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Abstract 

This paper presents a new and retargetable method to iden-

tify patterns of instructions with direct support in coarse-

grained processing elements (PEs). The method uses a 

three-address code SSA (static single assignment) represen-

tation of the kernel being mapped and Rewriting Logic for 

template matching and algebraic optimizations. This ap-
proach is able to identify sets of SSA instructions that can 

be mapped to different PE complexities available in coarse-

grained reconfigurable computing architectures. As a proof 
of concept, results of the approach with a number of bench-

mark kernels, as far as coverage of template instructions is 

concerned, are included. 

1. Introduction 

The use of VLIW-based templates in order to accelerate 

loop intensive behavior has been recently focus of renewed 

research efforts [1]. VLIW-based approaches rely on 1-

dimension (1D) of PEs (typically ALUs, multipliers, 

load/store units, etc.) directly used to execute typical single 

and two operand arithmetic and logical operations. They 

use a register file to store data loaded from main memory 

and/or computed by the PEs. More advanced VLIW tem-

plates use clusters of simple VLIW architectures (PEs and 

register file) in a distributed scheme. On the other hand, 

coarse-grained reconfigurable architectures [2] are not tied 

to a simplistic template (such as the VLIW one). They can 

use different routing topologies, 1D or 2D matrixes of PEs, 

PEs with support to more complex operations, heterogene-

ous or homogeneous PEs, distributed memories, etc. In this 

aspect, a VLIW template can be thought as a specific case 

of coarse-grained reconfigurable array architectures.  

Although also suitable to identification of templates of in-

structions for generating ISEs (Instruction Set Extensions), 

the work presented in this paper bears in mind the explora-

tion of different coarse-grained architecture templates based 

on 1D or 2D arrays of PEs. One of the interesting design 

explorations is to evaluate the impact on performance when 

different PEs supporting complex operations are used. 

However, the exploration needs a retargetable compiler 

able to identify instructions that resemble templates directly 

supported by the PE’s. For such exploration, this paper 

shows an approach using an SSA (Static Single Assign-

ment) form [3], composed by a three address based repre-

sentation output generated by the Nau compiler [4] from 

the Java bytecodes of a given method [5].  

Figure 1 presents the framework under development. The 

environment uses an extended SSA form and a Term Re-

writing System (TRS) to identify patterns of instructions. 

Note, however, that the integration of a simulator engine 

and techniques to estimate performance results with differ-

ent coarse-grained architectures are currently the focuses of 

our work and are not the scope of this paper. 
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Figure 1. Proposed exploration environment.  

The main contributions of this paper are: 

- The approach presented herein is able to perform identi-

fication of instruction templates bearing in mind differ-

ent goals: generation of Instruction Set Extensions and 

mapping groups of instructions to PEs; 

- Template matching is performed across basic block 

boundaries, which can be important when PEs imple-

ment structures using instructions disperse in the SSA 

form (e.g., counters to implement loop control behavior); 

- It is shown how this can be exploited using Rewriting 

Logic and an extended SSA intermediate form from a 

compiler; 

- It illustrates the advantages the rewriting-logic paradigm 

provides in this context; 
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- Additionally, the approach is able to consider optimiza-

tions (e.g., expression tree transformations and algebraic 

simplifications) to achieve better template matching re-

sults;  

- To the best of our knowledge this is the first time Re-

writing Logic is used to accomplish the referred goals; 

- Experimental results to validate the concept are pre-

sented for different instruction templates applied to a 

number of kernels from image and signal processing 

domains. 

This paper is structured as follows. Next section introduces 

coarse-grained reconfigurable architectures. Section 3 ex-

plains concepts about term rewriting and rewriting logic. In 

Section 4 the intermediate representation is presented. The 

proposed methodology is explained in Section 5, and in 

Section 6 experimental results are presented. In Section 7, 

the related work is introduced and discussed. Finally, Sec-

tion 8 draws some conclusions. 

