

Cost-Driven Hybrid Configuration Prefetching
for Partial Reconfigurable Coprocessor

Ying Chen1, Simon Y. Chen2

1School of Engineering
San Francisco State University

1600 Holloway Ave
San Francisco, CA 94132

http://online.sfsu.edu/~yingchen
yingchen@sfsu.edu

2DSP Group Inc.
3120 Scott Blvd, Santa Clara, CA 95054

http://www.dspg.com
simon.yingchen@gmail.com

Abstract

Reconfigurable computing systems have developed the

capability of changing the configuration of the
reconfigurable coprocessor multiple times during the
course of a program. However, in most systems the
reconfigurable coprocessor wastes computation cycles
while waiting for the reconfiguration to complete.
Therefore, the high demand for frequent run-time
reconfiguration directly translates into higher
reconfiguration overhead. Some studies have introduced
the concept of prefetching to reduce the reconfiguration
overhead. However, these prefetching algorithms are
probability-driven. We believe that including
configuration size information in the prediction algorithm
directly links the training of the predictor with the
performance gain. Therefore we proposed a performance-
oriented cost-driven algorithm for coarse-grained
configuration prefetching. Our cycle accurate simulation
results show that the proposed cost-driven algorithm
outperforms the probability-driven predictor by 10.8% to
29.6% in reducing reconfiguration overhead.

1. Introduction

Reconfigurable computing systems that consist of a
general purpose processor and a reconfigurable
coprocessor have been a promising solution to a lot of
practical problems [1] [2] [3]. The reconfigurable
coprocessor provides high performance, particularly in
repetitive logic and arithmetic, while the general purpose

1-4244-0910-1/07//$20.00©2007IEEE

processor provides the flexibility in handling all other
tasks [4]. As the reconfigurable computing systems evolve
over the years, they developed capability of changing the
configuration of the reconfigurable coprocessor multiple
times during the course of a program. However, their ever-
increasing flexibility comes with a higher demand for
frequent run-time reconfigurations. This directly translates
into higher reconfiguration overhead because in most
systems the reconfigurable coprocessor has to wait before
the reconfiguration completes, wasting cycles that can be
used to perform computations. For example, applications
on the DISC system have spent 25% to 71% of their
execution time on reconfiguration [4]. It is obvious that
the performance of these systems can be improved by
reducing the reconfiguration overhead.

Many studies have been focusing on reducing the
reconfiguration overhead. These studies include
configuration compression [6] and configuration caching
[7]. Another promising technique that has been studied is
configuration prefetching [5] [4]. This technique targets at
absorbing reconfiguration overhead by overlapping the
reconfiguration with computation. A prefetching technique
is developed in [5] for single context FPGA systems,
which are much simpler than most of the modern
reconfigurable computing systems where part of the
device can be programmed while the rest of the system
continues computing so that multiple configurations can
be loaded into different sections of the reconfigurable
coprocessor. Configuration prefetching techniques for
partial reconfiguration is introduced in [4]. Their dynamic
prefetching technique uses a Markov chain predictor to
predict the next Reconfigurable Unit OPeration (RFUOP).
However, an important factor of reconfiguration overhead,
the configuration size, was not considered. Without

considering the configuration size, the predictor will make
prefetching decision merely based on probability or
correlation instead of the real reconfiguration overhead,
which is an important metric.

In this study, we propose a cost-driven coarse-grained
configuration prefetching algorithm by incorporating
configuration size into the prediction decision function.
We incorporate the cost-driven algorithm into both
Markov prefetcher and Least Mean Square Algorithm
(LMSA) prefetcher. We used algorithmic experiments to
access the effect of RH capacity, prediction algorithm
training step size, configuration size information, and
history information on the prefetching error rate. We also
modeled the reconfigurable coprocessor access process in
a cycle accurate simulator and accessed cost-driven
algorithm’s efficiency in redoing reconfiguration overhead.
Our results from algorithmic Matlab experiments and
cycle accurate simulations show that the cost-driven
algorithm outperforms the probability-driven predictor by
4 to 29.6% in the cases of different RH capacities in
reducing reconfiguration overhead. The most efficient
probability-driven predictor is LMSA with history
information and the reconfiguration overhead reduction is
10.8 to 29.6%.

