
QUKU: A FPGA Based Flexible Coarse Grain Architecture Design Paradigm
using Process Networks

Sunil Shukla1,2, Neil W. Bergmann1, Jürgen Becker2

1University of Queensland 2Universität Karlsruhe
Information Technology & Electrical Engg. Institut für Technik der Informationsverarbeitung (ITIV)

St. Lucia, QLD 4072, Australia 76131 Karlsruhe, Germany
{sunil, n.bergmann}@itee.uq.edu.au becker@itiv.uni-karlsruhe.de

Abstract

DSP applications can be suitably represented using Pro-

cess Network Models. This paper uses a modification of

Kahn Process Network to solve the problem of finding an

optimum architectural template for coarse grain array on

per application basis. By applying the model at architec-

tural level in QUKU, better hardware efficiency is achieved

for a wide domain of applications. A few widely used DSP

algorithms have been presented to demonstrate the applica-

tion of process network models into architectural template

generation in QUKU.

1. Introduction

FPGAs have come a long way from just being used as
a platform for implementing glue logic. The fine grained
structure of FPGAs has been seen as being unsuitable for
implementing coarse grain algorithms. Moreover FPGAs
have been touted as power hungry devices suitable for im-
plementing control logic only.

To overcome these disadvantages, CGRAs (Coarse
Grained Reconfigurable Architectures) have been proposed
[1]. CGRAs have advantages over conventional FPGAs in
terms of ease of reconfigurability and power consumption.
Despite all these advantages, CGRAs have failed to make
a mark in the industry. The failure can be attributed to the
factors like inflexibility, lack of unified design flow, com-
mercial unavailability and lack of application domains.

ASICs and GPPs (General Purpose Processors) lie at the
extreme ends of flexibility versus performance graph. The
current demand is for performance with increased flexibil-
ity. FPGA lies in between ASICs and GPPs in the flexibility

1-4244-0910-1/07/$20.00 c©2007 IEEE.

versus performance graphs. One of the attractive features of
FPGA is the capability for dynamic and partial reconfigura-
tion. There has been a lot of research to do partial dynamic
reconfiguration on FPGA. Donthi and Haggard describe the
extent of reconfigurability on the existing commercial FP-
GAs [2]. Despite the popularity and inherent capability
of FPGAs for partial reconfiguration, the vendors have not
supported it well commercially. Despite all the technologi-
cal advances, run time reconfigurability is still hindered by
the lack of tool support from vendors and the long recon-
figuration time [3]. Refer to [4, 3, 5] to read more about
partial run time reconfigurability on FPGA devices.

QUKU is a coarse grained overlay for FPGA. The idea
is to develop an architecture based on a proven and afford-
able platform which doesnt have the inherent limitations of
the underlying platform. The architecture has already been
presented in [6, 7]. This paper aims in bringing out the
design methodology of dynamic reconfiguration with and
without using fine grained reconfiguration. We will also be
discussing the KPN network model applicability as a MoC
(Model of Computation) and architecture to QUKU.

The paper is formatted into following sections. The next
section gives a short architectural overview of QUKU. Sec-
tion3 describes the process network graphs and their anal-
ogy to PE array. Section 4 covers the dual layered reconfig-
urability feature of QUKU. Section 5 describes the design
methodology discussing the implementation details of a few
commonly used DSP algorithms. Section 6 presents the re-
sult followed by conclusion.

2. QUKU Architecture

QUKU is a merger of two technologies: CGRAs and FP-
GAs. The aim is to develop a system which is based on
commercially available and affordable technologies but at
the same time provides active support for fast and efficient

I$-OPB D$-OPB

I-LMB D-LMB

FSL

OPB

BRAMLMB LMB

Coarse Grained PE
array

User defined IPIP interface
controller

Microblaze

EMC

Flash/ DDR
SDRAM

FPGA

UART

RS232
channel

Figure 1. Block diagram of QUKU

dynamic reconfiguration. This implementation will enable
us to use the same platform for applications which are a
mix of control flow and computationally intensive applica-
tions. Our system is unique in that it provides two levels
of application-specific reconfigurability. This dual level re-
configurability is discussed in Section 4. QUKU is a com-
plete SoC solution consisting of a coarse-grained PE matrix
overlaid on a FPGA. Fig. 1 shows a detailed block dia-
gram of QUKU. The PE array is coupled with Microblaze
based soft processor core using FSL (Fast Simplex Link).
Microblaze is responsible for running software processes
and scheduling algorithm. OPB (On-chip Peripheral Bus)
is used to connect to peripherals like external memory con-
trollers, UART, timer device and other user defined IP cores.

