SYN packets to the server
for authentication. Since SSTCP have some certain
drawbacks and security flaws, we propose an enhanced
version of SSTCP (ESSTCP) which modifies the original
algorithm to reduce the computational cost and cover its
vulnerabilities from denial of service and replay attacks.
Some performance problems like time synchronization are
also resolved. We finally try to extend the functionality of
this method for different applications and numbers of
users by which ESSTCP can be performed as a secure
Remote Procedure Call (RPC).

1. Introduction

Hiding internet services from untrusted users would be

one of the effective methods to protect not only the

unpredictable attacks on local network and servers, but

also to the unknown potential service and software

vulnerabilities discovered gradually. Thereby, in order to

distinguish between authorized users and adversaries,
hidden authentication techniques should be exploited.

These authentication techniques should be lightweight

enough to be easily applicable on vast variety of devices

and strong enough to be reliable for protecting crucial

services and servers.

Barham et al. [1] proposed a few techniques in which

the client authenticates to firewall and asks for access to a

specific port number for connection. Since this

authentication has to be done stealthily, the general idea is

to send some specific packets to closed ports of the

firewall and trigger daemons on the firewall by authentic
packets to open the desired ports for the authenticated

user. These authentication techniques are classified into

three groups based on the way the authentic packets are

sent. In Spread-Spectrum TCP (SSTCP), the client sends a

sequence of SYN packets to particular port numbers and

prompts the firewall to execute the corresponding

instructions for the client. In second method called

Tailgate TCP (TGTCP), instead of sending a sequence of

SYN packets, it sends a packet with some data including

the secret and other parameters for authentication. In the
third approach, Option-Keyed TCP (OKTCP), firewall

only allows the SYN packets which contain a key

encoded in some IP and TCP header fields to pass

through.

Subsequently, Port-knocking is introduced by Martin

Krzywinski in [2] as a method of connection through a

closed port. It is mostly focused on the server’s personal

firewall and protecting UNIX-based services with

iptables. Since using this method protects important

administrative services like SSH, SNMP, and etc, from

denial of service and/or any possible attacks, and
moreover it is flexible for developers to have their own

implementation, it is widely embraced by the industry and

academic communities and several open source

implementations have been released.

The structure of this paper is organized as follows. In

section 2, we examine the SSTCP method and review its

advantages and drawbacks. In section 3, we will have a

survey on existing implementations and proposed

methods and study their benefits and flaws. We then

present in detail our new proposal based on ESSTCP in

section 4, and its method analysis in section 5. Finally, in

section 6 we summarize and conclude the work.

2. Spread-Spectrum TCP (SSTCP)

2.1. Methodology

In this method, the client calculates the Authentic Port-

Knock Sequence (APKS) and sends N TCP SYN packets

to calculated port numbers. In the other side, there is a

Silent Authentication Service (SAS) module on the

firewall that listens for incoming knock sequence and if

NM ≤ of them is received in correct order, it authorizes

the client to send packets through the firewall on the

desired port. In SSTCP, an infinite array of ports is
generated by a one-way function based on a key (K) and

time window value. Each new element of APKS in each

time interval of “T” generated as

[] xFFFFtKSHAtA 0&)||(= (1)

where “SHA” denoted as the hash function of SHA-1, ||

denotes concatenation, and “t” is the current time divided

by T. They also propose a mechanism for synchronization

on the first knock. In this mechanism, the received knock

1-4244-0910-1/07/$20.00 ©2007 IEEE

is processed as shown in Figure 1. The first knock is

compared with three generated knocks at time t-1, t, and

t+1. if it was equal to one of them, the SSTCP considers

an array of knock from A[start..start+N], and if the
knocker is able to knock M ports out of N available ports,

it is eligible to open its desired port. The detailed

description of SSTCP is available in [1].