The remainder of this paper is organized as follows:
Section 2 presents the background of configuration
prefetching. In Section 3 we describe the cost-driven
hybrid configuration prefetching and related algorithms.
The experimental setup is explained in Section 4 with the
results shown in Section 5. Finally, Section 6 summaries
and concludes.

2. Background

The idea of prefetching is widely used in general
purpose computer systems, for both data and instruction.
Prefetching is first introduced into reconfigurable systems
in [5] where a prefetching technique is developed for
single context FPGA systems. Their work demonstrated
the potential of configuration prefetching in reducing the
reconfiguration overhead. However, it targets at single
context FPGA systems, which are much simpler than most
of the modern reconfigurable computing systems where
multiple configurations can be loaded into different
sections of the reconfigurable coprocessor.

Configuration relocation and defragmentation are
introduced for partial reconfigurable coprocessor in [8].
They provide a flexible mechanism by which
configurations of different functions can be rearranged in
the coprocessor configuration space and make room for
potentially more configurations. Based on such system,
several configuration prefetching techniques were
introduced in [4] to reduce the reconfiguration overhead,
including static prefetching, dynamic prefetching, and
hybrid prefetching. Their study shows that hybrid

prefetching algorithm is the most efficient. The dynamic
prefetching technique uses a Markov chain predictor to
predict the next RFUOP. However, an important factor of
reconfiguration overhead, the configuration size, was not
considered in the dynamic prefetching algorithm. This
potentially affects the effectiveness of the technique
because even if an RFUOP has higher probability to be the
next RFUOP, it may not present the highest
reconfiguration overhead risk if its configuration latency is
very small. On the other hand, an RFUOP that takes a long
time to load may need more attention prior to its
appearance at the top of the RFUOP queue. In this study,
we use configuration size as an important metric for
prefetching the next configuration.

3. Cost-Driven Hybrid Configuration
Prefetching

The size of the RFUOP has significant impact on the
prefetching performance. Without considering the
configuration size, the predictor will make prefetching
decision merely based on probability or correlation instead
of the real reconfiguration overhead, which is the
meaningful metric. In this study we used the configuration
sizes in hybrid prefetching, which includes both static
process and dynamic process.

In the static process, the coarse-grained configurations,
which will be run on the reconfigurable coprocessor, are
chosen, and the configuration sizes are used as part of the
training weight for training the optimal step size for
prefetching algorithms (e.g., Markov and LMSA). Instead
of calculating the probability of missing a needed
configuration, the predictor calculates the cost
(reconfiguration overhead) associated with missing the
needed configuration.

In the dynamic process, configuration sizes are used in
the prefetching scheduling process. When the prefetcher
prioritizes the configurations in the prefetch queue, it
considers the distance (time gap) between the current
RFUOP and the RFUOP being scheduled for prefetching.
Bigger configuration with short distance is given lower
priority since it is likely the prefetching of that
configuration will not complete due to short of time,
wasting time that can be used to prefetch smaller
configuration.

We incorporated the cost-driven method in both
Markov predictor and LMSA predictor. Furthermore, we
use history information to improve the performance of
predictor.

Markov Predictor was first used as a prefetching
method between on-chip and off-chip cache [9]. A first-
order Markov process was used to simplify the prediction
process. Also, a table is used to represents the transition
probability to reduce the memory usage. These
simplifications are used in the configuration prefetching

studies [4]. However, the number of configurations in a
reconfigurable computing system is much smaller than the
size of the address space in a general purpose computer,
making storing the transition probability matrix a much
smaller concern.

The Markov predictor models the configuration
execution as a first-order Markov process. A first-order
Markov process is a discrete-time stochastic process where
state ck at time k is one of a finite number of states and is
determined only by ck-1.

The Markov predictor views each RFUOP as a state.
The execution pattern, the sequence that the program
executes these RFUOP, is viewed as a sequence of state
transition in a Markov process. To predict the next
RFUOP as prefetching candidate is to find the transition
from the current state to the next state that has the largest
probability, where the probability information is obtained
dynamically by collecting statistics of the program.

Markov predictor gains the statistical information
about the execution pattern dynamically. The process
where it collects the statistics is the training process. There
are many ways to train the predictor. Conceptually they all
serve the same purpose: obtain statistics to evaluate the
probability of state transitions. However, they differ subtly
in terms of the prediction performance.