2. Coarse-Grained Array Architectures 

Coarse-grained array architectures [2] consist of a number 

of PEs interconnected by certain routing topologies. Vari-

ous architectures have been proposed with different routing 

topologies and/or different types of functional units (FUs) 

that can be implemented by each PE (e.g., Morphosys [6], 

ADRES [7], PACT XPP [8]).  

Regarding each PE’s functionality, the simplest ones con-

sider multiplier and ALU operations on each PE. Each PE 

usually has two inputs and one output. In this case, simple 

one or two-operand arithmetic operations can be directly 

mapped to each PE.  

There are architectures that use more complex PEs. As an 

example, the architecture proposed in [9] uses a coarse-

grain component for each PE. In this kind of architecture, a 

large number of groups of operations can be implemented 

using each PE. For instance, we may program a PE to exe-

cute A B+C D, A B-C D, A B+D, A+B+C+D, A+B+C, 

etc. Thus, the kind of patterns of operations we may be able 

to map to a single PE largely depends on the target architec-

ture. Another example of PE’s complexity is the support to 

implement a counter in a single PE of the architecture, as is 

the case in the XPP [8]. 

To explore the large design space we need a strategy able to 

map an input program representation to the target architec-

ture based on the specification of the templates supported 

by each PE. Next section presents the foundations behind 

the novel strategy proposed in this paper. 

3. Term Rewriting and Rewriting Logic 

Term Rewriting [10] is the formal mathematical framework 

for the reduction of expressions using matching and substi-

tution of terms. Term rewriting is applied in the form of 

rewriting rules that define how the term is transformed. 

Rewriting rules are of the form: 

s  t if c

Meaning that a sub-term that matches the left-hand side of 

the rule will be replaced by the right-hand side when the 

condition “c” holds. These operational semantics are the 

same as those involved in functional environments and 

have been promoted in functional programming languages 

since the well-known McCarthy LISP of the 1950s. 

Rewriting-logic is the result of using logic strategies to con-

trol how and when the term-rewriting rules are applied. 

Thus, rewriting-logic allows for different paths of reduction 

and the possibility of obtaining different forms for the same 

input term.  

The use of rewriting-logic in the context of retargetable 

compilers and design space exploration has many advan-

tages:

- Expressiveness: its very simple operational semantics 

avoid the inclusion of all the unnecessary semantics that 

are required in programming languages.  

- Simplicity: features like automated type checking, multi-

ple types per variable, expression tree traversing, lexical 

analysis, pattern matching for both terms and sub-terms, 

transformation mechanisms, etc. are already built in 

Term Rewriting Systems. For this reason it is easier and 

faster to define and develop the instruction patterns using 

rewriting-logic than with traditional computer languages. 

- Powerfulness: it provides exceptional capabilities for 

finding very complex patterns of instructions. It provides 

natural mechanisms for expression tree transformations, 

algebraic manipulation and modeling reconfigurable sys-

tems. 

Term Rewriting Systems can be efficiently implemented 

using term rewriting computational environments, being 

two of the most popular ELAN [11] and Maude [12]. 

4. Intermediate Representation 

The SSA form [3] with three address code format (see 

Figure 2 and Figure 3 for an example) is used as the starting 

point of our approach. As can be seen in Figure 3(a), this 

representation uses arithmetic operations (e.g., IADD, GE, 

SHR, IMUL), assignments of constants or variables to vari-

ables (ASSIGN), selection points (e.g., MICRO and PHI), 

load/stores operations (e.g., sLd, sSt, iLd, iSt), jump in-

structions (JUMP) and return instructions (RETURN). The 

instructions are grouped in basic blocks (BB #). Note that 

for simplicity, this example does not include the bit-width 

of each variable which is present in the format output from 

the compiler. The identifiers using a dot and two integers 

represent variables (unique name for each assignment) and 



identifiers with only an integer value represent constants. 