2.2. SSTCP Analysis

T2.2.1. Probability of guessing APKS.T Since this protocol

is completely passive in the network and generates no

traffic, the SAS module can be implemented on layer 2

(L2) devices such as hidden security boxes which have no

IP address, example of which include layer 2 firewalls

and IPS/IDSs. Furthermore, knocks have no specific
signature to which may reveal the existence of this service

on the firewall to the attacker. SSTCP is also resilient to

the packet loss and the packet reordering. Its computation

complexity is relatively low, and it is invincible to brute

force attacks, since the probability of guessing is

MM

M

N

M

N

P
16)1(1616SSTCPinAPKSGuessing

2

1

1

3
2

1

1

2

3 −
−

⋅=
−

−

⋅= −
 (2)

in which first term is for the first knock and second term

is the probability of guessing other knocks. For example

for the arbitrary values Tof N=10 and M=8 the probability

would be -37102.1738 × , which is small enough to be safe

against brute force attacks.

Barham et al. also addressed certain problems in SSTCP

and discussed alternative approaches to mitigate these

issues. One approach is using ISN (Initial Sequence

Number) instead of the destination port, first to diminish

the probability of guessing port knocks. Because the

destination port field in TCP header is just 16 bits, while

the sequence number field is 32 bits. Secondly, as some

packets with specific destination ports might be dropped

by the firewalls in between, ISN would be a good idea to
be exploited. However, sending packets to a specific

destination ports with different ISN would jeopardize the

stealthiness of SSTCP technique. Moreover, ISN is likely

to be changed by the firewalls, proxies, and NAT boxes in

between which will be more explained in section 5.

2.2.2. Choosing M, N, and T values. Finding optimum

values for the T, M, and N to avoid replay attack is

another serious issue in SSTCP. The required time for an

attacker to perform a replay attack, is TMN *)5.0(+−
[1]. So with a large value of T the server would be

vulnerable to replay attacks. On the other hand, with a

small value of T, the time synchronization between server

and client and subsequently the functionality of the

service might be disrupted. The proper values for M and

N is also defined based on the desired security level

parameters and link packet loss rate, to avoid brute force

attack, and to choose a proper value for M / N ratio. So

since it is not feasible to utilize a dynamic mechanism to

calculate the link packet loss or time difference between

server and client, some maximum assumed values should
be chosen by the network administrator which make a

suitably large window for replay attack.

T2.2.3. SSTCP vs. DoS attack. As it is shown in Figure 1,

after the first knock is received, an array of knock

sequence from []NstartstartA +.. is filled with

Listening
mode

Listen
(firstKnock)

firstKnock

end:=start+N
matchCntr=1

i:=0

Listen(knock)

matchCntr < M

k < end-start

knock=A[start+k]

start:=t-1

A[t-1] A[t] A[t+1]

start:=t start:=t+1

else

Listening
mode

False

True

k:=1
i:=1

start:=start+k
matchCntr++

k++

True

True

Loop 1

Loop 2

Loop 1

False

Loop 2

False

Loop 1

Successful
Knocking

i++

i <= N

False True

Listening
Mode

Figure 1. SDL representation of how the firewall listens to the received

knocks from each knocker. (Each knock here is a destination port number

for specific source IP address.)

calculated authentic knocks. Then, the following received

knocks will be compared to each element of array and

update the start value with the index of the received

knock in the array whereas the total authentication

duration is at least TM ⋅ seconds. Suppose an attacker

suspects a port-knock process is started by noticing that
some packets from specific source IP and source port is

sent to a specific destination with different destination

port, periodically, almost equal to T. It starts DoS attack

with the identical spoofed source IP and port with

different destination ports sweep from 0 to
16

2 . If these

forged knock matches to one of the authentic knocks with

1)(+−−> indind realKnockMNkforgedKnoc (3)

it can interrupt the legitimate port knocking process and

make client to knock the firewall again.

We will address the analysis of the SSTCP in more

details in Section 5.

3. Other port-knocking implementations and

related works

There are many port-knocking implementations listed
in [4] which are mostly lightweight scripts installed as a

server daemon manipulating the server’s personal firewall

when they are triggered by receiving authentic port-knock

sequence. However, a few of them are based on the

SSTCP concept. The basic implementations following

SSTCP idea are utilizing a limited number of fixed hard-

coded knocks which would be convenient for local port-

knocking with trusted network environments. But as soon

as the attacker eavesdrops on the knock sequence, the

server is vulnerable to replay attack. These kinds of

scripts are interesting for backdoors as well, because they
are simple and lightweight to implement and are able to

make a covert channel for intruder through the victim.