In previous work, [4] a simplified mechanism is used
to update the state transition probability. For each
occurrence of state transition (u, v), the probability of state
transition (u, w) is updated as:

()
() ()

, ,

, ,

/ 1 ,

/ 1 ,
u w u w

u w u w

P P C w v

P P C C w v

= + ≠

= + + =
 (3.1)

Here C is the training step size, or learning rate, which
determines how fast the predictor adapts to changes in the
execution pattern. When C is set to 1 as in [4], this greatly
reduces the hardware complexity. In this study we tune the
step size and thus find the optimal one to improve the
prediction performance.

Least Mean Square Algorithm (LMSA). An
alternative to the transition probability used in Markov
predictor is to view them as the correlation between the
current RFUOP (state) and the next RFUOP. The Least
Mean Square Algorithm (LMSA) is widely used in
adaptive filters. It quickly learns the correlation between
the input and the output when applied to the correlation
context. It is also very simple and flexible. The basic rule
of adaptively training the LMSA is (tailored for this
application):

()

1

1

0
k k

i i

w
w w d yµ+

=
= + ⋅ −

 (3.2)

Here w can be viewed as the correlation between two
RFUOP; di is the desired output of the predictor, e.g., 1 if i
is the next RFUOP, 0 if i is not the next RFUOP; yi is the

output of the predictor, in this case, the product of wk and
xk; µ is the training step size. Obviously tuning the value
of µ does not involve the use of divider in the hardware. µ
can even be picked as 2 A− where A is an integer so the
multiplication by µ becomes a simple shift operation.

History Information is useful in prediction. The
assumption that the RFUOP execution is a first-order
Markov process as mentioned previously serves as a good
simplification and approximation. But this is not always
true (almost always not true) in real program. Using more
than 1 step of the execution history sometimes is useful.
Consider the nested loop ((AB)CD) where AB is the inner
loop followed by CD in the outer loop. A first-order
predictor will always predict B follows A, A and C
follows B, D follows C. It will not consider any
correlation between B and D, but only that between C and
D. If the time gap between C and D is small, there may not
be enough time to prefetch D after the prefetcher sees C. A
predictor that considers history will know that there is
certain probability that D will appear two steps after B.

A straightforward scheme to use history information in
Markov predictor is to use higher order of Markov
process. Instead of computing 1(|)k kP c c − , it

computes 1 2(| , ,...)k k kP c c c− − . This can be implemented
as a higher order of state transition probability matrix.

In LMSA, a similar scheme is explored where, instead
of learning the correlation between the current RFUOP
and the next one, the LMSA tries to predict the next
RFUOP based on recent history of RFUOP. For instance,
in the case when one extra RFUOP is used, each pair of
the RFUOPk-1 and RFUOPk will have a correlation with
the RFUOPk+1, which is updated every time the pair
occurs.

The performance gain obtained by using history
information comes with a high cost. In both Markov
predictor and LMSA, storing history information increases
the memory requirement exponentially. The original
methods are used in algorithmic Matlab simulations
(Section 5.1). A more practical approach is necessary in
the benchmark simulation (Section 5.2) and in real system.
It is termed as back annotation. The basic idea is that in
training, the predictor not only updates correlation
value 1(,)k kC c c− , but also 2(,)k kC c c− or

even 3(,)k kC c c− . The back annotation uses a weight as

2 D− where D is the distance (in steps) between the 2
RFUOP.

4. Experimental Setup

In this study we conduct two sets of experiments. In
the first set of algorithmic experiments, we used Matlab on
the benchmark trace data to test the effect of

Reconfigurable Hardware (RH) capacity, training step
size, configuration size information, and history
information on the prefetching performance. In the second
set of experiments we used cycle accurate simulator
SimpleScalar3.0 [10] to test the effect of the various cost-
driven algorithms over the probability-driven algorithm on
reducing reconfiguration overhead by running the real
work load benchmark. For both sets of experiments we
used SPEC2000 benchmark suite [11].

4.1 Algorithmic experimental setup

Various algorithmic experiments are done in Matlab.
They include both Markov predictor and LMSA predictor
with different RH sizes, training step sizes, configuration
size information, and history information. The choice of
Matlab is based on its flexibility and short development
cycle. This is ideal for initial exploration of the design
space. Some important mathematical tools used in the
algorithms are also readily available in Matlab. The
tradeoff is that Matlab is not suitable to model details of
the programs, particular those involve the timing aspect of
the program. It also is too slow to run any real benchmark
data.

