
Using Rewriting Logic to Match Patterns of Instructions from a

Compiler Intermediate Form to Coarse-Grained Processing Elements

Carlos Morra
1

João M. P. Cardoso
2

Jürgen Becker
1

1
 Institut für Technik der Informationsverarbeitung (ITIV)

Universität Karlsruhe (TH), Karlsruhe, Germany

{morra,becker}@itiv.uni-karlsruhe.de

2
 UTL/IST, Department of Informatics Engineering

INESC-ID, 1000-029, Lisbon, Portugal

jmpc@acm.org

Abstract

This paper presents a new and retargetable method to iden-

tify patterns of instructions with direct support in coarse-

grained processing elements (PEs). The method uses a

three-address code SSA (static single assignment) represen-

tation of the kernel being mapped and Rewriting Logic for

template matching and algebraic optimizations. This ap-
proach is able to identify sets of SSA instructions that can

be mapped to different PE complexities available in coarse-

grained reconfigurable computing architectures. As a proof
of concept, results of the approach with a number of bench-

mark kernels, as far as coverage of template instructions is

concerned, are included.

1. Introduction

The use of VLIW-based templates in order to accelerate

loop intensive behavior has been recently focus of renewed

research efforts [1]. VLIW-based approaches rely on 1-

dimension (1D) of PEs (typically ALUs, multipliers,

load/store units, etc.) directly used to execute typical single

and two operand arithmetic and logical operations. They

use a register file to store data loaded from main memory

and/or computed by the PEs. More advanced VLIW tem-

plates use clusters of simple VLIW architectures (PEs and

register file) in a distributed scheme. On the other hand,

coarse-grained reconfigurable architectures [2] are not tied

to a simplistic template (such as the VLIW one). They can

use different routing topologies, 1D or 2D matrixes of PEs,

PEs with support to more complex operations, heterogene-

ous or homogeneous PEs, distributed memories, etc. In this

aspect, a VLIW template can be thought as a specific case

of coarse-grained reconfigurable array architectures.

Although also suitable to identification of templates of in-

structions for generating ISEs (Instruction Set Extensions),

the work presented in this paper bears in mind the explora-

tion of different coarse-grained architecture templates based

on 1D or 2D arrays of PEs. One of the interesting design

explorations is to evaluate the impact on performance when

different PEs supporting complex operations are used.

However, the exploration needs a retargetable compiler

able to identify instructions that resemble templates directly

supported by the PE’s. For such exploration, this paper

shows an approach using an SSA (Static Single Assign-

ment) form [3], composed by a three address based repre-

sentation output generated by the Nau compiler [4] from

the Java bytecodes of a given method [5].

Figure 1 presents the framework under development. The

environment uses an extended SSA form and a Term Re-

writing System (TRS) to identify patterns of instructions.

Note, however, that the integration of a simulator engine

and techniques to estimate performance results with differ-

ent coarse-grained architectures are currently the focuses of

our work and are not the scope of this paper.

Java Bytecodes

(classfiles)

Nau

N-Address Code in

SSA Form

Term Rewriting

System (TRS) Simulator

Estimated Execution time

Target

Architecture

Costs

Functional

Templates

x

+

x

+

x

REGISTER FILE

PE 1
...

MEMORY

PE 2 PE N

REGISTER FILE

PE 1PE 1
...

MEMORY

PE 2PE 2 PE NPE N

Figure 1. Proposed exploration environment.

The main contributions of this paper are:

- The approach presented herein is able to perform identi-

fication of instruction templates bearing in mind differ-

ent goals: generation of Instruction Set Extensions and

mapping groups of instructions to PEs;

- Template matching is performed across basic block

boundaries, which can be important when PEs imple-

ment structures using instructions disperse in the SSA

form (e.g., counters to implement loop control behavior);

- It is shown how this can be exploited using Rewriting

Logic and an extended SSA intermediate form from a

compiler;

- It illustrates the advantages the rewriting-logic paradigm

provides in this context;

1-4244-0910-1/07/$20.00 ©2007 IEEE

- Additionally, the approach is able to consider optimiza-

tions (e.g., expression tree transformations and algebraic

simplifications) to achieve better template matching re-

sults;

- To the best of our knowledge this is the first time Re-

writing Logic is used to accomplish the referred goals;

- Experimental results to validate the concept are pre-

sented for different instruction templates applied to a

number of kernels from image and signal processing

domains.