Instructions such as GE (greater or equal) besides the com-

parison jump to the basic block represented whenever the 

condition evaluates to true. By default, a subsequent basic 

block is executed after the current one (with the exception 

in the presence of branches). The instructions (e.g., GE, 

SHR, IADD), the inputs (variables and/or constants), and 

the output variables are separated by ‘|’. 

for (short j = 0; j < Nx; j++) { 

 int sum = 0; 

 for (short i = 0; i < Ntaps; i++) { 

  sum += x[i + j] * h[i]; 

 } 

 y[j] = (short) (sum >> 15); 

}

Figure 2. FIR example. 

BB #0 

1: [ ASSIGN | 0 | 5.0 ]; 

BB #1 

2: [ MICRO | 5.0, 5.2 | 5.1 ]; 

3: [ GE | 4.0, 5.1| 9.0 | BB #6 ]; 

BB #2 

4: [ ASSIGN | 0 | 6.0 ]; 

5: [ ASSIGN | 0 | 7.0 ]; 

BB #3 

6: [ MICRO | 7.0, 7.2 | 7.1 ]; 

7: [ MICRO | 6.0, 6.2 | 6.1 ]; 

8: [ GE | 3.0, 7.1| 12.0 | BB #5 ]; 

BB #4 

9: [ IADD | 5.1, 7.1 | 15.0 ]; 

10: [ sLd | 15.0, 0.0 | 14.0 ]; 

11: [ sLd | 7.1, 1.0 | 15.1 ]; 

12: [ IMUL | 15.1, 14.0 | 14.1 ]; 

13: [ IADD | 14.1, 6.1 | 6.2 ]; 

14: [ IADD | 1, 7.1 | 7.2 ]; 

15: [ JUMP | BB #3 ]; 

BB #5 

16: [ SHR | 15, 6.1 | 17.0 ]; 

17: [ sSt | 17.0, 5.1, 2.0 ]; 

18: [ IADD | 1, 5.1 | 5.2 ]; 

19: [ JUMP | BB #1 ]; 

BB #6 

20: [ RETURN ]; 

(a)

Figure 3. SSA form output by the Nau compiler for 
the FIR example: (a) original; (b) Instructions 12 
and 13 grouped to be implemented as a PE3x1BA. 

This representation is generated with the Nau compiler [4] 

and has been selected as the input intermediate representa-

tion for the Rewriting Logic due to the following reasons: 

- It maintains a high-level of abstraction without details of 

the target architecture and thus it can be efficiently used 

both to generate assembly code for a typical microproc-

essor, VLIW, or to coarse-grained reconfigurable archi-

tectures;  

- It represents the behavior of imperative programming 

languages (note that in this case the intermediate repre-

sentation is obtained from the Java bytecodes); 

- It can be seen as a textual representation of dataflow 

graphs, because each symbolic variable can be thought 

as a connection. This property permits to declare and ap-

ply template rules without needing control- and data-

flow analysis or graph construction; 

- It is an intermediate representation model that can be 

suited to dynamic compilation; 

- It is the intermediate representation used by modern 

compilers to perform static analysis and many optimiza-

tions. 

Each group of instructions mapped to the same PE is identi-

fied by a label representing the PE (e.g., P3 1BA in Figure 

3(b)). This way, the initial specification required for gener-

ating the code to program the PEs of the target architecture, 

and for the simulation step is maintained. An important 

additional step deals with the maintenance of redundant 

instructions as is explained in next section. 

5. Methodology 

The proposed methodology is supported by the steps illus-

trated in Figure 4. The input of the methodology is the SSA 

representation of a function or procedure. The Rewriting-

Logic rules and strategies are used to group sets of SSA 

instructions that can be directly mapped to the PEs of the 

target architecture. The capabilities of the PEs are defined 

as a set of templates expressed as Term Rewriting rules.  

SSA Form

Term Rewriting System

(TRS)

Redundant SSA instructions 

remover

Rules &

Strategies

Extended SSA Form

Figure 4. Steps of the approach. 

It is important to note that a PE may not have outputs for all 

its internal intermediate blocks, therefore it may be neces-

sary to duplicate one or more of the intermediate instruc-

tions in the cases where their results are used in other nodes 

of the expression tree. The current version maintains the 

original instructions and adds copies of the grouped instruc-

tions in the TRS step. Those replicated instructions which 

are not required are automatically removed in the following 

step (see Figure 4). 

