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Abstract 

 
Reconfigurable computing systems have developed the 

capability of changing the configuration of the 
reconfigurable coprocessor multiple times during the 
course of a program. However, in most systems the 
reconfigurable coprocessor wastes computation cycles 
while waiting for the reconfiguration to complete. 
Therefore, the high demand for frequent run-time 
reconfiguration directly translates into higher 
reconfiguration overhead. Some studies have introduced 
the concept of prefetching to reduce the reconfiguration 
overhead. However, these prefetching algorithms are 
probability-driven. We believe that including 
configuration size information in the prediction algorithm 
directly links the training of the predictor with the 
performance gain. Therefore we proposed a performance-
oriented cost-driven algorithm for coarse-grained 
configuration prefetching.  Our cycle accurate simulation 
results show that the proposed cost-driven algorithm 
outperforms the probability-driven predictor by 10.8% to 
29.6% in reducing reconfiguration overhead. 
 
1. Introduction 
 

Reconfigurable computing systems that consist of a 
general purpose processor and a reconfigurable 
coprocessor have been a promising solution to a lot of 
practical problems [1] [2] [3]. The reconfigurable 
coprocessor provides high performance, particularly in 
repetitive logic and arithmetic, while the general purpose   
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processor provides the flexibility in handling all other 
tasks [4]. As the reconfigurable computing systems evolve 
over the years, they developed capability of changing the 
configuration of the reconfigurable coprocessor multiple 
times during the course of a program. However, their ever-
increasing flexibility comes with a higher demand for 
frequent run-time reconfigurations. This directly translates 
into higher reconfiguration overhead because in most 
systems the reconfigurable coprocessor has to wait before 
the reconfiguration completes, wasting cycles that can be 
used to perform computations. For example, applications 
on the DISC system have spent 25% to 71% of their 
execution time on reconfiguration [4]. It is obvious that 
the performance of these systems can be improved by 
reducing the reconfiguration overhead. 

Many studies have been focusing on reducing the 
reconfiguration overhead. These studies include 
configuration compression [6] and configuration caching 
[7]. Another promising technique that has been studied is 
configuration prefetching [5] [4]. This technique targets at 
absorbing reconfiguration overhead by overlapping the 
reconfiguration with computation. A prefetching technique 
is developed in [5] for single context FPGA systems, 
which are much simpler than most of the modern 
reconfigurable computing systems where part of the 
device can be programmed while the rest of the system 
continues computing so that multiple configurations can 
be loaded into different sections of the reconfigurable 
coprocessor. Configuration prefetching techniques for 
partial reconfiguration is introduced in [4]. Their dynamic 
prefetching technique uses a Markov chain predictor to 
predict the next Reconfigurable Unit OPeration (RFUOP). 
However, an important factor of reconfiguration overhead, 
the configuration size, was not considered. Without 



 
 

considering the configuration size, the predictor will make 
prefetching decision merely based on probability or 
correlation instead of the real reconfiguration overhead, 
which is an important metric. 

In this study, we propose a cost-driven coarse-grained 
configuration prefetching algorithm by incorporating 
configuration size into the prediction decision function. 
We incorporate the cost-driven algorithm into both 
Markov prefetcher and Least Mean Square Algorithm 
(LMSA) prefetcher. We used algorithmic experiments to 
access the effect of RH capacity, prediction algorithm 
training step size, configuration size information, and 
history information on the prefetching error rate. We also 
modeled the reconfigurable coprocessor access process in 
a cycle accurate simulator and accessed cost-driven 
algorithm’s efficiency in redoing reconfiguration overhead. 
Our results from algorithmic Matlab experiments and 
cycle accurate simulations show that the cost-driven 
algorithm outperforms the probability-driven predictor by 
4 to 29.6% in the cases of different RH capacities in 
reducing reconfiguration overhead. The most efficient 
probability-driven predictor is LMSA with history 
information and the reconfiguration overhead reduction is 
10.8 to 29.6%.  

The remainder of this paper is organized as follows: 
Section 2 presents the background of configuration 
prefetching. In Section 3 we describe the cost-driven 
hybrid configuration prefetching and related algorithms. 
The experimental setup is explained in Section 4 with the 
results shown in Section 5. Finally, Section 6 summaries 
and concludes.  