This paper is structured as follows. Next section introduces

coarse-grained reconfigurable architectures. Section 3 ex-

plains concepts about term rewriting and rewriting logic. In

Section 4 the intermediate representation is presented. The

proposed methodology is explained in Section 5, and in

Section 6 experimental results are presented. In Section 7,

the related work is introduced and discussed. Finally, Sec-

tion 8 draws some conclusions.

2. Coarse-Grained Array Architectures

Coarse-grained array architectures [2] consist of a number

of PEs interconnected by certain routing topologies. Vari-

ous architectures have been proposed with different routing

topologies and/or different types of functional units (FUs)

that can be implemented by each PE (e.g., Morphosys [6],

ADRES [7], PACT XPP [8]).

Regarding each PE’s functionality, the simplest ones con-

sider multiplier and ALU operations on each PE. Each PE

usually has two inputs and one output. In this case, simple

one or two-operand arithmetic operations can be directly

mapped to each PE.

There are architectures that use more complex PEs. As an

example, the architecture proposed in [9] uses a coarse-

grain component for each PE. In this kind of architecture, a

large number of groups of operations can be implemented

using each PE. For instance, we may program a PE to exe-

cute A B+C D, A B-C D, A B+D, A+B+C+D, A+B+C,

etc. Thus, the kind of patterns of operations we may be able

to map to a single PE largely depends on the target architec-

ture. Another example of PE’s complexity is the support to

implement a counter in a single PE of the architecture, as is

the case in the XPP [8].

To explore the large design space we need a strategy able to

map an input program representation to the target architec-

ture based on the specification of the templates supported

by each PE. Next section presents the foundations behind

the novel strategy proposed in this paper.

3. Term Rewriting and Rewriting Logic

Term Rewriting [10] is the formal mathematical framework

for the reduction of expressions using matching and substi-

tution of terms. Term rewriting is applied in the form of

rewriting rules that define how the term is transformed.

Rewriting rules are of the form:

s t if c

Meaning that a sub-term that matches the left-hand side of

the rule will be replaced by the right-hand side when the

condition “c” holds. These operational semantics are the

same as those involved in functional environments and

have been promoted in functional programming languages

since the well-known McCarthy LISP of the 1950s.

Rewriting-logic is the result of using logic strategies to con-

trol how and when the term-rewriting rules are applied.

Thus, rewriting-logic allows for different paths of reduction

and the possibility of obtaining different forms for the same

input term.

The use of rewriting-logic in the context of retargetable

compilers and design space exploration has many advan-

tages:

- Expressiveness: its very simple operational semantics

avoid the inclusion of all the unnecessary semantics that

are required in programming languages.

- Simplicity: features like automated type checking, multi-

ple types per variable, expression tree traversing, lexical

analysis, pattern matching for both terms and sub-terms,

transformation mechanisms, etc. are already built in

Term Rewriting Systems. For this reason it is easier and

faster to define and develop the instruction patterns using

rewriting-logic than with traditional computer languages.

- Powerfulness: it provides exceptional capabilities for

finding very complex patterns of instructions. It provides

natural mechanisms for expression tree transformations,

algebraic manipulation and modeling reconfigurable sys-

tems.

Term Rewriting Systems can be efficiently implemented

using term rewriting computational environments, being

two of the most popular ELAN [11] and Maude [12].

4. Intermediate Representation

The SSA form [3] with three address code format (see

Figure 2 and Figure 3 for an example) is used as the starting

point of our approach. As can be seen in Figure 3(a), this

representation uses arithmetic operations (e.g., IADD, GE,

SHR, IMUL), assignments of constants or variables to vari-

ables (ASSIGN), selection points (e.g., MICRO and PHI),

load/stores operations (e.g., sLd, sSt, iLd, iSt), jump in-

structions (JUMP) and return instructions (RETURN). The

instructions are grouped in basic blocks (BB #). Note that

for simplicity, this example does not include the bit-width

of each variable which is present in the format output from

the compiler. The identifiers using a dot and two integers

represent variables (unique name for each assignment) and

identifiers with only an integer value represent constants.

Instructions such as GE (greater or equal) besides the com-

parison jump to the basic block represented whenever the

condition evaluates to true. By default, a subsequent basic

block is executed after the current one (with the exception

in the presence of branches). The instructions (e.g., GE,

SHR, IADD), the inputs (variables and/or constants), and

the output variables are separated by ‘|’.

for (short j = 0; j < Nx; j++) {

 int sum = 0;

 for (short i = 0; i < Ntaps; i++) {

 sum += x[i + j] * h[i];

 }

 y[j] = (short) (sum >> 15);

}

Figure 2. FIR example.