The Maude System [12] with the strategy language exten-

sions [13] is used to implement the proposed methodology.  

Rewriting-Logic is used to exploit the mapping of high-

[
PE3x1BA |15.1,14.0, 6.1| 6.2 
   { 
      [IMUL |15.1,14.0 | 14.1], 
      [IADD |14.1, 6.1| 6.2] 
   } 
];

(b)



level procedural programming languages to coarse-grained 

reconfigurable arrays using the following optimizations: 

- Mapping of groups of instructions to the expressions 

directly supported by the PEs of the target architecture 

under evaluation (e.g., merging operation trees into mul-

tiple input operators such is the case when merging a 

MUL-ADD tree into a MAC instruction);

- Expression tree transformations. E.g., tree height reduc-

tion to decrease the critical path delay; 

- Algebraic optimizations applying transformations such 

as commutative, associative, etc. These transformations 

may increase the potential for template matching; 

- Identification of counters related to, e.g., loop iteration 

control; 

- Performing operator strength reduction (e.g., mapping of 

multiplications by constants to shifts and addi-

tions/subtractions);

Other optimizations that are planned to be included are: 

decomposition of instructions into subparts. E.g., decom-

posing a 32-bit operation into 16-bit operations; merge of 

operations to be implemented as SIMD (Single Instruction 

Multiple Data) operations; merge of operations working on 

packed data. 

The grammar of the SSA intermediate form was defined in 

the TRS as two modules: one for the basic grammar struc-

ture and the second one for the instruction set. The types 

defined for the basic grammar are shown in Table I. The 

syntax of the grammar is described as operators in the TRS. 

The opcodes and the syntax for the PEs were defined in the 

same way, but adding a section with the functional behavior 

of the PE.  

Table I. Types defined in the basic grammar TRS 
module. 

Type Used for 

SingleExpression A single statement (subtype of Expression) 

Expression One or more statements 

VariableNumber Variable identifiers 

Constant Constant identifiers 

Variable Both variable and constant identifiers with the 

number of bits 

Opcode0 Instructions without parameters 

Opcode[1-5] Instructions with 1 to 5 operands 

OpcodeB Block labels 

OpcodeC Conditional instructions 

OpcodeJ Jump instructions 

OpcodeR Return instructions 

Each template of the operations that can be mapped to each 

PE (some of the exploited PEs can be seen in Figure 5) was 

written as a set of rewriting rules. The list of some imple-

mented rules is presented in Table II. Table III shows some 

rule definitions related to the template PE3 1BA.  

The application of the term rewriting rules is controlled by 

logic strategies. The simplest strategy is to select one set of 

rules and apply them until the term is in a normal form (i.e., 

the term cannot be further reduced by the selected rules). A 

slightly more complex strategy is to normalize the term by 

using a sequence of different rules. These two types of 

strategies were used to analyze the maximum coverage of 

each template for each benchmark. A list of the imple-

mented strategies and their sequence of rules is given in 

Table IV. 

Figure 5. Examples of instruction templates being 
exploited. 

Table II. List of some of the implemented Rewrit-
ing Rules. 