 
2. Background 
 

The idea of prefetching is widely used in general 
purpose computer systems, for both data and instruction. 
Prefetching is first introduced into reconfigurable systems 
in [5] where a prefetching technique is developed for 
single context FPGA systems. Their work demonstrated 
the potential of configuration prefetching in reducing the 
reconfiguration overhead. However, it targets at single 
context FPGA systems, which are much simpler than most 
of the modern reconfigurable computing systems where 
multiple configurations can be loaded into different 
sections of the reconfigurable coprocessor.  

Configuration relocation and defragmentation are 
introduced for partial reconfigurable coprocessor in [8]. 
They provide a flexible mechanism by which 
configurations of different functions can be rearranged in 
the coprocessor configuration space and make room for 
potentially more configurations. Based on such system, 
several configuration prefetching techniques were 
introduced in [4] to reduce the reconfiguration overhead, 
including static prefetching, dynamic prefetching, and 
hybrid prefetching. Their study shows that hybrid 

prefetching algorithm is the most efficient. The dynamic 
prefetching technique uses a Markov chain predictor to 
predict the next RFUOP. However, an important factor of 
reconfiguration overhead, the configuration size, was not 
considered in the dynamic prefetching algorithm. This 
potentially affects the effectiveness of the technique 
because even if an RFUOP has higher probability to be the 
next RFUOP, it may not present the highest 
reconfiguration overhead risk if its configuration latency is 
very small. On the other hand, an RFUOP that takes a long 
time to load may need more attention prior to its 
appearance at the top of the RFUOP queue. In this study, 
we use configuration size as an important metric for 
prefetching the next configuration.  

 
3. Cost-Driven Hybrid Configuration 
Prefetching 
 

The size of the RFUOP has significant impact on the 
prefetching performance. Without considering the 
configuration size, the predictor will make prefetching 
decision merely based on probability or correlation instead 
of the real reconfiguration overhead, which is the 
meaningful metric. In this study we used the configuration 
sizes in hybrid prefetching, which includes both static 
process and dynamic process.  

In the static process, the coarse-grained configurations, 
which will be run on the reconfigurable coprocessor, are 
chosen, and the configuration sizes are used as part of the 
training weight for training the optimal step size for 
prefetching algorithms (e.g., Markov and LMSA). Instead 
of calculating the probability of missing a needed 
configuration, the predictor calculates the cost 
(reconfiguration overhead) associated with missing the 
needed configuration.  

In the dynamic process, configuration sizes are used in 
the prefetching scheduling process. When the prefetcher 
prioritizes the configurations in the prefetch queue, it 
considers the distance (time gap) between the current 
RFUOP and the RFUOP being scheduled for prefetching. 
Bigger configuration with short distance is given lower 
priority since it is likely the prefetching of that 
configuration will not complete due to short of time, 
wasting time that can be used to prefetch smaller 
configuration. 

We incorporated the cost-driven method in both 
Markov predictor and LMSA predictor. Furthermore, we 
use history information to improve the performance of 
predictor. 

Markov Predictor was first used as a prefetching 
method between on-chip and off-chip cache [9]. A first-
order Markov process was used to simplify the prediction 
process. Also, a table is used to represents the transition 
probability to reduce the memory usage. These 
simplifications are used in the configuration prefetching 



 
 

studies [4]. However, the number of configurations in a 
reconfigurable computing system is much smaller than the 
size of the address space in a general purpose computer, 
making storing the transition probability matrix a much 
smaller concern.  

The Markov predictor models the configuration 
execution as a first-order Markov process. A first-order 
Markov process is a discrete-time stochastic process where 
state ck at time k is one of a finite number of states and is 
determined only by ck-1. 

The Markov predictor views each RFUOP as a state. 
The execution pattern, the sequence that the program 
executes these RFUOP, is viewed as a sequence of state 
transition in a Markov process. To predict the next 
RFUOP as prefetching candidate is to find the transition 
from the current state to the next state that has the largest 
probability, where the probability information is obtained 
dynamically by collecting statistics of the program. 

Markov predictor gains the statistical information 
about the execution pattern dynamically. The process 
where it collects the statistics is the training process. There 
are many ways to train the predictor. Conceptually they all 
serve the same purpose: obtain statistics to evaluate the 
probability of state transitions. However, they differ subtly 
in terms of the prediction performance. 