But, on the other hand, this fixed APKS is a signature

exploited by anti-viruses to find these kinds of backdoors

on the system.

TIn some implementations the knocker and the server

agree on a one-time APKS by negotiating that in an

encrypted way. For instance, Sig2Knock [4] knocker

generates the APKS and encrypts it by using the

knocker’s password hash and sends it (P1) to a specific

port on server. After a short time interval, it starts sending

knock packets and queries the server for the knock status
(P2). On the other side, the server Tsends P3 to the client

indicating whether the knock process proceeded

successfully. P3 contains the encrypted port number

which knocker should connect to for communicating to

the real server application. To avoid replay attacks, they

propose to use time stamps for P1, P2, and P3, to enable

the server to reject packets with same or older time

stamps. They also confined the number of knocks to three

in which they use both destination port number and ISN

to send a random 144 bits number. However, the

destination port range is not limited which causes

management problems. Furthermore, it is susceptible to

DoS attack in which the attacker generates forged knocks

when the knocking process is started and suspends the

real knock. The attacker is also able to send fake UDP P1

packets and compel server to try to decrypt its data with
its list of passwords. Thus, forged P1 packets would cause

resource allocations on the firewall which is dangerous

even for regular firewall performance, although the server

performs several checks to remove invalid packets. In

addition, because the server sends P3, it is not passive in

the network and it compromises the stealthiness of the

port-knocking service and it would not be effective on L2

devices.

DeGaaf et al. [5] proposed another challenge-response

method similar to Sig2Knock which uses a NAT-aware

authentication algorithm and a few techniques to

overcome the packet-reordering phenomenon [6].
However, in addition to the weaknesses they mentioned,

like other challenge-response algorithms, it is vulnerable

to DDoS attack; the attacker can flood the server by

requests or inundate the knocker by challenges. It can be

effectively done because the three-way authentication

over UDP and techniques used to avoid packet-reordering

(monotonically increased knocks) is useful signature of

this method which gives the idea to an attacker when the

knocking process is started and when it is finished.

Furthermore, the authors did not offer a clear solution for

packet loss, whereas the packet loss rate on Internet is
estimated from 2.7% to 5.2% based on packet window

size [6].

4. Proposed ESSTCP

By considering current implementations and their

respective advantages and drawbacks, we try to design a
new port-knocking system which addresses the existing

weaknesses and propose a comprehensive and reliable

system which can be widely used for different security

purposes. Thus, we extend the concept of the port-

knocking where port-knock daemon is not confined to be

installed on the server or a firewall to open ports. In this

approach, we call the port-knock daemon as Port-Knock

Detector (PKD) which can be installed completely

distributed in the network and listen to the traffic for

authentic knock sequence. The ESSTCP package

including PKD and the knocker entities called
“JESSTCP” is implemented using Java and JPCAP [9].

In this method, both client and PKD try to calculate

the APKS by themselves based on a secret key and a

shared profile in which all required information exists.

Each profile consists of following fields:

[PKD-side and client-side]

port_range (portRange): The port range of the APKS

validity_timeout (T): The time interval in which the

calculated APKS is valid, after that the APKS should be

recalculated.

time_source: {LocalTime, <Time_ser_ip>} the time

source from which both client and PKD would retrieve

time [Default: LocalTime]
knock_no (N): {9_SHA-1, 31_SHA-256, 63_SHA-512}

number of knocks including three choices for three levels

of security.[Default: 9_SHA-1]
knock_wating: the waiting time between each knock

(note: (maximum RTT)/2 value is recommended)

knock_type: {UDP, syn, ack, rst, urg. psh, fin} are knock

segment type which can be UDP or TCP with one of the

mentioned flags. Client will randomly choose one the

values listed in this attribute in order to send the knock.

The order of the elements in this attribute should be same

in client and detector sides. [Default: syn]
server_ip: knocks destination IP address, which is a list
of IP addresses or a network range (note: the list order in

both sides should be same)

source_ip: different source IP addresses for knocks,

which is a list of IP addresses or a network range (note:

the list order in both sides should be same) [Default:
host_ip_address]

[PKD-side] (Complementary fields dedicated to PKD)
Password (secret): Secret string which identifies each

profile

accepting_knocks (M): authentic number of knocks

(note: N≤)

knock_timeout (
waitT): the listening timeout for each

knock (Note: knock_waiting < knock_timeout < 2 *
knock_waiting)

commands: the commands should be executed in case of
successive port knocks.

commands_time_gap: the time gap between commands

execution.