Rule Versions 

detectPE3 1BA PEs of type PE3 1BA 

detectPE3 1BB PEs of type PE3 1BB

detectPE3 1Shift PEs of type PE3 1Shift 

detectPE[4 1,4 2,4 4] PEs of type PE4 1, PE4 2 or PE4 4

detectPE4 2 usin-

gOnly1Output 

PEs of type PE4 2 with one unused output 

ALU 

detectPE4 4 usin-

gOnly1Output  

PEs of type PE4 4 with one unused output 

ALU 

detectPE4 4 subset-

BothNOOP 

PEs of type PE4 4 with both output ALUs 

doing no operation. Maps two ALU of type 

B operations into a PE4 4

detectPE4 4 subset-

ThreeNOOP 

A single ALU of a PE4 4

detectMUL-ADD PEs of type multiply and add 

detectADD-MUL PEs of type ADD-MUL 

detectCounter Maps SSA instructions responsible to con-

trol loop iterations 

As aforementioned, in order to preserve functionality, the 

TRS step includes instructions that can be redundant. Sup-

pose the two examples shown in Figure 6. In the case A, the 

instruction 2 must be preserved since variable “3.0” is used 

by instruction 5 and the PE3x1 used has only one output 

and no way to output both variables “3.0” and “5.0” (in this 



case, variable “3.0” has only the scope of the PE). Case B 

uses PE3x2, which can output both variables and thus in-

struction 2 is removed from the final SSA form. 

Table III. Samples of Rewriting Rules. 

…

ALU Types Definition: 

Opcode2a include IADD, ISUB  
Opcode2b include IADD, ISUB, IMUL 
…
Variable Definition: 

opa1, opa2 are of type Opcode2a 
opb1, opb2 are of type Opcode2b  
c1, c7 are of type Constant 
v1, v2, v3, v4, v5 are of type Variable  
e1 are of type Expression 
…

Rules detectPE3x1BA: 

[opb1 | v1, v2 | v3]; e1; [opa1 | v3, v4 | v5]  =>  
e1; [PE3x1BA | v1, v2, v4| v5 

{[opb1 | v1, v2 | v3], [opa1 | v3, v4| v5]}] 

[opb1| v1, v2| v3]; e1; [opa1| v4, v3| v5]=> 
e1; [PE3x1BA | v1, v2, v4 | v5{[opb1| v1, v2| v3], [opa1| v4, v3| 

v5]}]
…

Table IV. List of some of the Implemented Rewrit-
ing Strategies. 

Strategy Rules applied 

PE3 1BA detectPE3 1BA 

PE3 1BB detectPE3 1BB

PE3 1Shift detectPE3 1Shift 

PE4 1 detectPE4 1

PE4 2 detectPE4 2

PE4 4 detectPE4 4

PE4 2 usin-

gOnly1Output 

detectPE4 2 using Only1Output 

PE4 2all detectPE4 2; detectPE4 2 Only1Output 

PE4 4all detectPE4 4; detectPE4 4 Only1Output; de-

tectPE4 4 subsetBothNOOP; detectPE4 4 subset-

ThreeNOOP 

MUL-ADD detectMUL-ADD 

ADD-MUL detectADD-MUL 

Counter detectCounter 

All All the above plus balanceMul; balanceAddwith-

Cloning

The step performed to remove SSA instructions is very 

simple since we are in the presence of a representation with 

static single assignments. This step only needs to determine 

if uses of variables are reached by definitions/assignments 

inside groups of instructions (note that some assignments in 

groups of instructions have inner scope). In such cases, the 

redundant instructions are removed. After grouping instruc-

tions, the variables with only the group scope (internal) are 

renamed by concatenating the label “.fu#”, where # repre-

sents the group number they refer to. 

The SSA form with instructions merged in new ones is not 

adequate when instructions are grouped across basic block 

boundaries. In this case, we need to preserve the original 

location of instructions with additional information identi-

fying the template they belong. Below is a segment of the 

final format for the example in Figure 3. 

11: [ sLd | 7.1, 1.0 | 15.1 ]; 

12: [ IMUL | 15.1, 14.0 | 14.1.fu1 ] [PE3 1_1 #1]; 

13: [ IADD | 14.1.fu1, 6.1 | 6.2 ] [PE3 1_1 #2]; 

14: [ IADD | 1, 7.1 | 7.2 ]; 

This final representation preserves the initial behavior, adds 

information about the template matching as annotations, 

and supports templates with instructions across basic block 

boundaries (e.g., counters for loop control). 