2.1. Coarse Grain Programmable Array

The coarse gained programmable matrix consists of a dy-
namically reconfigurable PE array, CMM and AMM. Refer
to fig. 2 for a block level description and acronyms. Each
PE consists of a LCC and LAC besides containing a func-
tional unit and a memory sub-system. CMM is responsi-
ble for loading the configuration data onto the LCC of the
PEs. AMM loads address parameters onto the LAC of the
PEs. LAC controls read and write access to data and result

memory of the respective PE. It also generates address for
accessing each memory.

LCC - Local Configuration Controller
LAC - Local Address Controller
MU - Memory unit
FU - Functional Unit
CMM - Configuration Manager Module
AMM - Address Manager Module

CMM

AMM

LCC LAC

FU

PE

MU

PE1
1

PE1
2

PE1
n

PEij
PE2

1

PEm
1

Figure 2. Block diagram of Coarse Grain PE
Array

a) Kahn process network b)Dataflow process network c) QUKU PE array process network

P1

P2

P3

P4

Process

Infinite FIFO queue

A1

A2

A3

A4

F2

F3Actor

FIFO queue

1
2

1
1

1

Firing rules

PE1

PE2

PE3

PE4

FIFO Read Rules

F1

F2

F3

F4

Read(F1,F4)
Read(F1, F3)
....
.....

Figure 3. Process Network diagrams

2.2. PE Array Organization

QUKU follows MIMD style architecture with distributed
memory. In MIMD, it is not feasible to provide a point-to-
point connection between all PEs, especially for a large net-
work of PEs. Hence a PE is connected to a fixed number
of neighboring PEs. Two of the commonly used topologies
are mesh and hypercube [8]. Hypercube has the disadvan-
tage of requiring the number of PEs which is a power of 2.
Although mesh based topology has no such limitation, the
diagonal length is larger as compared to hypercube resulting
in longer worst case interconnection delay.

In any type of interconnection it is sometimes required to
configure an intermediate PE as a pass through. So, a con-
ventional MIMD/SIMD architecture suffers from this data
routing problem as any multi-processor architecture has a
fixed inter-connection topology. QUKU doesnt suffer from
this problem of finding an optimal interconnect strategy as
during design time an application is first divided into pro-
cesses and a network of process is created which is a special
case of KPN (Kahn Process Network). This process net-
work provides an insight into how different processes are
mapped. Depending on this knowledge an appropriate in-
terconnect strategy is used and implemented.

3. Process Networks

3.1. Introduction

Process Networks is a Model of Computation (MoC) that
was originally developed for modeling distributed systems
but has proven its convenience for modeling signal process-
ing systems. Kahn introduced a formal process model in
[9], commonly known as Kahn Process Network (KPN).

It is a natural model for describing signal processing sys-
tems where infinite streams of data are incrementally trans-
formed by processes executing in sequence or parallel. In a
KPN, concurrent processes communicate only through one-
way FIFO channels with unbounded capacity. Writes to
the channels are non-blocking but reads are blocking. It is
not feasible to implement KPN in hardware due to infinite
queue length. Lee and Parks proposed DataFlow Networks
(DFN), a modification over KPN, where processes are re-
placed by actors and there are set of firing rules for each
actor [10] . When an actor fires, it consumes a finite num-
ber of tokens and produces a finite number of output tokens.

3.2. Analogy of QUKU PE Array with Pro-
cess Networks

PEs in QUKU are analogous to actors in DFN. The FU in
a PE acts as an actor and the firing rules are stored in LCC.
One firing rule results in consumption of one or more input
tokens producing a finite number of tokens at the output.
The dataflow network of PE array in QUKU is shown in
Fig. 3(c). In many signal processing applications the firing
sequence can be determined statically at compile time. This
class of dataflow process networks are called synchronous
dataflow networks.

In fig. 3(c), it is shown that one channel FIFO may be
connected with multiple actors whereas a typical dataflow
network implements separate channels to support this. In-
stead, in QUKU, it is implemented as one channel with
multiple outputs. There is some intelligence built in the
channel to verify a legitimate read among all the possible
candidates. This condition occurs because QUKU supports
multiple configurations where ingress and egress actors may
change in each clock cycle. The disadvantage of this model
is that if actor PE2 is blocked then the channel F1 will wait

for PE2 before PE3 can access the channel. But the advan-
tage is that there is no need of having as many FIFOs as the
number of channels connecting one actor to others. This is
a huge advantage in terms of hardware.