The port-knocking authentication system starts

working after the user enters the password (secret). The

client entity requests for time either from the time server

or local machine (cur_time), divides (integer division) it

to T and concatenates the result to the password string

(secret). It applies the hash function indicated in the

knock_no part and finds random string of (H).
Subsequently, the knock_extract function which is
explained later in detail is employed on H in order to

convert the string to a desired][jAPKS (j denotes the

knock number). This array of the numbers is in the port

range that specified in the profile “port_range”. The

APKS calculation is as follows:

()()TtimecurrretFuncHashH _||sec_= *

[] () []()noknockMAXjHextractknockjAPKS __,1_ ∈=

* baba /\ ≡
The knock_extract function can be different based on

developer considerations. The algorithm here is dividing

the hash string into bytes and multiplying each byte value

by its following one and the last byte by the first byte to

generate numbers in [0, 65535] interval. However, we
need an APKS in the specific port range (port_range).

Thus, the remainder of division of each calculated port to

port_range is added to port range minimum value to

obtain the desired result for APKS. The algorithm code is

provided as following.

for (i=0;i<hashByArr.length; i++)

{

 j= (j<hashByArr.length-1 ? i+1 : 0);

 APKS[i]=portRangeMin +

(hashByArr[i]*hashByArr[j]) % (portRangeMax-

portRangeMin); //APKS_calc function

}
Contrary to most port-knocking implementations

which use APKS as destination port number we define the

knock packets PK[i] as:

[] []
[] []
[] ()
[] ()typeknockpollTypetypeiPK

ipserverpollIPIPdestiPK

iAPKSdportiPK

lengthAPKS
iiAPKSsportiPK

__

2

1
2

.
112

=→
=→

=→

−≤≤−=→

Figure 2 is an example of APKS calculation in which 9

knocks are calculated and the last pair is reserved. We use

this pair for source/destination IP and type polling. It

would be also helpful to calculate the After-Knock Key

(AKK) which will be explained in Section V.A.8.

The polling functions algorithms also can vary based on

the developer’s consideration, for example we propose a

simple algorithm which is

() lenpoolipjnAPKS __mod\]1[− for the IP_poll and

() lenpoolipjnAPKS __mod\][for Type_poll. The

knocker may use AKK as the source port of the

connection that will request after knocking process. In

this case, PKD-side will be aware of the knocker source

port for the connection, so it can modify the accepting

rule more efficiently. To calculate AKK, we suggest a

multiplication of][nAPKS and]1[−nAPKS and

calculate the remainder of the division to max_port_no
(65535), and if the result is less that 1024, it will be

supplemented with 1024 to make sure that the source port

is not in well-known port range.

1D D8 9E 53 67 78 5B A8 90 76 CD 26 4d AA C0 46 4FDF 0D 7B

sport 11264 18114 17360 20288 21992 12790 18090 18440 22617 6569

dport 19128 13549 15920 9192 9190 7926 17640 10580 7899 8567

Reserved Pair

Hash Result

APKS_calc function

Knock Index: 1 2 … 9

Figure 2. APKS calculation example (N=9, and port_range= [5000, 25000])

On PKD side, we perform same operation. Since there

is more than one profile in PKD, this calculation should

be done for each profile. Accordingly, we assign a thread

for each profile in which the APKS calculation is taking
place periodically with period of T. When the APKS is

computed by each thread, it starts filtering the captured

traffic for its determined first knock with particular

characteristic already declared in profile and

corresponding calculation (first-knock listening phase).

As it is shown in Figure 3, while the first knock is

detected, a counter initiates and adds up and the detector

listens for the next knock (verification phase). As soon as

the counter value is equal to the M in the corresponding

profile, it executes the commands in the profile. As matter

of fact, the PKD only accepts one connection in each time

slot
iT . In other words, computed knocks are valid only

for one knocking trial. Consequently, when the first knock

is detected, another thread will be triggered. In this thread,

PKD listens for each knock for
waitT and if it does not

detect any knock in this period, it considers that the knock

packet is lost. If the knocker is not successful in

accomplishing M successive knocks, it has to wait for

next time slot
iT and knock the detector again.