In previous work, [4] a simplified mechanism is used 
to update the state transition probability. For each 
occurrence of state transition (u, v), the probability of state 
transition (u, w) is updated as: 
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  (3.1) 

Here C is the training step size, or learning rate, which 
determines how fast the predictor adapts to changes in the 
execution pattern. When C is set to 1 as in [4], this greatly 
reduces the hardware complexity. In this study we tune the 
step size and thus find the optimal one to improve the 
prediction performance. 

Least Mean Square Algorithm (LMSA). An 
alternative to the transition probability used in Markov 
predictor is to view them as the correlation between the 
current RFUOP (state) and the next RFUOP. The Least 
Mean Square Algorithm (LMSA) is widely used in 
adaptive filters. It quickly learns the correlation between 
the input and the output when applied to the correlation 
context. It is also very simple and flexible. The basic rule 
of adaptively training the LMSA is (tailored for this 
application): 

( )

1

1

0
k k

i i

w
w w d yµ+
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      (3.2) 

Here w can be viewed as the correlation between two 
RFUOP; di is the desired output of the predictor, e.g., 1 if i 
is the next RFUOP, 0 if i is not the next RFUOP; yi is the 

output of the predictor, in this case, the product of wk and 
xk; µ is the training step size. Obviously tuning the value 
of µ does not involve the use of divider in the hardware. µ 
can even be picked as 2 A−  where A is an integer so the 
multiplication by µ becomes a simple shift operation. 

History Information is useful in prediction. The 
assumption that the RFUOP execution is a first-order 
Markov process as mentioned previously serves as a good 
simplification and approximation. But this is not always 
true (almost always not true) in real program. Using more 
than 1 step of the execution history sometimes is useful. 
Consider the nested loop ((AB)CD) where AB is the inner 
loop followed by CD in the outer loop. A first-order 
predictor will always predict B follows A, A and C 
follows B, D follows C. It will not consider any 
correlation between B and D, but only that between C and 
D. If the time gap between C and D is small, there may not 
be enough time to prefetch D after the prefetcher sees C. A 
predictor that considers history will know that there is 
certain probability that D will appear two steps after B. 

A straightforward scheme to use history information in 
Markov predictor is to use higher order of Markov 
process. Instead of computing 1( | )k kP c c − , it 

computes 1 2( | , ,...)k k kP c c c− − . This can be implemented 
as a higher order of state transition probability matrix.  

In LMSA, a similar scheme is explored where, instead 
of learning the correlation between the current RFUOP 
and the next one, the LMSA tries to predict the next 
RFUOP based on recent history of RFUOP. For instance, 
in the case when one extra RFUOP is used, each pair of 
the RFUOPk-1 and RFUOPk will have a correlation with 
the RFUOPk+1, which is updated every time the pair 
occurs. 

The performance gain obtained by using history 
information comes with a high cost. In both Markov 
predictor and LMSA, storing history information increases 
the memory requirement exponentially. The original 
methods are used in algorithmic Matlab simulations 
(Section 5.1). A more practical approach is necessary in 
the benchmark simulation (Section 5.2) and in real system. 
It is termed as back annotation. The basic idea is that in 
training, the predictor not only updates correlation 
value 1( , )k kC c c− , but also 2( , )k kC c c−  or 

even 3( , )k kC c c− . The back annotation uses a weight as 

2 D−  where D is the distance (in steps) between the 2 
RFUOP. 

 
4. Experimental Setup 
 

In this study we conduct two sets of experiments. In 
the first set of algorithmic experiments, we used Matlab on 
the benchmark trace data to test the effect of 



 
 

Reconfigurable Hardware (RH) capacity, training step 
size, configuration size information, and history 
information on the prefetching performance. In the second 
set of experiments we used cycle accurate simulator 
SimpleScalar3.0 [10] to test the effect of the various cost-
driven algorithms over the probability-driven algorithm on 
reducing reconfiguration overhead by running the real 
work load benchmark. For both sets of experiments we 
used SPEC2000 benchmark suite [11]. 
 