To gain meaningful and realistic information from
Matlab experiments, a set of trace data is obtained by
running a real benchmark program, which is 164.gzip
from the SPEC2000 benchmark suite in a modified
SimpleScalar simulator. According to the benchmark
profiling, 15 program blocks in 164.gzip are chosen as
coarse-grained RFUOPs for reconfigurable coprocessors.
The generated trace data contains real instruction
execution pattern and is used as the primary input to the
Matlab functions. The configuration size for the 15
RFUOPs are normalized and distribute evenly from 1 to 3.

The performance of the Matlab simulation is evaluated
by the error rate of the prediction weighted with the
RFUOP configuration size as shown in the following
formula:

weighted prediction error rate = ∑
=

N

i
iSC

1
 (4.1)

Here N is the total number of mispredictions, SCi is the
configuration size of ith mispredicted RFUOP.

4.2 Cycle-accurate performance simulation setup

Cycle-accurate benchmark simulation is done using
SimpleScalar3.0 and a SPEC2000 benchmark program
164.gzip. Each time an assigned RFUOP is executed in the
benchmark program, the RFUOP event is captured and
sent to the SimpleScalar simulator.

The configurations of the simulated general purpose
processor and reconfigurable coprocessor are as the
following: a 32KB date L1 cache of 32-byte block size, 2-

way associativity and 1 cycle latency; a 32KB instruction
L1 cache of 32-byte block size, 2-way associativity and 1
cycle latency; a unified 512KB L2 cache of 64-bytle block
size, 4-way associativity and 4-way associativity; 50 cycle
main memory access latency; 8 issue rate; a 64-entry
load/store queue; 2-level branch predictor with 128 entries;
8 integer ALU’s with 1 cycle latency; 2 integer
multiplier/dividers with 1 cycle latency; 6 floating point
ALU’s with 2 cycles latency; 2 floating point
multiplier/dividers with 12 cycle latency; 2 cycle latency
for each step of defragmentation.

Simulating Access to Reconfigurable Coprocessor. We
modified SimpleScalar to simulate the access to
reconfigurable coprocessor. At the beginning of each
RFUOP execution on reconfigurable coprocessor, the
following operations are modeled in the SimpleScalar

 Defragmentation of existing configurations in
the RH based on the algorithm in [8]

 Execute the prioritized prefetching queue based
on available time gap

 Check hit/miss events, execute least recently
used (LRU) replacement in the case of
prefetching miss

 Update prefetcher statistics
At the end of each RFUOP, the following operations

are done in the simulator:
 Update RFUOP timestamp
 Build prefetching queue based on statistical data

Reconfiguration Overhead. The metric used to evaluate
the performance is the overall reconfiguration overhead.
The configuration time used by a RFUOP includes
defragmentation latency, prefetching latency, and
configuration replacement latency in case of a
configuration miss.

The total reconfiguration overhead is computed as:

overhead pred misst t t= + (4.2)

where predt is the total overhead caused by the prediction

algorithm, and misst is the configuration replacement
latency in the case of a configuration miss.

,
0,

defrag pref dist defrag pref dist
pred

defrag pref dist

t t t t t t
t

t t t
+ − + >

= + <

(4.3)
where defragt is the time spent on defragmentation, preft is

the time spent on prefetching, and distt is the time interval
between two RFUOPs.

1k k

defrag defrag defrag

pref RFUOP offchip

dist RFUOP RFUOP

t step T
t s T

t t t
−

= ⋅

= ⋅

= −

(4.4)

The steps need to be performed for defragmentation is
based on the algorithm in [8]. RFUOPs is the size of the

prefeteched RFUOP.
kRFUOPt is the time when kRFUOP

is executed. defragT and offchipT are simulation parameters
that denote the unit latency of defragmentation steps and
accessing off-chip memory. In this study we chose

2defragT = and 50offchipT = .

In the case of a configuration miss, misst is the time
spent on fetching the needed RFUOP using the LRU
algorithm:

,
0,

RFUOP offchip
miss

s T miss
t

hit
⋅

=

 (4.5)

5 Experimental Results

The results for algorithmic experiments in Matlab are
shown in Section 5.1. The efficiency metric is prediction
error rate as described in Section 4.1. These algorithms
include both Markov predictor and LMSA predictor with
different RH sizes, training step sizes, configuration size
information, and history information. The cycle accurate
simulation results for testing the efficiency of reducing
reconfiguration overhead are shown in Section 5.2.