1: …

2: [ IMUL | 1.0, 2.0 | 3.0 ];

3: [ IADD | 4.0, 3.0 | 5.0 ];

4: …

5: [ IADD | 3.0, 6.0 | 8.0 ];

6: …

1: …

2: [ IMUL | 1.0, 2.0 | 3.0 ]

3: [

PE3x1 | 1.0, 2.0, 4.0 | 5.0 {

[ IMUL | 1.0, 2.0 | 3.0 ],

[ IADD | 4.0, 3.0 | 5.0 ];

}

];

4: …

5: [ IADD | 3.0, 6.0 | 8.0 ];

6: …

Instruction

mantained

from the

original

1: …

2: [ IMUL | 1.0, 2.0 | 3.0 ]

3: [

PE3x2 | 1.0, 2.0, 4.0 | 3.0, 5.0 {

[ IMUL | 1.0, 2.0 | 3.0 ],

[ IADD | 4.0, 3.0 | 5.0 ];

}

];

4: …

5: [ IADD | 3.0, 6.0 | 8.0 ];

6: …

Instruction

removed

case B

case A

Figure 6. Two examples where an instruction 
maintained from the original SSA form should be 
removed (case B) or not (case A).

6. Experimental Results 

Table V shows the benchmarks used in our experiments. 

They resemble typical signal and image processing compu-

tational intensive tasks using integer and fixed-point arith-

metic. Their SSA complexity ranges from 13 to 210 in-

structions (an average of about 67 instructions). Figure 7 

shows the average percentage of each SSA instruction in 

those benchmarks. Instructions of type PHI# represent phi 

SSA form instructions [3] where the integer represents the 

number of inputs. We can see that integer addition (IADD) 

is the most used operation (about 22%). The other most 

represented are IMUL (integer multiplication) and ASSIGN 

(e.g., assignment of a constant to a variable).  

Next we show results on applying our approach to the ex-

amples considering the templates illustrated in Figure 5. 

Table VI shows the average percentage of each of the tem-

plates in the benchmarks used. Notice that when coarse-

grained architectures have a direct support for that tem-

plates in the PEs, they are usually able to execute the other 

type of instructions presented in the SSA form or other sub-



templates used in this paper (e.g., PEs with direct support 

for templates of type PE4 1 are usually also able to per-

form MUL-ADD). 

Table V. Benchmark characteristics (TI: Texas In-
struments; MB: MediaBench). 

Benchmark Reposi-

tory 

Description #SSA 

inst. 

fdct TI 
Fast DCT (Discrete Cosine Trans-

form) 
210

fft TI Fast Fourier Transform 70

fir TI Finite Impulse Filter (1D) 17

cplx TI 
Finite Impulse Filter using complex 

arithmetic (1D) 
43

autoc TI Auto-correlation (1D) 17

fwt2D - Forward Haar Wavelet 84

hamming - Hamming encoder 35

smooth - 
Smooth image filter (using a 3x3 

window) 
34

edge - Edge detection 87

sad - Sum of absolute differences (1D) 13

adpcm_dec MB ADPCM decoder 55

adpcm_enc MB ADPCM encoder 78

dct - 
8x8 DCT based on matrix operations 

(non-optimized) 
136

skinDetect - 
Identification of the pixels related to 

skin in an image 
41

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24%
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PHI3
NEQ

ISUB
INEG
XOR

iSt
EQ_0
PHI4

iLd
LE_0
AND

ASSIGN
PHI8

NE_0

IADD
OR
sSt

SHR
GE

SHL
IMUL

IDIV
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GT
EQ

IINC
sLd

LT
MICRO

LE

Figure 7. Average percentage of original SSA in-
structions in the considered benchmarks. 

Figure 8 shows the usage percentage of each template for 

each benchmark being used. As can be seen from the re-

sults, the template PE3 1BB is the one with the highest 

coverage in the benchmarks used. A 13.7% average usage 

has been identified for this type of template. Concerning 

PE4 1 and PE4 2 average coverage they seem to be low 

(2.3% and 0.2%, respectively) but they are over 8% and 

10% for the fdct example. 

As an example of grouping of SSA instructions across basic 

blocks, the matching of counter type templates has resulted 

in an average coverage of 4.5% for the benchmarks being 

used (a maximum result of 11.8% has been achieved for the 

smooth example). These results were expected since the 

counters are directly related to loops in the code. 