BB #0

1: [ASSIGN | 0 | 5.0];

BB #1

2: [MICRO | 5.0, 5.2 | 5.1];

3: [GE | 4.0, 5.1| 9.0 | BB #6];

BB #2

4: [ASSIGN | 0 | 6.0];

5: [ASSIGN | 0 | 7.0];

BB #3

6: [MICRO | 7.0, 7.2 | 7.1];

7: [MICRO | 6.0, 6.2 | 6.1];

8: [GE | 3.0, 7.1| 12.0 | BB #5];

BB #4

9: [IADD | 5.1, 7.1 | 15.0];

10: [sLd | 15.0, 0.0 | 14.0];

11: [sLd | 7.1, 1.0 | 15.1];

12: [IMUL | 15.1, 14.0 | 14.1];

13: [IADD | 14.1, 6.1 | 6.2];

14: [IADD | 1, 7.1 | 7.2];

15: [JUMP | BB #3];

BB #5

16: [SHR | 15, 6.1 | 17.0];

17: [sSt | 17.0, 5.1, 2.0];

18: [IADD | 1, 5.1 | 5.2];

19: [JUMP | BB #1];

BB #6

20: [RETURN];

(a)

Figure 3. SSA form output by the Nau compiler for
the FIR example: (a) original; (b) Instructions 12
and 13 grouped to be implemented as a PE3x1BA.

This representation is generated with the Nau compiler [4]

and has been selected as the input intermediate representa-

tion for the Rewriting Logic due to the following reasons:

- It maintains a high-level of abstraction without details of

the target architecture and thus it can be efficiently used

both to generate assembly code for a typical microproc-

essor, VLIW, or to coarse-grained reconfigurable archi-

tectures;

- It represents the behavior of imperative programming

languages (note that in this case the intermediate repre-

sentation is obtained from the Java bytecodes);

- It can be seen as a textual representation of dataflow

graphs, because each symbolic variable can be thought

as a connection. This property permits to declare and ap-

ply template rules without needing control- and data-

flow analysis or graph construction;

- It is an intermediate representation model that can be

suited to dynamic compilation;

- It is the intermediate representation used by modern

compilers to perform static analysis and many optimiza-

tions.

Each group of instructions mapped to the same PE is identi-

fied by a label representing the PE (e.g., P3 1BA in Figure

3(b)). This way, the initial specification required for gener-

ating the code to program the PEs of the target architecture,

and for the simulation step is maintained. An important

additional step deals with the maintenance of redundant

instructions as is explained in next section.

5. Methodology

The proposed methodology is supported by the steps illus-

trated in Figure 4. The input of the methodology is the SSA

representation of a function or procedure. The Rewriting-

Logic rules and strategies are used to group sets of SSA

instructions that can be directly mapped to the PEs of the

target architecture. The capabilities of the PEs are defined

as a set of templates expressed as Term Rewriting rules.

SSA Form

Term Rewriting System

(TRS)

Redundant SSA instructions

remover

Rules &

Strategies

Extended SSA Form

Figure 4. Steps of the approach.

It is important to note that a PE may not have outputs for all

its internal intermediate blocks, therefore it may be neces-

sary to duplicate one or more of the intermediate instruc-

tions in the cases where their results are used in other nodes

of the expression tree. The current version maintains the

original instructions and adds copies of the grouped instruc-

tions in the TRS step. Those replicated instructions which

are not required are automatically removed in the following

step (see Figure 4).

The Maude System [12] with the strategy language exten-

sions [13] is used to implement the proposed methodology.

Rewriting-Logic is used to exploit the mapping of high-

[
PE3x1BA |15.1,14.0, 6.1| 6.2
 {
 [IMUL |15.1,14.0 | 14.1],
 [IADD |14.1, 6.1| 6.2]
 }
];

(b)

level procedural programming languages to coarse-grained

reconfigurable arrays using the following optimizations:

- Mapping of groups of instructions to the expressions

directly supported by the PEs of the target architecture

under evaluation (e.g., merging operation trees into mul-

tiple input operators such is the case when merging a

MUL-ADD tree into a MAC instruction);

- Expression tree transformations. E.g., tree height reduc-

tion to decrease the critical path delay;

- Algebraic optimizations applying transformations such

as commutative, associative, etc. These transformations

may increase the potential for template matching;

- Identification of counters related to, e.g., loop iteration

control;

- Performing operator strength reduction (e.g., mapping of

multiplications by constants to shifts and addi-

tions/subtractions);

Other optimizations that are planned to be included are:

decomposition of instructions into subparts. E.g., decom-

posing a 32-bit operation into 16-bit operations; merge of

operations to be implemented as SIMD (Single Instruction

Multiple Data) operations; merge of operations working on

packed data.