5.1 Algorithmic experiments results

We test the effect of RH size, training step size,
configuration size information, and history information on
the prefetching performance.

RH Capacity. Figure 1 shows the normalized weighted
prediction error of the probability-driven LMSA predictor
and the probability-driven Markov predictor for the cases
of various RH capacities (4, 6, 8). We started with RH
capacity of 4 because the maximum single configuration
size is 3 as mentioned in Section 4.1. As shown the larger
the RH capacity the smaller the error rate is. When RH
capacity increases from 4 to 6 and 8, the corresponding
normalized error rate reductions are 40% and 65% for
probability-driven LMSA predictor, and 39% and 59% for
probability-driven Markov predictor.

Furthermore, LMSA predictor outperforms Markov
predictor (11%, 13%, and 13% reduction in normalized
error rate for RH capacity of 4, 6, and 8) because LMSA
converges faster and thus adapts to the application faster.

For the rest of Section 5.1 we only show the algorithmic
results for LMSA prediction.

Effect of RH Capacity

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 6 8

RH Capacity

No
rm

al
iz

ed
 E

rr
or

 R
at

e

Markov LMS

Figure 1. Normalized Prediction Error of
probability-driven LMSA and probability-
driven Markov for the cases of various RH
capacities (4 6, 8). The baseline is Markov
predictor with RH capacity of 4.

Training step Size. Training step size plays an important
role in prefetching performance. Figure 2 shows the
prediction error rate for different value of the training step
size C in probability-driven LMSA. The RH capacity sizes
are 4, 6 and 8 in this experiment. As shown in the figure,
the larger the capacity the lower the error rate because
more space is available for configurations. As the step size
(C) increases from 0.025 to 1, the error rate decreases in
the range [0.05, 0.1] and then increases. The optimal
training step sizes with various RH capacity sizes are
around 0.05 (e.g., RH4, RH6) to 0.075 (e.g., RH8) as
shown in Table 1.

Training
Step Sizes

0.025 0.05 0.075 0.1

RH4 8.43% 7.96% 8.06% 8.09%
RH6 3.40% 3.33% 3.37% 3.54%
RH8 1.56% 1.50% 1.46% 1.46%

Table 1. Optimal training step sizes with
different RH capacities (4, 6, 8) for
probability-driven LMSA predictor.

Effect of Training Step Size

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Training Step Size (C)

Er
ro

r R
at

e
in

 P
er

ce
nt

ag
e

RH4 RH6 RH8

Figure 2. The effect of training step sizes
(from 0.025 to 1) on error rate for different
RH capacities (4, 6, 8) in probability-driven
LMSA predictor.

Configuration Size Information. Configuration size is
significant for prefetching decision. Without it, the
prefetching decision is merely based on probability or
correlation instead of the real reconfiguration overhead.
Figure 3 shows the normalized weighted prediction error
without (probability-driven) and with RFUOP
configuration size information (cost-driven LMSA) in
training weight. Step size is fixed to be 0.05 in this
experiment.

Effect of Configuration size Informaton

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 6 8

RH Capacity

N
or

m
al

iz
ed

 E
rr

or
 R

at
e

without s ize (probability-driven) with size (cost-driven)

Figure 3. Normalized prediction error rate
without (probability-driven LMSA) and with
configuration size information (cost-driven
LMSA) for different RH capacities (4, 6, 8).
The baseline is the error rate of probability-
driven LMSA with RH capacity of 4.

Using RFUOP configuration size information (cost-
driven LMSA) the results show 49%, 10%, and 7% error
rate reduction respectively for RH capacities of 4, 6, and 8.
The reason that the error rate reduction decreases as the
RH capacity increases is because there is less potential for
performance improvement.

History Information. History information helps
prediction. Figure 4 shows the normalized weighted
prediction error with and without extra history information
(1st order, 2nd order, and 3rd order LMSA). The training
step size is fixed to be 0.05 and it is cost-driven LMSA
predictor. As shown, the larger order of history is efficient
for small RH capacity (e.g., RH4). When the RH capacity
increases, the efficiency of using more history information
decreases, for instance the most efficient history is the 3rd
order when RH capacity is 4, the 2nd order when RH
capacity is 6, and the 1st order when RH capacity is 8. This
trend means aggressive prediction using history
information is helpful for small RH capacity, while its
complexity offsets its efficiency when RH capacity is
large. Therefore, we use the 2nd order history for cycle
accurate performance simulations in Section 5.2.