4.1 Algorithmic experimental setup 
 

Various algorithmic experiments are done in Matlab. 
They include both Markov predictor and LMSA predictor 
with different RH sizes, training step sizes, configuration 
size information, and history information. The choice of 
Matlab is based on its flexibility and short development 
cycle. This is ideal for initial exploration of the design 
space. Some important mathematical tools used in the 
algorithms are also readily available in Matlab. The 
tradeoff is that Matlab is not suitable to model details of 
the programs, particular those involve the timing aspect of 
the program. It also is too slow to run any real benchmark 
data. 

To gain meaningful and realistic information from 
Matlab experiments, a set of trace data is obtained by 
running a real benchmark program, which is 164.gzip 
from the SPEC2000 benchmark suite in a modified 
SimpleScalar simulator. According to the benchmark 
profiling, 15 program blocks in 164.gzip are chosen as 
coarse-grained RFUOPs for reconfigurable coprocessors. 
The generated trace data contains real instruction 
execution pattern and is used as the primary input to the 
Matlab functions. The configuration size for the 15 
RFUOPs are normalized and distribute evenly from 1 to 3.   

The performance of the Matlab simulation is evaluated 
by the error rate of the prediction weighted with the 
RFUOP configuration size as shown in the following 
formula:  

weighted prediction error rate = ∑
=

N

i
iSC

1
 (4.1) 

Here N is the total number of mispredictions, SCi is the 
configuration size of ith mispredicted RFUOP. 
 
4.2 Cycle-accurate performance simulation setup 
 

Cycle-accurate benchmark simulation is done using 
SimpleScalar3.0 and a SPEC2000 benchmark program 
164.gzip. Each time an assigned RFUOP is executed in the 
benchmark program, the RFUOP event is captured and 
sent to the SimpleScalar simulator.  

The configurations of the simulated general purpose 
processor and reconfigurable coprocessor are as the 
following: a 32KB date L1 cache of 32-byte block size, 2-

way associativity and 1 cycle latency; a 32KB instruction 
L1 cache of 32-byte block size, 2-way associativity and 1 
cycle latency; a unified 512KB L2 cache of 64-bytle block 
size, 4-way associativity and 4-way associativity; 50 cycle 
main memory access latency;  8 issue rate; a 64-entry 
load/store queue; 2-level branch predictor with 128 entries; 
8 integer ALU’s with 1 cycle latency; 2 integer 
multiplier/dividers with 1 cycle latency; 6 floating point 
ALU’s with 2 cycles latency; 2 floating point 
multiplier/dividers with 12 cycle latency; 2 cycle latency 
for each step of defragmentation. 
 
Simulating Access to Reconfigurable Coprocessor. We 
modified SimpleScalar to simulate the access to 
reconfigurable coprocessor. At the beginning of each 
RFUOP execution on reconfigurable coprocessor, the 
following operations are modeled in the SimpleScalar 

 Defragmentation of existing configurations in 
the RH based on the algorithm in [8] 

 Execute the prioritized prefetching queue based 
on available time gap 

 Check hit/miss events,  execute least recently 
used (LRU) replacement in the case of 
prefetching miss 

 Update prefetcher statistics 
At the end of each RFUOP, the following operations 

are done in the simulator: 
 Update RFUOP timestamp 
 Build prefetching queue based on statistical data 

 
Reconfiguration Overhead. The metric used to evaluate 
the performance is the overall reconfiguration overhead. 
The configuration time used by a RFUOP includes 
defragmentation latency, prefetching latency, and 
configuration replacement latency in case of a 
configuration miss.  

The total reconfiguration overhead is computed as: 

overhead pred misst t t= + (4.2) 

where predt  is the total overhead caused by the prediction 

algorithm, and misst  is the configuration replacement 
latency in the case of a configuration miss. 

,
0,

defrag pref dist defrag pref dist
pred

defrag pref dist

t t t t t t
t

t t t
+ − + >

=  + <
 

(4.3) 
where defragt  is the time spent on defragmentation, preft  is 

the time spent on prefetching, and distt  is the time interval 
between two RFUOPs. 
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The steps need to be performed for defragmentation is 
based on the algorithm in [8]. RFUOPs  is the size of the 

prefeteched RFUOP. 
kRFUOPt  is the time when kRFUOP  

is executed. defragT  and offchipT  are simulation parameters 
that denote the unit latency of defragmentation steps and 
accessing off-chip memory. In this study we chose 

2defragT =  and 50offchipT = . 