The grammar of the SSA intermediate form was defined in

the TRS as two modules: one for the basic grammar struc-

ture and the second one for the instruction set. The types

defined for the basic grammar are shown in Table I. The

syntax of the grammar is described as operators in the TRS.

The opcodes and the syntax for the PEs were defined in the

same way, but adding a section with the functional behavior

of the PE.

Table I. Types defined in the basic grammar TRS
module.

Type Used for

SingleExpression A single statement (subtype of Expression)

Expression One or more statements

VariableNumber Variable identifiers

Constant Constant identifiers

Variable Both variable and constant identifiers with the

number of bits

Opcode0 Instructions without parameters

Opcode[1-5] Instructions with 1 to 5 operands

OpcodeB Block labels

OpcodeC Conditional instructions

OpcodeJ Jump instructions

OpcodeR Return instructions

Each template of the operations that can be mapped to each

PE (some of the exploited PEs can be seen in Figure 5) was

written as a set of rewriting rules. The list of some imple-

mented rules is presented in Table II. Table III shows some

rule definitions related to the template PE3 1BA.

The application of the term rewriting rules is controlled by

logic strategies. The simplest strategy is to select one set of

rules and apply them until the term is in a normal form (i.e.,

the term cannot be further reduced by the selected rules). A

slightly more complex strategy is to normalize the term by

using a sequence of different rules. These two types of

strategies were used to analyze the maximum coverage of

each template for each benchmark. A list of the imple-

mented strategies and their sequence of rules is given in

Table IV.

Figure 5. Examples of instruction templates being
exploited.

Table II. List of some of the implemented Rewrit-
ing Rules.

Rule Versions

detectPE3 1BA PEs of type PE3 1BA

detectPE3 1BB PEs of type PE3 1BB

detectPE3 1Shift PEs of type PE3 1Shift

detectPE[4 1,4 2,4 4] PEs of type PE4 1, PE4 2 or PE4 4

detectPE4 2 usin-

gOnly1Output

PEs of type PE4 2 with one unused output

ALU

detectPE4 4 usin-

gOnly1Output

PEs of type PE4 4 with one unused output

ALU

detectPE4 4 subset-

BothNOOP

PEs of type PE4 4 with both output ALUs

doing no operation. Maps two ALU of type

B operations into a PE4 4

detectPE4 4 subset-

ThreeNOOP

A single ALU of a PE4 4

detectMUL-ADD PEs of type multiply and add

detectADD-MUL PEs of type ADD-MUL

detectCounter Maps SSA instructions responsible to con-

trol loop iterations

As aforementioned, in order to preserve functionality, the

TRS step includes instructions that can be redundant. Sup-

pose the two examples shown in Figure 6. In the case A, the

instruction 2 must be preserved since variable “3.0” is used

by instruction 5 and the PE3x1 used has only one output

and no way to output both variables “3.0” and “5.0” (in this

case, variable “3.0” has only the scope of the PE). Case B

uses PE3x2, which can output both variables and thus in-

struction 2 is removed from the final SSA form.

Table III. Samples of Rewriting Rules.

…

ALU Types Definition:

Opcode2a include IADD, ISUB
Opcode2b include IADD, ISUB, IMUL
…
Variable Definition:

opa1, opa2 are of type Opcode2a
opb1, opb2 are of type Opcode2b
c1, c7 are of type Constant
v1, v2, v3, v4, v5 are of type Variable
e1 are of type Expression
…

Rules detectPE3x1BA:

[opb1 | v1, v2 | v3]; e1; [opa1 | v3, v4 | v5] =>
e1; [PE3x1BA | v1, v2, v4| v5

{[opb1 | v1, v2 | v3], [opa1 | v3, v4| v5]}]

[opb1| v1, v2| v3]; e1; [opa1| v4, v3| v5]=>
e1; [PE3x1BA | v1, v2, v4 | v5{[opb1| v1, v2| v3], [opa1| v4, v3|

v5]}]
…

Table IV. List of some of the Implemented Rewrit-
ing Strategies.