Effect of History Information

0

0.2

0.4

0.6

0.8

1

4 6 8
RH Capacity

N
or

m
al

iz
ed

 E
rr

or
 R

at
e

1st order LMSA 2nd order LMSA 3rd order LMSA

Figure 4. The effect of history information
on performance of cost-driven LMSA with
different RH capacities (4, 6, 8). The
baseline is the error rate of the cost-driven
1st order LMSA with RH capacity of 4.

5.2 Benchmark simulation results

We used cycle accurate benchmark simulations to
show the reconfiguration overhead reduction. Figure 5, 6,
7 show the results of a group of simulated algorithms
(LRU, Markov, Markov_ht2, LMSA, LMSA_hty2). The
Least Recently Used (LRU) uses no prefetching technique.
In the case of missing a configuration, it simply replaces
the least recently used configuration in the RH with the

needed one. All the other four algorithms (Markov,
Markov_ht2, LMSA, LMSA_hty2) use configuration
prefetching and LRU replacement in case of missing
configuration. Markov is the probability-driven Markov
predictor without history information. Markov_hty2 is the
cost-driven Markov predictor with 2nd order history
information. LMSA is the cost-driven LMSA predictor
without history information. LMSA-hty2 is the cost-driven
LMSA predictor with history information. The cycle
accurate simulations give the amount of clock cycles each
algorithm use for reconfiguration, which are the
reconfiguration overheads. For each prefetching algorithm
the optimal training step sizes are obtained through Matlab
algorithmic experiments (Table 2) and used in the
benchmark simulations.

RH Capacity 4 6 8
Markov 0.125 0.125 0.05

Markov_hty2 0.125 0.100 0.075
LMSA 0.085 0.015 0.020

LMSA_hty2 0.040 0.035 0.055

Table 2. The optimal training step sizes for
the four prefetching algorithms (Markov,
Markov_ht2, LMSA, LMSA_hty2) with
different RH capacities (4, 6, 8).

We compared the reconfiguration overheads of the
four predictors with that of LRU where no configuration
prefetching is used (Figure 5). The amount of the
simulated clock cycles spent in reconfiguration in LRU is
used as the standard reconfiguration overhead.

Reconfiguration Overhead

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

4 6 8

RH Capacity

N
or

na
liz

ed
 R

ec
on

fig
ur

at
io

n
O

ve
rh

ea
d

LRU Markov Markov_hty2 LMS LMS_hty2

Figure 5. The normalized reconfiguration
overhead of different algorithms (LRU,
Markov, Markov_ht2, LMSA, LMSA_hty2).
The baseline is the amount of the
simulated clock cycles spent in
reconfiguration in LRU for RH capacity of
4.

All the reconfiguration overheads in Figure 5 are
normalized to that of LRU. Obviously all prefetching
algorithms outperform the LRU algorithm considerably,
particularly for the low capacity RH. As shown using
configuration prefetching algorithm is more efficient than
merely increasing RH capacity. For instance, the
reconfiguration overheads of prefetching algorithms with
RH capacity of 4 are smaller than LRU with RH capacity
of 6; and it is the same trend between the groups of RH
capacity 6 and 8.

Furthermore, the efficiency of prefetching algorithms
increase as the RH capacity increases. This is because the
amount of reconfiguration overheads reduction increases
when the RH capacity increases as shown in Figure 6,
where the reconfiguration overhead reduction is calculated
using different LRU reconfiguration overhead as baseline
in each RH capacity group.

Reconfiguration Overhead Reduction

0%

10%

20%

30%

40%

50%

60%

70%

80%

4 6 8

RH Capacity

R
ec

on
fig

ur
at

io
n

O
ve

rh
ea

d
R

ed
uc

tio
n

in
 P

er
ce

nt
ag

e

Markov Markov_hty2 LMSA LMSA_hty2

Figure 6. The reconfiguration overhead
reduction for the prefetching algorithms
(Markov, Markov_ht2, LMSA, LMSA_hty2).
The baselines are LRU reconfiguration
overheads for each RH capacity.