Furthermore, the first-knock listening phase is completely
independent to the verification phase. It is important in

case suppose the detector is in verification phase and

waiting for residual knocks, but
iT is finished, in this case

for new time slot, new knocks will be calculated and

detector will be in first-knock listening phase.

5. ESSTCP method analysis

Here in ESSTCP, we tried to modify and add some

complementary techniques to mitigate the drawbacks of

SSTCP and add some features to broaden its

functionalities and applications. In design, we consider

the scalable number of users which would be interesting

for enterprises and large scale applications. However, this

method has its own disadvantages.

5.1. Advantages

5.1.1. Time Synchronization.T In view of the fact that the

time difference between client and PKD may prevent a

successful authentication, we propose one large time

window instead of N small time windows

(
SSTCPESSTCP TNT ⋅≥) for N authentic knocks. Although

ESSTCP empowers administrator to use time server, the

ESSTCPT can overcome trivial time differences

(
ESSTCPTT ≤∆).

5.1.2. CPU utilization. Because PKD is installed as a
module on firewall certain resource constraints are

considered. The implementations of both SSTCP and

ESSTCP are divided into two main procedures: APKS

Calculation and Knock Detection.

In ESSTCP, A[t] is filled by one iteration of retrieving

the random hash string and calculating the knocks

compare to SSTCP in which A[t] is filled by N iteration

of almost same procedure. Figure 5 shows how ESSTCP

removes the N-1 spikes of the SSTCP APKS calculation.

In Knock Detection, the ESSTCP is more efficient

because it only monitors a short range of ports whereas

the SSTCP needs to monitor all incoming SYN packets.
Moreover, The CPU consumption would be very crucial

when the PKD counters SYN DOS attacks. However, the

ESSTCP is less vulnerable to this phenomenon since the

small port range is secret.

5.1.3. Expandability by profiles. In ESSTCP, profiles

are exploited for different users and/or different services

where in each profile the number and type of knocks

besides the corresponding executing commands are

predefined. So ESSTCP could be called as a stealth

connectionless Remote Procedure Call (RPC) working on
link layer that can be triggered by the user with a secret

APKS remotely.

knock_wating

first-knock listening
phase

verification phase

knocker PKD

Accepted knocks

Dropped knocks
Waiting time

1 2 3 4 5 6 7 Successive knocks

waitT

Figure 3. ESSTCP timing diagram

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time(s)

S
ys

te
m

 C
P

U
 T

im
e

(s
)

Normal CPU utilizaion comparison between SSTCP and ESSTCP
(no incoming traffic)

SSTCP
ESSTCP

Figure 4. CPU time consumption for APKS calculation in SSTCP and

ESSTCP (for a specific profile) on Pentium 4 Processor 2.8 GHz, where
N=10, T sTsT SSTCPESSTCP 10,110 ==

T

5.1.4. Improving the probability of guessing APKS.

Probability of guessing knocks for ESSTCP can be

calculated by following formula:

MM PortRange

M

N

PortRange

M

N

P
232).2(32ESSTCPinAPKSGuessing

2

1

1

1

1

2

1

⋅
−

−

=
−

−

⋅= (4)

where first term is the probability of guessing the APKS

port range (PortRange = PortRangeMax – PortRangeMin)

and second term is the probability of guessing APKS

sequence which contains the knocks’ source and

destination port numbers. The difference between (2) and

(4) is mainly because of the power of denominators in

both equations where in equation (4) it is 2M due to
considering source and destination addresses in ESSTCP.

As it can be deduced from the formulas and Figure 5,

ESSTCP improves the likelihood of guessing APKS, with

very short port ranges compare to SSTCP which uses all

available port numbers. As it is shown, with ESSTCP

PortRange=100 the probability of guessing SSTCP for

different M and N values is almost achievable. The

subgraph in Figure 5 also explicitly illustrate this

probability improvement in a given example with N=35
and M=20.

5.1.5. Vulnerability to sweeping attack. Sweeping
attack happens when the attacker floods the PKD by SYN

packets with different destination ports sweeping from 1

to 65536. The attacker starts sweeping attack immediately

after it detects the client knocking process is commenced.