In the case of a configuration miss, misst  is the time 
spent on fetching the needed RFUOP using the LRU 
algorithm: 

,
0,

RFUOP offchip
miss

s T miss
t

hit
⋅

= 


 (4.5) 

 
5 Experimental Results 
 

The results for algorithmic experiments in Matlab are 
shown in Section 5.1. The efficiency metric is prediction 
error rate as described in Section 4.1. These algorithms 
include both Markov predictor and LMSA predictor with 
different RH sizes, training step sizes, configuration size 
information, and history information. The cycle accurate 
simulation results for testing the efficiency of reducing 
reconfiguration overhead are shown in Section 5.2.  
 
5.1 Algorithmic experiments results 
 

We test the effect of RH size, training step size, 
configuration size information, and history information on 
the prefetching performance. 
 
RH Capacity. Figure 1 shows the normalized weighted 
prediction error of the probability-driven LMSA predictor 
and the probability-driven Markov predictor for the cases 
of various RH capacities (4, 6, 8). We started with RH 
capacity of 4 because the maximum single configuration 
size is 3 as mentioned in Section 4.1. As shown the larger 
the RH capacity the smaller the error rate is. When RH 
capacity increases from 4 to 6 and 8, the corresponding 
normalized error rate reductions are 40% and 65% for 
probability-driven LMSA predictor, and 39% and 59% for 
probability-driven Markov predictor.  

Furthermore, LMSA predictor outperforms Markov 
predictor (11%, 13%, and 13% reduction in normalized 
error rate for RH capacity of 4, 6, and 8) because LMSA 
converges faster and thus adapts to the application faster. 

For the rest of Section 5.1 we only show the algorithmic 
results for LMSA prediction. 
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Figure 1. Normalized Prediction Error of 
probability-driven LMSA and probability-
driven Markov for the cases of various RH 
capacities (4 6, 8). The baseline is Markov 
predictor with RH capacity of 4. 

 
Training step Size. Training step size plays an important 
role in prefetching performance. Figure 2 shows the 
prediction error rate for different value of the training step 
size C in probability-driven LMSA. The RH capacity sizes 
are 4, 6 and 8 in this experiment. As shown in the figure, 
the larger the capacity the lower the error rate because 
more space is available for configurations. As the step size 
(C) increases from 0.025 to 1, the error rate decreases in 
the range [0.05, 0.1] and then increases. The optimal 
training step sizes with various RH capacity sizes are 
around 0.05 (e.g., RH4, RH6) to 0.075 (e.g., RH8) as 
shown in Table 1.   

 
Training 
Step Sizes 

0.025 0.05 0.075 0.1 

RH4 8.43% 7.96% 8.06% 8.09% 
RH6 3.40% 3.33% 3.37% 3.54% 
RH8 1.56% 1.50% 1.46% 1.46% 

 
Table 1. Optimal training step sizes with 
different RH capacities (4, 6, 8) for 
probability-driven LMSA predictor. 
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Figure 2. The effect of training step sizes 
(from 0.025 to 1) on error rate for different 
RH capacities (4, 6, 8) in probability-driven 
LMSA predictor. 
 

Configuration Size Information. Configuration size is 
significant for prefetching decision. Without it, the 
prefetching decision is merely based on probability or 
correlation instead of the real reconfiguration overhead. 
Figure 3 shows the normalized weighted prediction error 
without (probability-driven) and with RFUOP 
configuration size information (cost-driven LMSA) in 
training weight. Step size is fixed to be 0.05 in this 
experiment.  
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Figure 3. Normalized prediction error rate 
without (probability-driven LMSA) and with 
configuration size information (cost-driven 
LMSA) for different RH capacities (4, 6, 8). 
The baseline is the error rate of probability-
driven LMSA with RH capacity of 4. 

Using RFUOP configuration size information (cost-
driven LMSA) the results show 49%, 10%, and 7% error 
rate reduction respectively for RH capacities of 4, 6, and 8. 
The reason that the error rate reduction decreases as the 
RH capacity increases is because there is less potential for 
performance improvement.  
 