Strategy Rules applied

PE3 1BA detectPE3 1BA

PE3 1BB detectPE3 1BB

PE3 1Shift detectPE3 1Shift

PE4 1 detectPE4 1

PE4 2 detectPE4 2

PE4 4 detectPE4 4

PE4 2 usin-

gOnly1Output

detectPE4 2 using Only1Output

PE4 2all detectPE4 2; detectPE4 2 Only1Output

PE4 4all detectPE4 4; detectPE4 4 Only1Output; de-

tectPE4 4 subsetBothNOOP; detectPE4 4 subset-

ThreeNOOP

MUL-ADD detectMUL-ADD

ADD-MUL detectADD-MUL

Counter detectCounter

All All the above plus balanceMul; balanceAddwith-

Cloning

The step performed to remove SSA instructions is very

simple since we are in the presence of a representation with

static single assignments. This step only needs to determine

if uses of variables are reached by definitions/assignments

inside groups of instructions (note that some assignments in

groups of instructions have inner scope). In such cases, the

redundant instructions are removed. After grouping instruc-

tions, the variables with only the group scope (internal) are

renamed by concatenating the label “.fu#”, where # repre-

sents the group number they refer to.

The SSA form with instructions merged in new ones is not

adequate when instructions are grouped across basic block

boundaries. In this case, we need to preserve the original

location of instructions with additional information identi-

fying the template they belong. Below is a segment of the

final format for the example in Figure 3.

11: [sLd | 7.1, 1.0 | 15.1];

12: [IMUL | 15.1, 14.0 | 14.1.fu1] [PE3 1_1 #1];

13: [IADD | 14.1.fu1, 6.1 | 6.2] [PE3 1_1 #2];

14: [IADD | 1, 7.1 | 7.2];

This final representation preserves the initial behavior, adds

information about the template matching as annotations,

and supports templates with instructions across basic block

boundaries (e.g., counters for loop control).

1: …

2: [IMUL | 1.0, 2.0 | 3.0];

3: [IADD | 4.0, 3.0 | 5.0];

4: …

5: [IADD | 3.0, 6.0 | 8.0];

6: …

1: …

2: [IMUL | 1.0, 2.0 | 3.0]

3: [

PE3x1 | 1.0, 2.0, 4.0 | 5.0 {

[IMUL | 1.0, 2.0 | 3.0],

[IADD | 4.0, 3.0 | 5.0];

}

];

4: …

5: [IADD | 3.0, 6.0 | 8.0];

6: …

Instruction

mantained

from the

original

1: …

2: [IMUL | 1.0, 2.0 | 3.0]

3: [

PE3x2 | 1.0, 2.0, 4.0 | 3.0, 5.0 {

[IMUL | 1.0, 2.0 | 3.0],

[IADD | 4.0, 3.0 | 5.0];

}

];

4: …

5: [IADD | 3.0, 6.0 | 8.0];

6: …

Instruction

removed

case B

case A

Figure 6. Two examples where an instruction
maintained from the original SSA form should be
removed (case B) or not (case A).

6. Experimental Results

Table V shows the benchmarks used in our experiments.

They resemble typical signal and image processing compu-

tational intensive tasks using integer and fixed-point arith-

metic. Their SSA complexity ranges from 13 to 210 in-

structions (an average of about 67 instructions). Figure 7

shows the average percentage of each SSA instruction in

those benchmarks. Instructions of type PHI# represent phi

SSA form instructions [3] where the integer represents the

number of inputs. We can see that integer addition (IADD)

is the most used operation (about 22%). The other most

represented are IMUL (integer multiplication) and ASSIGN

(e.g., assignment of a constant to a variable).

Next we show results on applying our approach to the ex-

amples considering the templates illustrated in Figure 5.

Table VI shows the average percentage of each of the tem-

plates in the benchmarks used. Notice that when coarse-

grained architectures have a direct support for that tem-

plates in the PEs, they are usually able to execute the other

type of instructions presented in the SSA form or other sub-

templates used in this paper (e.g., PEs with direct support

for templates of type PE4 1 are usually also able to per-

form MUL-ADD).

Table V. Benchmark characteristics (TI: Texas In-
struments; MB: MediaBench).

Benchmark Reposi-

tory

Description #SSA

inst.

fdct TI
Fast DCT (Discrete Cosine Trans-

form)
210

fft TI Fast Fourier Transform 70

fir TI Finite Impulse Filter (1D) 17

cplx TI
Finite Impulse Filter using complex

arithmetic (1D)
43

autoc TI Auto-correlation (1D) 17

fwt2D - Forward Haar Wavelet 84

hamming - Hamming encoder 35

smooth -
Smooth image filter (using a 3x3

window)
34

edge - Edge detection 87

sad - Sum of absolute differences (1D) 13

adpcm_dec MB ADPCM decoder 55

adpcm_enc MB ADPCM encoder 78

dct -
8x8 DCT based on matrix operations

(non-optimized)
136

skinDetect -
Identification of the pixels related to

skin in an image
41

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24%

GE_0
PHI3
NEQ

ISUB
INEG
XOR

iSt
EQ_0
PHI4

iLd
LE_0
AND

ASSIGN
PHI8

NE_0

IADD
OR
sSt

SHR
GE

SHL
IMUL

IDIV
PHI2

GT
EQ

IINC
sLd

LT
MICRO

LE

Figure 7. Average percentage of original SSA in-
structions in the considered benchmarks.