Table VI. Average usage percentage of some tem-
plates in the considered benchmarks. 

Template 

MUL-

ADD

ADD-

MUL

PE

3:1

BB 

PE 

3:1

BA

PE3:1

BA

Shift

PE

4:1 

PE

4:2

PE

4:2

+4:1

PE

4:4

Average (%) 8.0 2.1 13.7 12.1 0.6 2.3 0.2 2.3 0.2

Standard

Deviation 
7.1 3.4 9.8 10.4 1.7 1.3 0.1 3.1 0.8

7. Related Work 

Diverse tools and approaches have been used to program 

coarse-grained architectures. The PACT XPP [8] coarse-

grained array is programmed using the low-level Native 

Mapping Language (NML). A higher level of abstraction is 

offered by the XPP-VC Compiler [14]. However, the com-

piler relies on a subsequent mapping step to bind operations 

to the PEs of the architecture.  

The notion of retargetable compiler has been used in a lim-

ited extent when targeting coarse-grained arrays. Such tools 

have been usually specific to certain architectures with 

some variations that permit to target a set of architectures 

preserving common features. Examples are the DRESC 

Compiler [15] and the KressArray Xplorer [16], which pro-

vides a dataflow compiler and a complete system for hard-

ware design space exploration (based on KressArray fea-

tures). 

There has been a renewed interest on VLIW type architec-

tures [1]. Architectures with different PE complexities are 

being studied and algorithms to identify the sets of opera-

tions grouped to each PE being proposed [17][18]. Note, 

however, that there are three types of approaches. One ap-

proach synthesizes suitable architectures (usually based on 

a template) for a set of benchmarks and thus needs to iden-

tify the best template instructions. A second one considers 

the existence of certain architectures and maps sets of op-

erations into the PE’s structures (which implement distinct 

templates). A third approach tries to expose custom instruc-

tions from sets of instructions or from dataflow graphs that 

represent a source program. For that, template matching is 

usually used [19]. In our work we are focusing more on the 

second approach being, however, able to retarget different 

architectures and to exploit some PE’s characteristics. 

Term Rewriting Systems and Rewriting Logic have been 

recently used in a number of applications, especially in the 

context of prototyping algebraic operations in reconfigur-



able systems [20], verification of arithmetic circuits [21] 

and hardware synthesis [22]. Rewriting logic has been 

shown to have greater flexibility than pure rewriting for the 

discrimination between fixed and reconfigurable elements 

of reconfigurable architectures, allowing for a natural and 

quick conception and simulation of implementations of new 

reconfigurable computing paradigms. In this context, Ayala 

et al. used rewriting logic for modeling the reconfiguration 

of dynamically reconfigurable architectures [23]. Morra et 

al. applied rewriting-logic to the generation of functionally 

equivalent implementations of mathematical functions in 

reconfigurable hardware; their tool flow for design space 

exploration and application examples are presented in 

[24][25]. 

The use of Rewriting Logic and Term Rewriting Systems 

explained in this paper is to the best of our knowledge new. 

8. Conclusions 

This paper presents the use of Rewriting Logic for template 

matching and algebraic optimizations, bearing in mind the 

mapping of imperative programming languages to coarse-

grained reconfigurable architectures. The approach uses a 

three-address code SSA (static single assignment) represen-

tation of the kernel being mapped and identifies sets of SSA 

instructions, each set suited to be executed by a single proc-

essing element of the target architecture. The concept can 

be used for retargetable compilation and/or for design space 

exploration in the context of coarse-grained reconfigurable 

architectures. 

Ongoing work intends to extend the approach with explora-

tion of the strategies that must be applied to a better deci-

sion on the template coverage. A high-level model, able to 

acquire the main characteristics of the target architectures 

being exploited, is under development in order to estimate 

the latency to execute each kernel and to serve as a figure 

of merit for design decisions. 
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Figure 8. Usage percentage for a number of templates in the presented benchmarks. 