History Information. History information helps 
prediction. Figure 4 shows the normalized weighted 
prediction error with and without extra history information 
(1st order, 2nd order, and 3rd order LMSA). The training 
step size is fixed to be 0.05 and it is cost-driven LMSA 
predictor. As shown, the larger order of history is efficient 
for small RH capacity (e.g., RH4). When the RH capacity 
increases, the efficiency of using more history information 
decreases, for instance the most efficient history is the 3rd 
order when RH capacity is 4, the 2nd order when RH 
capacity is 6, and the 1st order when RH capacity is 8. This 
trend means aggressive prediction using history 
information is helpful for small RH capacity, while its 
complexity offsets its efficiency when RH capacity is 
large. Therefore, we use the 2nd order history for cycle 
accurate performance simulations in Section 5.2.  
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Figure 4. The effect of history information 
on performance of cost-driven LMSA with 
different RH capacities (4, 6, 8). The 
baseline is the error rate of the cost-driven 
1st order LMSA with RH capacity of 4.   

 
5.2 Benchmark simulation results 
 

We used cycle accurate benchmark simulations to 
show the reconfiguration overhead reduction. Figure 5, 6, 
7 show the results of a group of simulated algorithms 
(LRU, Markov, Markov_ht2, LMSA, LMSA_hty2). The 
Least Recently Used (LRU) uses no prefetching technique. 
In the case of missing a configuration, it simply replaces 
the least recently used configuration in the RH with the 



 
 

needed one. All the other four algorithms (Markov, 
Markov_ht2, LMSA, LMSA_hty2) use configuration 
prefetching and LRU replacement in case of missing 
configuration. Markov is the probability-driven Markov 
predictor without history information. Markov_hty2 is the 
cost-driven Markov predictor with 2nd order history 
information. LMSA is the cost-driven LMSA predictor 
without history information. LMSA-hty2 is the cost-driven 
LMSA predictor with history information. The cycle 
accurate simulations give the amount of clock cycles each 
algorithm use for reconfiguration, which are the 
reconfiguration overheads. For each prefetching algorithm 
the optimal training step sizes are obtained through Matlab 
algorithmic experiments (Table 2) and used in the 
benchmark simulations. 
 

RH Capacity 4 6 8 
Markov 0.125 0.125 0.05 

Markov_hty2 0.125 0.100 0.075 
LMSA 0.085 0.015 0.020 

LMSA_hty2 0.040 0.035 0.055 
 

Table 2. The optimal training step sizes for 
the four prefetching algorithms (Markov, 
Markov_ht2, LMSA, LMSA_hty2) with 
different RH capacities (4, 6, 8). 
 

We compared the reconfiguration overheads of the 
four predictors with that of LRU where no configuration 
prefetching is used (Figure 5). The amount of the 
simulated clock cycles spent in reconfiguration in LRU is 
used as the standard reconfiguration overhead.  
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Figure 5. The normalized reconfiguration 
overhead of different algorithms (LRU, 
Markov, Markov_ht2, LMSA, LMSA_hty2). 
The baseline is the amount of the 
simulated clock cycles spent in 
reconfiguration in LRU for RH capacity of 
4. 

All the reconfiguration overheads in Figure 5 are 
normalized to that of LRU. Obviously all prefetching 
algorithms outperform the LRU algorithm considerably, 
particularly for the low capacity RH. As shown using 
configuration prefetching algorithm is more efficient than 
merely increasing RH capacity. For instance, the 
reconfiguration overheads of prefetching algorithms with 
RH capacity of 4 are smaller than LRU with RH capacity 
of 6; and it is the same trend between the groups of RH 
capacity 6 and 8. 

Furthermore, the efficiency of prefetching algorithms 
increase as the RH capacity increases. This is because the 
amount of reconfiguration overheads reduction increases 
when the RH capacity increases as shown in Figure 6, 
where the reconfiguration overhead reduction is calculated 
using different LRU reconfiguration overhead as baseline 
in each RH capacity group.   
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Figure 6. The reconfiguration overhead 
reduction for the prefetching algorithms 
(Markov, Markov_ht2, LMSA, LMSA_hty2). 
The baselines are LRU reconfiguration 
overheads for each RH capacity.  