Figure 8 shows the usage percentage of each template for

each benchmark being used. As can be seen from the re-

sults, the template PE3 1BB is the one with the highest

coverage in the benchmarks used. A 13.7% average usage

has been identified for this type of template. Concerning

PE4 1 and PE4 2 average coverage they seem to be low

(2.3% and 0.2%, respectively) but they are over 8% and

10% for the fdct example.

As an example of grouping of SSA instructions across basic

blocks, the matching of counter type templates has resulted

in an average coverage of 4.5% for the benchmarks being

used (a maximum result of 11.8% has been achieved for the

smooth example). These results were expected since the

counters are directly related to loops in the code.

Table VI. Average usage percentage of some tem-
plates in the considered benchmarks.

Template

MUL-

ADD

ADD-

MUL

PE

3:1

BB

PE

3:1

BA

PE3:1

BA

Shift

PE

4:1

PE

4:2

PE

4:2

+4:1

PE

4:4

Average (%) 8.0 2.1 13.7 12.1 0.6 2.3 0.2 2.3 0.2

Standard

Deviation
7.1 3.4 9.8 10.4 1.7 1.3 0.1 3.1 0.8

7. Related Work

Diverse tools and approaches have been used to program

coarse-grained architectures. The PACT XPP [8] coarse-

grained array is programmed using the low-level Native

Mapping Language (NML). A higher level of abstraction is

offered by the XPP-VC Compiler [14]. However, the com-

piler relies on a subsequent mapping step to bind operations

to the PEs of the architecture.

The notion of retargetable compiler has been used in a lim-

ited extent when targeting coarse-grained arrays. Such tools

have been usually specific to certain architectures with

some variations that permit to target a set of architectures

preserving common features. Examples are the DRESC

Compiler [15] and the KressArray Xplorer [16], which pro-

vides a dataflow compiler and a complete system for hard-

ware design space exploration (based on KressArray fea-

tures).

There has been a renewed interest on VLIW type architec-

tures [1]. Architectures with different PE complexities are

being studied and algorithms to identify the sets of opera-

tions grouped to each PE being proposed [17][18]. Note,

however, that there are three types of approaches. One ap-

proach synthesizes suitable architectures (usually based on

a template) for a set of benchmarks and thus needs to iden-

tify the best template instructions. A second one considers

the existence of certain architectures and maps sets of op-

erations into the PE’s structures (which implement distinct

templates). A third approach tries to expose custom instruc-

tions from sets of instructions or from dataflow graphs that

represent a source program. For that, template matching is

usually used [19]. In our work we are focusing more on the

second approach being, however, able to retarget different

architectures and to exploit some PE’s characteristics.

Term Rewriting Systems and Rewriting Logic have been

recently used in a number of applications, especially in the

context of prototyping algebraic operations in reconfigur-

able systems [20], verification of arithmetic circuits [21]

and hardware synthesis [22]. Rewriting logic has been

shown to have greater flexibility than pure rewriting for the

discrimination between fixed and reconfigurable elements

of reconfigurable architectures, allowing for a natural and

quick conception and simulation of implementations of new

reconfigurable computing paradigms. In this context, Ayala

et al. used rewriting logic for modeling the reconfiguration

of dynamically reconfigurable architectures [23]. Morra et

al. applied rewriting-logic to the generation of functionally

equivalent implementations of mathematical functions in

reconfigurable hardware; their tool flow for design space

exploration and application examples are presented in

[24][25].

The use of Rewriting Logic and Term Rewriting Systems

explained in this paper is to the best of our knowledge new.

8. Conclusions

This paper presents the use of Rewriting Logic for template

matching and algebraic optimizations, bearing in mind the

mapping of imperative programming languages to coarse-

grained reconfigurable architectures. The approach uses a

three-address code SSA (static single assignment) represen-

tation of the kernel being mapped and identifies sets of SSA

instructions, each set suited to be executed by a single proc-

essing element of the target architecture. The concept can

be used for retargetable compilation and/or for design space

exploration in the context of coarse-grained reconfigurable

architectures.