Figure 7 compares the cost-driven predictors

(Markov_ht2, LMSA, LMSA_hty2) with the probability-
driven predictor (Markov). It shows cost-driven predictors
outperform the probability-driven predictor across the
cases of different RH capacities except for RH capacity of
8. For instance, the reconfiguration overhead reductions
over probability driven Markov are 4% to 7.5% for
Markov_hty2, 11% to 12.5% for LMSA, and 10.8% to
29.6% for LMSA_hty2.

Reconfiguration Overhead Reduction

-20%
-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%
35%

4 6 8

RH Capa city

R
ec

on
fig

ur
at

io
n

O
ve

rh
ea

d
R

ed
uc

tio
n

in
 P

er
ce

nt
ag

e

Markov_hty2 LMSA LMSA_hty2

Figure 7. Reconfigurable overhead
reduction for the cost-driven prefetching
algorithms (Markov_ht2, LMSA,
LMSA_hty2). The baselines are Markov
reconfiguration overheads for each RH
capacity.

6 Conclusions

This study introduced cost-driven hybrid configuration
prefetching algorithm for coarse-grained reconfigurable
coprocessor. The cost-driven prefetching algorithm is
based on the fact that configuration size plays a significant
role in reconfiguration overhead, which impacts the
prefetching performance. Without considering the
configuration size the predictor will make prefetching
decision merely based on probability or correlation instead
of the real reconfiguration overhead. We used algorithmic
experiments to access the effect of RH capacity, prediction
algorithm training step size, configuration size information,
and history information on the prefetching error rate. And
we also modeled the reconfigurable coprocessor access
process in a cycle accurate simulator SimpleScalar and
accessed cost-driven algorithm’s efficiency in reducing
reconfiguration overhead. Our results from algorithmic
Matlab experiments and cycle accurate simulations show
that prefetching algorithms outperform the LRU algorithm
considerably, particularly for the low capacity RH; using
configuration prefetching algorithms is more efficient than
merely increasing RH capacity; the efficiency of
prefetching algorithms increase as the RH capacity
increases; cost-driven predictors outperform the
probability-driven predictors by 4% to 29.6% in reducing
the reconfiguration overhead. The most efficient
probability-driven predictor is LMSA with history
information and the reconfiguration overhead reduction is
10.8 to 29.6%.

Acknowledgements

Thanks for the constructive discussions from Prof. Kia
Bazargan from Electrical and Computer Engineering
Department of University of Minnesota.

References

[1] J. M. Arnold, et al. ‘The Splash 2 Processor and
Applications,’ in Proc. IEEE International
Conference on Computer Design (ICCD): VLSI in
Computers and Processors, Oct. 1993.

[2] J. R. Hauser, Wawrzynek, J., ‘Garp: A MIPS
Processor with a Reconfigurable Coprocessor,’ in
Proc. IEEE Workshop FPGA’s Custom Comput.
Machiens, J. Anold and K. L. Pocek, Eds., Napa, CA,
pp. 12-21, Apr. 1997.

[3] SC Goldstein, et al. ‘PipeRench: A Coprocessor for
Streaming Multimedia Acceleration,’ in Proceed. Of
the 26th Annual International Symposium on
Computer Architecture, pp. 38-49, 1999.

[4] Z. Li, and S. Hauck, ‘Configuration Prefetching
Techniques for Partial Reconfigurable Coprocessor
with Relocation and Defragmentation,’ in
ACM/SIGDA Symposium on Field-Programmable
Gate Arrays, 2002.

[5] S. Hauck, ‘Configuration Prefetch for Single Context
reconfigurable Coprocessors,’ ACM/SIGDA
International Symposium on Field-Programmable
Gate Arrays, 1998.

[6] Z. Li, and S. Hauck, ‘Discovery for FPGA
Configuration Compression,’ ACM/SIGDA
Symposium on Field-Programmable Gate Arrays,
1999.

[7] Z. Li, et. al, ‘Configuration Caching management
Techniques for Reconfigurable Computing,’ IEEE
Symposium on. FPGAs for Custom Computing
Machines, pp. 87-96, 2000.

[8] K. Compton, et. al, ‘Configuration Relocation and
Defragmentation for Run-Time Reconfigurable
Computing,’ IEEE Transactions on VLSI Systems,
2002.

[9] D. Joseph, et. al, ‘Prefetching Using Markov
Predictors,’ IEEE Transactions on Computers, VOL
48., No. 2, Feb. 1999

[10] www.simplescalar.com
[11] www.spec2000.com