As it is mentioned in section 2 and based on (3), for

SSTCP, it is highly probable that one of these forged

knocks matches one of the APKS elements and interrupts

the knocking process. For instance, assume a practical

situation in which M=10, N=8, T=5s, link_BW=2Mbps,

and SYN_packet_size=512bits, in SSTCP the estimated

time for sweeping would be 16s, while the total available

knocking time is 40s. So the attacker can generate all

possible knocks to satisfy the condition given in (3) to

hinder the legitimate client to have a successful knocks.

On the other hand, in ESSTCP, due to the fact that port

range is secret, the attacker needs to sweep both

destination and source addresses that would take 291
hours 16 minutes and 16 seconds for the given example.

This long period is substantially more than
ESSTCPT .

Barham et al. address to use ISN to mitigate the

concerns on the low number of the knocks in SSTCP,

however, in ESSTCP source addresses next to destination

addresses are preferred. It is because of the fact that since

SSTCP needs to be installed and implemented either as

executable script or as a hardware module, for existing

firewalls and network tools technically it is more practical

to have control over source ports rather than the TCP

sequence number. In addition, ISN is more prone to be

changed by middle boxes, because some firewalls and
security boxes change the ISN to ensure that it is

completely random and the connection is not vulnerable

to ISN prediction attacks [7, 8].

Sweeping attacks can be also done in order to perform

a successive knock. ESSTCP lessen significantly the

probability of prosperity of attacker, although choosing a

big M value is also very important to impede the attacker

to attain the successive knock.

T5.1.6. TESSTCP and replay attack. As it is mentioned in

section 5, the calculated APKS is valid just for one knock
trial, therefore the attacker can not perform the replay

attack on the server, while on the contrary SSTCP has a

considerably large replay attack time windows which was

mentioned in section 2.2.2.

T5.1.6. Port knocking stealthiness.T The Spread Spectrum

methods are completely hidden, and as long as we ensure

of secrecy of the service and the existence of the PKD,

most of the security problems and possible attacks would

be resolved. SAS module in SSTCP can be easily detected

by attacker, because of its specific signature which is
nothing but some SYN packets coming from a host to

specific server with different destination ports and after

that the host connects to a closed port. However, in

ESSTCP, PKD is installed dissipatedly and a pool of IP

addresses for destination addresses and source ports are

predicted. Thus, ESSTCP causes some difficulties for

attacker to detect the PK service on the server.

5.1.7. After-knock DoS attack. It happens when the SAS

module or PK server opens the port and permit SYN

packets pass through the firewall from the knocker to

desired service, the attacker may spoof the knocker
address and flood the open port during opening time

period and impede the knocker to connect to the server.

This attack can be considered almost for all PK

implementations except for those which use PK server or

0 10 20 30 40 50 60 70

10
-300

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

P
ro

b
ab

ili
ty

 o
f G

ue
ss

in
g

 A
P

K
S

Probability of guessing APKS for different N and M value using various portRanges in ESSTCP and SSTCP

10
2

10
4

10
6

10
-200

10
-150

10
-100

10
-50

PortRange

P
ro

ba
bi

lit
y

of
 G

ue
ss

in
g

 A
P

K
S

Prob[Guessing] VS PortRange
when N=35 M=20

PortRange=20000 PortRange=5000 PortRange=1000

PortRange=100

SSTCP
PortRange=65536

Note: Each line represents an N
value.

SSTCP

M

Figure 5. The comparison between probability of guessing of SSTCP and

ESSTCP with different port ranges, the subgraph illustrates this
comparison for an example where N=35 and M=20 more precisely.

firewall as a proxy to connect to the server like Sig2knock

[4].

Avoiding after-knock DoS attack, ESSTCP provides a

random and secret number AKK to be utilized by the

knocker application and PKD to recognize the legitimate

knocker in further connections. For example, the firewall
can open the port for a connection to a specific secret

source port which is AKK or deviation of that. It also may

utilize to secure the services like SNMP; for instance, it

might be as a kind of dynamic secret community string.