Ongoing work intends to extend the approach with explora-

tion of the strategies that must be applied to a better deci-

sion on the template coverage. A high-level model, able to

acquire the main characteristics of the target architectures

being exploited, is under development in order to estimate

the latency to execute each kernel and to serve as a figure

of merit for design decisions.

Acknowledgements

This work has been possible due to the bilateral

DAAD/CRUP cooperation project entitled “Architecture

and Compilation Exploration for a Dynamically Recon-

figurable System-on-Chip (ACER)”. João Cardoso would

like also to acknowledge the support of the project

CHIADO, funded by the Portuguese Foundation for Sci-

ence and Technology (FCT), POSI and FEDER.

References

[1] K. Fan, M. Kudlur, H. Park, and S. Mahlke, “Compiler-directed

Synthesis of Multifunction Loop Accelerators,” in Workshop on Ap-

plication Specific Processors (WASP), Sep. 2005, pp. 91-98.

[2] R. Hartenstein, “A Decade of Reconfigurable Computing: a Vision-

ary Retrospective,” In Int’l Conf. on Design, Automation and Test in

Europe (DATE), Munich, Germany, March 12-15, 2001, pp. 642-

649.

[3] S. S. Muchnick, Advanced Compiler Design and Implementation.

Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 1997.

[4] R. Rodrigues, and João M. P. Cardoso, “On Pipelining Sequences of

Data-Dependent Loops,” in Journal of Universal Computer Science

(JUCS), to appear.

[5] J. M. P. Cardoso, “CHIADO: compilation of high-level computa-

tionally intensive algorithms to dynamically reconfigurable comput-

ing systems,” in SPIE Microtechnologies for the New Millennium

2005 Symposium, Seville, Spain, May 9-11, 2005, SPIE Vol. 5837,

pp. 893-901.

[6] H. Singh et al., “MorphoSys: An Integrated Reconfigurable System

for Data-Parallel and Computation-Intensive Applications,” IEEE
Trans. on Computers, Vol. 49, no. 5, May 2000, pp. 465-481.

[7] B. Mei, A. Lambrechts, D. Verkest, J.Y.s Mignolet, R. Lauwereins,

“Architecture Exploration for a Reconfigurable Architecture Tem-

plate,” in IEEE Design & Test of Computers, 22(2), 2005, pp. 90-

101.

[8] V. Baumgarte, et al., “PACT-XPP – A Self-reconfigurable Data

Processing Architecture,” In Journal of Supercomputing, Kluwer

Academic Publishers, vol. 26, issue. 2, September 2003, pp. 167-

184.

[9] M. D. Galanis, G. Theodoridis, S. Tragoudas, C. E. Goutis, “A High

Performance Data-Path for Synthesizing DSP Kernels,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), vol. 25, no. 6, June 2006, pp. 1154-1163.

[10] F. Baader, and T. Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998.

[11] P. Borovansky, C. Kirchner, H. Kirchner, and P. Moreau, “ELAN

from a rewriting logic point of view,” Theoretical Computer Science,

vol. 285, no. 2, 2002.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer

and C. Talcott. “The Maude 2.0 System” in Rewriting Techniques

and Applications (RTA 2003), LNCS 2706, Springer-Verlag, June

2003, pp. 76-87.

[13] J. Meseguer, N. Martí-Oliet and A.Verdejo. “Towards a strategy

language for Maude” in Proc. Fifth Int’l Workshop on Rewriting

Logic and its Applications (WRLA 2004), Electronic Notes in Theo-

retical Computer Science, Elsevier, 2004.

[14] J. M. P. Cardoso, and M. Weinhardt, “XPP-VC: A C compiler with

temporal partitioning for the PACT-XPP architecture,” in Proc. 12th

Int’l Conf. on Field-Programmable Logic and Applications

(FPL’02), 2002.

[15] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins,

“DRESC: A retargetable compiler for coarse-grained reconfigurable

architectures,” in Proc. Int’l Conference on Field Programmable

Technology (FPL’02), 2002.

[16] R. W. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger,

“KressArray Xplorer: a new CAD environment to optimize recon-

figurable datapath array,” in Proc. ASP-DAC, vol. 1, 2000, pp. 163-

168.

[17] H. Park, K. Fan, M. Kudlur, and S. Mahlke, “Modulo Graph Embed-

ding: Mapping Applications onto Coarse-Grained Reconfigurable

Architectures,” in Proc. Int’l Conference on Compilers, Architecture,

and Synthesis for Embedded Systems (CASES’06), Oct. 2006.