4. Reconfiguration in QUKU

Conventional CGRAs support very fast dynamic recon-
figuration using micro-codes as opposed to Megabytes of
configuration data in FPGAs. But CGRAs have fixed phys-
ical layout which ties their usability to a particular applica-
tion domain. The uniqueness of QUKU lies in the fact that
it supports dual layered reconfiguration. The dual layered
reconfiguration capability overcomes the slow reconfigura-
tion of FPGAs as well as overcomes the problem of finding
an optimal architecture which suits a wide variety of appli-
cation domains. The two reconfiguration planes are:

• FPGA level/fine grain reconfiguration

• PE level/coarse grain reconfiguration

4.1. Fine Grain Reconfiguration

This is an infrequently happening reconfiguration which
typically takes a few milli-seconds. This method, although
takes a few milli-seconds, serves the important function of
physically reconfiguring the array. This includes a change
in data width, change in numeric representation of data from
fixed point to floating point or even changing the physical
structure of the array itself. There is no single PE layout
which can be described as best match for all the applica-
tions. Hence this reconfigurability provides designer an ex-
cellent way to select a PE layout which can serve the target
applications in the best possible way. A practical scenario
could be the case where the radio receiver is tuned to DAB
transmission and then after a while the user wants to tune to
the alternative transmission which may follow DRM (digi-
tal Radio Mondial). In such case, it’s worth reconfiguring
the complete FPGA to reload the new configuration which
is more optimized for the application.

4.2. Coarse Grain Reconfiguration

The very frequently happening reconfiguration is at PE
level which configures the PE array to perform the new
functionality, without changing the physical aspects of the
array. The very fast occuring dynamic reconfiguration of
the PE array provides an excellent option to overcome the
slow partial dynamic reconfiguration methodology used in
FPGAs. Huebner et al have done experiments on FPGA
wherby the FPGA is divided into slots and each slot can
hold a module. This slot based reconfiguration took about

1.5 milli-seconds per slot [4]. QUKU overcomes this long
reconfiguration time by using short micro-codes which re-
configures the PE array in few nano-seconds. The PE array
can change its coarse grained configuration every clock cy-
cle.

5. Design Methodology

This section describes the QUKU design methodology.
The design process can be divided into three phases:

• Design phase

• Compile Phase

• Execution Phase

We have taken the case study of DFT (Discrete Fourier
Transform), FIR filter, complex multiplication and FFT.
With the aid of these algorithms we would be discussing
the design methodology.

5.1. Design Phase

During design phase, a manual/automatic analysis of the
application is done. The decision is taken about all the com-
putationally intensive part of the application which needs to
be offsourced to the PE array. Once all the modules which
are to be mapped on the PE array are decided then a data
flow diagram is prepared. At this phase, the designer is not
bothered about the physical aspects of the PE array. The
user perceives the PE array as a homogeneous function rich
array with no interconnection bottleneck. The data flow di-
agram of the four algorithms are shown in fig. 4.

5.2. Compile Phase

After design phase, QUKU compiles the process net-
work to generate a heterogeneous array of PEs, with each
PE optimized for just the range of operations it is required
to perform for a given set of applications. In compile phase,
the aim is to find an optimum PE layout and do hardware-
software partitioning of tasks.

Fig. 4 shows the process network diagram for the four
algorithms. The problem of finding an optimum match can
be simplified using mathematical set theory. The individual
modules, M(1), M(2), M(3) and M(4) can be viewed as a
set of records. Each record contains elements which define
a PE for that module. The definition consists of PE con-
figuration data and the interconnect structure. The set of
records make up a module. These modules then define the
final PE layout using one of the rules given in equation 1.

FastFourier Transform M (4)

Discrete Fourier Transform M (1)

Complex Multiplication M (2)

X X X X

-+

realimag
FIR filter M (3)

PE layout (superset of all the above data flow graphs)

X X X X

+ + +

X X X X

-+

Ai Ar

+ +

Layout selection

--

X X

+

+ +

X X

-

ar ai

Ar Br Bi Ai

bi wr br wi br wr bi wi

-

X X

+

X X

-+

+/- ++

Figure 4. Process Network diagram for algorithms

The chosen rule depends on the factors like area, concur-
rency, processing efficiency, etc.