5.2. Disadvantages

The NATed clients are the most important concern in

ESSTCP and other port-knocking methods. In the view of

the fact that we utilize the TCP header for authentication

and except destination port field, all other fields are

changed by in Dynamic Address Assignment NAT [10],

and on the other hand, 16 bits is not enough to secure the

server from port sweeping attack, solving this problem is

a big challenge. Thus, if the knocker connection provider

use dynamic address assignment NAT the PKD would not

receive the correct knocks, unless knocker use a tunneled

connection like VPN to connect to the PKD. However, in
other NAT methods like static address assignment NAT

which keeps the information in TCP header and just

change the source IP address, knocker has no problem to

knock the PKD. Likewise, in IPv6 networks which has

almost no limitation for the number of the IP addresses

and only static address assignment NAT will be utilized

for security purposes, ESSTCP is a comprehensive

method for scalable remote procedure calls, and a reliable

and secure technique for port-knocking.

6. Conclusions

SSTCP was proposed as a lightweight authentication

protocols for client to send SYN packets through closed

ports. Port-knocking implementations and techniques

which mostly focus on servers’ personal firewalls follow

that basic idea. They are useful for sheltering critical

services furtively from potential vulnerabilities and denial
of service attacks. However, port-knocking approaches

have some general limitations. They are mostly

vulnerable to replay attacks, and also DDoS attack in case

of disrupting the port-knocking process. Besides, those

approaches in which the server is not passive and generate

packets are jeopardizing the covertness of the service for

attackers and third parties.

Our approach which is an extension of original SSTCP

basically try to mitigate and solve certain drawbacks such

as time synchronization, vulnerability to DoS attack and

replay attack, and add some features to enhance its

scalability and flexibility. In general, ESSTCP may

satisfy basic stealth, lightweight, and secure

authentication requirements.

7. Acknowledgment

We are grateful to Dr. Mehrdad Nourani to encourage

us to work on this subject and his helpful suggestions. We

also would like to thank Sampath N. Ranasinghe and Ali

Koobasi for several comments and suggestions that

greatly improved the quality of this paper.

8. References

[1] P. Barham, S. Hand, R. Isaacs, P. Jardetzky, R.

Mortier, and T. Roscoe, “Techniques for Lightweight

Concealment and Authentication in IP Networks,” Intel

Research, Tech. Rep. IRB-TR-02-009, July 2002.

[2] M. Krzywinski, ”Port Knocking,” June 2003, Linux
Journal, Available: HTUhttp://linuxjournal.com/article/6811UTH

[3] --,”Port Knocking Implementations,” accessed on

September 25P

th
P 2006, Available:

HTUhttp://www.portknocking.org/view/implementationsUTH

[4] Cappella, C. K. Tan, “SIG^2 Port Knocking Project:

Remote Server Management using Dynamic Port

Knocking and Forwarding,” May 2004, Available:

HTUhttp://www.security.org.sg/code/sig2portknock.pdfUTH

[5] R. deGraaf, J. Aycock, and M. J. Jacobson Jr.,”

Improved Port Knocking with Strong Authentication” in

Proc. of the 21P

st
P Annual Computer Security Applications

Conference, Tucson, AZ, Dec. 2005, pp 409-418.

[6] V. Paxson, “End-to-end Internet Packet Dynamics,”
IEEE/ACM Trans. on Networking, vol. 7, no. 3, Jun.

1999, pp. 277-292.

[7] --, “Hotfix for Symantec Enterprise Firewall 6.5

axtvpn.sys Module,” May 3P

rd
P 2006, Available:

HTUhttp://service1.symantec.com/SUPPORT/ent-

gate.nsf/0/49f229040579738888256c2300643901?OpenD

ocumentUTH

[8] Cisco Catalyst 6500 Series Switch and Cisco 7600
Series Router Firewall Services Module Configuration
Guide, 3.1, accessed on July 5P

th
P 2006. Available:

HTUhttp://www.cisco.com/application/pdf/en/us/guest/produc
ts/ps708/c2001/ccmigration_09186a0080577bef.pdfU TH

[9] Jpcap - Java package for packet capture, access by

June 23P

rd
P 2006. Available :

HTUhttp://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.htmlUTH

[10] P. Srisuresh and M. Holdrege, IP Network Address

Translator (NAT) Terminology and Considerations. RFC

3626, Aug. 1999.