[18] N. Clark, H. Zhong, and S. Mahlke, “Automated Custom Instruction

Generation for Domain-Specific Processor Acceleration,” in IEEE

Transactions on Computers, Vol. 54, No. 10, Oct. 2005, pp. 1258-

1270.

[19] R. Kastner, A. Kaplan, S. Ogrenci Memik, and E. Bozorgzadeh

“Instruction generation for hybrid reconfigurable systems,” in ACM

Trans. Design Autom. Electr. Syst. (TODAES), 7(4), 2002, pp. 605-

627.

[20] M. Ayala-Rincón, Carlos Llanos, Ricardo P. Jacobi, Reiner W. Hart-

enstein, “Prototyping Time and Space Effiicient Computations of

Algebraic Operations over Dynamically Reconfigurable Systems

Modeled by Rewriting-Logic,” in ACM Transactions On Design

Automation Of Electronic Systems (TODAES), vol. 11, no. 2, 2006,

pp. 251-281.

[21] D. Kapur and M. Subramaniam, “Using and induction prover for

verifying arithmetic circuits,” Journal of Software Tools for Tech-

nology Transfer, vol. 3, no. 1, pp. 32–65, Sept. 2000.

[22] Arvind and X. Shen, “Using term rewriting systems to design and

verify processors,” IEEE Micro, vol. 19, no. 3, 1999, pp. 36–46.

[23] M. Ayala-Rincon, R. Jacobi, L. Carvalho, C. Llanos, and R. Harten-

stein, “Modeling and prototyping dynamically reconfigurable sys-

tems for efficient computation of dynamic programming methods by

rewriting-logic,” in Proc. SBCCI’04, 2004.

[24] C. Morra, J. Becker, M. Ayala-Rincon, R. Hartenstein. “FELIX:

Using Rewriting-Logic for Generating Functionally Equivalent Im-

plementations” in Proc. 15th Int’l Conference on Field-

Programmable Logic and Applications (FPL’05), Aug. 24 - 26,

2005, Tampere, Finland.

[25] C. Morra, M. Sackmann, S. Shukla, J. Becker, R. Hartenstein. “From

Equation to VHDL: Using Rewriting Logic For Automated Function

Generation,” in 16th Int’l Conference on Field-Programmable Logic

and Applications (FPL’06), Aug. 28 - 30, 2006, Madrid, Spain.

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22%

apdcm_decmac

apdcm_encmac

autocmac

bpicmac

clpxmac

dctAllmac

edgemac

fdctmac

fftmac

firmac

fwt2Dmac

grayscalemac

hammcodemac

runlengthmac

sadmac

skinDetectmac

smoothmac

0% 2% 4% 6% 8% 10% 12%

average

apdcm_decfam

apdcm_encfam

autocfam

bpicfam

clpxfam

dctAllfam

edgefam

fdctfam

fftfam

firfam

fwt2Dfam

grayscalefam

hammcodefam

runlengthfam

sadfam

skinDetectfam

smoothfam

(a) MUL-ADD (b) ADD-MUL

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

apdcm_decpe4x1

apdcm_encpe4x1

autocpe4x1

bpicpe4x1

clpxpe4x1

dctAllpe4x1

edgepe4x1

fdctpe4x1

fftpe4x1

firpe4x1

fwt2Dpe4x1

grayscalepe4x1

hammcodepe4x1

runlengthpe4x1

sadpe4x1

skinDetectpe4x1

smoothpe4x1

0% 2% 4% 6% 8% 10% 12% 14%

apdcm_decPE4x2all

apdcm_encPE4x2all

autocPE4x2all

bpicPE4x2all

clpxPE4x2all

dctAllPE4x2all

edgePE4x2all

fdctPE4x2all

fftPE4x2all

firPE4x2all

fwt2DPE4x2all

grayscalePE4x2all

hammcodePE4x2all

runlengthPE4x2all

sadPE4x2all

skinDetectPE4x2all

smoothPE4x2all

(c) PE4x1 (d) PE4x2:4x1

0% 4% 8% 12% 16% 20% 24% 28%

apdcm_dec

apdcm_enc

autoc

bpic

clpx

dct

edge

fdct

fft

fir

fwt2D

grayscale

hamming

runlength

sad

skinDetect

smooth

0% 5% 10% 15% 20% 25% 30% 35%

apdcm_dec

apdcm_enc

autoc

bpic

clpx

dct

edge

fdct

fft

fir

fwt2D

grayscale

hamming

runlength

sad

skinDetect

smooth

(e) PE3x1AB (f) PE3x1BB

Figure 8. Usage percentage for a number of templates in the presented benchmarks.