PElayout = {M(1) ∪ M(2) ∪ M(3) ∪ M(4)} (1a)
PElayout ⊃ {M(1),M(2),M(3),M(4)} (1b)

PElayout = {M(i) ∪ M(j)} (1c)
PElayout = M(k) (1d)

where:
⊃ indicates superset,
∪ indicates union of two sets,
i, j and k are arbitrary module indices

5.3. Execution Phase

During the execution phase, the central software con-
troller runs the software processes and controls the load-
ing of different modules on the PE array and provides inter-
module synchronization. If not active, PEs remain in reset
state to save power.

6. Results

The data flow graphs for each algorithm is shown in fig.
4 and also shown is a resultant PE layout which is a superset
of all the individual data flow graphs. To compare the differ-
ent implementation options, synthesis was done for the al-
ternative implementations listed in equation 1. Fig. 5 shows
the hardware area for different implementations. The appli-
cations were implemented on Xilinx ML401 board which
has XC4VLX25 device. The slice count shown is just for
the coarse grained PE array and not the complete system.
The %age figure repersents the ratio of actual slice count
and the available slice count in Virtex4 XC4VLX25 device.

132.62%

72.73%
47%

30%

0

2000

4000

6000

8000

10000

12000

14000

16000

A B C D

PE layouts

S
lic

e
co

un
t

132.6%

72.7%
47%

30%

Figure 5. Implementation results for different
layout options.

The different PE layout options i.e. A, B, C and D are
defined below.

A = {M(1) ∪ M(2) ∪ M(3) ∪ M(4)}
B = {M(3) ∪ M(4)}

C ⊃ {M(1),M(2),M(3),M(4)}
D = M(3)

7. Conclusion

In this paper, we have described the dual layered recon-
figuration capability of QUKU and the design methodology
using process network graphs. This process network based
architectural exploration is unique to QUKU and enables
the designer to comprehend the performance during design
time and select the most optimum design. We also presented
the various implementation methods of an application. Fu-
ture work includes making a GUI for automatic extraction
of computationally intensive kernels from the source code
and deriving the configuration code for the PEs.

References

[1] Reiner W. Hartenstein. A decade of reconfigurable
computing: a visionary retrospective. In Proc. of the

Design Automation and Test in Europe (DATE’01),
pages 642–649.

[2] S. Donthi and R. L. Haggard. A survey of dynami-
cally reconfigurable FPGA devices. In Proc. of the

35th Southeastern Symposium on System Theory, 2003,
pages 422–426.

[3] Shannon Koh and Oliver Diessel. COMMA: A commu-
nications methodology for dynamic module-based re-
configuration of FPGAs. In ARCS Workshops, pages
173–182.

[4] M. Huebner, C. Schuck, and J. Becker. Elementary
block based 2-dimensional dynamic and partial recon-
figuration for virtex-II FPGAs. In Proc. of the 20th

International Symposium on Parallel and Distributed

Computing (IPDPS’06), pages 8–16.

[5] C. Bobda, M. Majer, A. Ahmadinia, T. Haller,
A. Linarth, J. Teich, and J. V. D. Veen. The Erlan-
gen slot machine: A highly flexible FPGA-based recon-
figurable platform. In Proc. of the 13th Annual IEEE

Symposium on Field-Programmable Custom Comput-

ing Machines (FCCM05), pages 319–320.

[6] Sunil Shukla, Neil W. Bergmann, and Juergen Becker.
QUKU: A two level reconfigurable architecture. In
Proc. of IEEE Computer Society Annual Symposium on

VLSI (ISVLSI06), pages 109–116.

[7] Sunil Shukla, Neil W. Bergmann, and Juergen Becker.
QUKU: A fast run time reconfigurable platform for im-
age edge detection. In Lecture Notes in Computer Sci-

ence, volume 3985, pages 93–98, 2006.

[8] Mimd architectures, online at
http://carbon.cudenver.edu/ galaghba/mimd.html.

[9] G. Kahn. The semantics of a simple language for par-

allel programming. In Information Processing, pages
471–475, August 1974.

[10] Edward Lee and Thomas Parks. Dataflow Process
Networks. In Proc. of the IEEE, pages 773–799, May
1995.