 
Figure 7 compares the cost-driven predictors 

(Markov_ht2, LMSA, LMSA_hty2) with the probability-
driven predictor (Markov). It shows cost-driven predictors 
outperform the probability-driven predictor across the 
cases of different RH capacities except for RH capacity of 
8. For instance, the reconfiguration overhead reductions 
over probability driven Markov are 4% to 7.5% for 
Markov_hty2, 11% to 12.5% for LMSA, and 10.8% to 
29.6% for LMSA_hty2. 
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Figure 7. Reconfigurable overhead 
reduction for the cost-driven prefetching 
algorithms (Markov_ht2, LMSA, 
LMSA_hty2). The baselines are Markov 
reconfiguration overheads for each RH 
capacity.  

 
6 Conclusions 
 

This study introduced cost-driven hybrid configuration 
prefetching algorithm for coarse-grained reconfigurable 
coprocessor. The cost-driven prefetching algorithm is 
based on the fact that configuration size plays a significant 
role in reconfiguration overhead, which impacts the 
prefetching performance. Without considering the 
configuration size the predictor will make prefetching 
decision merely based on probability or correlation instead 
of the real reconfiguration overhead. We used algorithmic 
experiments to access the effect of RH capacity, prediction 
algorithm training step size, configuration size information, 
and history information on the prefetching error rate. And 
we also modeled the reconfigurable coprocessor access 
process in a cycle accurate simulator SimpleScalar and 
accessed cost-driven algorithm’s efficiency in reducing 
reconfiguration overhead. Our results from algorithmic 
Matlab experiments and cycle accurate simulations show 
that prefetching algorithms outperform the LRU algorithm 
considerably, particularly for the low capacity RH; using 
configuration prefetching algorithms is more efficient than 
merely increasing RH capacity; the efficiency of 
prefetching algorithms increase as the RH capacity 
increases; cost-driven predictors outperform the 
probability-driven predictors by 4% to 29.6% in reducing 
the reconfiguration overhead. The most efficient 
probability-driven predictor is LMSA with history 
information and the reconfiguration overhead reduction is 
10.8 to 29.6%.  

 

Acknowledgements 
 
Thanks for the constructive discussions from Prof. Kia 
Bazargan from Electrical and Computer Engineering 
Department of University of Minnesota. 
 
References 

[1] J. M. Arnold, et al. ‘The Splash 2 Processor and 
Applications,’ in Proc. IEEE International 
Conference on Computer Design (ICCD): VLSI in 
Computers and Processors, Oct. 1993. 

[2] J. R. Hauser, Wawrzynek, J., ‘Garp: A MIPS 
Processor with a Reconfigurable Coprocessor,’ in 
Proc. IEEE Workshop FPGA’s Custom Comput. 
Machiens, J. Anold and K. L. Pocek, Eds., Napa, CA, 
pp. 12-21, Apr. 1997. 

[3] SC Goldstein, et al. ‘PipeRench: A Coprocessor for 
Streaming Multimedia Acceleration,’ in Proceed. Of 
the 26th Annual International Symposium on 
Computer Architecture, pp. 38-49, 1999. 

[4] Z. Li, and S. Hauck, ‘Configuration Prefetching 
Techniques for Partial Reconfigurable Coprocessor 
with Relocation and Defragmentation,’ in 
ACM/SIGDA Symposium on Field-Programmable 
Gate Arrays, 2002. 

[5] S. Hauck, ‘Configuration Prefetch for Single Context 
reconfigurable Coprocessors,’ ACM/SIGDA 
International Symposium on Field-Programmable 
Gate Arrays, 1998. 

[6] Z. Li, and S. Hauck, ‘Discovery for FPGA 
Configuration Compression,’ ACM/SIGDA 
Symposium on Field-Programmable Gate Arrays, 
1999. 

[7] Z. Li, et. al, ‘Configuration Caching management 
Techniques for Reconfigurable Computing,’ IEEE 
Symposium on. FPGAs for Custom Computing 
Machines, pp. 87-96, 2000.  

[8] K. Compton, et. al, ‘Configuration Relocation and 
Defragmentation for Run-Time Reconfigurable 
Computing,’ IEEE Transactions on VLSI Systems, 
2002. 

[9] D. Joseph, et. al, ‘Prefetching Using Markov 
Predictors,’ IEEE Transactions on Computers, VOL 
48., No. 2, Feb. 1999 

[10] www.simplescalar.com  
[11] www.spec2000.com 

 

 


